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Abstract  

Throughout this directed research, we aim to identify opportunities for machine learning to 

support portfolio optimization. Based on a thorough literature review we decide to pursue an 

unsupervised learning approach and test its performance by conducting benchmarking against 

classic portfolio optimization techniques. To ensure the validity of our findings we explore the 

model’s robustness by conducting an array of experiments. In summary, we deem our version 

of the clustering algorithm to provide a suitable investment framework for return-focused 

investors with lower risk aversion. We suggest further research towards mitigating the 

algorithm’s inconsistencies and exploring additional tuning methodologies. 

Keywords: Unsupervised Learning, K-Means, Omega Ratio, Minkowski Distance, 
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1 Introduction 

With recent developments in financial technology, a major focus of quantitative finance is built 

around developing Machine Learning (hereafter ML) technologies to predict price movement 

and construct optimal portfolios, beating the performance of human fund managers. It comes 

as no surprise that the finance industry has been at the development forefront for prediction 

methodologies. In the early days, practitioners solely relied on their intellect to identify 

investment opportunities and execute trades. With the introduction of statistical models, 

especially the CAPM, every high-yielding strategy was tied to relatively high market betas and 

therefore risk exposure. The upsides of this simple and intuitive prediction methodology were 

quickly challenged by the rise of market anomalies, amongst these the predominant “value-

effect”, creating abnormal returns that were not able to be explained by the simple exposure to 

market returns. The introduction of multi-factor models which attempted to capture these 

anomalies in additional factors solved some of the issues in the short run but only at a certain 

cost. With the rising number of noisy and highly correlated return predictors needed for these 

models, the thread of overfitting and thus, producing unstable and unreliable predictions grew 

exponentially. Consequently, some researchers expressed the need for different methods from 

cross-sectional regressions and portfolio sorts. Here ML presented itself as particularly 

adequate as through regularization it provides means to contain overfitting biases, find 

complicated patterns and relations, and handle high-dimensional sets of predictor sets (Gu, 

Kelly and Xiu 2020). These potentials for ML in finance provide the inspirational basis for this 

directed research and will accompany us along the entire project. Throughout this report, we 

aim in particular to identify opportunities of ML for optimal asset allocation in portfolio 

management. The first part explores possible algorithms that suit our problem statement, 

identifies and analyzes parallel works on this subject, and finally derives a precise research 

objective. The following chapters document the implementation of the research objective into 
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an algorithm, evaluate whether it represents an upside to conventional optimization techniques, 

and investigate its robustness. 

2 Theoretical Background 

This second chapter performs a brief literature review of ML applications for finance. Starting 

with general definitions of ML we explore the opportunities and limitations of algorithms for 

finance, analyze the current state of research in related works, and finally derive the precise 

research objective for this directed research. 

2.1 Introduction to Machine Learning  

Most relevant literature defines ML as a subgroup of Artificial Intelligence, focused on the 

ability to learn without being explicitly programmed (Samuel 1953). In traditional 

programming software requires precise instructions, predefined by the manual inputs of a 

software engineer. For complex problem statements such as facial recognition, the instructions 

become very time-consuming and almost impossible to program through human inputs. ML 

promises to solve these issues by letting the computer learn from experience autonomously and 

program itself accordingly. Concerning its application scope, early practitioners stated “the 

function of a machine learning system can be descriptive, meaning that the system uses the data 

to explain what happened; predictive, meaning the system uses the data to predict what will 

happen, or prescriptive, meaning the system will use the data to make suggestions about what 

action to take”, (Malone, Rus und Laubacher 2020). ML can be categorized into supervised, 

unsupervised, and reinforced learning algorithms. Supervised learning attempts to recognize 

patterns in labeled input data and apply these to predict the labels of a different unlabeled 

dataset. A proven application is the identification of fraudulent banking transactions based on 

past data of fraudulent and non-fraudulent instances. These algorithms range from simple linear 

regression functions to complex neural networks. Unsupervised learning (hereafter UL) 

algorithms explore unlabeled data for patterns, often identifying trends that users were not 
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explicitly looking for. The program scans the data points of a given set and determines whether 

and how they can be divided into subgroups. An example could be a marketing agency looking 

to divide its customer audience into segments for tailored advertisements. The algorithms 

determine data point similarity based on distance metrics between the underlying features and 

group them accordingly. Reinforced learning trains through trial and error, utilizing a reward 

system to incentivice the machine to determine the best set of actions. Exemplary applications 

are in the development of autonomous vehicles, where the computer learns from mistakes and 

avoids those for future trials. Within the scope of portfolio management, especially UL has 

established itself as a valuable tool to facilitate decision-making. We deem that for the purpose 

of our research this algorithm type could pose a suitable tool to analyze securities, identify 

patterns, and ultimately build a portfolio with optimal asset allocation. 

2.2 Clustering Algorithms in Finance 

As previously mentioned, UL algorithms analyze unlabeled datasets and assign the contained 

data points in subgroups based on their features, a process that in ML is called clustering. 

Clustering applications arise naturally in most processes in finance. The technique is widely 

applied to pattern recognition and anomaly detection. An investor may be keen to evaluate 

given assets based on a multiples method, which requires the identification of feasible 

counterparties for comparisons. Risk managers are concerned with maintaining a diversified 

portfolio and therefore avoiding the concertation of risk into securities with common traits 

(Baker und Filbeck 2015). A Trader may be interested in determining whether a particular rally 

or sell-off is idiosyncratic or might affect an array of multiple securities. It comes as no surprise 

that clustering analysis has developed into one of the most innovative means of portfolio 

selection. We deem that for our problem statement cluster analysis could pose a valuable 

opportunity to enable better portfolio allocation against conventional optimization techniques. 
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2.3 Opportunities and Limitations of Clustering for Asset Management 

The key challenge of this directed research is to identify ML methodologies for portfolio 

optimization. In the previous chapters, we outlined clustering as a potential algorithm to support 

portfolio selection and create performant strategies. Supported by various studies, k-means has 

positioned itself as one of the most prominent tools in this area (Léon, et al. 2017). In this 

chapter, we will review the basic concepts of this algorithm, examine the underlying 

opportunities and challenges, and conclude the applicability to our problem statement. K-means 

is one of the most popular UL techniques, which divides a set of data points into a prespecified 

number “k” of clusters (Sharma, et al. 2019). Depending on the initialization technique, a 

quantity of “k” centroids is positioned within the dataset. The data points are then assigned to 

their closest centroid, forming a cluster. The centroids are then recalculated to constitute the 

center point of their respective cluster. Especially in early iterations this usually results in bigger 

centroid shifts and thus, some data points changing their cluster affiliation. This process is 

repeated iteratively until the centroids cease to move after recalculation. For portfolio selection, 

k-means includes several advantages. By construction k-means is an easily understandable and 

computationally efficient algorithm and therefore, adept to handle large datasets within a 

reasonable scope of time and resources. For application, it also features great flexibility and can 

work on a variety of different data structures. Some research also mentions positive aspects 

concerning data filtering and robustness to noise due to the finiteness of  sample size (Tolaa, et 

al. 2008). A great number of professionals also highlight the potential of k-means for 

dimensionality reduction (Snow 2020). Much like methods such as Principle Component 

Analysis (PCA), the algorithm takes in a dataset with several features and reduces it to a lower 

dimensionality. Essentially, by providing a cluster assignment to each datapoint, k-means 

reduces the dataset to one dimension of the basis of the given feature inputs. Despite, these clear 

upsides, the methodology comes at a given cost of limitations. Most notably k-means requires 
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the number of clusters “k” to search for as an input (Scikit Learn 2022). For most problems, 

this parameter can’t be derived in a logical manner which poses a challenge for model tuning. 

Moreover, the algorithm does not guarantee a feasible and robust outcome as by default the 

initialization, the placement of centroids within the dataset, is random (Scikit Learn 2022). 

Some literature also warns about the algorithm’s sensitivity to outliers and dissuades its 

utilization for unprocessed datasets. Lastly, we should mention a critical view that recently 

gained popularity. It implies that real-world data often can’t be dissected into distinct clusters 

(Burney, et al. 2019). On basis of this view, an array of new so-called “fuzzy” clustering 

algorithms has been developed. Rather than allocating hard cluster assignments, these 

algorithms calculate the statistical probability of individual data points belonging to respective 

clusters (Duarte and De Castro 2020). As done by many parallel works on this topic, for this 

project we assume that asset data can indeed be classified into fixed clusters. Despite all 

assumptions, we are still left with the main challenge of k-means, being its initialization. An 

entire research field evolved around this issue of choosing an adequate number of clusters, 

providing a selection of simpler and more sophisticated methodologies to derive feasible input 

parameters. We will further elaborate on some applicable options to our problem statement in 

the implementation chapter. In summary, k-means provides us with a reliable, efficient, and 

flexible algorithm, suitable to the experimental approach we aspire to conduct throughout this 

research. 

2.4 Related Work 

The field of portfolio optimization is a widely researched area, being one of the most prominent 

issues in quantitative finance (Léon, et al. 2017). A large scope of research and implemented 

methodologies is based on Markowitz’s early works around portfolio selection (Ponsich, López 

Jaimes and Coello 2013). Observing his proposed framework, it is possible to make the logical 

implication of using multi-objective algorithms for such a problem statement (Duarte and De 
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Castro 2020). As clustering can be defined as an optimization task (Grötschel and Wakabayashi 

1989), applying respective algorithms to solve an optimization problem for portfolio allocation 

is a valid inference (Duarte and De Castro 2020). Using this assumption as an inception point 

to our search for related work, we determine that there has been a vast number of contributions 

(Ponsich, López Jaimes and Coello 2013). The notions put out by Mantegna (Mantegna 1999), 

who was the first to suggest and employ time series clustering techniques using the correlation 

matrix to solve the portfolio allocation problem, were later used as cluster preprocessing by de 

Prado (M. L. de Prado 2016) and Raffinot (Raffinot 2018). The suggested strategy proved to 

be reliable in determining which types of securities are most vulnerable to and impacted by 

economic variables. De Prado presented a hierarchical allocation method based on the idea of 

hierarchical clustering, employing the data from the covariance matrix to produce more 

diversified portfolios than those produced by conventional techniques. The outcomes were 

portfolios that were more diversified and less volatile. Raffinot examined the Single Linkage, 

Complete Linkage, Average Linkage, Ward's Method, and Directed Bubble clustering 

techniques based on the work of de Prado. The author concluded that portfolios built using 

hierarchical clustering have superior risk-adjusted returns and are more diversified. By 

reflecting on the work of Mantegna and how the method he outlined became the foundation for 

time series clustering, Marti et al. (Marti, et al. 2021) analyzed financial market clustering. The 

analysis offers suggestions on clustering applications for trading, risk management, portfolio 

selection, and financial policy formulation. More recently León et al. (Léon, et al. 2017) tested 

a variety of clustering algorithms for risk-adjusted portfolio construction. They found that 

clustering algorithms generally produce less volatile portfolio performance compared to their 

traditional counterparts such as the mean-variance optimization. Concentrating on more recent 

works we identify that most ideas are still based on de Prado’s earlier works around hierarchical 

clustering (de Prado 2016). Researchers such as Duarte (Duarte and De Castro 2020) or even 



 8 

de Prado (de Prado 2020) himself made use of an allocation workflow including intra and inter-

cluster allocation schemes. A concept that de Prado describes as “Nested Clustering 

Algorithms”. This concept shall also lay the foundation for our research project. Based on 

suggestions from the related literature, in the following chapter, we will derive a clear research 

objective. 

2.5 Research Objective of the Directed Research 

Exploring potential research objectives, it becomes apparent that the field of clustering 

algorithms for asset allocation has been widely covered by literature. The thorough literature 

review of the past chapter will thus, constitute a valuable reference in discovering niches to 

base our research and create a value-added project. Our inception points will be the “Nested 

Clustering Algorithm” employed by de Prado (de Prado 2020) and others. The study by Duarte 

(Duarte and De Castro 2020) employed such a framework in combination with a k-medoids 

algorithm. With regards to performance, they found that the proposed methodology was 

outperforming the returns of traditional options, such as the minimum variance portfolio, at a 

cost of slightly higher risk. The research indicates further research potential for applications of 

different clustering algorithms and trials in different market environments. The works by León 

et al. (Léon, et al. 2017) employ an array of different k-means clustering algorithms to 

benchmark against classic portfolio allocation theories. Concluding that cluster algorithms 

generally produce portfolios with less volatility, they highlight the possibility of utilizing the 

Omega (hereafter OR) rather than the Sharpe ratio for portfolio optimization in further research. 

Moreover, they propose experiments with different distance metrics instead of using the 

classical correlation matrix as basis for similarity identification. This proposal reflects the 

research propositions of some other prominent works in the field such as Raffinot (Raffinot 

2018). In general, we observe that the research niches can be categorized. The most hinted 

concept is trying different distance metrics for similarity analysis. Within the scope of our 
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research we will explore using the frequently suggested Minkowski distance (Equation 1). The 

main benefit we seek to gain from this distance metric is its p-parameter which allows for 

optimal model tuning making it especially adept for ML applications. Furthermore, parallel 

research incentivizes experiments that derive adaptions of conventional algorithms and 

optimization methods. For our project, we will opt for the aforementioned k-means algorithm 

in combination with the proposed Omega optimization (Léon, et al. 2017). This represents a 

particularly promising optimization measure as it provides a balanced metric (Equation 2) 

between downside-risk and upside-potential (Winton Capital Management 2003), enabling a 

measure of risk-adjusted returns. Further aspects regarding our model specifications will be 

presented in the upcoming chapter. To guarantee the robustness of our model, next to 

conventional benchmarking techniques we also will leverage the proposal of testing our model 

in different market environments. Summarizing this chapter on the theoretical background, we 

were able to establish a solid basis to build our machine learning model for portfolio allocation. 

In the upcoming chapter, we will explain the detailed implementation of our concept. 

3 Model Implementation 

This section documents the implementation of our k-means-based clustering strategy to achieve 

optimal portfolio allocation. After a short review of the dataset, the sections present data 

processing techniques and distance metrics before detailing the implementation of the actual 

investment strategy.  

3.1 Data Description 

The dataset we chose to employ our investment strategy on includes the daily stock returns of 

the S&P 500 index’ (hereafter SPY) components over the period of the last 10 years. The 

selected time range provides us with sufficient information to learn and test model robustness 

while remaining within the feasible range of our processing capabilities. The selected data 
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amounts to a total of 50312 securities that we will use for our portfolio construction. For the 

train-test split methodology, we will follow the conventional train-validation-test split 

approach, separating our dataset along the time series into three components. The default 

proportions of the components will be 60-20-20 respectively, although we will explore other 

configurations to determine robustness in our analysis chapter. Our model will be trained on 

the train set and evaluated on the validation set. After completing training and tuning of the 

model we will finalize a recommended model specification to be applied to the test set. As 

indicated in the theoretical background chapter we will use the correlation matrix of the 

underlying SPY-component returns as input to our clustering algorithm to calculate the optimal 

allocation. 

3.2 Denoising and Detoning 

The validity of model output is mainly driven by two determinants: the quality of input data 

and the fit of model characteristics with the underlying problem statement. Our procedure 

involves the k-means clustering algorithm with input data in form of a correlation matrix. By 

default, these two components come with their challenges. The k-means algorithm is not 

immune to outliers, which could potentially result in a distortion of findings (Shrifan, Akbar 

and Isa 2022). Moreover, the correlation matrix by construction features significant amounts of 

noise that pose a challenge to identifying actual signal. In this chapter, we will discuss two 

methodologies proposed in de Prado’s work (de Prado 2020) to process our input into a format 

that both reflects the essential signaling of our data and accounts for our algorithm’s 

characteristics. The first mean for processing the empirical correlation matrix is a denoising 

mechanism. It is based on the “Marchenko Pastur Theorem”, a theory of random matrices that 

 

1 Only stocks were used that composed the S&P500 on the date of research (03.11.2022) 

2 Number might deviate due to potentially missing data  



 11 

describes the asymptotic behavior of singular values in large rectangular random matrices 

(Yaskov 2016). Essentially, it provides through the characteristics of the underlying dataset a 

range of eigenvalues that would for the corresponding correlation matrix be deemed 

insignificant. Thus, we form a framework to discriminate between eigenvalues associated with 

noise and those associated to signal. We implement our denoising strategy through the constant 

residual eigenvalue method (de Prado 2020), left with a denoised correlation matrix. Figure 1 

depicts a comparison between eigenvalues before and after denoising. The second concept we 

apply to our correlation matrix is the detoning method, which also was proposed by de Prado. 

The basis for this instrument follows the thought that financial matrices usually follow at least 

one underlying market component. Thus, every element of the correlation matrix is at least in 

part driven by a common force. Data that features a strong market component is recommended 

to be denoted, supporting the algorithm in finding dissimilarities across clusters. As our dataset 

is composed of the largest companies that make up and thus, follow the U.S. market we will 

perform this step for our purposes. By removing one eigenvector, the detoned correlation matrix 

becomes singular. Since the majority of methods do not need the invertibility of the correlation 

matrix, this is not an issue for clustering applications (de Prado 2020). However, it is notable 

that mean-variance portfolio optimization cannot be done directly using a detoned correlation 

matrix but rather would require a preprocessing step. 

3.3 Distance Metrics 

To enable our clustering algorithm to identify patterns in the inserted dataset it is essential to 

provide an underlying metric that describes the relationship between two separate variables. A 

helpful indicator of linear codependence is correlation. After being denoised and detoned, a 

correlation matrix can provide crucial structural details about a system. This although, is only 

possible after some necessary technical adjustments as described by de Prado. Technically, 

correlation is not a metric as it doesn’t fulfill the criteria of nonnegativity and triangle inequality 
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(Dubrovskiy 2022). De Prado emphasizes the importance of metrics as they provide an 

“intuitive topology” to a given set. Without this mentioned topology comparing non-metric 

measures would increasingly lead to incoherent outcomes. In light of this perspective, we can 

observe the need for a suitable distance metric to describe the stock return relations that 

compose our dataset. For our instance we will use the Minkowski distance (hereafter MD) 

metric due to its high adequacy for ML applications, providing an optimal baseline for model 

tuning through its hyperparameter “p” (Vandeginste, et al. 1998). In essence, the MD combines 

the concepts of the Euclidian and Manhattan distance metrics (Kamble and Dale 2022). 

Through the p-parameter which usually but not necessarily lies between 1 and 2, we can adjust 

the scope of influence for both underlying distance metrics to return the final Minkowski 

distance. With a p-parameter of 1 the MD accurately replicates the Manhattan distance. Vice 

versa, a value of 2 implies as distance metric corresponding to the Euclidian distance. This 

characteristic provides us with a helpful tool for model tuning, allowing us to adapt to specific 

application cases in an optimal manner. To understand how to utilize our p-parameter, in a first 

experiment we want to identify whether a unique parameter provides superior performance to 

our SPY dataset. Therefore, we implement a basic version of our model, further detailed in the 

upcoming sections, over different investment periods and with different p-parameters. 

Subsequently, we run a cross-sectional regression over the models’ performance metrics with 

the respective p-parameter as the independent variable. In Table 1 we can observe the regression 

output for our experiment. With very low R2 and high p-values for those regressions, we 

determine that the p-parameter does not have a statistically significant effect on model 

performance. Thus, we can’t determine that a specific p-parameter will deliver superior 

performance over our dataset. We conclude that we need to tune the p-parameter within each 

training phase to suit the individual application cases. Chapter 3.6 provides further details on 

the p-parameter tuning procedure within our algorithm. 
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3.4 Portfolio Construction 

In this section we lay out the methodology for optimal asset allocation within our portfolio. It 

will be applied in combination with the clustering algorithm presented in section 3.5. While 

classical portfolio optimization is usually built around minimum variance or maximum Sharpe 

ratio optimization, for our problem statement we want to test a different approach. Our research 

will optimize according to the OR as proposed in related works such as (Bernard, Vanduffel 

und Ye 2019) or (Sehgal und Mehra 2021). The mentioned ratio was first introduced by Con 

Keating and William F. Shadwick (Keating and Shadwick 2002) and represents a performance 

metric for asset returns based on a return target threshold. In essence, the ratio is calculated as 

the probability-weighted ratio of gains versus losses for that defined threshold. An investor 

would choose an asset with a higher Omega ratio as it generates greater returns relative to losses 

for his selected return benchmark. This metric promises to provide a useful basis for portfolio 

optimization as it balances between downside-risk protection and exploitation of upside 

potential. Compared to the Sharpe ratio it also considers by construction all moments of return 

distributions, while the former only incorporates the first two (Winton Capital Management 

2003). Observations have shown that information drawn from higher moments of return 

distributions can contradict the conclusions drawn from the traditional mean-variance analysis. 

Thus, some research argues that highly significant information can be overlooked by 

overreliance on the Sharpe and even Sortino ratio (Winton Capital Management 2003). To test 

this hypothesis, we will implement this concept into our algorithm framework and compare it 

to classic portfolio optimization techniques such as mean-variance optimization.  

3.5 Nested Clustering Algorithm 

This section describes the implementation of the ML-based algorithm to obtain the optimal 

portfolio allocation. For our instance the base framework is the Nested Clustering Optimization 

(hereafter NCO) methodology introduced by de Prado (de Prado 2016). As its description might 
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suggest, the structure of this algorithm follows a nested approach to perform the optimal 

portfolio allocation. It aims to counter the effects of the “Markowitz’s curse” (de Prado 2020). 

This theory states that although Markowitz's theory for portfolio optimization is mathematically 

sound, its practical implementation has issues. Due to noise and signal, particularly large 

financial covariance matrices yield increasing condition numbers. Their inverses amplify 

related estimation errors, resulting in unstable calculation outputs. A little change to the 

observation’s matrix may result in completely different allocations. To avoid these effects the 

NCO algorithm splits the allocation problem into multiple smaller portions of the problem. The 

proposed framework proceeds in three steps to yield the final and optimal allocation from the 

inserted distance matrix. The first step consists of a clustering algorithm that identifies patterns 

in the underlying distance matrix and clusters the set into a defined number of subsets. In our 

case, we apply the k-means algorithm, as we deemed it suitable to our problem statement in the 

Theoretical Background chapter. As previously mentioned, the issue with this clustering 

algorithm arises with its hyperparameter “k” which has to be specified upon initialization. To 

identify the optimal number of clusters for our given dataset, we will utilize a combination of 

three different methodologies, each yielding a projected number of clusters suitable for the 

problem statement. We then select the proposed “k” parameter which yields the most distinct 

and accurate clustering. The respective methods to support the initialization are the Elbow 

Method (Scikit YB 2019), the Silhouette Score (Towards Datascience 2019) and the Davies-

Bouldin Index (Davies and Bouldin 1979). After obtaining our clusters and thus, dividing the 

allocation problem into smaller portions, we calculate our optimal intra-cluster weights. This 

can be done for any desired optimization objective. For our instance, we use the portfolio 

allocation methodology based on the OR, laid out in the previous section. In the third and final 

step, we calculate the inter-cluster weights, according to the same methodology utilized for the 

intra-cluster weights. This allows us to take the product of inter and intra-cluster weights and 
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produce a final array of portfolio weights, proposing an optimal allocation. Figure 2 provides 

an overview of the NCO algorithm’s procedures. 

3.6 Investment Strategy 

This section briefly explains the implementation procedure of the methodologies presented 

throughout this chapter. Our implementation follows the basic ML principle of train, validation, 

and test splitting. Before our point of strategy implementation, the algorithm learns the 

underlying pattern of the train set and proposes certain allocation possibilities. These then get 

tested over the validation set, which is situated right after the train set until the point of 

implementation. This allows for tuning of the model parameters and provides a final 

specification to be applied to the test set. The finalized model suggests an optimal allocation 

based on its learnings and invests over the test period accordingly, starting at the point of 

implementation. The performance metrics calculated throughout this test set allow us to 

determine our algorithm’s relevance, especially compared to classic investment strategies. 

Figure 3 provides a detailed overview of the algorithm’s workflow for strategy implementation. 

The following chapter analyses the performance resulting from this chapter’s implementation 

specifications. 

4 Performance Analysis 

In this chapter, we explore and validate the performance of our ML-based investment strategy. 

Throughout the first half, we provide a benchmarking analysis of our algorithm’s results 

compared to other classic strategies. Throughout the second part of our analysis, we test the 

robustness of our model by applying it to different scenarios and environments. 

4.1 Benchmark Analysis 

In this section we employ our main investment strategy, the OR optimized NCO algorithm, 

implementing our learnings about clustering algorithms and distance metrics from the previous 
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chapters. To enable a performance reference, we additionally implement some traditional 

investment strategies over the same investment period which use an identical basket of 

securities. We will implement an equal-weighted (hereafter EWP), a mean-variance optimized 

(hereafter MVO), and a risk-parity portfolio (hereafter RPP). Further, we provide the simple 

option of a direct investment into the SPY. The investment period for all portfolios will be over 

the test set. To identify their optimal weights the MVO, RPP, and NCO portfolios will use the 

train and validation sets as a basis. Concerning the learning technique of our main strategy, we 

will proceed with the training and validation phases as proposed in Chapter 3. For the threshold 

parameter of the OR, we use the mean annualized return of the underlying SPY over the past 

10 years, as it provides an adequate reference benchmark. Initial tests show that indeed a 

threshold around the mean returns of the underlying index provides the best performance. 

Further distant parameters cause bad performance both with regard to risk and returns. After 

the implementation of all strategies, we are left with 4 constructed portfolios and one underlying 

index over the test period. A first look at the cumulative returns chart allows us to observe that 

all options are making a profit over the invested period between November 2020 and 2022 

(Figure 4). Nevertheless, we are more interested in the performance spread of the NCO strategy 

to the reference portfolios. As a first impression, we detect that all portfolios are moving in 

highly similar patterns. The lowest correlation index between two of the observed portfolio’s 

returns is indeed still over 83,6%. This makes sense as all portfolios (mostly) contain the same 

underlying securities, just with different weight specifications. Despite similar moving patterns 

we can identify some noticeable differences. In general, all constructed investment strategies 

were able to outperform the SPY’s returns. The best performance is provided by our NCO 

strategy which considerably outperformed all other portfolios. This though appears to come at 

the cost of higher volatility, indicated by steeper return movements compared to the other 

benchmarks. The options MVO, RPP, and EWP yield very similar results to one another, 
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featuring lower volatility while still outperforming the SPY throughout the entire investment 

period. As a first takeaway, we observe three different behavioral characteristics of portfolios. 

The groups consist of the NCO strategy, the classic portfolios, and the underlying Index. The 

precise performance metrics confirm our initial assumptions (Table 2). All strategies 

outperform the SPY’s returns (ARet) by at least 3 percentage points, with our NCO strategy 

leading the spread with impressive 13.6 percentage points. Moreover, the NCO is almost able 

to yield alpha (Alpha) over the market returns (SPY), with p-values (p Alpha) relatively low 

but only significant at an 83% confidence level. Regarding the risk metrics, we can determine 

that the NCO strategy indeed featured higher volatility (AVol), with 5,5 percentage points to 

the closest reference. With regards to downside risk (MDD) though, it performed much closer 

to the other portfolios, featuring a spread of only 1.5 percentage points to the SPY portfolio. 

Regarding the risk-adjust payoff metrics, we can observe that despite its increased volatility the 

NCO portfolio represents a valuable investment opportunity, providing the best Sharpe 

(Sharpe) ratio by a considerable amount. Further, it yielded an outstanding Sortino ratio 

(Sortino) with spreads of as much as 83 percentage points to the reference portfolios, 

underlining its capabilities for downside protection. As anticipated from Figure 4 the reference 

group of MVO, RPP, and EWP provided rather similar metrics, outperforming the SPY in all 

performance categories. The great results of all portfolios over the market returns are amplified 

by high information ratios (IR). Especially the NCO stands out with a ratio over 1.0, implying 

great risk-adjusted returns compared to the market portfolio (SPY). In conclusion, we were able 

to detect that all built investment strategies provided considerable upsides against the market 

portfolio. Our NCO strategy was especially successful in risk-adjusted returns with downside 

protection. This reflects the findings of related literature mentioned in chapter 2.4. The RPP, 

MVP, and EWP portfolios provided a more risk-averse opportunity featuring lower volatilities 

and high information ratios. Despite these positive observations, we have to acknowledge that 
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neither of our portfolios provides a statistically significant alpha, nor are we able to confirm 

that the positive results would persist throughout different scenarios outside our test set. 

Therefore, throughout the remainder of this chapter, we will perform various robustness checks, 

to facilitate confidence in our findings. 

4.2 Model Robustness 

Throughout this section, we analyze the robustness of our NCO model over an array of different 

experiments. We start by testing the persistence of our cluster algorithm’s pattern identification. 

By applying our algorithm to different investment periods and trying different train-test set split 

ratios, we aim to confirm our algorithm's robustness over different periods. Moreover, we 

compare the performances of the static base NCO strategy against a monthly rebalanced one to 

observe whether our base strategy provides stable results throughout time. Finally, we apply 

our strategy to a different market environment to determine robustness throughout 

environmental changes.  

4.2.1 Cluster Persistence 

In this section we analyze the persistency of our clustering algorithm in two experiments. In the 

first experiment, we initialize our clustering algorithm many times with equal specifications 

and inputs to determine whether it consistently finds the same clusters. In the second 

experiment, we analyze whether our algorithm finds similar clusters throughout time, tested in 

monthly increments for each iteration. To measure consistency, we implement a persistence 

counter function that counts for every iteration the number of equal securities in each cluster 

compared to the initial initialization. For our first experiment, we see that our algorithm 

performs very robustly, consistently yielding almost identical cluster compositions (Figure 5). 

In the second experiment, we notice that the cluster consistency does not persist as much 

throughout time (Figure 6). From the perspective that economic environments change over 

time, this does appear to be logical. On a positive note, we detect that all cluster’s persistence 
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scores move with each other, indicating a common underlying driver for their movements. With 

each time shift, all clusters are supposedly altered similarly to one another, providing optimal 

allocations to changing environments. Moreover, cluster changes happen linearly rather than 

producing volatile results with each period change. This lets us believe that the algorithm 

follows a certain pattern rather than providing random and volatile allocations each period. This 

also confirms that indeed we were able to counter the mentioned Markowitz’s curse to a certain 

extent. Summarized, our underlying clustering algorithm behaves robustly and adequately to 

its application scope. 

4.2.2 Investment Periods 

In this section, we apply our algorithm to multiple investment periods in an attempt to prove 

that our findings are not specific to our initial investment period. We choose 6 random periods 

within the last 10 years and apply our NCO algorithm to them. As a benchmark we will use 

again the SPY, which is composed of the same securities. In Table 3 we can observe the 

performance of the portfolios over the 6 different investment periods. In terms of returns, the 

NCO algorithm outperforms the SPY in 5 of the 6 test cases. It was able to achieve considerable 

return spreads in 3 cases of up to 72 percentage points, even resulting in statistically abnormal 

returns at an 85% confidence level for one period. Concerning the risk metrics, as in our initial 

implementation, the NCO algorithm consistently provides higher volatility compared to the 

benchmark. Despite that, the performance for maximum drawdowns was almost identical to 

that of the SPY, except for period 5, reaffirming the algorithm’s strength for downside 

protection. For the overall risk-return metrics though, we notice certain scenarios that appear to 

not suit the NCO algorithm. Compared to the SPY the NCO portfolio only provided higher 

Sharpe and Sortino Ratios in 4 out of 6 test cases. Summarized, we can mostly reaffirm the 

NCO algorithm’s characteristics of a solid risk-return strategy, especially for its strength in 

downside protection. Nevertheless, as simple economic drivers such as a period’s underlying 
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volatility can’t explain our algorithm’s inconsistencies, we need to the view our positive 

findings under a more critical perspective. 

4.2.3 Train Test Split Ratios 

In this section, we explore whether the size ratios of the respective train and test splits have an 

impact on model performance. We try 7 different model train-test split configurations for our 

NCO algorithm over the same period of the initial implementation (Chapter 4.1.). In Table 4 

we can see the different model performances against the usual SPY benchmark portfolio. With 

regards to return performance, we detect a solid positive spread over all configurations, with a 

slight trend towards higher spreads with increasing train set proportions. Concerning risk 

metrics, we detect slightly higher volatility than the benchmark with a mostly stable spread over 

all configurations. The performance for downside risk protection (MDD) behaves similarly 

with stable spreads over all configurations. For the risk-return ratios, we observe a familiar 

pattern with slightly better spreads towards higher train set proportions. Concludingly, our 

model does not appear to be impacted that much by train-test-split configurations, although we 

can observe slightly better performance when the train set is bigger than the test set. 

4.2.4 Rebalanced vs. Static Weights 

For the next experiment of this chapter, we want to evaluate whether a monthly rebalancing of 

the portfolio weights throughout time can deliver inferior performances to our initial option 

with statics weights. This allows us to determine whether our base algorithm produces stable 

results or if each period change produces considerably different results. Therefore, in addition 

to our base NCO strategy, we will implement a strategy that invests over the same test period 

but with monthly rebalancing. As usual, we will provide the SPY portfolio as a benchmark. 

Looking at the cumulative returns chart (Figure 7) we can observe that the static and rebalanced 

strategies perform very similarly, both outperforming the SPY throughout the entire test set. 

The initial impressions are supported by the corresponding performance metrics (Table 5), with 
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both options providing similar results. At a closer look though we observe a slight edge of the 

rebalanced strategy. From a returns perspective, the rebalanced algorithm performs a bit better, 

delivering about 2.5 percentage points more in mean annualized returns. Despite that, both 

options still lie at least 13 percentage points above the SPY. These aspects are also reflected in 

the statistical significance of the generated alpha by both strategies. Again, the rebalanced 

option provides slightly better results with a p-value of 12.4% compared to the 16.9 % of its 

static counterpart. Concerning risk metrics and downside protection, the performance is almost 

identical for both volatility and maximum drawdown. With slightly better returns and similar 

risk thus, the rebalanced strategy appears to overall provide a slight edge, yielding a better 

Sharpe, Sortino as well as Information Ratio. Despite that slight edge, we can determine that 

rebalancing did not contribute significant upsides or even deviations to the initial model’s 

performance. This leads us to believe that our base model’s predictions are quite robust and 

adept for investments over longer holding periods. 

4.2.5 Application to different Markets 

As the last part of our robustness check, we want to determine whether our model and respective 

findings are only applicable to our S&P500 dataset, or if we can detect robustness towards 

application environments. We opt to explore an application to the Japanese Nikkei225 index. 

As for our base model’s implementation, we will use the NCO algorithm to create an optimally 

allocated portfolio of the underlying index’ components. The benchmark portfolios for this 

experiment, as for our S&P500-based portfolio (Chapter 4.1.), will be the MVO, RPP, and EWP 

portfolios, as well as the Nikkei225 index itself. Looking at the cumulative returns chart (Figure 

8), we detect that all constructed portfolios outperform the underlying index, with the NCO 

portfolio leading the cumulative returns. Observing the performance metrics (Table 6), we 

identify that the NCO algorithm leads the mean returns, despite not providing a statistically 

significant alpha over the Nikkei225 index. Concerning volatility, the NCO algorithm performs 
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slightly better than the underlying index. Despite that, the MVO, RPP and EWP portfolios still 

provide inferior risk aversion. For the maximum drawdown the NCO portfolio performs quite 

similarly to all other benchmarks, despite yielding the most negative value. Thus, our algorithm 

can defend its title as the leading risk-adjusted performer, topping the Sharpe, Sortino, and 

Information ratios by a significant amount. Overall, we observe quite similar results to our base 

experiment, featuring increased volatility, higher performance ratios, and good downside 

protection. In conclusion, we can state that our algorithm proved to be quite robust to 

environmental shifts, providing similar positive results to our base experiment despite being 

implemented in a completely different market environment.  

5 Conclusions 

In this chapter, we summarize our project's scope, discuss findings, raise limitations, and 

propose areas for further research. 

5.1 Project Summary 

In this project, we aimed to explore ML techniques to improve asset allocation for portfolio 

management. As a baseline for our research, we provided a theoretical background to ML 

applications for asset management, particularly UL. We identified the opportunity of applying 

a k-means-based NCO framework to our problem statement and followed the current research’s 

recommendation of testing other distance metrics and optimization techniques. For the distance 

metric, we deemed the Minkowski distance as suitable, enabling model tuning through its p-

parameter. We opted for the Omega ratio as optimization score for inter and intra-cluster 

weights. The ratio promised a balance between downside-risk protection and exploitation of 

upside potential. Further, it provided means to extract information out of all moments of return 

distributions. We implemented our developed strategy over the components of the S&P500 

index, performed benchmarking and performance tests, and evaluated the model's robustness 

through multiple experiments. 
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5.2 Discussion of Findings 

In the benchmarking analysis, we found that our algorithm provides solid risk-adjusted returns 

visible in the Sharpe Ratio, outperforming all benchmark portfolios and the underlying index. 

This also reflects the findings of parallel work to this research field. Although the created 

portfolio provided great relative downside protection visible in the maximum drawdown and 

Sortino ratio metrics, it was notable that the NCO’s performance came at the cost of increased 

volatility when compared to all other benchmarks. This is a contradicting finding to some of 

the presented research which deemed clustering as a mean for lower volatility through 

diversification. It appears that the Omega ratio optimization rather yields a “protected-return-

maximization” strategy, than being a pure risk diversification technique. Thus, the NCO 

portfolio could represent a valuable option for investors looking for good risk-adjusted returns 

but who are not averse to taking on slightly more risk. In our robustness checks, the results 

proved to be valid for a variety of train-test split configurations, although we noticed a slight 

tendency towards better performance with higher proportions of train set sizes. The application 

to other economic environments proved successful as the algorithm provided similar positive 

results compared to the initial application. Furthermore, by analyzing the underlying clustering 

algorithm, we were able to deem the clustering as robust and adequate for its application. 

Despite all positives, applying the algorithm to different periods raised the issue that the 

algorithm’s performance does fall short in some instances. In a brief analysis, we were not able 

to identify an underlying economic driver causing these inconsistencies. In summary, we find 

that our version of the NCO algorithm provides a solid framework to create performant return-

oriented strategies. Nevertheless, additional research is required to determine its preferred 

application scenario. In the last section, we elaborate further on this research’s limitations and 

possibilities for further development. 
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5.3 Limitations and Suggestions for Further Research 

Our research findings come with certain limitations, both to our methodology and equipment. 

In general, our optimization techniques for the intra and inter-cluster weight optimization are 

based on Monte-Carlo simulations which by construction require high computational 

performance to be effective. Since in the scope of this project we were only able to use an 

average personal computer, the precision of the optimizations and thus, the accuracy of our 

findings cannot be guaranteed to the fullest extent. This could constitute one of the causes for 

our algorithm’s inconsistencies across periods. For further research, we recommend extending 

exploration on these model inconsistency issues. One could explore the implications of different 

OR thresholds for model performance and explore their potential as countermeasures. 

Moreover, it would be possible to extend the tuning of the Minkowski distance parameter “p” 

with a larger scope of possible values and smaller intervals. With regards to the NCO 

framework, next to trying other clustering algorithms it would be interesting to evaluate whether 

separating found clusters into additional clusters, thus, adding a layer to the hierarchical 

clustering structure, would add different and potentially increased performance.  
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7 Appendix 

Equation 1: Minkowski Distance 

 

 

Equation 2: Omega Ratio 
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Figure 1: Correlation Matrix Eigenvalues Original vs. Denoised 

Table 1: Cross-sectional Regression for the Minkowski P-Parameters 
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Figure 2: NCO Algorithm Flowchart 

 

 

Figure 3: Strategy Implementation 
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Figure 4: Benchmarking NCO vs. Classic Portfolios 

Table 2: Benchmarking NCO vs. Classic Portfolios 
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Figure 6: Cluster Persistence over Time (Legend shows cluster number) 

Figure 5: Cluster Persistence Static (Legend shows cluster number) 



 34 

 

 

 

 

  

Table 3: NCO Robustness over Time 

Table 4: NCO Robustness over Train-Test Splits 
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Figure 7: NCO Static vs. Rebalanced 

Table 5: NCO Static vs. Rebalanced 
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Figure 8: NCO Environmental Robustness 

Table 6: NCO Environmental Robustness 
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