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Abstract 

Cryptocurrencies have become appealing investment options in recent years because of their 

high potential returns. This asset class emerged as a unique investment opportunity with 

distinguishing characteristics such as decentralized nature and uncorrelation with other assets. 

Investing in this product, however, has become a hazardous venture due to its extreme volatility 

and unpredictable price swings. As a result, a portfolio optimization is an essential tool for 

investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep 

Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to 

traditional methodologies like Markowitz's and rudimentary equally weighted portfolios. 
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1. Outline 

The investing environment is ever-changing and has gotten more complicated over time, with 

new possibilities and risks arising daily. Investors are seeking ways to increase their earnings 

while minimizing risk. As a result, portfolio optimization has become an indispensable tool. 

Some traditional portfolio optimization approaches, such as the Modern portfolio theory 

(MPT), are still frequently utilized by investors. However, advancements in fields such as 

artificial intelligence (AI) have derived new portfolio optimization technologies. For example, 

Deep Reinforcement Learning (DRL) has resulted in innovative portfolio optimization 

strategies. 

All terms underlined in bold are critical to the project and will be discussed further in this text. 

For the time being, an explanation of the thesis's purpose is to be given, followed by the 

hypothesis and a question that may emerge when considering the issue under study. 

This thesis analyses and contrasts portfolio optimization approaches in cryptocurrencies 

utilizing DRL versus MPT. A review of the benefits and drawbacks of each technique has also 

been included, allowing the reader to choose which strategy is ideal for different types of 

investors depending on their preferred degree of risk or expected returns. 

A distinction between strategies relies on the fact that conventional approaches depend on past 

data to show correlations between assets and estimate future returns (Jin, Li, and Yuan 2021). 

As a result, these techniques that rely on past data frequently based on statistical models may 

be inaccurate in specific instances, such as the volatile cryptocurrency market. Meanwhile, the 

DRL methodology relies on experience rather than historical data, allowing DRL to adapt to 

changing market conditions and discover better answers than traditional methodologies (Sutton 

and Barto 2017). 

The hypothesis states that portfolio optimization based on DRL will outperform traditional 

methodologies, being more efficient and effective in risk management than, for example, 
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Markowitz's approach. The premise is that DRL algorithms may learn from experience and 

adapt to changing market conditions, thus being more effective than classical algorithms. 

Hence, a question that may arise as a result of this method of portfolio optimization is: 

1. What is the optimal currency portfolio for a crypto-investor? 

To give some insights to the reader, the obtained findings for this working project point in the 

same direction as the hypothesis, except for one instance in which one of the traditional 

techniques outperformed one of the DRL algorithms; section four of the working project will 

explain this exception and all of the obtained results. 

For the time being, the next section will give a literature review to support the hypothesis 

developed for this working project (DRL outperforming traditional methodologies). After, 

because the thesis focuses mainly on cryptocurrencies, a brief description of their features is 

required. It is important to remember that some key terms, such as portfolio optimization, DRL, 

and the Markowitz approach, will be used in this section and will be discussed in a simplified 

manner, but a separate section for those terms will be provided later on the work due to their 

importance for the work's outcomes.  

1.1 Literature review 

The optimization method suggested by Harry Markowitz in 1952 was the only technique 

available in the early days for portfolio optimization. This approach is still widely employed 

but has significant flaws, such as presuming normally distributed asset returns1, which is not 

the case in the actual world; also, it assumes all investors are risk-averse2, which implies they 

are inclined to trade off profits to reduce risk (Karandikar 2019). However, many investors 

nowadays are risk seekers, meaning they are prepared to take on higher threats to make more 

 
1 Normally distributed asset return follows a bell curve, which means that the vast majority of returns revolves 

around the mean, with only a tiny number of yields being either greater or less than the mean. 
2 Risk aversion is a concept in economics and finance that expresses a dislike for risk based on human behavior 

(particularly that of consumers and investors). People have a propensity to favor certainty over ambiguity. As a 

result, someone who is risk-averse is hesitant to take chances. 
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money.  

In recent years, there has been an increase in interest in applying DRL to optimize portfolios. 

The benefit of using DRL for optimization problems is that it does not rely on robust 

assumptions, unlike the Markowitz approach, and it can handle non-linear issues3, which are 

common in portfolio optimization problems. Furthermore, it is suitable for dealing with 

numerous objectives at the time, including returns maximization and risk mitigation 

(Benhamou et al. 2020) (Gemechu 2020). 

Several studies in the literature compare traditional optimization methodologies to DRL. The 

results of these studies reveal what was mentioned previously in the hypothesis, especially when 

traditional methods' assumptions are not satisfied. 

First, (Benhamou et al. 2020) investigated the portfolio allocation problem using DRL. The 

authors emphasized that DRL can have a better adaption process to today's changing market 

conditions, and over time, the DRL approach can include new knowledge to make future 

judgments. As a result, AI-based models will improve. 

Sadriu (2022) did similar research, optimizing a stock portfolio based on the Swedish Stock 

Exchange (OMXS30) using DRL. Two well-known algorithms were employed in this research: 

Advantage Actor Critic (A2C) and Deep Determinist Policy Gradient (DDPG), they will be 

explained in detail later in this work. The author concludes that both algorithms outperformed 

traditional techniques in two crucial areas: risk and returns throughout the five years covered 

by the research. 

Similarly, (Yang et al., n.d.) did another study, again using the previously mentioned 

algorithms, but this time the Dow Jones 30 (DJI) was used as the trading stock pool. One can 

 
3 A non-linear problem is one in which the intended outcome cannot be determined simply by a linear combination 

of inputs. These might suggest that the issue is non-convex, in this case using standard optimization techniques 

does not lead to finding a single global optimum, and thus, iterative methods are needed to find the optimal 

solutions. 
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see in the investigation conclusions similar results to the previously stated works in which DRL 

seems to outperform traditional approaches. 

As shown, some studies support using DRL approaches for portfolio optimization. One of the 

motivations for this thesis is to assess the influence of DRL algorithms in a volatile environment 

such as the crypto world. 

1.2 Cryptocurrencies  

In recent years, cryptocurrency has surged in popularity. Bitcoin and Ethereum, for example, 

are digital assets that employ cryptography4 to protect user transactions and limit the creation 

of new asset units. Cryptocurrencies are often traded with decentralized transactions5 and may 

be used to purchase products and services (Houben, and Snyers, 2018). 

Because of its decentralized structure, cryptocurrency is supposed to be safer and less 

vulnerable to financial fraud than traditional currencies. There are several significant 

distinctions between these financial assets and other fiat currencies6, such as the first being 

more volatile than fiat currencies, cryptocurrencies not being backed by governments, and the 

possibility of using cryptocurrencies anonymously, while fiat currencies cannot (Dapp, 

Helbing, and Klauser 2021).  

One may also explore some of the reasons why cryptocurrencies are so volatile. Figure 1 depicts 

the volatility of the daily log returns of Bitcoin and Ethereum compared to the S&P500 over 

the past few years. But fundamentally, some reasons could be that cryptocurrencies are still 

very new, and as a result, this market sector is still quite volatile. Furthermore, there is 

speculation about cryptocurrency trading, which may lead to significant price fluctuations. 

 
4 The practice of secure communication in the existence of other sides is known as cryptography. It may be used 

for email, file sharing, encrypted messaging, and cryptocurrency trading, among other things. 
5 A decentralized transaction is one in which a central authority does not regulate it. This sort of transaction is 

frequently peer-to-peer and is not subject to the same laws and regulations as a centralized transaction. 
6 A fiat currency is one that has been declared legal tender by a government but lacks the backing of a tangible 

commodity such as gold or silver. 
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Additionally, the uncontrolled 

environment in which this 

crypto asset evolves may explain 

part of its volatility. Finally, the 

supply of most currently 

recognized cryptocurrencies is 

restricted, contributing to price volatility (Doumenis et al. 2021). 

After assessing the definitions of the mentioned terms in bold, the document will take the 

following structure: the methodology will be explained, providing a deep detail of the form in 

which DRL and any other strategy is to be used to obtain the expected results; followed, the 

database(s) will be detailed and explained as well as the variables it contains, and the final 

section will provide the reader with the insights obtained after running the model(s) and the 

conclusion. 

1.3 Portfolio Optimization 

“Diversification is an established tenet of conservative investment” 

Benjamin Graham 

The goal of portfolio optimization is to find the asset mix to produce a portfolio(s) that 

maximizes returns for a risk level or reduces the risk for a previously defined yield level. Thus, 

portfolio optimization becomes critical for investors looking to accomplish optimal financial 

goals that align with their expected returns while considering the risk they are willing to incur. 

Many authors have examined the issue under discussion in the literature, for example, the Nobel 

laureate Harry M. Markowitz, who conducted research on portfolio optimization in 1952 by 

first developing the Modern Portfolio Theory (MPT). The study primarily transformed how 

people and institutions invest. Markowitz demonstrated that diversification across asset classes 

might reduce risk without sacrificing return. Other writers validated these findings, becoming 

one of the core principles of MPT (Ceria and Krishnan Sivaramakrishnan 2013). 

Figure 1. Volatility of daily log returns for BTC, ETH, and S&P 500 
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Several factors must be addressed when optimizing portfolios, including the investor's risk 

tolerance, investment objectives, and time horizon. Furthermore, portfolio optimization 

considers asset correlation, the individual expected return, and the volatility of each asset. 

Portfolio optimization benefits include the ability to boost risk-adjusted returns, portfolio 

diversification, and aiding in the mapping of an investment plan. On the other side, there is a 

danger of over-diversification. Thus, continual portfolio monitoring and rebalancing are 

required. Those last can be time-consuming and, if not done correctly, can result in a portfolio 

that does not meet the investor's objectives (Cy and Polyviou 2020). 

1.4 Markowitz portfolio approach  

“A good portfolio is more than a long list of good stocks and bonds. It is a balanced whole, providing 
the investor with protections and opportunities with respect to a wide range of contingencies” 

Harry M. Markowitz 

When discussing Markowitz's portfolio concept, it is essential to note that it is a mathematical 

framework that aims to design the optimal portfolio. The model implies that investors are 

rational and risk-averse (Mangram and Mangram 2013). As previously stated, the aim is to 

determine the appropriate asset allocations that allow maximum returns while reducing risk. 

The theory demonstrates a method for quantifying this trade-off and establishing the best 

portfolio. 

The model's notion is that portfolio risk is determined not only by each component's risk sum 

but instead that the entire portfolio should be evaluated as a whole. The fact that each element 

is unrelated might explain it. Hence, diversifying each can reduce the overall risk of the 

portfolio (Mangram and Mangram 2013). 

Consider some key identified assumptions underlying Markowitz's portfolio theory: first, 

investors have free and complete information, implying they are aware of the true nature of 

returns and risks. Second, investors are rational and choose to optimize a utility function given 

a specific income. Finally, Investors are risk averse. As a result, they strive to minimize risk 

while enhancing benefits (Omisore 2012). 
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The Markowitz portfolio approach relies on the robust premise that two variables describe all 

assets' behavior: expected returns and risk. The expected returns are the average returns that 

investors may expect to receive given specific invested money over an explicit timeframe 

window. Risk represented by the variance is the possibility that an investment can lose value 

over a certain period. The following calculations employ the (Bodie, Kane, and Marcus 2014) 

Investment book notations. Equations one and two show how the preset variables appear 

mathematically for a given portfolio p of n assets: 

Variance as: 

𝜎𝑝
2 =  ∑ ∑ 𝜔𝑖𝜔𝑗𝐶𝑜𝑣(𝑟𝑖𝑟𝑗)

𝑛

𝑗=1

 

𝑛

𝑖=1

 1 

Expected returns as: 

𝔼(𝑟𝑝) =  ∑ 𝜔𝑖𝔼(𝑟𝑖)

𝑛

𝑖=1

 2 

The square root of the variance is known as the standard deviation: 

𝜎𝑝 =  √𝜎𝑝
2 3 

In all the preceding equations, 𝜔 represents the individual weights for each asset 𝑖, and 𝑟𝑝 

represents the portfolio return; returns for individual securities are shown in equation four, 

while equation five shows portfolio returns. 

Individual securities returns: 

𝑟𝑡+1  =
𝑃𝑡+1 − 𝑃𝑡

𝑃𝑡
 4 

and portfolio returns: 

𝑅𝑡 =  ∑ 𝜔𝑡𝑖 × 𝑟𝑡𝑖

𝑛

𝑖=1
 5 

𝑃 signifies the price, and 𝑡 specifies the time for individual financial assets (the reader might 

also find the optimization problem equations in matrix notation in Appendix A). The main 
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equations required for setting the Markowitz portfolio approach are equations one through five; 

the optimization problems for each of the selected traditional methods are displayed later in the 

methodology; for the time being, this was an introduction to the Markowitz approach to 

encourage the reader with the basics of the model, and now some insights about the DRL 

methods are to be given.  

1.5 Deep Reinforcement learning (DRL) 

“A breakthrough in machine learning will be worth ten Microsoft’s” 

Bill Gates 

Deep Reinforcement Learning is a subfield of ML. Agents in DRL algorithms learn by acting 

in an environment and obtaining rewards or punishment for their actions. This process may be 

understood in the same manner humans learn: via trial and error.  

DRL algorithms enable agents to identify how to attain various objectives using the original 

data (inputs) by employing a neural network, a kind of AI inspired by how the human brain 

functions. To better predict the output of a given information, neural networks learn by 

adjusting internal parameters known as weights. The neural network weights are modified in 

DRL to maximize the expected reward of the agent (Cotta et al. 2002). 

Until now, it is possible to comprehend the relevance of portfolio optimization. After 

introducing DRL, one may explore how to use this approach to generate a feasible solution to 

the problem. As previously stated, the objective is to create a portfolio that optimizes expected 

profit while limiting risk. To achieve this trade-off, the agent must learn to trade between these 

two objectives, and the feedback obtained after each trade will aid in this endeavor. 

There are several approaches to expressing the Portfolio Optimization Problem (POP) as a DRL 

problem: In its most basic form, consider an agent that learns which activities will result in the 

best returns. One example could be an agent trained using historical data from previously 

generated portfolios to understand which behaviors resulted in the highest returns. As a result, 

the agent may be used to make various judgments about which stocks from a given list should 
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be bought or sold to maximize the portfolio's total returns.  

The literature provides advanced solutions to this problem. But before we get into them, it's 

critical to comprehend a few basic terms from the DRL world. One can use the (Arulkumaran 

et al. 2017) study and (Achiam 2020) OpenAi Python package user documentation to explain 

these phrases. To begin, the term agent refers to software that interacts with an environment to 

learn how to maximize some concept of cumulative reward. A process of self-improvement 

increases an agent's ability to select a set of actions that maximizes an expected return7. Other 

terms to consider are i) the environment is what the agent interacts with to get rewards or 

punishments8; ii) the collection of all actions an agent can do while interacting with the 

environment refers to the action (𝑎𝑡) an agent can take. In most typical applications of DRL, 

the agent may perform discrete actions like moving up, down, to the left, or the right. 

Furthermore, the agent can do a continuous sequence of operations, such as selecting things 

from a predefined list of objects9; iii) the state (𝑆𝑡) of each feasible environment at time 𝑡, 

which is all the information about the environment that an agent may see. Until this point, the 

concept will be an agent interacting with its environment by performing actions (𝑎𝑡) in the state 

(𝑆𝑡). Following the conclusion of an action, the environment and the agent enter a new state 

(𝑆𝑡+1) dictated mainly by the agent's activity and the existing state10; iv) Finally, the policy is 

a collection of predetermined rules that the agent uses to select what actions to take in a 

particular state11. When the environment changes state, it also gives the agent a reward of 𝑟𝑡+1 

 
7 Bond trading agents, currency trading agents, and stock trading agents are some examples of DRL agents applied 

to finance. 
8 Algorithmic trading, portfolio management, and stock trading are a few examples of RL environments applied 

to finance.  
9 Analyzing financial data to find trends and patterns, identifying and classifying financial data, making forecasts 

of future economic circumstances, monitoring markets, and recommending potential investment plans are some 

more tasks an agent in RL can conduct. Furthermore, deciding whether to buy, sell, or hold a stake in an asset. 
10 Some but not all of the RL states used in finance are the current price of a security, the current portfolio value, 

the current position in a stake, and the time since the last trade. 
11 Market making, portfolio optimization, and risk management are some examples of RL policies in finance.  
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as evaluation. The agent attempts to get a policy. Or, in other words, a strategy that maximizes 

expected return. Mathematically the policy can be seen as 𝑎𝑡 = 𝜋(∙ |𝑠𝑡). 

Figure 2 shows a loop representing the agent-environment interaction. It is a feedback loop that 

teaches an agent how to respond in a given scenario in order to attain a goal. The loop begins 

with the agent seeing and reacting to his environment. The agent collects state information from 

its surroundings and then applies its policy to choose the best action. After, a transitional face 

starts in which the environment changes a step, providing a next state 𝑠𝑡+1. The environment 

then assesses the action and provides feedback to the agent, frequently in the form of a  reward 

𝑟𝑡+1 or a penalty. The agent then uses this information to adjust its behavior and improve its 

policy. 

Under the OpenAi python package user manual 

and using the same notations, one may also 

discuss the reward function, mathematically 

represented as 𝑟𝑡 = (𝑆𝑡 , 𝑎𝑡 , 𝑠𝑡+1 … , 𝑠𝑡+𝑛), and 

the trajectory function, defined by 𝜏 =

(𝑠0𝑎0, 𝑠1𝑎1 … , 𝑠𝑛𝑎𝑛), which are significant 

concepts to consider before digging into the DRL optimization problem equations. These last 

equations demonstrate that both are affected by a state action pair. 

With this information, plus the OpenAi python package, equation six is computed, presenting 

the return function, which is the total of all earned rewards for a certain period. 

𝑅(𝜏) =  ∑ 𝑟𝑡

𝜏

𝑡=0

  6 

The DRL problem intends to reach the optimal policy represented by 𝜋∗. To visualize the 

problem, consider the probability distribution for a 𝑇 - step trajectory. Equation seven illustrates 

this scenario: 

Figure 2. The feedback loop of agents 
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𝑃(𝜏|𝜋) =  𝜌0(𝑠0) ∏ 𝑃(𝑆𝑡+1|𝑆𝑡 , 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)   

𝑇−1

𝑡=0

 7 

The expected returns are therefore denoted by 𝒥(𝜋): 

𝒥(𝜋) =  ∫ 𝑃(𝜏|𝜋)𝑅(𝜏) = 
.

𝜏

𝔼
𝜏~𝜋

 [𝑅(𝜏)] 8 

Thus, the optimal policy can be calculated from the expected returns equation as follows: 

𝜋∗ = 𝑎𝑟𝑔 max 𝒥(𝜋)
𝜋

 9 

Using the previously described studies, which assisted in explaining the core principles of the 

DRL universe is possible to extract the information needed to discuss the three DRL methods 

identified in the literature: Value-based algorithms intend to determine the value of a state or 

action. In other words, its goal is to forecast an agent's anticipated return in a particular 

condition (how effective it is for the agent to carry out a specific action in an assumed 

state); policy-based algorithms intend to find the best policy 𝜋∗ for an agent. The algorithm 

works by searching through a set of alternative policies and then picking the approach that 

results in the maximum reward for the agent, and model-based algorithms in DRL are 

prediction methods that learn an environment model. Thus, this algorithm employs a model that 

forecasts the future condition of the environment and then combines all of the gathered data to 

select the optimum action (Arulkumaran et al. 2017). 

1.5.1 DRL groundwork 

Figure 3 offers the groundwork for the reader to understand 

what follows; moreover, the figure lets the reader see the 

selected algorithms used in this thesis, but the next section will 

provide a more detailed explanation. Highlighted in red in 

figure 3 are the chosen algorithms for this working project 

which are: Advantage Actor Critic (A2C), Proximal Policy 

Optimization (PPO), and Deep Deterministic Policy Gradient (DDPG), all of them concerned 

Figure 3. DRL groundwork 
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with policy optimization and Q-learning approaches.   

1.5.1.1 Model-free DRL  

The Model-free method in DRL does not require a model of the environment. Therefore, 

algorithms that use it may learn directly from experience without having to consider creating a 

model of the environment. This approach is simpler to implement and has a greater learning 

rate than Model-based methods in which the agent has access to an environment model. Even 

if the first scenario is simpler to construct, it may take more experience to get the exact extent 

of efficiency as Model-based solutions (Szepesvári et al. 2009). 

Because the Model-free technique does not have access to an environment model, the question 

of what the agent should learn arose. There are two basic techniques in model-free DRL: policy 

optimization and Q-learning: 

1.5.1.2 Policy Optimization  

Policy optimization is a training strategy for DRL agents that focuses on improving the agent's 

policy. The objective is to determine a policy that permits the agent to receive the highest 

reward. An iterative process of testing numerous policies before picking the one that provides 

the best payment for the agent begins. Mathematically the policy is 𝜋𝜃 = (𝑎|𝑠), and the 

optimization process consists of optimizing the parameter 𝜃 and immediately running a gradient 

ascent on equation eight, as illustrated in the following equivalence 𝒥(𝜋𝜃). This optimization 

is on-policy based, meaning it only uses information from the environment consistent with the 

most recent version of the policy (Degris, Pilarski, and Sutton 2012). 

1.5.1.3 Q-learning 

Q-learning is a DRL algorithm to find the best policy in a given environment. This technique 

iteratively updates a Q-table12 that reflects the predicted reward for each environment's state-

 
12 The Q-table is a matrix that contains all possible states and action combinations. Plus, the associated Q-values 

for each state-activity mix. The Q-values are updated as the agent explores the environment and determines the 

best policy. 
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action (appendix B table 1 offers an example of how the Q-table looks). The method tends to 

converge to an optimal policy when the Q-table iterates up to the correct value function of the 

environment. Q-learning techniques develop a mathematical approximator 𝒬𝜃(𝑠|𝑎) that leads 

to the efficient action-value combination 𝒬𝜃
∗ (𝑠|𝑎). This optimization is off-policy based, 

meaning it can use information from the environment consistent with any version of the policy 

during the training period. Because this technique employs an additional argument represented 

by the parameter 𝜃. 𝒬∗, and 𝜋∗ now decide the optimum approach (Li, Ni, and Chang, n.d.). 

2. Methodology  

The idea stated as part of the methodology for this working project was to emulate (Durall 

2022) study "Asset Allocation: From Markowitz to Deep Reinforcement Learning," in which 

the author presented traditional approaches for portfolio optimization, discussing different 

strategies using the Markowitz model as a starting point, and then describes asset allocation 

paradigm while thinking in DRL and comparing it to traditional approaches. 

The difference between this study and the previous one is that the former focuses on 

cryptocurrencies while the latter does not. Furthermore, because crypto assets are more volatile 

than traditional assets, this study takes place in a highly volatile setting, allowing us to see the 

impact of using ML technologies in such a highly volatile setting. 

The next section of the methodology goes deeper into how the selected algorithms work, 

beginning with traditional portfolio optimization methods (Markowitz, Minimum Volatility, 

Tangency, and Equally Weighted portfolios) and then moving to the three chosen DRL 

algorithms (A2C, PPO, and DDPG Models). 

Before delving more into classic optimization approaches, it is crucial to note a well-known 

performance indicator identified as the Sharpe ratio, which merely refers to a risk-adjusted 

measure that compares the predicted return of an investment portfolio to its volatility (Schmid 

and Schmidt 2010). The goal is to get a higher Sharpe ratio, which translates into investors 
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earning a better return per unit of risk; the following equation shows how to compute the ratio: 

𝑆 =
𝔼(𝑟𝑝) − 𝑟𝑓

𝜎𝑝
 10  

Where 𝑆 is the Sharpe ratio, and 𝑟𝑓 is the risk-free rate.  

For  the sake of this study, the risk-free rate is set equal to the three-month US Treasury bill 

(4.06%) on November 2022 (FRED 2022). Based on history, the US Treasury bill is considered 

a highly secure investment due to its support by the US government's faith and credit.13 The 

other parameters are the same as in the previous sections. 

2.1 Traditional portfolio optimization models 

This component of the working project builds on the material offered in part 1.4 by giving 

further details on the previously disclosed assumptions, parameters, and equations that let the 

Markowitz portfolio strategy work. To initiate the Efficient Frontier is discussed, which will 

provide the reader with the knowledge needed to begin the discussion over classical 

optimization tactics. 

2.1.1 Efficient frontier (EF) 

The EF is a collection of all optimum portfolios with the best returns for a given amount of risk. 

All EF-based portfolios are efficient because they deliver the best-expected returns given a risk 

level. Portfolios below the EF are known to be sub-optimal because they provide lower yields 

for a certain level of risk; similarly, portfolios over the EF are still sub-optimal because they 

offer more hazard than is required to get a given level of return. The EF is significant because 

it may assist investors in determining the best portfolio for their requirements. Furthermore, it 

can be used to compare various investing approaches (Badea 2008).  

The black dotted line in Figure 4 depicts the EF line; the green cross represents the portfolio 

with the lowest global volatility associated with the least amount of risk; the red cross shows 

 
13 Furthermore, the three-month Treasury bill in the United States is a highly liquid investment, which means 

selling or exchanging it can swiftly convert it into cash. 
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the tangent portfolio, which also illustrates the portfolio with the maximum Sharpe ratio.  

Milthaler (2020) Phyton FinQuant package, which contains a Monte Carlo14 simulation 

function, was used to create this graph. Monte Carlo simulations are used in the portfolio 

optimization process to determine the best asset allocation in a given portfolio. In this scenario, 

the simulations were performed 1.5 million times, with each run yielding a distinct set of 

outcomes, each represented by the 

colorful dots under the EF line. 

Each color reflects the Sharpe 

ratio; the dots closer to red 

represent the crypto asset 

allocation with the lowest Sharpe 

ratio, while the dots near a blue color represent the crypto asset allocation with the highest 

Sharpe ratio. The green, red, and black triangles reflect the run Monte Carlo simulations' 

Minimum Volatility, Max Sharpe, and equally weighted portfolio allocations. 

The optimal weights for the classical techniques were determined using the Phyton 

PyPortfolioOpt package. This tool requires two main inputs: i) a data frame containing the 

adjusted close price of all cryptocurrencies needed to calculate the expected returns and 

covariance matrix of returns for each asset, and ii) the risk-free rate. 

2.1.2 Markowitz Portfolio 

The Markowitz portfolio relies on the mean-variance approach. A set of assets is selected to 

lower risk while achieving a target amount of expected return (Bodie, Kane, and Marcus 2014); 

for this thesis, the target returns introduced on the code were 30%. This method enables 

investors to optimize their portfolios based on their desired returns. Alternatively, one can 

 
14 Monte Carlo simulation is a mathematical approach that generates random samplings from a random simulation 

to provide various probable outcomes for specified conditions. The ultimate objective is to utilize the findings of 

the random simulations to determine the likelihood of scenarios occurring. 

Figure 4. Efficient Frontier of the optimal portfolios and Monte Carlo 
simulations 
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approach the problem in the reverse direction by computing an acceptable level of volatility 

and seeking to optimize expected returns. The following equation depicts the Markowitz 

portfolio optimization problem for the first alternative: 

min
𝜔

=
1

2
𝜎𝑝

2  𝐬. 𝐚  ω𝑟
T =  𝔼(𝑟𝑝) = 30%  𝒂𝒏𝒅  𝜔𝑇1 = 1 11 

2.1.3 Minimum Volatility Portfolio 

The Minimum Volatility portfolio is a collection of assets associated with a low level of risk. 

This portfolio is also known as the Risk-free rate since its primary goal is to minimize risk 

(Bodie, Kane, and Marcus 2014). The benefit of the least volatility portfolio is that it is less 

likely to offer short-term losses. However, in most cases, this portfolio will underperform the 

market in the long run. The following equation depicts the Minimum Volatility portfolio 

optimization problem: 

min
𝜔

=
1

2
𝜎𝑝

2  𝐬. 𝐚  ω𝑟
T =  𝔼(𝑟𝑝)  𝒂𝒏𝒅  𝜔𝑇1 = 1 12 

2.1.4 Tangency Portfolio 

Tangent portfolios are those that are tangent to the efficient frontier; it is also known as the 

maximum Sharpe portfolio since it provides a combination of assets within a portfolio that 

maximizes the Sharpe ratio. This EF portfolio has the best risk-adjusted return, which implies 

that it delivers the maximum potential return per unit of risk (Bodie, Kane, and Marcus 2014). 

One downside of this strategy is that it is sometimes impossible to execute in practice since it 

demands precise knowledge of future market circumstances. The following equation depicts 

the Tangency portfolio optimization problem: 

max
𝜔

=
𝜔𝑇𝑟 − 𝑟𝑓

𝜎𝑝
2

  𝒔. 𝒂  𝜔𝑇1 = 1 13 

2.1.5 Equally weighted portfolio 

The Equally Weighted portfolio gives the same weight to each asset regardless of its 

contribution to the portfolio's total risk or return. The advantage of this portfolio development 
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strategy is its ease of implementation. The disadvantage compared to the Markowitz portfolio, 

for example, is that it does not consider the individual risk and return characteristics of the 

assets in the portfolio, which may result in poor results. 

The ideal weights for each method were derived using the previously described Python package 

based on CVXPY, a modeling language used in Phyton for solving convex optimization 

problems. Part four of the work will present the outcomes. This tool considers all the methods 

and how they should be weighted to achieve the best and desired results. 

For the time being, it is possible to see how each approach has some drawbacks, which stem 

primarily from the premises that rely on the application of Markowitz's theory, such as rational 

investors, the use of historical data to generate the optimal portfolio, and the difficulty of 

correctly quantifying asset volatility. 

2.2 Deep Reinforcement learning algorithms 

This section of the working project extends the material presented in part 1.5 by offering further 

details on the previously provided DRL information, but now it is meant to lead to a debate on 

the three algorithms selected earlier. The findings for the IA-based portfolio optimization 

strategy were obtained using the Python package (FinRl 2022). FinRl is an open-source 

solution that uses DRL capabilities to solve financial concerns. 

The algorithms require the following inputs: i) a data frame including financial information for 

all selected cryptocurrencies (adj closing price, high, low, and volume). The reader should be 

aware that, unlike the traditional approaches, this additional information is to be used to 

add new financial indicators to the data frame necessary for training the DRL algorithms; 

appendix B table 2 lists the ones employed in this study. ii) a trading environment derived from 

the previously described Python package, and iii) an agent derived from another Python 

package (StableBaselines3 2022).  

The most significant changes to the required inputs were, for example, adapting the 
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environment to consider an all-year trading period because the crypto market never closes and 

including more volatility financial measures to feed the models, all to attempt to attack the 

highly volatile environment in which crypto assets evolve. One can consider a bunch of 

financial metrics to nourish the models, but in this case, and because of computational power, 

it was no longer feasible. 

2.2.1 Advantage actor critic (A2C) 

Actor Critics is a DRL algorithm that combines value-based and policy-based methodologies. 

This approach estimates the values for each state and action using a state-value function and an 

action-value function. The algorithm then utilizes the predicted values to determine the optimal 

action to take in each state. A2C maximizes its performance by using gradient ascent. Gradient 

ascent is an optimization approach used to identify a local maximum function; consequently, 

the process begins with an initial guess of the parameters and improves the guess by iteration 

until it converges to the ideal value (Mnih et al. 2016). 

2.2.2 Proximal Policy Optimization (PPO) 

PPO is a DRL algorithm used to optimize a policy. Making minor and gradual modifications to 

the present policy yields the ideal approach. The phrase "proximal" implies that the algorithm 

only updates the policy portions closer to the current policy. In other words, the components of 

the policy that are most likely to affect the policy's present performance. An objective function 

is optimized, yielding a cautious prediction of how much 𝒥(𝜋𝜃) will change due to policy 

modifications (Schulman et al. 2017). 

2.2.3 Deep Deterministic Policy Gradient (DDPG) 

Deterministic Policy Gradient is a DRL method used to train agents in continuous spaces. 

DDPG is an off-policy technique that estimates a Q-function using a Deep Q-network (DQN). 

For training this model, the Bellman equation15 is used, which helps to minimize the difference 

 
15 The Bellman equation is a mathematical framework that leads to the best policy for any Markov decision process 

(MDP). An MDP is a delimited collection of states, a limited number of actions, and a function that indicates the 
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between the DQN's predicted and actual Q-values. This technique also utilizes the actor-critic 

structure, in which the actor training is created by mapping the states to actions using the policy 

gradient, as in the A2C model, and the critic maps the States of the Q-values, as previously 

mentioned, by using the Bellman equation (Lillicrap et al. 2015). 

3 Data base(s) exploration 

Data was downloaded from Yahoo Finance from November 9, 2017, to November 4, 2022. The 

sample for both the traditional and AI-based 

techniques includes eighteen of the oldest 

cryptocurrencies, allowing for more 

information to be retrieved. Figure 5 

illustrates the name of each crypto asset plus 

the number of data points for each cryptocurrency, which was 1822 for the specified period. In 

addition, for each cryptocurrency, table 3 in the appendix B presents descriptive statistics. 

Traditional optimization algorithms only required the Adjusted Close price. However, IA-based 

optimization requires additional information, so a new data frame with the Close price, High, 

Low, and Volume is required16. Furthermore, the DRL method requires splitting the data frame. 

70% of the data was set aside for training and 30% for testing. As a result, the precise date 

between the two samples is June 13, 2021. Figure 1 in the appendix B depicts the adjusted 

closing prices for each cryptocurrency. And appendix B tables 4 and 5 show the structure of the 

data set used for both approaches. 

4 Results (insides) 

This section will deploy the gathered findings after executing the hold-created Python code. 

The section structure will give the outcomes of traditional approaches first, then DRL 

 
likelihood of moving from one state to another, given a previously performed activity. The goal is to determine 

what action to take in each stage to maximize an expected payoff. 
16 The highest price represents the highest price of the stock traded that day, the lowest price represents the lowest 

price of the stock exchanged that day, and the volume represents the number of shares exchanged that day. 

Figure 5 The number of data points per cryptocurrency 
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algorithms, and lastly, a comparison of both techniques. 

4.1 Traditional approaches 

Each optimization problem received an extra constraint to minimize nonzero weights. Portfolio 

optimization, as mentioned in earlier chapters, aims to have the best combination of assets 

feasible to achieve the desired results; nevertheless, it is fundamental to note that even with this 

constraint, some crypto assets still do not have weights for some of the portfolios.  

4.1.1 Markowitz portfolio 

Table 1 shows the outcomes of this optimization technique. Following this optimization 

technique with the chosen circumstances, an investor may achieve a 0.30 yearly return with a 

risk reflected by the volatility indicator of 0.77. Sharpe's ratio is 0.34, which means that for 

every 1 unit of risk, investors can expect to earn 0.34 units of return.  

Table 1. Markowitz portfolio optimal weights 

 

4.1.2 Minimum volatility portfolio 

Table 2 shows the outcomes of this optimization technique. Following this optimization 

technique with the chosen circumstances, an investor may achieve a -0.02 yearly return with a 

risk reflected by the volatility indicator of 0.67. Sharpe's ratio is -0.09, which means that the 

portfolio has lost money and has underperformed the risk-free investment.  

Table 2. Minimum Volatility portfolio optimal weights 

 

4.1.3 Tangency portfolio 

Table 3 shows the outcomes of this optimization technique. Following this optimization 

technique with the chosen circumstances, an investor may achieve a 0.60 yearly return with a 
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risk reflected by the volatility indicator of 1.22. Sharpe's ratio is 0.47, which means that for 

every 1 unit of risk, investors can expect to earn 0.47 units of return. 

Table 3. Tangency portfolio optimal weights 

 

4.1.4 Equally weighted portfolio 

Table 4 shows the outcomes of this optimization technique. Following this optimization 

technique with the chosen circumstances, an investor may achieve a 0.23 yearly return with a 

risk reflected by the volatility indicator of 0.53. Sharpe's ratio is 0.27, which means that for 

every 1 unit of risk, investors can expect to earn 0.27 units of return. 

Table 4. Equally weighted portfolio optimal weights 

 

Appendix B figure 2 depicts a bar plot with optimal weights for the traditional approaches. 

However, in this case, the reader can see how the tangency portfolio provides higher expected 

annual returns than the other approaches. An explanation could be that the tangency portfolio 

puts more weight on cryptocurrencies with higher expected returns. But, it is also worth noticing 

that it has the highest annual volatility since it is weighted heavily against riskier assets. 

4.2 IA-based approaches 

With a learning rate of 0.0002, the total number of time steps assigned to all models was 

between 40.000 and 50.000. In addition, the algorithms consider an initial cash amount of 1M, 

a transaction cost of 0 (since cryptocurrency transactions are either extremely cheap or almost 

free), and a reward scale for the agent of 1e-1. 

4.2.1 A2C 
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Table 5 shows the outcomes of this optimization technique. Following this optimization 

technique with an initial investment of 1M the total end value 

of the portfolio will be near 5.4M. Sharpe's ratio is 0.87, 

which means that for every 1 unit of risk, investors can 

expect to earn 0.87 units of return. 

4.2.2 PPO 

Table 6 shows the outcomes of this optimization technique. Following this optimization 

technique with an initial investment of 1M the total end value 

of the portfolio will be near 4.4M. Sharpe's ratio is 0.81, which 

means that for every 1 unit of risk, investors can expect to earn 

0.81 units of return. 

4.2.3 DDPG 

Table 7 shows the outcomes of this optimization technique. Following this optimization 

technique with an initial investment of 1M the total end value 

of the portfolio will be near 8.7M. Sharpe's ratio is 1.015, 

which means that for every 1 unit of risk, investors can 

expect to earn 1.015 units of return. 

It is possible to notice that such results are excessive, that the initial investment is nearly six-

folded or even more, but this is not always the case, and there is an explanation for this situation. 

During the beginning of the testing period, the crypto market saw a boom, with each crypto 

asset's return reaching its historical highs; hence, the DRL techniques are considering a bullish 

scenario, which might explain why the initial investment value was almost six-folded. 

Furthermore, many institutional investors are becoming interested in this industry, boosting the 

crypto market (Sensoy and Akdeniz 2022). 

It is vital to note that different strategies may assign more weight to specific assets based on 

Table 5. A2C after training outcomes 

Table 6. PPO after training outcomes 

Table 7. DDPG after training outcomes 
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prior performance or other factors, in this case, trying to obtain a better Sharpe ratio after each 

time step. Moreover, some algorithms also consider the allocation of the weights based on the 

expected return of each asset. 

4.3 Traditional approaches VS IA-based approaches 

A graph displaying the cumulative returns for all the approaches is provided. This figure was 

applied exclusively to the test sample, which implies it only covers 30% of the total data set. In 

figure 6, one can see that all DRL 

approaches outperform the 

traditional approaches. Premise 

fulfilled for all of the IA-based 

models, except for the PPO 

algorithm in which the Equally 

Weighted portfolio achieved a 

higher cumulative return; one explanation for this portfolio outperforming the PPO approach is 

that the Equally Weighted portfolio ensures that each asset contributes equally to the overall 

performance. As a result, this can assist in minimizing the overall risk of the portfolio while 

still producing significant returns. 

Table 8 displays the principal financial indicators of the attained findings. The results for each 

approach may differ 

from the previously 

presented ones since 

now they all are applied just to the testing data. Still, the study's premise continues to be fulfilled 

since DRL algorithms outperform traditional techniques in terms of returns and volatility, as 

well as the Sharpe ratio17, which the reader is already familiar with. 

 
17 Table 8 shows the best-performing strategy for each indicator in green, the second-best-performing strategy in 

yellow, and the worst-performing strategy in red. 

Figure 6. Cumulative returns for the testing period (13/06/2021-04/11/2022) 

Table 8. Principal performance metrics comparing each approach results 
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5 Conclusion 

To sum up, after testing numerous approaches for the portfolio optimization problem applied 

to the highly volatile environment in which the cryptocurrency world evolves, the DRL models 

outperform traditional methods in terms of not only the Sharpe ratio but also risk-adjusted 

return. Meanwhile, traditional methods are only concerned with maximizing portfolio returns, 

while more advanced strategies can take more inputs, which helps to account for high volatility 

and thus achieve better results, and the way those models are trained through trial and error to 

achieve better results also helps in the pursuit of better results. In terms of cumulative returns, 

the DDPG algorithm outperformed all other techniques, owing to its ability to handle 

continuous action spaces to discover the best strategy significant in portfolio optimization 

problems with an infinite number of alternative actions.  

Traditional techniques perform better in terms of computational efficiency for the portfolio 

optimization problem since they do not work on an iteration basis, which consumes a lot of 

computational resources. 

The research for this working project used various fake assumptions that do not adequately 

represent a real-world trade environment. Short-selling and hedging losses, for example, were 

not considered in the research. As a result, future research on the issue can incorporate such 

qualities into the algorithm; Furthermore, in a bearish circumstance, a test can be performed to 

observe how the DRL agents perform. Furthermore, because the circulating supply of each 

crypto asset is significantly related to its volatility, the model should consider this information; 

regrettably, in this situation, that information could not be added since no publicly available 

source contains it daily. 

All of the work done in this working project is not intended to be and should not be interpreted 

as financial advice to engage in cryptocurrency transactions or to be incorporated as part of an 

investment strategy. 
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Appendix A 

Appendix A complements what is shaped in Section 1.4 by demonstrating an example of an N 

assets portfolio optimization problem using matrix notation. 

First, let 𝑅𝑖 = 𝑖 = (1, 2 … , 𝑛) denote each asset return, and 𝑤𝑖  denotes the slice of the capital 

invested in each asset 𝑖. Thus, using matrix algebra, one can create an 𝑛𝑥1 vector depicting the 

asset returns and weights, as seen below. 

𝑅 =  (

𝑅1

𝑅2

⋮
𝑅𝑛

) ;  𝑤 =  (

𝑤1

𝑤2

⋮
𝑤𝑛

)  

To get the overall portfolio return, multiplying the first vector by the transpose of the second 

vector is needed. 

𝑅𝑝,𝑤 = 𝑅 ∗ 𝑤𝑇 

A nx1 matrix holding the historical data of the returns, commonly known as the mean of 

the returns, may be constructed using the previously supplied vectors. 

𝐸[𝑅] =  𝐸 [

𝑅1

𝑅2

⋮
𝑅𝑛

] =  (

𝐸[𝑅1]

𝐸[𝑅2]
⋮

𝐸[𝑅𝑛]

) =  (

𝜇1

𝜇2

⋮
𝜇𝑛

) = 𝜇 

And thus, the expected returns of the portfolio can be depicted as follows: 

𝜇𝑝,𝑤 = 𝐸[𝑤𝑇𝑅] = 𝑤𝑇𝜇 = (𝑤1, 𝑤2, … , 𝑤𝑛) (

𝜇1

𝜇2

⋮
𝜇𝑛

) 

Below is the covariance matrix of the returns: 

𝑉𝑎𝑟(𝑅) = (

𝜎1
2 𝜎12 𝜎1𝑛

𝜎21 𝜎2
2 𝜎2𝑛

𝜎3𝑛 𝜎32 𝜎𝑛
2

) =  ∑. 

And thus, the covariance matrix of the portfolio is represented by the following equation: 

𝜎𝑝,𝑤
2 = 𝑣𝑎𝑟(𝑤𝑇𝑅) = 𝑤𝑇 ∑ 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛) (

𝜎1
2 𝜎12 𝜎1𝑛

𝜎21 𝜎2
2 𝜎2𝑛

𝜎3𝑛 𝜎32 𝜎𝑛
2

) (

𝑤1

𝑤2

⋮
𝑤𝑛

) 
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It is also worth noting that for the Markowitz optimization problem, the total of all weights 

must equal one; this criterion is stated by the following equation: 

𝑤𝑇1 = (𝑤𝑎, 𝑤𝑏 , … , 𝑤𝑛) (

1
1
⋮
1

) = 𝑤𝑎 + 𝑤𝑏 + ⋯ + 𝑤𝑛 = 1 

The matrixial equations structure were adapted from (Zivot 2021). 

Appendix B 

Figure 1 shows the adjusted closure prices for all the crypto assets chosen for the hold period. 

Each picture includes a vertical dotted line to indicate the exact date (June 13, 2021) when the 

data split into training and testing samples occur. 

 

Appendix figure 1. Share adjusted closing price in USD 

Figure 2 shows the optimal weights for each of the conventional approaches.
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Appendix figure 2. Portfolio weights 

Table 1 shows an example of a Q-table with n actions and n states and their corresponding q 

values. 

Appendix table 1. Q-table example 

 

Table 2 shows the financial indicators utilized to feed the AI-based algorithms. Also, there is 

a definition for each metric in table two. 

Appendix table 2. Used Financial indicators for the AI models 

 

Table 3 shows the descriptive statistics for the stock pool chosen for the study period. 
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Appendix table 3. descriptive statistics of all cryptocurrencies 

 

Table 4 shows the structure of the first five rows of the data set utilized for the traditional 

approaches methods. 

Appendix table 4. Structure of traditional approach data frame 

 

Table 5 shows the structure of the first rows of the data set utilized for the IA methods. 

Appendix table 5. Structure of AI approach data frame 

 


