Metadata, citation and similar papers at core.ac.uk

Provided by Muroran-IT Academic Resource Archive
e®eo

(/] =m1sxs "ol
SR T — AT

Muroran Institute of Technology Academic Resources Archive

Remarks to the paper "On Lie Derivatives iIn
Areal Spaces™

0d IGARASHI  Takanori

journal or Memoirs of the Muroran Institute of
publication title |[Technology. Science and engineering
volume 6

number 3

page range 951-955

year 1969-07-15

URL http://hdl _handle.net/10258/3474



https://core.ac.uk/display/59121524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Remarks to the paper “On Lie Derivatives

in Areal Spaces”

Takanori Igarashi®

Abstract

In the previous paper®, the author extended the notion of Lie derivative to the areal space of
general type, by the aid of theories!)-?) mainly.

There, we treated p as m-ple element pf in the fundamental function F(x, p) of the areal
space AJ..

However, the theory of the areal space was essentially started from the treatise p as m-
dimensional “area”element pil»1 so it is desirable that the theory of Lie derivative of A is
rewritten from this point of view. In this paper, we try to rewrite in the above-mentioned way.

More interesting results will be developed in the forth-coming paper.

1. By the reviewer”, the summary of the previous paper is as follows:
The author considers an infinitesimal transformation of type

(1. 1) & = 2t -+ &) dt

which maps a point « of a surface V,, : 2% = 2 (u*}*® to a point # of a surface
V., :#=&"(u"). Under this transformaion the m-ple element p?=0dx’/du" is trans-
formed to

L2 B=pirg pidt with &,=0aa’.

When a geometric object 2(x, p) is transformed to £2(%, #) by (1. 1), the Lie
derivative of £ with respect to £ is defined as

(1. 3) &Q:mqma@MMa@Vﬁ.

dt—0

We call a transformation (1. 1) satisfying £.F =0 an areal motion, because
it does not change the area S =§-'~5qu1---dum of ‘an m-dimensional surface in
the space.

The main results of the paper are as follows.

(A). In order that the space admits an areal motion, it is necessary and
sufficient that the Lie derivative of the metric m-tensor gp.y, .7 vanishes.

(B). If the vector & in (L. 1) is transversal to p! with respect to F, then the
transformation (1.1) is an areal motion.

R f R WA
**)  Latin indices run over 1,2,---,n; Greek indices over 1,2,---,m (1=<m<»n) in section 1 and

over 1, 2 in other sections.
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952 Takanori Igarashi

(C). If the space Ay” admits an areal motion, then £,C’5=0.

If the space A{ is of submetric class, the metric tensor g,; can be introduced.
Then we have:

(D). A motion is an areal motion.

(E). When the areal space A admits a motion (1. 1), then £.73{ =0 and

£.Ci5=0.

2. In this section, we take in the areal space A®? in place of A{® for conven-
ience. Under the tranformations (1.1) and (1.2), the bivector p* is transformed as
PV =200 Py = 2(ph + & phdY) (ph + &)y pradl)

:PM+ ZE,EZPI’”'j]dt—I— S'fchfzp"'ldtz ,

therefore, the variations of x’ and p* are represented as follows ;

(2.1) dxt=x—x'=&dt
(2.2) 3Pl = PH—ptl = 2 NG & £ pH AL

If a contravariant vector X(x”, p%) is transformed to X (2%, 7°/) by (1.1), then
(2.3) AX = X, 52" + Xty 0p™

= X4, & dt+ Xy, (285 PO+ 88, p7 )

Now, in the other hand, we interpret that (1.1) is an infinitesimal coordinate
transformation, then
oz’ ox’

T = OiHELdl, e = 05— Edt,

2.4 3 PRy

neglecting higher order terms with respect to dt.
 If the contravariant vector X is transformed by the coordinate transformation
(1. 1), then

(2. 5) Xi= gi]
dX'=X'—X =&, Xdt.

Substituting (2. 3) and (2. 5) into the definition (1. 3), we have

(2. 6) £ X' =X, 8" +2X, 80 p" =6, X"

This is the new definition of Lie derivative of contravariant vector X* with
respect to & For a covariant vector Y(z* p*Y) and for a tensor T'(z" p*) of 1-1
type, we have analogously that

XP=(§5+8,dt) X7 = X+ &, X7dt,

(2.7) .Y, =Y 8"+ 200" +E0 Y,
(2.8) £.T;=T;,&+2T%,&p"0—&, T+ &, T} .

These expressions (2. 6), (2.7) and (2. 8) are new definition of Lie derivative
in A® with use of p¥.
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3. In the previous paper, the author defined the Lie derivative of the contra-
variant vector X(x*, %) in the form ;
(3.1) L£X =X+ X8, pi—, X",
The term X3(&%,p" is rewritten as follows ;
Xiigupe =X’ i€t
= X!;:(0] 01 p3 + plo7 05 — 6105 pi — 107 65) Eupl
= X &Pl pE— P PO —E(PLpI—pi P} = 2K €5 p
Hence, we can conclude as follows:
Lemma 1. The new definition (2.6) of Lie derivative is coinside with the
definition (3. 1) of the previous paper.
Moreover, we have the following :’
Lemma 2. The Lie derivative defined by (2.6) and (2.7) satisfies the Leibnitz’
rule, that is,
(3.2) £.(XY,)=(£.X) Y, + XHL.Y,).
Proof) On account of (2. 8), we can see
£.(XY)=(XY) o+ 2(X V) Elpt & (XY )+EL(XY,)
— (Xflbsh—'—ZXL E[kp Rl E’L Xh)
+ XY +2Y 5080 p“"”%h V).

On the end of this section, we consider two infinitesimal transformation ;

F =2+ &) dt, P =2+t (x)dt.
If we operate £. and &£, successively, then, after somewhat complicated
calculations,
£,L£X-L£.8X =X&"7—&n")
20 (&0 I gl dl gy gl Ty plels]
—(En s +E =Ly —& 77,?:,1) X",
hence,
(3.3) £L£.X-L£L£X=LX",
(3. 4) £.X=X,0+2X,,Gprs g8, X0

where we put
=&y —8y;=8,8=—-&
These facts tell us the followmg:
Theorem 1. If (1.1) belongs to a transformation group, that is, &, ¥, 7, -
are elements of an r-parameter group of transformation, then £’s in (2. 6) are r

)
infinitesimal operators of an r-parameter group of transformations and (3.3) with
(3. 4) holds good.

(347)



954 ’ Takanori Igarashi

4. A. Kawaguchi and Y. Katsurada” defined a line-metric connection in the areal
space AY in the form;

(4.1) DX = Xi,dx"+ Xty 0t
where
(4.2) =X Xl By + 'R X7
(4.3) X =FX,+FCj n X7,
and

By = 4P z]h s = F%Pa .
Sice the transformation vector & depends only on position x, so
(4. 4) En=_E—T5¢.
From (4.2) and (4.4), the expression of defintion (2.6) is rewritten such that

£.X! = (Xpu+ Xty B =I5 X)) &
+ 2L (G T3 p —(E, — T3 X

and by means of
(4.5) Bt = 4pi B}, = pi Boy—piBi+pi Bla—pi Bl
—2rgepie,
we obtain finally
(4.6) £X = X0, 6"+ 2X1, &5 pM — £, X"
Now, we apply the Lie derivative (4.5) to the fundamental function
4.7 £F=F,—F,.B;.
If we recall the relation F,,,=2F{,p4 and (4. 5), we can easily see that
F,,. By = F;B.,.

Accordingly, we can say that the expression of the Lie derivative (4.7) of
the fundamental functions is coinside with that of the previous paper.
Between the metric bitensor g,;,, and F, there is a relation

g” klpwplcl 4F2

Differentiating both sides of this relation by p%/, we have
Giguasrs P Qo500 O P A 0oy 0™ 08 = BFF,,,

and making use of ¢4 102" =0, ¢es.up™=2G,; and g, 1P =gu ;0" =2G,,, and
putting F,,=0, finally we have

(4. 8) £.F= % G, & plnisl
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In view of (4. 8), we can conclude the following :

Theorem 2. If the transversal bivector G;; vanishes, then the space A{
admits an areal motion.
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