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“- Falhámos a vida, menino!
- Creio que sim... Mas todo o mundo mais ou menos a falha.

Isto é, falha-se sempre na realidade aquela vida que se planeou
com a imaginação. Diz-se: «vou ser assim, porque a beleza está
em ser assim». E nunca se é assim, é-se invariavelmente assado,

como dizia o pobre marquês. Às vezes melhor, mas sempre
diferente.” (Eça de Queirós)



Abstract

Human cognition is exciting, it is a mesh up of several neural phenomena which really

strive our ability to constantly reason and infer about the involving world. In cogni-

tive computer science, Commonsense Reasoning is the terminology given to our ability to

infer uncertain events and reason about Cognitive Knowledge. The introduction of Com-

monsense to intelligent systems has been for years desired, but the mechanism for this

introduction remains a scientific jigsaw. Some, implicitly believe language understanding

is enough to achieve some level of Commonsense [90]. In a less common ground, there

are others who think enriching language with Knowledge Graphs might be enough for

human-like reasoning [63], while there are others who believe human-like reasoning can

only be truly captured with symbolic rules and logical deduction powered by Knowledge

Bases, such as taxonomies and ontologies [50]. We focus on Commonsense Knowledge

integration to Language Models, because we believe that this integration is a step towards

a beneficial embedding of Commonsense Reasoning to interactive Intelligent Systems,

such as conversational assistants.

Conversational assistants, such as Alexa from Amazon, are user driven systems. Thus,

giving birth to a more human-like interaction is strongly desired to really capture the

user’s attention and empathy. We believe that such humanistic characteristics can be

leveraged through the introduction of stronger Commonsense Knowledge and Reasoning

to fruitfully engage with users.

To this end, we intend to introduce a new family of models, the Relation-Aware

BART (RA-BART), leveraging language generation abilities of BART [51] with explicit

Commonsense Knowledge extracted from Commonsense Knowledge Graphs to further

extend human capabilities on these models.

We evaluate our model on three different tasks: Abstractive Question Answering, Text

Generation conditioned on certain concepts and a Multi-Choice Question Answering task.

We find out that, on generation tasks, RA-BART outperforms non-knowledge enriched

models, however, it underperforms on the multi-choice question answering task.

Our Project can be consulted in our open source, public GitHub repository (Explicit

Commonsense).

vii

https://github.com/Mr-Vicente/explicit_commonsense
https://github.com/Mr-Vicente/explicit_commonsense


Keywords: Natural Language Generation • Commonsense Knowledge • Knowledge

Graphs • BART • Transformers

viii



Resumo

A cognição humana é entusiasmante, é uma malha de vários fenómenos neuronais que

nos estimulam vivamente a capacidade de raciocinar e inferir constantemente sobre o

mundo envolvente. Na ciência cognitiva computacional, o raciocínio de senso comum é

a terminologia dada à nossa capacidade de inquirir sobre acontecimentos incertos e de

raciocinar sobre o conhecimento cognitivo. A introdução do senso comum nos sistemas

inteligentes é desejada há anos, mas o mecanismo para esta introdução continua a ser

um quebra-cabeças científico. Alguns acreditam que apenas compreensão da linguagem

é suficiente para alcançar o senso comum [90], num campo menos similar há outros que

pensam que enriquecendo a linguagem com gráfos de conhecimento pode ser um caminho

para obter um raciocínio mais semelhante ao ser humano [63], enquanto que há outros

ciêntistas que acreditam que o raciocínio humano só pode ser verdadeiramente capturado

com regras simbólicas e deduções lógicas alimentadas por bases de conhecimento, como

taxonomias e ontologias [50]. Concentramo-nos na integração de conhecimento de censo

comum em Modelos Linguísticos, acreditando que esta integração é um passo no sentido

de uma incorporação benéfica no racíocinio de senso comum em Sistemas Inteligentes

Interactivos, como é o caso dos assistentes de conversação.

Assistentes de conversação, como o Alexa da Amazon, são sistemas orientados aos

utilizadores. Assim, dar origem a uma comunicação mais humana é fortemente desejada

para captar realmente a atenção e a empatia do utilizador. Acreditamos que tais caracte-

rísticas humanísticas podem ser alavancadas por meio de uma introdução mais rica de

conhecimento e raciocínio de senso comum de forma a proporcionar uma interação mais

natural com o utilizador.

Para tal, pretendemos introduzir uma nova família de modelos, o Relation-Aware

BART (RA-BART), alavancando as capacidades de geração de linguagem do BART [51]

com conhecimento de censo comum extraído a partir de grafos de conhecimento explícito

de senso comum para alargar ainda mais as capacidades humanas nestes modelos.

Avaliamos o nosso modelo em três tarefas distintas: Respostas a Perguntas Abstra-

tas, Geração de Texto com base em conceitos e numa tarefa de Resposta a Perguntas de
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Escolha Múltipla . Descobrimos que, nas tarefas de geração, o RA-BART tem um desem-

penho superior aos modelos sem enriquecimento de conhecimento, contudo, tem um

desempenho inferior na tarefa de resposta a perguntas de múltipla escolha.

O nosso Projecto pode ser consultado no nosso repositório GitHub público, de código

aberto (Explicit Commonsense).

Palavras-chave: Geração de Linguagem Natural • Conhecimento de censo comum • Gra-

fos de Conhecimento • BART • Transformers
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1

Introduction

This chapter shall be regarded as an introduction to our proposed work, passing
through the contributions made. Lastly, a brief overview of the document structure is
covered.

1.1 Cafe Contextualisation

Human cognition is remarkably complex as it is powered by a biological computer: the

brain. Yet we are far way from totally deciphering it. The brain, stunningly, is a versatile

framework carrying the ability to store knowledge, to formulate thoughts and morph

them, to strengthen them with communication tools like language, where thoughts can

be dismantled in multi-modal finite mediums and be converted back to neural stimuli.

Even though the brain is a biological black box in most aspects, it is fruitful in intelligent

complex computation, which researchers have not looked away, but instead joined forces

into deeply introspecting it and taking inspiration onto artificial computations. Artificial

Neural Networks (ANN) were initially inspired by the brain, where the first network, the

Perceptron had it’s genesis in 1958 [89].

Introducing cognitive abilities to machines has then been attempted mainly through

the means of Symbolic Artificial Intelligence (Symbolic AI) and ANN. Symbolic AI [75]

was an attempt to create human-readable logical patterns which could reason about

mundane situations, based on knowledge bases, symbols manipulation, logic rules and

deduction engines.

Technical limits, however, such as knowledge building and rules system specification,

led to a discouragement in the field, but with the rise of ANN, a different take on the

field was born. Subsymbolic artificial intelligence builds as the field which will leverage

the reasoning of logical systems with the co-occurence inference capabilities and brain-

efficient inspired architectures used by ANN, promising rich computational cognitive

intelligence [28].

On a different avenue, deep learning purists attempt to model approximations of

knowledge and human-like capabilities using neural networks of all sorts of forms. In
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2015, Yann LeCun [49], alluded to the ability of deep neural networks in solving problems

where implicit patterns and relations were fundamental (eg. Natural Language and

Vision). Furthermore, he addressed and explained the core of all these deep neural

models: the backpropagation learning algorithm, which was for several decades put

aside, but now played a key role in guiding the learning process of these deep models.

He was optimistic with the way science was being pursued in the field, however, human

cognition could not be narrowly solved by supervised or non-supervised neural nets, as

he later pointed in his report: “A Path Towards Autonomous Machine Intelligence” 1.

In this report, he points out that there is a need for focused computational components,

which are modelled together to battle several different problems in order to create a more

aware, knowledgeable system.

In contrast, usually, neural systems are built to tackle tasks independently (eg. Ma-

chine Translation, Question Answering, Image classification, etc), even though there are

systems which require a crossing of different tasks and knowledge sharing between them,

because they are complex and offer multiple ways of interaction.

One playground, where such “intelligent” systems are much desired is in the field

of conversational assistants, such as Alexa, designed by Amazon. Even though these

assistants may seem to represent a single computational unit, they are an abstraction of

multiple layers of both rule-based and deep models, empirical and automate strategies,

among other components, as an attempt to better accommodate satisfaction in system’s

users.

Under the hood, to be more concrete, we find several components such as: Intent

detection, Entity recognition, Dialog Policy mapping, Ranking strategies, Specific task

models (eg. Question-Answering, Sentiment Analysis, Text Generation, etc), among oth-

ers.

All components have their relevant impact and importance on the flow of an assistant-

user conversation, from which we have decided to grasp a more deeper research into the

Text Generation component, having observed problems with Natural Language genera-

tion lacking obvious Commonsense.

Neural Language Models, more precisely, in the last 4 years have really become com-

petent in generating language and in discriminant language tasks (Take a glance at the

Fig 1.1 for a better view of current State of the art (SOTA) language model’s (BART [51])

Natural Language generation quality).

However, these SOTA Language Models are certainly not bullet proof, neither are

they indefinitely reliable. One question which ignites dispute on Language Models is

whether the seemingly language inference of such models is a result of a deep meaning

understanding of language concepts or whether the inference is coerced by mere word

co-occurrence statistics. There has been research on this matter, for instance on the BART

architecture [53], which points out that indeed the attention mechanism rooted in these

1A Path Towards Autonomous Machine Intelligence: https://openreview.net/pdf?id=BZ5a1r-kVsf
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1.1. CAFE CONTEXTUALISATION

Curiosity time: Milk chocolate was invented in Switzerland.TWIZ:

Tell me more about it!USER:

It was invented in Switzerland in the late 19th century. The swiss had a lot
of cocoa butter, which they used to make milk chocolate.

TWIZ:

Figure 1.1: Adapted from our work (TWIZ team) for Alexa Prize TaskBot Challenge [59]

models tend to create a semantic understanding of concepts and textual scenarios dimin-

ishing the hypothesis that these models are nothing but good mappers at relating words

in similar contexts. Language Models, can therefore adhere to the creation of an intrinsic

conceptualisation of semantics, limited by the complexity of the model. One thing to con-

sider, however, relates to the fact that language understanding transcends the aspect of

building a morphed textual idea of a concept (vector representation) and even combining

a set of them in a sentence. When we, humans, conceive a mental idea of a concept or a

set of related concepts, we cognitively are bounded by a broader Commonsense represen-

tation of them and a reasoning system which relates them. Machine Commonsense, is

a subset of human knowledge, which usually is absent in corpus of texts, due to human
reporting bias (Humans tend to not state the obvious). Commonsense is multi-modal by

definition and can be dismounted in several layers, such as: concepts’ textual view, con-

cepts’ abstract visual representations, concepts’ abstract sounds, the symbolic entailment

underlying knowledge, social conventions, any representation of knowledge explicitly

consulted or deduced over memory knowledge, among others.

Provided a vast grasp over the conceptualisation of Commonsense, it is not realistic to

expect that a single model trained upon linguistic corpus to be able to extract the human

thoughtful experience of understanding and reasoning about matters, nor consequently

be able to generate coherent language without reasoning deficits.

Having in mind the vast human cognitive playground and previous work on lever-

aging neural Language Models with external data modality, such as KG-BART [63], it is

our goal therefore to work with Commonsense Knowledge and expand Language Reason-

ing and Generation to a space where language is learnt along with structured external

Commonsense Knowledge.

We expect, ultimately, with our goal to further improve conversational assistants, such

as Alexa, by providing new generative models, which are more aware of the world using

our generative Commonsense-Aware Encoder-Decoder Language Model (Relation-Aware

BART Model).

Consideration This thesis was written in parallel with an international project (the

Amazon Alexa Prize TaskBot Challenge[118]) sponsored by Amazon. My role in the

project was to ensure Alexa was able to answer questions of users in regards to Natural

Language contexts, such as recipe articles and Do It Yourself (DIY) articles. To this extent,

3
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this thesis targets the enhancement of current methodologies concerning the generation of

Natural Language, enriching them with an approximation to human-like Commonsense.

1.2 From the Cafe to the World: Contributions

With this work, we hope to empower 2 major contributions to the research field of Com-

monsense in Language Models:

• A rich and different approach to the integration of Commonsense Knowledge on

Encoder-Decoder Language models.

• Study strategies for the generation of Natural Language, when boosted with Com-

monsense Knowledge.

On a different take, we also hope to have made a useful contribution to the Computa-

tional Curiosity field (Annex I):

• Creation of a Curiosity Dataset and exploration of Natural Language Processing

(NLP) use-case studies (eg. Curiosities clarification using Commonsense).

1.3 Document Structure

We have segregated this document in what we believe better guides the reader through

the contributions being proposed. Next, follows a brief description of each section:

• Chapter 2 outlines the major ideas and knowledge recommended for proceeding

with the reading of the full dissertation, along with the research that has been

done in the corresponding field. Attention mechanisms are covered since most

of the work make use of the Transformer architecture. The problem of question

answering is explained. Computers require a more concise and thoughtful way to

process data, so a coverage on processing different modalities of data is essential

to better understand the difficulties behind Natural Language Understanding and

Generation. Since our work mostly focus on upbringing textual output rich in

semantic meaning, the field of Commonsense is extensively discussed. Finally, in

order to evaluate generative models, we need to use metrics and benchmarks so as

to compare with related work on this field. Therefore, we overview the current state

of the art metrics for such evaluation.

• Chapter 3 introduces in depth how and what we propose to challenge Language

Models Generation in regards to the Commonsense issue. To achieve this, we start

by covering the tasks we want to tackle, followed by the Commonsense Knowledge

Base we intend to use to aid in the tasks. We go through how such Commonsense ex-

ternal knowledge can be merged with the tasks data to further feed a custom altered

BART model (RA-BART), engineered to make use of Commonsense Knowledge.
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• Chapter 4 presents the performance of our proposed work, in several different tasks,

considering automatic metrics. Moreover, human evaluation is discussed as well as

some ablation studies done to the Commonsense BART model. Finally, we present

a demo for the reader to test the models.

• Chapter 5 focus on the impact of this dissertation, considering both the carbon and

memory footprint of the RA-BART model.

• Chapter 6 concludes the dissertation and mentions next possible challenges: what

was left undone and what other approaches to the problem could be pursued.

• Appendix A showcases further model comparisons and text generations for the

reader to have a hands-on intuition over their quality.

• Annex I covers the concept of Curiosity. It explores the creation of a Curiosity

Dataset, and how we have used it to relate curiosities to both food recipes’ articles

and Wikihow articles. Lastly, we present a technique to generate textual explana-

tions/clarifications over our Curiosity Dataset using a BART model. We also present

examples which show that using Commonsense (RA-BART) can further help creat-

ing more sounding curiosities’ explanations.

5
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2

Background & Related Work

2.1 Neural Language Models

2.1.1 Sequence to Sequence Learning

Sequence to Sequence models are a type of Neural Language Models. They were intro-

duced while sharing the belief of the possibility of extracting an intermediate, compact

representation of sequences, which could in turn help to better understand and generate

alike sequences. Sequences have unique characteristics such as: 1. unbounded sizing;

2. strong dependency between sequence units (which may not be adjacent). A Sequence

to Sequence (seq2seq) abstract model is illustrated in Fig 2.1, where sequences here rep-

resent Natural Language phrases in two different languages.

Seq2Seq modelDarkness is shy and polite(Sequence unit) A escuridão é tímida e educada

Figure 2.1: Seq2Seq model example: [Translation: English→ Portuguese]

Tackling this sequence engineering theme, Recurrent Neural Network (RNN) [40] had

its genesis at the turn of century, but only had its success around a decade ago. This

architecture proved interesting since it learns patterns from sequences by auto feeding

itself along with new sequence units, preserving a sense of sequential/timed memory of

what is passed-through the network. The problem with such network, however, points

to the learning process itself, because the mechanism of being fed one sequence unit at

a time the network introduces issues like: computing speed, due to the impossibility

of utilising parallelism techniques. Also, the vanilla RNN does not possess any special

mechanism to handle a memory state, therefore when considering long sequences, the

past context tends to meet the oblivion. This issue relates to the notion of vanishing

gradients [78], where the weight of past neural states start having diminished importance

after each learning update step, stagnating the updates on the learning weights.

Long Short Term Memory (LSTM) [33] and Gated Recurrent Unit (GRU) [17] were

proposed as an attempt to address the deficiencies present in RNN, such as the short term
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memory issue. Internal mechanisms called gates, assuming the promise of a controlling

memory unit, are optimised in the direction of preserving at best the memory thought

to be relevant in the learning process and discard irrelevant information towards next

feeding cycles.

Even though these network variants provide better memorisation capabilities, they

are still upper bound limited to what they can filter and recapture from the past. Other

feature which is interesting and which these networks fail to capture is the look-ahead

sequence data. Reasonably one can acknowledge that some patterns are not solely depen-

dent on past sequence units, but rather also carved by a notion of a future compass.

2.1.2 Transformers: Deep Learning Spring

As mentioned previously, these seq2seq models even though some attempt to combat

architectural deficiencies such as vanishing gradients, limited memory absorption and

reasoning, do not solve them completely, thus limiting their potential in useful applica-

tions. In 2017, “Attention is all you need” [108], was published revolutionising the way

researchers looked at explicit attention, due to the introduction of Self-Attention along

with the transformer architecture.

Meanwhile Self-Attention was gathering “attention”, a new attempt to perform trans-

fer learning called ULMFiT [35] paved new ground by using a pre-training methodology

on LSTM networks over a long corpus of text and further fine-tuning the same model on

an Natural Language Understanding (NLU) task. ULMFiT method reached State of the

art (SOTA) results in the text classification task with little labelled data, revealing the

potential of pre-training models and fine-tuning the same architecture over a different

(target) task.

Putting all the breakthroughs mentioned together and other past methodologies, deep

learning gained a new direction, where the following points are crucial: 1. the Encoder-

Decoder models; 2. transformers’ utilisation of attention: Self-Attention and Multi-Head

Attention; 3. Usage of transfer learning: Pre-training models and in a later stage use them

to learn a specific domain task (fine-tuning);

Next, the attention mechanism, the transformers architecture and transfer learning

technique will be covered.

2.1.2.1 Cognitive Attention

Like human cognition is bombarded with sensory information, deep learning models

implicitly face a weighted amount of digital stimulus [58].

Attention, as the name implies relates to the idea of focusing more on some things

rather than on others. Regarding data processing, this is associated to the idea of coming

up with probabilistic scores to data units that amplify or neglect the attention that should

be paid to them, when considering a certain goal.
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Three popular attention mechanisms are 1. Self-Attention 2. Cross-Attention 3. Graph-

Attention

Homer 0 1likes 2Donuts

EmbeddingEmbedding
+

Q0 K0 V0

EmbeddingEmbedding
+

Q1 K1 V1

EmbeddingEmbedding
+

EmbeddingEmbedding
+

Q2 K2 V2

Self-Attention

Figure 2.2: Self-Attention Mechanism

Self-Attention Mechanism: Self-Attention is an introspective contained set of opera-

tions which try to predict which input units have the most influence considering the

current input unit being processed (See Fig 2.2 for a better understanding of the Self-

Attention mechanism, used extensively within the most popular language transformer

architectures such as BERT [22], BART [51], among others).

Self-Attention, can analogically be seen as the process of searching something in the

web. Consider the Fig 2.2 and the word 〈likes〉 , embedded for machine understanding

purposes, with which we want to query the web. In this analogy, let’s say that the web

represents the others words from which our word query was taken from “homer likes

donuts”. We want to search something with our word, so the process is the following:

our word query will attempt to match with the keys present in the web, which resemble

all possible matches 〈 Homer , likes , donuts 〉. The key that better matches our search

query, will consequently make the mechanism retrieve the related value information.

Most of the times, in attention mechanisms the queries, keys and values all correspond

to the same set of sequence units. However, this not always the case, see next Cross-

Attention Mechanism paragraph for more information. As an example, in computer

science, commonly, images are fetched through a textual address, but what you get when

fetching them are the actual images’ files. In this situation, thus you would have an exact

matching between queries and keys, but obtaining a value which is in a different medium.

See equation 2.1 to visually grasp the mathematics behind the queries, keys and values

interaction, just explained.

Attention(Q,K,V ) = sof tmax(
QKT√
dk

)V (2.1)
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Cross-Attention Mechanism: Cross-Attention is an attention mechanism which at-

tempts to score the relevance of one sequence units of data with another different se-

quence units of data. Ernie architecture [102], for instance, uses this technique for ques-

tion answering where a question attends to an external information context to better

retrieve contextualised answers. It is also used a lot when combining multiple modalities,

in Vision-Language (VL) model LXMERT [105], images attend to questions, to answer

questions over the medium of images. BART [51], also uses this technique to merge

the knowledge/vector representation extracted from the Encoder with queries from the

decoder to generate sequences, which are conditioned on the input text.

Graph-Attention Mechanism: Graph-Attention, used for example in KG-BART [63],

is based on the Self-Attention Mechanism but applied to sub-graphs, instead of textual

sequences. In Graph-Attention, nodes get confronted with neighbour nodes to score their

relative importance.

Even though Attention was first used to alleviate the problem of handling long term

dependencies in regards to machine translation, it has been broadly adopted and re-

searched on further deep learning fields, such as Computer Vision [23] and Commonsense

Reasoning/Generation [63], which normally involves the usage of external knowledge

graphs.

Relation-Aware Self-Attention Mechanism: Relation-Aware Self-Attention [95], was

designed with the goal of introducing pre-known relative knowledge information be-

tween tokens alongside the Self-Attention mechanism in order to have a more knowledge-

able learning process, which combines explicit and implicit knowledge. RAT-SQL [113]

is an example project which uses this attention mechanism on the Encoder part of the

model.

2.1.2.2 Transformers Architecture

Transformers follow an architecture where there are no recurrent layers, rather Self-

Attention is used to map the relevance of sequence units. Even though the initial trans-

former possessed both an encoder and a decoder module, these days we have architectures

which consist of Encoder-only layers such as BERT [22], we have Decoder-only architec-

tures such as the GPTs [14] and we have hybrid models reassembling more closely the

original proposal of the transformer, such as BART [51].

Behind these models there is a manifest which is characterised by 2 main ideas: 1. Hav-

ing a big enough corpora of language, we can use the data itself to comprehend the

underlying base rules of a language and syntax (pre-training). From a Self-Supervised

learning process, without implicit labelled data we mask parts of a text corpora and try to

predict the gaps of text since the integral corpora is known. 2. Assuming the pre-training
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has been performed and there is control over the understanding of the syntax of a lan-

guage, the task becomes how to solve specific problems such as summarization, language

translation, questions answering, semantics enhancement. This process is coined as train-

ing (fine-tuning) for “downstream-tasks” on labelled data (supervised learning) [107,

126].

The standard Transformer’s Encoder architecture is designed to leverage an under-

standing of the provided data into a compact representation. In a probabilistic context,

the Encoder attempts to model the probability distribution which best fits the provided in-

put. Learning a lower representation of Natural Language, the model tries to understand

inter-token patterns and what tokens/words/expressions matter the most to another.

Apart from pattern reasoning, there is also a relevant feature which is flexibility. From

an encoding we can further use this low-dimension representation into other models, or

even to solve specific tasks.

The Decoder, on the other hand, can be seen as a mathematical compass which tries

to learn the sequences’ probability distribution. From the learnt distribution, the decoder

gains the ability to sample sequence units from it, given a conditional impulse (eg. other

sequence units as input). This sampling characteristic, makes such module architecture

ideal for generative purposes, such as generating Natural Language phrases.

2.1.2.3 Pre-Training

Pre-Training is a training technique, where a learning process is conceived on a model

to obtain a general understanding of a certain type of data, which based on the concept

of Transfer Learning can be used to further train a model more accurately on a spe-

cific “downstream-task” (fine-tuning). This has been a rather popular technique in the

Computer Vision field for a decade [54], since AlexNet showed promising results [45]

in the ImageNet problem [21] and further since Residual Nets made its appearance [32].

Pre-Training, more objectively in the Natural Language Processing (NLP) field, is often

associated with gathering one, or a set of gigantic corpus of data, whom is learnt via

a learning procedure called Self-Supervised Learning [22, 51]. Not relying on labelled

data is what enables this procedure to learn from billions of words (or any other modal-

ity unit), hence requiring annotation on such a big corpus of data would be very costly

and time demanding. Apart from the bureaucratic rational, Self-Supervised Learning,

which usually works by masking pieces of the data it is learning from and later predict

those masked units of data (eg. The <mask> meows → The cat meows), leads to an

implicit understanding of patterns which reside within the data [22, 53]. This feature of

implicitly learning patterns and “storing” the knowledge encountered, makes this learn-

ing process as an accelerator for later learning specific tasks, such as summarization or

question answering in the Natural Language Processing field and object recognition in

the Computer Vision field.
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2.1.2.4 Pruning and the ugly ‘head’ling

Dating back to the birth of Transformers [108], as mentioned previously, both the encoder

and decoder module are populated with multiple independent attention heads, which are

stacked in parallel since they have the potential to learn different patterns, resulting in the

promise of a more profound language knowledge acquisition. However, as observed in

Voita’s work [111], there are heads which unfortunately and apparently fail to learn useful

representations of the domain data. Having this in consideration, one can scrutinise the

quality of each attention head in regards to each module layer, and even remove or adapt

an attention head [96, 111].

Techniques to analyse Transformer Heads The stacking of layers rich in further con-

secutive layers of mathematical operations harden a human grasp on the learning process

of neural networks, therefore to better dissect the undergoing of transformers, visual

frameworks, such as bertViz [110], visToolkit [106] and ecco [1], were brought onto exis-

tence. BertViz, for instance allows for a visual understanding of how an head is behaving

conditioned on a certain input data. Ecco using interpretative methodologies, such as

salience mappings, allow for a more mature analysis over how data individually is cap-

tured. As pointed by Voita [111], one other way to systematically introspect these models

is to use the technique: Layerwise Relevance Propagation (LRP) [5], initially created for

understanding the weight of pixels in the output of visual models.

2.1.3 Generative Language models

Regarding Neural Language Models which compose Natural Language, there are two

main strategies for generating text:1. the Encoder-Decoder architectures and 2. the De-

coder-only architectures. Encoder-Decoder architectures tend to be more versatile, since

they invest in creating contextualised latent representations, before passing these repre-

sentations to aid the decoding (language generation) process. Differently, Decoder-only

architectures infer the next piece of data having only in consideration the causal proba-

bility of what has been seen before (generated). The decoder in Encoder-Decoder, on the

other hand, would also be coerced by the encoder output (embedding) over the several

Decoder layers.

Three of the most popular architectures for Natural Language Generation are the

following: GPT architecture family, being the more recent one GPT-3 [14], BART [51],

T5 [83].

GPT-3 (Generative Pre-trained Transformer-3): OpenAI launched GPT-3 in 2020

without open-sourcing it, which was presented as an improvement to the previous open-

sourced GPT-2 model. The GPT family of models follows the decoder-only architecture.
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BART (Bidirectional Auto-Regressive Transformer): Presented by the Facebook re-

search team, BART was inspired in the Encoder-Decoder framework, from which they

envisioned the BERT [22] as the encoder and the GPT-2 [82] as an inspiration for the

decoder component.

T5: Likewise BART, T5 was Google’s attempt at following a similar architecture rational,

adopting different solutions.

The key differences between T5 and BART, apart from the training procedure, lie in

the way input is dealt with and consequentially the intrinsic model behaviours regarding

this choice. The T5 model is conditioned only by the means of textual input, meaning that

for different tasks, some task prefix must reside within the textual input for the model to

understand what task is being asked to perform. BART, on the other hand, distances itself

from the textual input when selecting tasks. Tasks are coerced by using special tokens

representing the tasks, which are concatenated to the encoded textual input when fed to

the model. These models’ architectures have a powerful ability: Custom Special Tokens

can be used on the input part of the model to teach the model categorisations of the input

(See Fig 2.3 as an example).

Image

Object n object

<img> <roi> </roi><roi> </roi></img>

Task

<vqa>

Context Question

Token n Token Token n Token

<s> </s><sep>

Figure 2.3: Abstract input structure for a VQA task

In this example, there is an intent to teach the model that on the task of <vqa> (visual

question answering) the input will be divided in several sub elements: An image, a con-

textual text and the question to be asked. The special tokens in this case are presented

with the distinctive characters “<” and “>”. This technique of using special tokens has

proven to be rather powerful for “downstream-tasks”, such as visual question answering,

among many others. MBART [64], for instance, used this technique to create a multilin-

gual BART, where a language special token was placed before a textual input to teach the

model a specific language.

2.1.4 Natural Language Generation Strategies (Decoding Strategies)

Theoretically, on an Encoder-Decoder architecture, the decoder takes the Encoder output

and in an iterative way generates 1 language unit token each time while feeding itself the

language already generated so the next tokens are coerced by the language generated so

far and the output from the Encoder. In practice, this process described, usually, only

happens at inference time, whereas at training a technique called Teacher Forcing [30]

is used. On inference time, the iterative approach of generating sequence units, is called

decoding and the algorithm for deciding which tokens to choose decoding strategy (see
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Fig 2.4 for a decoding example). The most popular and general decoding strategies are

the following: 1. Greedy Decoding 2. Beam Search Decoding 3. Top-k Decoding [24]

4. Top-p Decoding [34]
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<bos>one bird dives into the water,
while the boat moves.<eos>

Figure 2.4: Beam Search Decoding Example

Greedy Decoding, is simplest decoding strategy, where each next token is selected

based on the highest likelihood of being the best match over the pre-generated tokens.

Beam Search Decoding attempts to convey better sequences by maintaining a top-n se-

quence likelihood, that at each step of generation sorts the likelihood and selects the top-n

sequences. This strategy ends up having nice properties, since even if a certain token has

a lower probability, after this token we can have a very interesting text which ends up

being considered in beam search, whereas on greedy decoding such sentence would have

been discarded. There are also use cases, where we want to be quite diverse and not use

the same language units to describe a scenario/idea. Sampling is also a strategy, which

ignites a more poetic literacy, by considering a sample of our vocabulary and applying

the same techniques as before, or others. Top-k, for instance, from a sample selects the

first k tokens with higher likelihood, whereas top-p is more relaxed and considers the

selection of the top-n tokens until reaching the accumulative probability of p value.

2.1.4.1 Controllable Text Generation (CTG)

There are times, where we want to exhibit a more controlled output, following a certain

constrained domain of sequence units or rules. For instance we might want to to force

out swear words from a generated text. In NLP, the field of controlling the generated

output text, is called CTG.

As pointed by this recent survey [127], CTG is rampantly emerging in the field of

Natural Language Generation (NLG) and it can be pursued throughout three main stages.

1. In the fine-tuning phase it can be performed by an adaptor procedure [124], prompt-

ing [61] or an Reinforcement Learning (RL) optimisation procedure [130]. 2. One other

way is to retrain or refactor the pre-training models. 3. Finally, having a model already
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trained, we can guide it’s decoding generation using decoding strategies, which is the

main focus of this section (See Fig 2.5 for a summary over these techniques).

• Standard training;
• Efficient inference;
• Higher Text Quality;
• Weaker controllability;

Adapted Module

Prompting

Reinforcement Learning

Fine-tunning

• Computationally Expensive
training;
• Higher text quality;
• Better controllability;

Re-train

Re-factor
Pre-training

Main Characteristics SubcategoryStage

• Efficient training;
• Computationally Expensive
inference;
• Lower text quality;
• Better controllability;

Guided Strategy

Trainable Strategy
Post-Process

Figure 2.5: Overview of the current approaches to CTG (adapted from [127])

Constrained Decoding Strategies Regarding controllable Decoding Strategies, there

are two main approaches: 1. using pure Conjunctive Constraints and 2. using Disjunctive

Constraints.

Introducing constraints on decoding procedure is not trivial, imagine we want to force

tokens t1, t2, which form a word, in a generated sequence S in the form:

S = (s1, ..., sk , t1, t2, sk+1, ...sn)

Generally, tokens are selected one at a time, which makes it difficult to know at what stepi
will be best to place the tokens, especially considering that there are multiple tokens and,

for instance, when we have multiple constraints simultaneously. In order to deal with

constraints, at every step the tokens from the constraints are forcefully introduced in

parallel with the most likely ones. To control the constraints fulfilment and the quality

of output, Banks are introduced. A bank [55] relates to a constraint, which has n-tokens

to be fulfilled on a generated sentence. Each constraint forces the existence of n-token

banks, where each bank defines the list of phrases (in current hypothesis) that have made

n steps progress in fulfilling the constraints.

2.2 Learning Data Representations: Building Blocks

Knowledge, reasoning and communication are intrinsically present in our conceptuali-

sation of intelligence, which come in several shapes and in a multi-dimension fashion.

Transforming data into a compact understandable dimension has been researched for

many years, for example H.Poincaré in 1900, first transfigured a graph unto a mathemat-

ical representation, the incidence matrix. Creating compact representations of data is
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not much to battle our humanistic limited reasoning on diverse kinds of modalities, but

rather to ease communication, facilitate operations over them and ultimately to encom-

pass the indeed limits machines have interpreting different modalities. Learning lower

representations of data also relates to capturing the essence underlying it which allows

for a better generalisation when facing unseen data. The caveat in this process is trying

to preserve at best the information present in the initial modality type. Fernando Pessoa

in the 19th century would already meditate in a lyric paradigm about such a concept. In

“Autopsicografia” he says:

And those who read what he may write, | E os que leem o que escreve,

Upon reading his pain feel all too well, | Na dor lida sentem bem,

Not the two pains that he has, | Não as duas que ele teve,

But rather only those pains that they do not have. | Mas só a que eles não têm.

Fernando Pessoa (1931)

In a natural sense, this can be interpreted as the corruption that happens when con-

verting a medium/representation of data to a different one. This “Lost in Translation”

consequence of transforming data is rather impossible to avoid, however diminishing the

impact of it is what matters to scientists. Concerning this, hereafter 3 types of medium

(Natural Language, Knowledge and Symbolism) are mentioned along with some tech-

niques used in SOTA research to preserve at best their natural medium throughout “en-

coding” transformations.

2.2.1 Natural Language

Concerning textual data, machines fail to grasp it in its raw form, therefore there is a need

in converting it in a medium a machine unit can understand it. It’s not by chance com-

puters usually encode text in ASCII or Unicode encoding (numerical encoding), among

others. Regarding Natural Language reasoning and processing however these text repre-

sentations are further transformed to vector numerical contexts [8].

It would be common one decade ago to see textual units (words) being represented

in one-hot encoding and as a balanced weight of word occurrences encoding (TF-IDF).

The problem with the former, apart from the potential unfeasible size of such vocabulary

encoding, is that the orthogonality of such representation would result in non-human

representations of text, since different and similar words would be treated in the same

way. The latter, even though, trying to balance the importance of uncommon words with

noisy common ones, such as stop words, it is still itself a naive approach with no syntax

reasoning.

Posteriorly, word embeddings (eg. Word2Vec [69], GLOvE [80]) were presented as

a means to approximate similar concepts and keep away intangible concepts. Opening

doors for spacial operations, such as translation and interpolation between concepts, on a

dense vector level space. Adopted in mass by the deep learning field, however, since the

words embedded result in a static representation, meaning the same word on different
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contexts result in the same vector output, such models fail to reach human-like word

semantic representation.

Trying to fill the gap on textual encodings, a new norm has taken place along with

the recent wave of natural language transformers. Coined as context-informed word

embeddings, many architectures, such as BERT [22], process language by first passing

it through a sub-word tokenizer and lastly by feeding these tokenized language units

through multiple attention layers in order to learn the encoding of each word/sub-word

within a context.

Behind these new advances, as mentioned, there is this concept of tokenization. The

reason for this is that language tokenization has become the norm when pre-processing

natural language phrases. However, what is it exactly?

2.2.1.1 Sub-word Tokenizers

'i' : 1045

'have' : 2031

'[PAD]' : 0

'commons' : 7674

'##ense' : 16700

'!' : 999

'##~' : 30521

I

have

commons

##ense

!

101

1045

2031

7674

16700

999

102

I have commonsense!
tokenization tokens

to
ids

encoding

Figure 2.6: BERT Tokenizer pipeline

Tokenizing a text consists in splitting it into words or sub-words and later convert

them to numerical ids through a look-up table. Tokenizers represent the fundamental

basis of transformers success, being the building blocks of uniformly transforming free-

form language into computational units machines can understand. This representation

standard proves to be even more powerful, apart from language representation, as it

allows for further combination and concatenation of multiple modality mediums in the

same granularity level (eg. images, knowledge vector embeddings).

Considering tokenizers, there are two main types: 1. Rule-based tokenizers 2. Neural

tokenizers . Rule-based tokenizers are simpler to imagine, since they assemble a word

tokenization (eg.space separation process), which resonates to our human natural sense

of splitting a sentence at the word level, however, they face some issues. One is the

potential poor entanglement to rules not well defined, which may not capture every

natural language sentence split case. The other relates to size of the vocabulary it creates,

which is rather large due to repetitive sub-words not being reused.

One concern with having a gigantic vocabulary (hundreds of thousands of words) is

related to enforcing neural models, which make use of such tokenized representations to
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have input layers prepared for enormous embedding matrices, resulting in their learning

process being slower.

Neural tokenizers (transformers tokenizers) on the other hand are dynamic tokenizers,

which generally don’t overcome more than some dozens of thousands of elements. They

are able to be much shorter on the vocabulary, due to the attempt to not capture every

single possible word, punctuation and symbols, but rather fuse sub-elements and reuse

them to encode a full word. The way this mechanism is implemented differs on some

cases. Four of the most popular tokenizer models techniques are: 1. Byte-Pair Encoding

(BPE) [27] 2. WordPiece [94] 3. Unigram [46] 4. SentencePiece [47]

We will focus mainly on Byte-Pair Encoding (BPE) and WordPiece tokenizers, since

they are respectively used as input pre-processing for the BART and BERT architectures.

The main goal of both of these tokenizer algorithms is to find a way language represen-

tation encoding with utilises the least amount of tokens, since an infinite vocabulary is

unfeasible to compute and several variations of a word exists. Both algorithms start out

with gathering all unit characters the language uses.

Byte-Pair Encoding (BPE) Tokenizer: This is a multi turn algorithm, which utilises a

frequency approach to build its vocabulary, over one byte characters. At each step, pairs

of current vocabulary units are merged if combined they represent the best counting of

usages in a textual dataset. The algorithm stops when a limit amount of vocabulary units

have been reached.

WordPiece Tokenizer: This is a multi turn algorithm, which utilises a probabilistic

maximum likelihood approach to build its vocabulary, over many byte characters. The

algorithm is similar to the BPE one, deferring on the merging function. WordPiece, in-

stead of depending only on the frequency of the combining tokens to match, cares about

the impact that merge will have on the vocabulary. The rule of merging is therefore: the

difference between the probability of the new merged pair occurring minus the probabil-

ity of both individual tokens occurring individually should be the greatest (See Fig 2.6 to

see the WordPiece Tokenizer (BERT tokenizer) in action).

Both algorithms ensure that the most common words will be represented in the new

vocabulary as a single token, while rare words will be split into two or more sub-word

tokens.

2.2.2 Knowledge Graphs

Natural Language is a powerful input resource for learning syntax rules and semantics,

but it lacks the expressiveness of world knowledge. In reality, language builds as a

communication tool through knowledge information, pre-defined rules, and relationships

that follow concrete meaningful patterns. Therefore, it is reasonable to mentally map

that human knowledge should be presented in a different modality from text or even
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images or audio, since what we want to extract is the reasoning behind mental concepts.

Knowledge graphs do then fill this gap, by gathering nodes of concepts connected to

others through meaningful relationships forming a knowledge mesh. Facts, or Relational

facts which compose knowledge graphs are often represented in the form of triples:

[subject] - [relation] - [object] . One problem that using Knowledge Graphs incites falls

over the fact that deep models can’t reason a Knowledge graph as a whole without further

processing.

Vector
Embedding

Knowledge
Graph

Figure 2.7: Knowledge Graph embedding

In an attempt to solve this issue, the paradigm of Graph Representation Learning ig-

nited as a way to convert a Knowledge Graph into a compact embedding, which a Natural

Language Model, for example, could intrinsically embed and ultimately understand. One

way to achieve this is converting a graph into a well established shape of data, a vector

representation. One thing to consider, however, is that such embeddings should at their

finest preserve knowledge patterns or else the relevance of representing knowledge within

a graph diminishes. Such patterns are, for instance: 1. Symmetry 2. Asymmetry 3. In-

version 4. Composition 5. Hierarchies 6. Type Constraints 7. Transitivity 8. Homophily

(similarity clusters) 9. Long-range dependency

Knowledge
Graph

Adjacency Matrix

Figure 2.8: Knowledge Graph→ Adjacency Matrix

There are, however, other simpler ways to represent a Knowledge Graph, such as

using an Adjacency Matrix (See Fig 2.8), an Incidence Matrix or an Adjacency List. Using

such kinds of graphs representations come as an explicit knowledge encoding, in contrast

to Graph Representation Learning.

This does not mean, however, that one can not use simple graph representations,

such as Adjacency Matrices and further learn representations of the relations (nodes that

intertwine them), using learnable Embedding Layers. RAT-SQL [113], for instance, uses
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Adjacency Matrices to learn relations between keywords phrases and SQL Schemas.

2.2.3 Symbolism and Neural models

Symbolic Logic is the study of reasoning over knowledge captured in human-readable

symbols to solve both formal problems and daily life scenarios [39]. Subsymbolic logic

emerged as an inspiration from symbolic logic relaxing its premises by considering un-

certainty1, which is leveraged by neural networks modelling and learning procedures.

Methods merging both types of symbolism have since gained popularity, as a means to

bridge the gap of the shortcomings and benefits between the symbolic and sub-symbolic

paradigms. These methods follow, then, a design which attempt to combine the advan-

tages of both: the subsymbolic ability to learn from the environment and the symbolic

ability to reason about a certain domain [38].

Symbolic and Subsymbolic mechanisms are indeed very promising regarding reason-

ing capabilities inherent in them. However, what mechanisms are behind them and what

challenges do they face?

Symbolic logic programming formalisation: Based on formal logic, a symbolic logic

program is a set of facts and rules , also known as predicates, which attempt to cover a

certain domain. Prolog is one famous example of a logic programming language and a

backward-chaining reasoner [100]. Predicates, in Prolog, are defined by a set of logical

rules or Horn clauses following the structure (Head :- Body), and facts (Head), where

Head is a predicate; Body is a conjunction of predicates; :- is a logical implication. A Fact

is a rule that contains a head element but has no body, whereas a Rule contains both a

head and a set of body elements. A Fact is considered to represent a knowledge building

function, and a rule is considered to be a function which makes use of variable units

to extrapolate new knowledge from existing Facts. The simplest unit in these programs

are called: Atoms, which are textual constants. An example of facts and rules can be

observed next:

Listing 2.1: Fact-Rule Comparison

H. ( f a c t )

H :− B1 , . . . , Bn . ( ru le )

Having defined a set of facts and rules, what is then intend with logical programs is to

query it to check if a certain goal can be met. For this, a proof system needs to be in

place (See a real problem in prolog example 2.2).

1Uncertainty, in the context of subsymbolism, relates to a symbolic mentality paradigm shift. Whereas
symbolic AI produces logical conclusions, subsymbolic produce an approximation to them, hence uncer-
tainty. Subsymbolism utilises inference and differential techniques to computationally deal with large data,
and learn knowledge/rules from it. Additionally, algorithms for proving queries/goals often make use of
approximations (eg. instead of syntax-exact string matching, semantic similar matching can be used)
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Listing 2.2: Prolog example

zombie ( john ) . ( f a c t )

human( a l l i e ) . ( f a c t )

hungry ( john ) . ( f a c t )

b r a i n _ e a t e r (X) :− zombie (X) , hungry (X ) . ( ru le )

eat_bra in (X, Y) :− b r a i n _ e a t e r (X) , human(Y ) . ( ru le )

?− eat_bra in ( john , a l l i e ) ( goal )

Neuro-Symbolic challenges: Symbolism is increasingly finding its way towards neu-

ral models [53, 68, 97, 115], because it can provide an easier explainable framework,

expand knowledge with logical rules and even serve as a knowledge-deductive control

tool. However, this adoption is not straightforward to NLU models. Two of the major

Neuro-Symbolic challenges are:

• Free-form text and open-domain contexts can not be easily constrained with rules

(How does one establish a rule system which covers everything?);

• A vanilla symbolic engine cannot out of the shelf backpropagate gradients, which

neural networks are dependent on for learning; Vanilla symbolic engine can be

intractable in real-time dynamic reasoning queries and in situations dependent on

huge empirical data streams [38].

Neural Theorem Provers [86] to battle the lack of differential ability, have relaxed the

backward-chaining algorithm, by using a differential unification algorithm. The evalu-

ation of a proof, thus departs from a boolean output, to a continuous truth score. The

Neural Theorem Prover, however does not deal well with the intractable amount of can-

didate proofs it potentiates, making it not suitable for Natural Language tasks.

2.3 QA: Question Answering

Question Answering is a Natural Language downstream task related to having a system

which attempts to answer questions from users. This task can vary both in terms of the

questions specifications, and in terms of the knowledge environment from which the an-

swers should be obtained: direct text context; external knowledge source; Commonsense

Knowledge; pre-training knowledge.

QA problems can be categorised in several different families:

Retrieval QA: The task of Retrieval QA is related to the gathering of textual passages

from documents retrieved which may contain an answer to a user question. Example

datasets for this task are: TrecQA2 and MSMARCO-QA [6].

2https://trec.nist.gov/data/qa.html
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Extractive QA: This QA problem is associated with obtaining an answer to a provided

question, solely based on a provided textual context. Therefore, either the answer exists

and is extracted from the context, or there is no answer within the provided context and

no answer is retrieved. SQuAD2.0 [84] is a dataset covering this task.

Classification QA: This QA task relates to answering questions over a discrete set of

choices, also known as multi-choice QA task. Some examples of such task are: Common-

senseQA [104], TextbookQA [42].

Open Generative QA: Unlike Extractive QA, this type of QA problem is related to the

generation of an answer that best matches a provided question, resorting to either a con-

text or an external knowledge source. There is a version of ELI5 [25] dataset, containing

supporting documents (external context) to provide more reasonable answers, which is a

good example of this task.

Closed Generative (Abstractive) QA: Similarly to Open Generative QA the task is to

fully generate an answer, however it is bounded by the limits of the knowledge embedded

in the model (no external knowledge is provided). An example dataset for this task is

ELI5 [25], without using corresponding answer supporting documents.

RAG QA: This task, like Retrieval QA makes use of relevant retrieved documents, but

the mission here is to fully generate an answer to a question, conditioned by the retrieved

data [52].

Regarding the questions context domain, Question Answering (QA) models can fur-

ther be distinguished as either open-domain or close-domain. Closed-domain models

are domain specific, targeting a certain field of knowledge (e.g. finance, biology context),

whereas open-domain models are unbounded to any knowledge context.

2.4 Building up the Commonsense Cognition

It is a social utopia thought to envision a human-brain transfusion into a synthetic corpus,

aspiring our biological and neurological capabilities onto them. One of the key character-

istics we would like to neurologically tame is the Commonsense processing. The ability to

leverage, in a controlled scenario, the fusion of our intrinsic knowledge, a priori human

experiences, social accepted conventions and logical deduction. In a way, Commonsense

capabilities is the promise to achieve human-like reasoning, within non-biological envi-

ronments.
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Commonsense Reasoning can sometimes be confused with open-domain knowledge

understanding & retrieval [16, 26, 102], which intrinsically relate to different ideas. Open-

domain knowledge is associated with information about the world, history, science, geog-

raphy, important people, among other domains, whereas Commonsense is more closely

regarded as the awareness of the concepts underlying what is not directly expressed: the

deep understanding of what is left or right [19] or even what it means to be under or

upper of something in a visual context [77].

2.4.1 Commonsense: α→ω

Deriving from the No Free Lunch theorem [117], machine algorithms are intrinsically

bounded to a learning caveat. There is no general algorithm which can beat all other algo-

rithms in all tasks, which strengthens the importance of really capturing the essence of

any task, hence improving the efficiency in learning a specific task. Commonsense should

therefore not be misplaced as a second effect to learning, but rather as a primary and

specific cognitive domain we want to learn from. There is the belief that Commonsense is

the holy grail factor [29] holding us from successfully teaching machines to more closely

mimic our cognition [19].

When the sky is heavily clouded and we intend to leave the house, we undoubtedly grab an
umbrella or coat. Also, the mentality behind running for a charger when seeing the battery
on the phone being on the 1% is a trace element of commonsense processing. However,

what exactly is conveyed as commonsense, in computational terms?

Computational Commonsense is commonly and formally rooted to 2 major aspects [19]:

Knowledge bases: Networks of human-knowledge concepts, normally represented by

nodes in a graph, connected to other concepts through meaningful associations.

Plausible inference: This terminology refers to a deduction process based on uncertain

information and events, which can result at either factual true events/information or false

information in a further future moment, but reasonably inferred at some period of time.

2.4.1.1 Knowledge bases: Taxonomies, Ontologies & Knowledge Graphs

As an attempt to comprehend and structurally store human knowledge, knowledge bases

have seen the day of light, such as DBPedia [4] and Wikidata [112]. With the rise of

Semantic Web [10], the W3C standard Web Ontology Language came to existence as

a means to express web ontologies’ networks. Many public ontologies following the

standards have then been made public, such as “The National Center for Biomedical

Ontology” [74]. More oriented to the Commonsense problem and structured in “triples”,

semantic networks such as ConceptNet [99], Swow [60], and Atomic [91] have been cre-

ated. ConceptNet consists of a semantic knowledge graph covering several different

languages and containing general information about objects and concepts, while Atomic
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focus on having a knowledge graph which covers events: how concepts interact and situ-

ations unfold given a specific event. Like ConceptNet and Atomic, there has been other

relevant attempts to map sub-knowledge repositories, such as WordNet [70] (an English

lexical database) and ImageNet [21] (a repository of categorised images and captions).

Having in consideration the amount of different knowledge repositories in existence,

CSKG [37] tried to gather and conform several knowledge networks in a single graph

with the goal of achieving a more general Commonsense Knowledge-grounding. Apart

from these knowledge repositories, which are either manually curated or rule-based au-

tomatically extracted from third-party sources, there are already neural models with

generative knowledge capabilities. Some examples of these are COMET [13] and Visual

COMET [77], which leveraging from knowledge-graphs have learnt the ability to gener-

ate new knowledge phrases based on a given context and prior knowledge. Some of this

generated knowledge is, however, not correct and that is a concern.

2.4.1.2 Plausible Inference

CYC [50] has battled with the Commonsense problem for over 3 decades now. From

early on, they conceived that Commonsense Reasoning was dependent on a robust taxon-

omy (opencyc), but urged the importance of an higher level logic language from which

statements could be inferred, using knowledge networks and baseline logic rules.

Regarding the concept of plausible inference, there has been extended research in

a similar task: Knowledge base completion which is related to automatically inferring

facts from knowledge graphs which are not present in them; See for example the work

of [67]. In simple terms, Knowledge base completion is often associated with the predic-

tion of relations between concepts from reasoning over the knowledge accessed from the

same or other knowledge graphs.

Differing from the technique of designing models to infer over missing knowledge,

there is also the take of neuro-symbolic reasoning, which try to encompass knowledge

representations with both symbolic rules and inference engines, similarly to the CYC

project.

As mentioned in 2.4.1.2, the take on plausible inference is not really to have strong

deductive systems, but rather relaxed ones. The analogy here relates to our human brain

Cognition Reasoning: merging Logic Reasoning with Commonsense Reasoning. There is

interest in leveraging Commonsense Reasoning over the logic one, since our humanistic

behaviour is mostly derived from our instincts and not from a formal logical deduction

process.

2.4.2 Neuro-Symbolic Commonsense Reasoning

Considering the challenges that coexist in transferring the human trivial ability to deduce

a thought and judge events, mainly due to the difficulty of finding ways of gathering

human knowledge and logically reason over it, there is the neuro-symbolic commonsense
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reasoning research field trying to mix symbolic reasoning with neural models to battle

these challenges [71].

One of the key problems with the other approaches mentioned previously relates to

the knowledge graphs used having an upper-bound limitation over the facts that are

expressed on them and therefore, these techniques are prone to ignorance over the facts

which are absent. Most texts and knowledge graphs focus on what happened or can hap-

pen, whereas the information sauce regarding what cannot happen (known as negative

knowledge) is most of the times implicit or absent.

Neuro-symbolism attempts then to combine the benefits of symbolic logic to tackle

the problem of negative knowledge, deductive reasoning and the lack of explainability

found in neural models. On the deductive reasoning field, trying to merge the problem

of answering questions in a more deductive manner, NLProlog [115] was proposed in

2019. It presented a unification relaxation to the Prolog logical language system to tackle

Question Answering tasks over Natural Language phrases. Their idea was to logically

reason about what answer made sense, regarding a given question, deviating from the

common approach of solely using transformers co-occurrence driven Language Models,

such as BERT [22].

Neuro-symbolism, as mentioned in the NLProlog work, can help extract Common-

sense Reasoning for answering questions, however, at the cost of language expressiveness.

Further mixing it with Generative Language Models is a promise for better language

expressiveness, by combining Natural Language with knowledge over relaxed logical

deduction.

To tackle the merge of conversational systems and neuro-symbolic reasoners, F. Arab-

shahi et al [3] present CORGI a system that performs soft logical inference. CORGI uses

a neuro-symbolic theorem prover, also presented in their work, which they further use

to extract multi-hop reasoning chains of Commonsense presumptions over a knowledge

base. Their work is, however, bounded to solving syntax phrases in the form: if-(state),

then-(action), because-(goal). F. Moghimifar et al.[72] attempted to extend their work, by

providing the logical paths taken to reach the envisioned goal.

Apart from the generative mesh-up of merging the generative abilities of Neural Lan-

guage models with neuro-symbolism techniques, there is also a promising take on letting

the Language Models take the generative wheel, but controlling them using relaxed sym-

bolic reasoners [103]. The rational behind this is under the assumption that human’s

primary’ Symbolic Reasoning goal is to exclude dangerous and wrong inferences.

2.4.3 Language Models & Commonsense Reasoning

Human-like sensibility in communication and reasoning is sought in VL models. Com-

monsense Reasoning in the context of Language Models, is the task of gathering strategies

to understand better Natural Language phrases, which are aware of the relationships that

coexist between concepts. The concern is not on the syntax level of the language, but
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rather on the semantics. In other words, the syntax granularity is rooted to grammatical

rules, whether semantics is rooted to words’ underlying meaning and logic. Considering

the sentence: “The bird is flying on the water”, the sentence is grammatically correct,

however the natural meaning of the words were not captured correctly, since rationally

“flying” is not coined to the maritime subspace of concepts [29].

More and more researchers are beginning to adjust the models for capturing bet-

ter Commonsense, such as the case of KEAR [121], K-BERT [62], manipulating the

transformer architecture’s Self-Attention with Knowledgeable External Attention. KG-

BART [63], further attempts to absorb Commonsense Knowledge from external Knowl-

edge Graphs and using Graph-Attention puts language concepts on the same granularity

level to Commonsense information.

As seen in work such as “Recognition to Cognition” [125], this can be further ex-

plored to the field of Visual Commonsense Reasoning which takes the language medium

understanding onto the visual one.

2.4.4 Language Models & Commonsense Generation

As mentioned, Commonsense Reasoning is a cognitive field where the focus lies in study-

ing the understanding of the semantics on a given medium (eg. textual, visual), and not

exactly on the use of this Knowledge to generate phrases rich in Commonsense. “Recog-

nition to Cognition” [125], for instance explores multiple choices questions, which from

a Commonsense playground try to better predict the right answer. However, apart from

making sure Commonsense Knowledge is captured within the models learning process,

the generation of alike meaningful phrases is also rather scientifically sought. Some pre-

vious work, such as Visual COMET [77] and KM-BART [120] have coined this problem

of generating language rich in commonsense as Commonsense Generation.

KM-BART [120] attempts to reason about Commonsense Knowledge over multi-modal

data, such as images and text. Built over an Encoder-Decoder BART architecture, external

knowledge graphs representation, image embeddings and Natural Language encodings

are merged together as a means to generate textual sentences better aware of concepts

and their nature relationships. In this work, the knowledge is textual based contrasting

to a graph enriched based approach. Knowledge is captured by the usage of a pre-trained

Transformer model (Visual COMET [77], a visual approach to the classic COMET [13]),

whose task is to reproduce knowledge triples in a Natural Language phrase rich in Com-

monsense.

In contrast with using the COMET approach to feed Commonsense Knowledge, KG-

BART [63] proposed a different approach to knowledge embedding targeting Natural

Language Generation. They focus their work on textual input, while leveraging Nat-

ural Language Understanding with a custom knowledge embedding technique which

merges Natural Language tokens representation with the paradigm of graph representa-

tion learning. For this they have created a custom Knowledge Graph Transformer which
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attempts to capture structural information and relations between concepts, taken from

ConceptNet [99] Commonsense Knowledge Graph, by bringing textual data and knowl-

edge concepts to the same granularity level.

Even though these models mentioned have reached SOTA results in the corresponding

field benchmarks, a question that resides is whether this is the “right” path for really

capturing Commonsense and generating Commonsense rich phrases.

2.5 Data is all you need? - Datasets Importance

Deep learning has become more popular and easier to do research on due to the continu-

ous improvement and availability of Graphics Processing Unit (GPU) components, which

are fully competent on vector operations. Additionally, platforms such as Google Colab,

Kaggle and Paperspace have emerged to proportionate free GPU computation, reducing

the money-gap bridge around Artificial Intelligence (AI) education. Libraries like the

Hugging Face [116], have further extended the reach of SOTA NLP reserach providing a

platform for the sharing of neural models, metrics, benchmarks and datasets.

As mentioned, GPU machines are essential for the learning procedures of Neural

Models and sometimes even for inference latency reduction, however neural models

without diverse and robust datasets to be trained on are rather useless. To this reason,

we will devise an overview on the importance of datasets and the current SOTA datasets

used in tasks relevant to our research.

2.5.1 Data balance juggling

Even though, Neural Models are often called black-boxes, due to our difficulty in un-

derstanding their results, there is no doubt that model behaviour is deeply impacted by

its underlying training data. The world contains natural invariant bias, such as gender

misrepresentations, often seen on some professions, for instance. Carefully sampling

data is then a concerning ignition to capturing a realistic perception of a distribution of

data. Not deposing care on such matter, can result in unfair and poisoned biased models,

acting as a statistical segregator. Summing up, bias, in its raw form is not a negative

concept, since it relates to any correlation found in data, which is generally how Neural

Models learn. The problem arises when the correlations result from human mistakes.

Another characteristic to be aware in datasets is misrepresentation of features to be

learned. In our work, for instance, there is the objective to create a Neural Model more

aware of Commonsense. The assumption that such cognitive characteristic can solely be

learnt through language correlation is rather faulty. The reason for this is that language

and other mediums, such as images, do not express Commonsense Knowledge in their

raw form. Concepts and an understanding of the world are intrinsically and indirectly

encoded in our way of communication. Language datasets easily may contain a sentence

like: Person X is eating an 〈Apple〉 . But maybe there will not exist a sentence: 〈Apple〉
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is a fruit, or: An 〈Apple〉 is generally green and red, or finally: An 〈Apple〉 can be eaten,

cooked or even used as a flying object to hit something. Meaning, that perhaps we need

to think more broadly about datasets instead of solely focusing on textual datasets. In the

end, even though they are normally huge (dozens of GB), as mentioned they have natural

limitations of coverage.

Therefore, a strong meditation about datasets and their possible faults, misconcep-

tions, data limitations and bias is needed for a more understandable neural learning

process.

2.5.2 Where’s wally? | Finding the right data for the task

There are plenty of open datasets which drive the growth of research and applications

in deep learning models. Regarding the work in debate in this dissertation, we men-

tion datasets covering linguistics, Commonsense and Knowledge Reasoning, since they

present the most importance, both for training the proposed model and also for evaluating

it.

Next follows some datasets, normally considered for NLP tasks related to our work:

Abstract Question Answering: ELI5 [25] is a long form Question Answering dataset,

which being diverse and containing forum-like knowledgeable answers can be used to

answer general questions in an informative and generative way.

Commonsense Understanding Task: To evaluate how robust a Language Model per-

forms over Commonsense Reasoning, datasets such as CommonsenseQA (CSQA) [104]

and Social IQA [92] were created. They are question-answering datasets, which gather

the assumption that answering correctly the questions imply a better sense of Common-

sense Reasoning. In an attempt to better handle reading comprehension, the ReCoRD

dataset [129] was created and combining both Commonsense Reasoning and Reading

Comprehension, there has been COSMOS QA [36].

Commonsense Generation Task: CommonGen [56] can be used to train models to

more coherently generate text, bounded by a set of concepts. Since some concepts have

been fixed, the model needs to quite well understand them to figure out how to build an

every-day scenario phrase using them.

2.6 Evaluation Metrics & Benchmarks: Baseline

The Generation of Natural Language sentences is exciting but is associated with a critical

caveat. Ideally, the quality of generated text should be measured, not only by whether

phrases are well behaved concerning the syntax of a selected language, but also even

more importantly if they semantically make sense and are able to establish richful con-

nections between sentence concepts and even provided images (in visual tasks). Natural
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Language is, however, subjective and generally hard to measure concerning abstract

criteria (eg. Commonsense, Politeness, etc). To this extent, evaluation metrics for Nat-

ural Language generation are broadly researched. Some popular metrics to analyse n-

grams match between generated sentences and human-reference ones are BLEU-n [76],

and Rouge-n [57], which complement each other, hence normally are used along with

F1-score [79]. Consensus-based Image Description Metric (CIDEr) [109], which is also

captive on n-grams overlapping, focus its evaluation on a better human judgement cor-

relation, meaning that a consensus between the several proposed references, in a dataset,

must be acquired for a good score. It has become a reference quality measure due to

better mimicking human judgement.

More relaxed measures exist, which do not account solely the exact matching between

the generated text and the target one: Meteor, for example, evaluates the similarity of texts

having in consideration synonyms and the root of words, apart from the standard exact

matching. On a similar ground of conveying a metric concerned with the semantics of a

sentence, Semantic Propositional Image Caption Evaluation (SPICE) [2] emerged. SPICE,

is a semantic evaluation metric that measures how effectively language text recover real

world objects, their attributes and the relations between them, using semantic graphs.

For open-ended text generation domain, a new metric: Mauve [81] was proposed so as to

battle some inefficiencies of previous metrics by capturing more closely the distribution

of the texts being compared.

As some of the metrics previously mentioned the focus of them lay in the potential

healthiness in terms of syntax and in some subtle form on the semantics captured from

a Language Model. However, ideally, we are much concerned about several other char-

acteristics of cognition mirrored in language. Concerning the more concrete problem of

Commonsense Reasoning within sentences, google’s BIG-bench benchmark present key

tasks to better understand the quality of commonsense reasoning. Some of these tasks

are: 1. anachronisms 2. causal judgement, 3. cause and effect, 4. com2sense .

Human Level Performance (HLP) [18] plays also a major role in evaluation, especially

when working with unstructured data, for establishing a point of comparison which helps

deciding on what problem/task to tackle with further strength. Humans, perform really

well on unstructured problems, such as textual, audio or images tasks making them ideal

golden baselines. HLP is important to establish how relative an 100% score really is. For

instance, provided an HLP score of 70%, achieving a similar score of 70% would mean a

proposed model is extremely good on such task.
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3

Commonsense-Aware Language

Model

Enriching Language Models with explicit and structured Commonsense Knowledge.

In this Chapter, we take a deeper look into the motivation behind this dissertation. We

go through the tasks/problems we want to address, along with the data related to them.

We explore the importance of Commonsense Knowledge and from where we can capture

it to improve Language Models. Lastly, we propose a Commonsense Encoder-Decoder

Model architecture, enriched with Commonsense Knowledge Bases whose objective lies

in generating Natural Language which is richer in semantic meaning. Some fine utilities

for this can be to answer questions, as seen in section 2.3, or, for instance, to generate

realistic sentences based on given concepts, in a more human-like manner.

To intuitively depict the prominent Commonsense issue in Language Models, let’s

imagine we have the concepts: 〈 dog , catch , throw , frisbee 〉 and we want to generate

a realistic, rich in content, sentence. In Fig 3.1, we cover this hypothetical scenario and

present a general baseline comparison between Language Models not enriched with exter-

nal knowledge and others enriched, for a more intuitive perception of the interest in en-

riching these models with external knowledge. From the figure, we gain an intuition that

SOTA Language Models generate sounding syntax sentences, however most of them lack

on delivering believable snapshots of reality (eg. A dog throws a frisbee at a football

player. - Do dogs throw frisbees?)

Motivation: We share the belief that most SOTA Language Models even though captur-

ing the linguistics in some form, they are only barely capturing human-like understand-

ing capabilities rightly.

Large corpora of texts, well-behaved, when trained with Attention mechanisms allow

for a good understanding of language. However, the generation of fine looking syntax

phrases give the impression of capturing language semantics, deduction reasoning and

world domain knowledge, when the models producing them only capture them substan-

tially [53], without further help. One reason for this is that Commonsense Knowledge
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Human Text Generation Baseline
<Human-1> : A dog leaps to catch a thrown frisbee.
<Human-2> : The dog catches the frisbee when the boy throws it.

<BART> : A dog throws a frisbee and a dog catches it.
<T5> : dog catches a frisbee and throws it to a dog
<GPT-2> : A dog throws a frisbee at a football player.

General Text Generation Baseline

<RA-BART> : The dog caught the frisbee in his mouth and ran to catch the ball.

KG Enriched Text Generation (Ours)

<KG-BART> : A dog is catching a frisbee.

KG Enriched Text Generation Baseline

Abstract Commonsense Knowledge (sub-graph)

dog flying
objectcatch

frisbee

isA

person
throw

Figure 3.1: Baseline comparison of generative models (adapted from CommonGen [56])

and “Reasoning rules” are most of the times absent on the large corpus used to train these

models (eg. on a big text corpus, one can maybe find that an umbrella protects a person

from rain, but does it encoder that fact that: it avoids one getting wet; it can be shared in

a romantic walk through the rain; it can also protect one from the sun; it can be lost, etc).

We advocate that training language or language-vision models in a fashion, which only

leverages the linguistics is insufficient for guarantying generalisation to unseen world

(use-case) scenarios. Therefore, we want to focus on enriching Language Models with

Commonsense Knowledge so as it may be more semantically human-aware.

Adding to this, there is interest in leveraging human knowledge and language gen-

eration abilities with logical reasoning and even structured memory. After all, Trans-

formers’ Language Models are mainly co-occurrence driven when understanding and

generating text, due to their probabilistic nature. This results in syntactically correct

phrases, which is beneficial, however, we would like to provide explicit Commonsense

Knowledge and not only implicit one, in an attempt to bound generated text to a more

controlled knowledge grounding (eg. an abstract view of what we think is lacking

in models learning process is the next exemplary scenario: “A cat is chasing a mice”

+ “By the way, did you know that a mice is prey food in regards to cats?” ). To achieve

this, we intend to merge a language model, the BART architecture with Commonsense
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Knowledge Graph (KG) information.

3.1 Long live Commonsense: Tasks & Commonsense

How can we leverage Commonsense Knowledge on Language Models? We share the

hypothesis that one issue with current Language Models research, is the ultimate trust on

Neural Networks to capture intrinsic patterns (implicit knowledge) within unstructured

data (eg. text). We believe that, explicit knowledge, if rightly introduced, can be healthy

for models learning procedures. If we know that generally monkeys like bananas, why

shouldn’t we explicitly provide this information to the model? Considering this case,

it is reasonable to believe that the model will encounter examples in data which would

implicitly provide such information. However, what if it misses this relevant information,

due to machine learning scientists believing such information would be within billions

lines of text (training dataset)? This is the issue we propose to overcome. Possibly, our

approach can help models generalise better, especially to unseen scenarios.

To test our hypothesis, there were three major key elements to consider: 1. the Com-

monsense (explicit) Knowledge source; 2. the datasets used to train and test our models

enriched with Commonsense Knowledge; and lastly, 3. the foundations of our proposed

model architecture to leverage Commonsense Knowledge on given data tasks.

We will now cover the tasks we have worked with, followed by the Commonsense

Knowledge considered and finally walktrough the reader through the proposed model,

data processing and model alterations to test extensively our model.

3.1.1 Tasks & Datasets

On the Alexa Challenge there was a need for a system which could answer abstract

(general) questions (eg: “Why is it healthier to boil in the microwave?” or “How do i

boil an egg?”, etc ), which made us consider 2 main ideas. First, there was a need for

a set of data, which could transmit to a learning model, general world knowledge and

domain related knowledge to the cuisine and Do It Yourself (DIY) tasks; Second, we were

dealing with a Conversational System, which intrinsically enforced a bottleneck need of

human-like interaction in order to provide a natural engagement.

Having pursued some research on related available data, we resorted to the ELI5,

AskScience subredit data [25] and the StackExchange1 forum data. These datasets, theo-

retically, would allow us to train and deploy a model, rich in general world knowledge,

intrinsically encoded in the sentences found in ELI5 and AskScience subredit. To ab-

sorb focused in-domain knowledge (cuisine and DIY), the StackExchange specific forums

〈 cooking , crafts , diy , gardening , lifehacks , pets 〉 were fundamental. One interest-

ing note about these datasets is their intrinsic internet forum sentence structure, which

1https://archive.org/download/stackexchange
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motivates models trained on them to naturally formulate sentences with human-like char-

acteristics. The datasets mentioned, however, make it difficult to evaluate the models on

Commonsense, due to their indirect richness in knowledge and complexity.

To this end, it was ideal to also have specialised datasets to analyse whether our Com-

monsense boosting techniques could indirectly help achieve more realistic-human like

generation. So, to objectively put our models to the test regarding our Commonsense

enrichment methodology, we used the CommonsenseQA (CSQA) [104] and the Common-

Gen [56] dataset. These datasets have been designed to deeply capture Commonsense

Understanding about the world, either regarding discrete or generative tasks. To have a

more fine-grained understanding over the datasets and to observe some samples of them

refer to Fig 3.2.

Designed to assess Text Generation
,conditioned by a small set of
concepts. The sentences are simple
on purpose in order to enforce
sentences to be rather rich in
Commonsense Knowledge

Concepts

Phrase

Lie grass cat

Cat lying on grass in a public park

Text Generation

Concepts→ Sentence ~75K
Natural

Language
Generation

(NLG)(using concepts)

CommonGen

Question-Answer Data engineered
with the goal of having models able
to answer questions which are
open ended ones (without further
retrieved data).

Question

Answer

Why does light skin burn easier than dark skin?

Heat doesn't have anything to do with sunburn,
it's all about uv rays (etc)

Abstract Question Answering

Question→ Answer ~350K
Natural

Language
Generation

(NLG)

Eli5 + AskScience
+ StackExchange

Description Overview Example Size
(samples) TaskDatasets

(+ Context)

Natural
Language

Understanding
(NLU)

Questions with multiple choices
aiming to evaluate a model on
whether it has enough
commonsense knowledge to
answer the questions, which make
more sense.

Question

Context ( possible choices)

Answer

Where are you likely to find a hamburger?

fast food restaurant; pizza; mouth; cow carcus

fast food restaurant

Multi-choice Question
Answering

Question→ Choice
~9K

(+ Choices)

CommonsenseQA

Figure 3.2: Information overview about each data task, used in this dissertation.

3.1.1.1 ELI5, AskScience & StackExchange: The elephant data in the room

These three data sources are reddit like forums, which consist of collections of ranked

social-media-like posts in the form of Question-Answer pair of posts. When working with

such data, one must be careful and aware that the content underlying them can contain

text, images, markdown text, links among other data fragments, which deeply hardens

the extrapolation of useful information from them. To ensure noisy textual fragments

and posts were put away, we developed a cleaning data pipeline, selecting only the top-1

post (the correct answer), in regards to each question and applied Regex rule based filters

to simplify the answers. Such, Regex rules, were heuristically defined after having deeply

reviewed the datasets’ data. “Geek” web forum references were removed or converted

to regular human vocabulary (eg. subreddit→place); Hyper links were removed; Images

and Textual fragments mentioning either images or hyper-links were removed to the best

of our abilities, since they would not be encoded textually and could be captured as noise.
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3.1.1.2 Commonsense Evaluation Datasets

The CommonGen and CommonsenseQA datasets are standard Commonsense related

benchmark datasets, respectively, for Commonsense Generation and Commonsense Un-

derstanding, which made them require none to minimal data manipulation.

CommonsenseQA: The Commonsense Question Answering dataset is by default taken

as a discrete multi-choice Question Answering dataset, so normally when used to evalu-

ate models on Commonsense this dataset is considered as a Classification Dataset. This,

consequently, means that the architecture of a model working on a classification problem

gets conditioned by the dataset itself, since the model would need a classification head,

which in the end would have n-choices of neurons providing a probability for each ques-

tion answer choice. In this work, however, we are using the BART architecture, which

is a seq2seq generative model and we did not want to alter it’s functioning. Therefore

we turned the CommonsenseQA dataset into a generative task, by guarantying that the

choices would be transmitted to the model along with the questions.

3.1.2 Commonsense Knowledge

In the Computational Commonsense Literature, we have seen that Commonsense is

mostly depicted in dual lens. 1. We have the pillar of static Commonsense Knowledge

built on empirical knowledge, conventions, beliefs, world understating. 2. The stimu-

lation of a static to a kinetic knowledge, through logical deduction mechanisms result

in human judgements, events evaluations: Commonsense Reasoning. Modelling such

reasoning mechanism is a building block to successful model commonsense intuition. We

intend to simplify the integration of Commonsense in Language Models and achieve this

by approximating humans’ static knowledge and their neurologically connected mesh up

of concepts using a structured Commonsense KG. Let us share the following terminology:

A concept isolated, or even a list of concepts can be considered as static knowledge. A

snapshot of connected concepts can be thought of as a metamorphosis approximation of

a dynamic concept. Traversing such knowledge snapshots, can also be introspected as

a mere take on Commonsense Reasoning, bounded by the completeness and richness of

such knowledge. We now pursue with a solid mathematical formulation of a Common-

sense KG.

Mathematically, we can consider a Commonsense KG as a Graph, G = (I,R), which

connects concepts/ideas (I) through semantic relationships (R). Concretely, a Common-

sense KG can be described as a collection of triplets in the form of (Ii ,Rij , Ij) which

represent knowledge units, with Ii being a concept instance, Ij being another concept

instance and Rij the respective relation between Ii and Ij . Provided a Commonsense

KG, G = (I,R), then one can capture commonsense concepts and their relationships from

any given sequence S = (s1, ..., si , .., sn), consisting of multiple si sub-words, by apply-

ing a parsing function such as f : S,G → Sc,Sr , where Sc corresponds to the concepts
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present at sequence S and Sr the relations found at sequence S. Sc can then be defined as

Sc = {c1, ..., ci , ..., cn} : ci ∈ S, being a collection of concepts within sequence S. Sr can then

be defined as Sr = {(c1, r12, c2), ..., (ci , rik , ck), ..., (cn, rnm, cm)} : ci ∈ S,ck ∈ S,rik ∈ GR, being a

collection of relationships within sequence S.

3.1.2.1 Commonsense Knowledge Bases: n-relations Vs 1-relations KGs

Diving to a more concrete space, in Chapter 2 we got introduced to Knowledge Bases

either in the form of models, graphs or ontologies. In this dissertation, there was a need

for finding concepts, which relate to one another in the form of a semantic meaning

(Commonsense enrichment), therefore, the selected Knowledge Bases had to mimic the

Commonsense universe in meaningful inter-connected ideas. We will now dive deeper to

the knowledge bases used in this work.

ConceptNet [99] consists of triplets of concepts connected through a small finite num-

ber of relations. Even though, ConceptNet contains around 3 million nodes (concepts),

it only compounds around 40 different type of relations (eg. is_a, at_location, causes,

etc). As pointed by the work [60], ConceptNet can be noisy and indirect, when it comes

to having relations that are somewhat far-fetched and having direct missing relations

which force hops in the graphs to get to some obvious concept relation. However, one key

aspect of the nodes in ConceptNet is that the bounding to symbolic concepts are often

1-to-2 words, making them ideal for mappings with attention operations, which work on

a sub-word level. Swow [20], contrasting with ConceptNet, has more direct associations

with concepts, consisting merely of around 100 thousand nodes with 1.5 million relations.

One less positive aspect about Swow is the lack of richness in the relationships between

concepts, since they are binary (either they exist or not). See Fig 3.3 for a better intuition

on the aspect of these Commonsense knowledge graphs. If we look closely to this fig-

ure, we can observe that there plenty of similarities, especially in more obvious concepts.

However, if we take a glance at the concept “water”, we can see that ConceptNet starts to

deviate subtly to not so direct concepts. Water can be frosted and that is an obvious fact,

but we could argue that before thinking about such concept, we would most certainly

think first about more direct concepts such as “bottle”.

Note: A simple/concise representation of a Commonsense KG can be seen as a collec-

tion of triplets in the form 〈 concept_1/idea_1 , relationship , concept_2/idea_2 〉 (eg.

〈 banana , related_to , monkey 〉. In this work we use both this type of representation or

it’s matrix representation format, where a relationship between two concepts get symbol-

ised in a matrix as an entry relationship value between two tokenized concepts (1. row; 2.

column).
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ConceptNet Swow

monkey

banana

fruit

antonym
antonym

animal

person
feet

synonym is_a water

frost

ice at_location

related_to

related_to
monkey

banana

fruit

animal

person
life

water

bottle

glass

related_to

related_to

related_to

related_to

related_to

instance_of
desires

related_to

desires

Figure 3.3: ConceptNet vs Swow Comparison

3.1.3 Raw Text data and Commonsense Knowledge Fusion

To understand the importance of fusing explicit Commonsense Knowledge with Natural

Language one must be aware of an issue, which often prevails in Natural Language Gen-

eration, which is the hallucination problem. This issue consists in producing text which

does not follow the semantic standards of our world or, simply put, it is the nomencla-

ture given to the generation of non-sense text. Notably, Language Generation Models,

being smaller or larger, are merely probabilistic models which provided some data input

attempt to best map their output according to a learnt probabilistic distribution happiness.
Learning the perfect distribution parameters of the world is a hard problem, easier for

Larger Language Models, but nevertheless hard. To tackle this challenge a merge between

implicit and explicit knowledge should be optimal. Implicit learning is the foundation

of neural networks, however the importance of guiding these models in a more knowl-

edgeable fashion should not be ignored. If we know before hand that some concepts are

connected somehow it should be our obligation as machine teachers to inform the model

about it and motivate it to retain the human knowledge. Now, we will cover, how we

can extract explicit Commonsense Knowledge from both textual data and Commonsense

Knowledge Graphs.

3.1.3.1 Detecting and Extracting Commonsense Knowledge from Text Data

In this dissertation, we have a recurrent issue which relates to having two different medi-

ums of data interacting. We want to use external knowledge found in Commonsense

Knowledge Graphs and extract from it relevant information which could prove to be

useful to better comprehend a span of raw text. Therefore, there was an urgent need to

find a way to bound a Knowledge Graph (structured) data to a text (raw & unstructured)

data.

Imagine the example: “The race car is moving rather fast ” in Fig 3.4. Conceptually

we are in presence of a car, but more concretely, a race car. We have three choices now.
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1. We can enlighten our model that a “race car” is “fast” 2. We can parse the text such

that “race” is related to “car” and that “car” is related to “fast” and 3. We can merge

option 1 and 2. The problem with the third option, however, is that for each language unit

(token), only one relation is applicable, due to our model limitation (this issue is covered

in detail in the model section 3.2). So, in practice, we either choose option 1 or 2, or we

further populate more language units (tokens) which can provide us more Commonsense

Relations. In terms of a realistic semantic scope, option 1 is preferred; in terms of the

amount of Commonsense Knowledge captured, option 2 is more abundant (the num-

ber of simpler concepts extracted may be higher, but at a possible cost of adding noisy

information). Moreover, populating new tokens or repeated ones can patch the issues

found in the first and second option, however, at the cost of augmenting the encoding

length (which has a pre-defined maximum value) or also at the cost of adding knowledge

noise. One technique to approximate the third option might be to replace padding tokens

(eg. <pad>), which are “useless” but“inevitable”, with neighbour concepts relevant to

the context (with relations with other concepts present in the context). With this latter

technique the hypothesis it that we ensure a maximisation of the memory reserved for a

sequence and the knowledge we have about a given topic (We will see this technique in

section 3.2.1.2).

Legend
Is a concept in KG

Is not a concept in KG

Is a concept in KG
(but with no relations)

2

1

2

The race car is moving rather fast

Figure 3.4: Overview of the text-to-concept mapping

In NLU literature, some libraries to parse Natural Language have gained popularity,

such as Spacy [73] and NLTK [12]. Especially, for keyword phrases extraction, there are

good performing techniques such as: KEYBert [31], Rake [88], YAKE! [15]. In our work,

however, we chose a simpler keyword concept extraction approach using n-gram parsing,

since it offered a very direct way to extract multi/uni-word concepts. Our Commonsense

concept extraction procedure can be described as the following: We define a maximum

word number length (n-gram) for a concept/idea, which we established it to be n = 3. We

create all possible 3-grams and attempt to match them with a Commonsense Knowledge

Graph (eg. ConceptNet). For any positive match we store the characters index of the

concept/idea, in regards to the position it appears on the given textual context. If two

concepts have a relationship on the Commonsense Knowledge Graph, we define a rela-

tionship between the characters range of both concepts, storing the type of relation they

have (See Fig 3.6 in the Relation Context part, for an example). For the words still not
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matched we lower the n-gram matching. We try 2-ngram matching, 1-gram matching,

and we stop, even if there are words with no match or words that have been discarded for

being common words. In the end, we have concepts extracted from which we can later

index our Commonsense Knowledge Graph to extract relevant knowledge information.

During the iterations mentioned, we also make sure that within the matching searching

phase, the concepts extracted have existing relations with other concepts within the same

context. If concepts are found, but they lack relations with the concepts in the same

context, they get discarded, simply because we can not add any value to that concept, or

we risk adding knowledge noise.

In terms of accuracy, this Commonsense concept linking approach is optimal, because

it’s oriented to the Commonsense domain and we consult the Commonsense Knowledge

Graph directly to know if the concepts exist and have relations between other context

concepts. SOTA techniques, such as the ones mentioned (eg.YAKE!), are general domain

techniques which would output both relevant but also noisy extracted content. There

would also be a burden of proof-checking if the concepts extracted had relations between

them and it would not be possible to exactly find the index of the words (needed for our

use-case). We believe the accuracy would be lower using these more formal techniques

and the extra burden of applying them would not be worth it (See Fig 3.5 for an example

to gain intuition of their results differences).

Textual Context

I got scared when i saw a cat burglar housebreaking my neighbour house.

Concept Extraction Comparison

Rake

cat burglar housebreaking

got scared

neighbour house

saw

scared cat

housebraking neighbour

house burglar

cat burglar housebreaking

neighbour house cat burglar

housebraking my neighbour

burglar housebreaking

YAKE!

scared

cat burglar

housebreaking

neighbour

house

Our method

Figure 3.5: Comparison overview of keyword phrases extraction tools.

One other relevant facet of the pre-processing phase of mapping language units (to-

kens) to concepts in the Commonsense Knowledge Graphs relates to the removal of

stopwords, consisting of around ∼1000 words. Our hypothesis is that, adding such words
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would confuse the models with information noise, especially when Language Models

are already powerful at understanding the importance of stopwords syntactically, adding

to the fact that they end up not providing further relevant information to the meaning

of a phrase. Using the lemmatisation technique, we also convert the nouns and verbs to

their root form so we can index the Knowledge Graph. It is common that plurals and

verbs conjugations reside within the Commonsense Knowledge Graphs, however, their

relations are less relevant and lower in magnitude than their root forms, being a solid

reason for not considering them.

One important last note, we do not directly attempt to solve the polysemy 2 problem.

As mentioned, we recur to a Commonsense Knowledge Graph for concept detection, if

the concept as multiple meanings and those different meanings get reflected on concrete

relationships with other knowledge concepts then our approach works in extracting the

right concept meaning (the right relationship between concepts), if not: it suffices in

leveraging the right meaning of a concept when multiple exist.

3.1.3.2 Textual Commonsense Knowledge - Knowledge Encoding

Textually extracting concepts from a given text is a start, however models don’t under-

stand text, so we have to find an intelligent way to: 1. encode the text in order for a

learning model to comprehend it. 2. Encode the Commonsense Knowledge and their

relations within such text. As seen in Chapter 2, in subsection 2.2.1.1, standard neural

tokenizers are great because they are able to encode any collection of words, being them

rare ones or not into an index form. This actually lightens up a complication related to

sub-word tokenization, which we will go through briefly. Tokenizers solve the encoding

of the text, but what about the concepts and their relationships? It is a crucial moment to

remember that our learning models work at the token level and operate with them over a

strict positioning scheme (since they are indexed in matrices). With this in mind, we have

therefore to meditate about ways to identify which tokens relate to what concepts and

map their relations. One nuance, however, related to the issue mentioned previously is

that we have to decide what to do with words/compound words which consist of multiple

multiple tokens/words. In our work, we have decided that the tokens related to a concept

(word/compound word) get associated with the relation n token times related to other

concept (See Fig 3.6 for a simple approximation of Commonsense Knowledge Encoding

pipeline).

Having both, the Relations Context and the correspondent input text tokenized, we can

align the tokens produced for each concept with their correspondent connected concepts

(in the token format). Due to the model infrastructure chosen, explained in the next

section, we decided to map the tokenized concepts’ relationships in an Adjacency Matrix

2polysemy problem: consists of one concept having many possible meanings depending on a certain
context.
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Data

Textual Context

boy garden ball house dog

Relations Context (KG to textual context mapping)

{
(0, 3): {(22, 25): 'related_to'},
(4, 10): {(16, 21): 'antonym'},
(22, 25): {(16, 21): 'at_location'}

}

Data encoded (Processed)

Context (input_ids)

[ 0, 9902, 5671, 1011, 790, 2335, 2]

Relations Matrix (R)

37

6

21

0 9902 5671 1011 790 2335 2

0

9902

5671

1011

790

2335

2

Figure 3.6: Overview of the Commonsense Knowledge extraction from text and the text
preparation to input the model.

format. This, however, limits the amount of possible relations between 2 tokens to be

only one, since there can only be one matrix entry per each two tokens.

Systematically, we can describe the text pre-processing phase with Commonsense

Knowledge Enrichment as a pipeline following the steps (refer back to Fig 3.6 to visually

capture each step (2-4,6):

1. Clean text (remove stop words, punctuation, certain word contractions (lematiza-

tion);

2. Observe which words/compound words are concepts in a Knowledge graph and for

these apply the next step;

3. Find the index range (concept first character index, concept last character index) of

the concepts and map their relations;

4. Tokenize the original text to obtain the words’ tokens;

5. Align the tokens with the words/compound words relations;

6. Create a sparse matrix with the corresponding relations between each token;

3.2 Commonsense-Aware Encoder-Decoder Transformer

On chapter 2, we saw different types of transformer models, such as the Encoder-only

models, Decoder-only models and a merge of these two: Encoder-Decoder Models. Since

we want to tackle Natural Language Generation problems we leave out Encoder-only

models aside, which are mainly focused for encoding a certain input and use it for a
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certain discrete task. Using Decoder-only models were also not very interesting to us,

since we needed a way to fuse input text data with knowledge extracted from a Common-

sense Knowledge Graph and later use this encoding as an intermediate representation

to better generate new fragments of text. For this reason, we use an Encoder-Decoder

(Seq2Seq) Transformer model. As we will see further, using a Seq2Seq model gives us the

ability to create a meaningful abstraction of the input enriched with external knowledge

and additionally use this succinct representation as an helper (through cross-attention

mechanisms) to generate more sounding text.

Regarding Seq2Seq models, we chose the BART architecture, which offered a balanced

set of qualities: 1. The biggest BART model is ∼1.5GB (400M parameters), which com-

fortably fits within a standard GPU card and 2. due to their proven quality on generation

tasks [51].

BART, however, was not designed to leverage Commonsense Knowledge in a struc-

tured way. Therefore, using default BART, the simplest things one could do to explicitly

teach Commonsense to the BART model would be to convert knowledge triplets in sen-

tences (eg. 〈 monkey , desires , banana 〉 → monkey desires banana) and perform 2

possible tasks. 1. Mask concepts or their relationships, predict these masked tokens and

later fine-tune the model on a generative task. 2. Mix sentences from a fine-tune dataset

with the converted Commonsense sentences, in an attempt to teach Commonsense, while

attempting to solve a specific task.

One other approach one could take, without manipulating the BART architecture

would be to use special prompting techniques [61] to inject knowledge in structured

ways. Among other utility factors, Special Tokens are designed to teach Language Models

input patterns to help distinguish, for instance, one sample from another, or even within

the same sample, some input segment from another. In our Commonsense use case, one

could then use a Special token to suggest the start of a Commonsense Concept and the

end of it, the same for another concept and the same for their relationship, for instance

(See Fig 3.7 for an abstraction view of this prompting technique).

<s> bridge ship pass <knowledge> <c> bridge </c> <r> related_to </r> <c> ship </c> ... </knowledge> </s>

Figure 3.7: Commonsense Knowledge injection prompting technique on model input.

We could blindly apply these mentioned techniques, but if we meditate about the

intrinsic nature of both a Commonsense Knowledge Graph and the Self-Attention Mecha-

nism, we can acknowledge a certain behaviour overlap. In the Self-Attention Mechanism

we encounter multiple word-to-word relationships, which are dynamically scored. Sim-

ilarly, in a Commonsense Knowledge Graph we have multiple word-to-word connected

relationships, with or without a fixed score. One big difference between both, is the gran-

ularity alignment of what is meant with a “word” in the Attention mechanism and in a

graph. A word in the attention mechanism is usually a token, representing a sub-word
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in a Knowledge Graph. In section 3.1.3.2 we saw the importance for aligning multiple

tokens with a KG concept (word), mainly because of this reason. One further and im-

portant difference between a graph and the attention mechanism is that the Attention

mechanism can not depict the whole graph, but rather several independent sub-graphs

of it if there is an existent alignment between the two.

It was clear for us that we needed a special way to explicitly inform the model about

pre-defined Commonsense Knowledge, while it implicitly learns to perform on some

task. Therefore we envisioned a model, abstractedly illustrated in Fig 3.8, where we

take the normal BART Architecture and set out to replace the standard Encoder with a

Commonsense-Aware one.

Knowledge
(Embedding)

Text Input
(Embedding)

Encoding

D0 Di DmD0 Di Dm

Generated Tokens

D0 Di DmD0BOS Di Dm

Generated Tokens

Embedding

(Relation-Aware)
Encoder Decoder

ConceptNet

Subgraph
(Conditioned
on Input)

T0 Ti Tm

Input Tokens

Figure 3.8: Default BART Model with Commonsense Integration alteration (RA-BART).

The question that resides is then: how could we alter the BART’s Encoder to encom-

pass both a Natural Language Input and the Commonsense Knowledge extracted from

the input and Commonsense Knowledge Graph?

To answer this question, we relate to the RAT-SQL [113] work, a method to convert

Natural Language questions onto the SQL language. In RAT-SQL they were aware that

terms occurring on natural language questions could strongly relate to explicit tables

and metadata which most certainly would be present either in a database schema or

within SQL tables data. Therefore, they made sure to model that prior explicit knowledge

within the Transformer’s attention mechanism, making use of a special Relation-Aware

Self-Attention [95].

This take on modelling explicit knowledge to leverage Language Models, came as

a strong inspiration for our work, which we adapted for our Commonsense use case.
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Whereas in RAT-SQL, the explicit relations exists between tables/attribute names ex-

posed in Natural Language text and tabular data regarding those tables and attributes,

in our work we could foresee the explicit knowledge as any word-like format concept in

a provided text and their realisation on a Commonsense KG. See Fig 3.9 for an abstract

view of the Commonsense Knowledge which can lie within a Natural Language phrase.

Considering, the sentence: “On the air , heavy clouds shadow a plane , which is flying to
transport people over an ocean”, according to our Commonsense Knowledge we would

know that the 〈air〉 is a place for 〈flying〉 , that 〈clouds〉 exist in the 〈air〉 , and even

that 〈people〉 can be 〈transported〉 by a 〈plane〉 object, which also 〈flies〉 .

On the air , heavy clouds shadow a plane , which is flying to transport people over an ocean .
Legend

Is a concept in KG
Is a concept in KG
(but with no relations)

Figure 3.9: Natural Language phrase with correspondent concepts and Commonsense
relations.

Mathematically speaking, let’s consider the standard Self-Attention Mechanism (Equa-

tion3.1), covered in chapter 2, and consider how one could enrich it with Commonsense

Knowledge and map the relations between concepts (multi-token level units) within the

Attention Mechanism.

Attention(Q,K,V ) = sof tmax(
QKT√
dk

)V (3.1)

Normally, in standard Self-Attention, we make the queries attend to the keys and

respectively extract the values, based on the best matching between the queries and

keys. This works immensely well, being the foundational mechanism for the current

SOTA deep learning architectures, but what if we wanted to inject explicit Commonsense

Knowledge? Could we also weight the concepts (keys) which are more meaningful to the

concept queries, whether they have pre-established relationships, found, for example, on

a Commonsense Knowledge Graph?

In order to answer this question, one can try to fuse Commonsense relations between

input sequence units by adding a relation term both to the keys mapping (Rk) and the

values mapping (Rv). This way, we guaranty that Commonsense Knowledge will also be

attended to, since we encode the Commonsense relations between concepts on these new

terms. The following question becomes then: what exactly is Rk/Rv?.

The relation term (Rk/Rv) represent a matrix, which encodes a single embedding

of the relations connecting each two tokens within a context. Rk/Rv are then obtained

by applying an embedding to matrix elements, initially encoded through a Matrix (R),

which for each two tokens store an index corresponding to a certain relation (eg. index 0:

no-relation, etc). See equation 3.2 to see matrix R containing the relation code between
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two tokens (tokeni ,tokenk).

R =


r11 r12 r13 . . . r1n
r21 r22 r23 . . . r2n
...

...
...

. . .
...

rm1 rm2 rm3 . . . rmn


, rik ∈ GR (3.2)

Matrix R, is an adjacency matrix (maxSequenceLength×maxSequenceLength), where

instead of only storing if there is a connection between tokens, the type of the relation

(relation identifier) is stored. To further obtain (Rk/Rv), we build an embedding layer,

where each relation id gets mapped to a learnt embedding of size d, where this d size

corresponds to the BART’s Encoder head dimension. Rk/Rv is then obtained by fetching

the correspondent embedding vector for each relation id value stored within MatrixR (See

equation 3.3 to see element-wise embedding of matrix R, which corresponds to Rk/Rv).

Rk(R) = Rv(R) =


E(r11) E(r12) E(r13) . . . E(r1n)

E(r21) E(r22) E(r23) . . . E(r2n)
...

...
...

. . .
...

E(rm1) E(rm2) E(rm3) . . . E(rmn)


(3.3)

The RA-BART Self-Attention can then be written as equation3.4, which takes the

advantage of the mentioned relative Commonsense relation information.

Attention(Q,K,V ,R) = sof tmax(
Q(KT+RTk )√

dk
)(VRTv ) (3.4)

For a visual intuition, we present Fig 3.10 for an abstract view of the Relation-Aware

Attention in regards to Commonsense Knowledge). In this figure, we can see that not

only a query attends to the neighbouring concepts, but also to the previously mentioned

structured Commonsense knowledge Matrix (R) informing whether such query relates

to other concepts. In Fig 3.8, one can also have a look of general overview of the RA-

BART architecture and reckon that the Relation-Aware Self-Attention is a layer which

gets enclosed over the each Encoder sub-module.

We only use this special type of Attention in the Encoder module, due to the bi-

directional nature of the Encoder, which means that all input units can see and operate

on the other input sequence units. In contrast, in the Decoder module, we have an auto-

regressive masking technique, which hides future sequence units, since it’s objective is to

generate tokens only conditioned by past information (tokens). Additionally, we believe

that within the Encoder, it’s nature behaviour allows for a relevant Commonsense Knowl-

edge injection, whereas in the Decoder this Knowledge injection would not be trivial and

would perhaps cause harm in the learning process by forcing masked knowledge.
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Figure 3.10: Relation Self-Attention mechanism supported by external Commonsense
Knowledge (eg. ConceptNet).

3.2.1 Learning: Manipulating RA-BART (Loss, Input & Decoding Strategy)

As an attempt to further study how we can maximise the Commonsense Knowledge ac-

quisition considering the proposed RA-BART model, we prepared 3 further experiments

on the CommonGen Task, consisting on: 1. changing the standard Seq2Seq loss function

to a Commonsense One (Commonsense Loss) 2. providing neighbour concepts to the

input, which we call Concept Expansion; and lastly 3. changing the decoding strategy

of BART Language Generation to a Disjunctive Positive Constraint Decoding Strategy,

constrained by a Commonsense Knowledge Graph. See Fig 3.11 for a first abstract look

on the experiments just mentioned to test the RA-BART Model.

3.2.1.1 Commonsense Loss

Neural networks, fundamentally speaking, are a mesh of parameters bounded to some

value which we attempt to tweak in order to reduce an error measurement between

the predictions obtained through the parameters and what is in the literature called

“the ground truth”. In the Text Generation task, the standard loss function used is the

Cross Entropy Loss, which assumes we are trying to generate language units limited to

a discrete number of classes (token symbols). In the field, it is common to work with a

fixed vocabulary engineered by a tokenizer, this fixed vocabulary of language units can

be seen as the classes we are predicting during the generation of text.

When training a model, the Cross Entropy Loss allows for generating more proba-

ble tokens, which stands as a good motivation for generating more syntactically correct

phrases, but may compromise the model semantic understanding of some text. Since,

in this dissertation, we are mostly concerned in the semantic understanding of natural

language we suggest that two penalties could be added to the loss function, regarding the
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Figure 3.11: RA-BART Architecture and Experiments overview.

Text Generation task to better prevent hallucinations (non-sense text).

We suggest a loss, which motivates the parameters to generate more likely tokens,

whilst at the same time penalising the model when anchor concepts are misrepresented

and when concepts lack relations between them. This way, our hypothesis is that we are

pushing the learning process to more closely mimic the Commonsense Knowledge Graph

we are using (See Fig 3.12 for an overview of the Commonsense Loss).

A little marten is climbing a treeGround Truth

VS

Cross Entropy
Loss

Concept Penalty
Loss

Relations Penalty
Loss

Legend

Token follows Ground
Truth information

Token (sub-word)

Token does not follow
Ground truth info

KG Relations climbing→related_to→tree
tree→used_for→climbing

Model Output A little marten is climbing a pray

KG Conceptsmarten,climbing,tree

KG Relations no relations KG Conceptsmarten,climbing,pray

Figure 3.12: Exemplified overview of the several components composing the Common-
sense Loss function

Mathematically, the Commonsense Loss is presented in equation 3.5, where the loss

consists of three terms: the Cross Entropy Loss (CE), the Concept Penalty (CP) and the
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Relations Penalty (RP).

L =Lce +Lcp +Lrp

Lce = − 1
T

T∑
t=1

V∑
j=1

yt,j × log(ŷt,j )

Lcp =
T

eo1×(ynC−(o2×(ŷnC ))) + 1

Lrp =
T

eo1×(ynR−(o2×(ŷnR))) + 1

(3.5)

where:

T corresponds to the sequence length; V corresponds to vocabulary size; yt,j corre-

sponds to the prediction of token j at step t; ŷt,j corresponds to the target token j

at step t; ynC is the number of concepts present in prediction y; ŷnC is the number

of concepts present in target ŷ; ynR is the number of relations present in prediction

y; ŷnR is the number of relations present in target ŷ; o1 = 2 and o2 = 0.7: constants

heuristically obtained by analysing the visual aspect of the loss and our intentions

with the penalisation score.

The Concept Penalty (CP) term makes sure the penalty is higher when fewer concepts

are used, and reaches a rather low value (∼ 0) when the same amount of concepts of the

gold label sentence are used. The Relations Penalty (RP) works in a similar manner:

the fewer relations exist within inter-concepts, the bigger the cost value is and when

the amount of relations converge to the relations present labels phrase, the loss reaches

a lower value (∼ 0). Refer to Fig 3.12 to visually understand the importance of each

component. These two components (CP & RP) are important, because using concepts

is not enough, if want less hallucination in our generated text. We want to make sure

that the concepts, which get to be used are bounded by our Commonsense Knowledge.

When using a Knowledge Graph, the philosophy of the Open World Assumption (OWA)

states that what is present in a graph is true, and what is absent is unknown (False or

True), so if we can guide the generation more onto the graph we might be generating

sentences which make more sense. Thus, relations play an important role on this, since

using concepts which are connected by a pre-known relation is an hint we are following

our gold knowledge.

3.2.1.2 Concepts Expansion

The approach of identifying ideas/concepts throughout an input context and extracting

meaningful Commonsense relationships between them is promising in encoding Com-

monsense Knowledge, however, it can also be limiting since these relationships are only

captured between concepts on the same context. In order to overcome this context bound-

ing issue, we suggested the introduction of 1-hop related (neighbour) concepts, which are

appended to the input context, as it can be visualised in Fig 3.13. This technique allows

46



3.2. COMMONSENSE-AWARE ENCODER-DECODER TRANSFORMER

for new knowledge to be introduced, which, hypothetically, might be useful for a more

fruitful Text Generation.

<s> cat dog person </s><s>

Task
Context

Concepts
Expansion

human

life

soul

mouse

kitten

fur dog
house

puppy bark

puppy life soul fur bark doghouse mouse kitten human

Figure 3.13: Overview of the Concept Expanding technique in the CommonGen Task.

Concepts Expansion Processing: In order to obtain these 1-hop (neighbour) concepts

from the input context, we use two Knowledge Bases: ConceptNet and Swow. As men-

tioned in Swow work [60], ConceptNet is really relevant because of its magnitude both in

terms of concepts/ideas and the relationships between them, which are rich in diversity.

However, there are 2 main problems with ConceptNet for this Concepts Expansion use

case worth being mentioned: 1. [Implementation Problem] The first problem is related

to compound nouns, since ConceptNet usually has them as a single word (without a

space) and sometimes separated, through a space (eg. baseball↔ base ball). This situa-

tion raises a problem for 2 reasons: One is that language models were probably trained

on only one representation which might lead to poorer encodings and the other reason

is that in ConceptNet these two forms have two different nodes representations, mak-

ing them have different relations, which is not a good thing. 2. [Knowledge Problem]

The other issue regarding ConceptNet is that 1-hop relations are sometimes too forced

(semantically speaking), and more obvious relations are sometimes n-hops away.

For the reasons mentioned before, we decided to use both Commonsense Knowledge

Graphs, to make use of the best characteristics found in both Graphs. We use Swow for

identifying neighbour concepts, which posses more succinct and direct relations between

concepts within an input context. After identifying neighbour concepts, we extract them

and use ConceptNet to fetch the relations between these two concepts. In short, Swow

serves as a neighbour ranking system.

Having extracted neighbour concepts, to introduce these new concepts to the model,

we just take the old input and append the new concepts obtained from the process men-

tioned previously, separated by the Special Token <s>. This is beneficial to the model,

to provide it the hint that this new extra information is not necessarily the information

which should be taken more importantly, such as the input context one (original con-

cepts).
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Note: We decided to focus on 1-hop only neighbours since we were afraid that sibling

nodes could introduce non-relevant information, confusing the model with noise.

3.2.1.3 Decoding Strategy

In this work, we make use of a Transformer based model, which is an assembly of an

Encoder and Decoder module. As mentioned in chapter 2, whereas the main objective of

the Encoder module is to create a succinct and meaningful representation of the input

(vector embedding), the decoder’s module goal is to take this information and generate

a different sequence in a human-level representation, bounded by a certain task (in this

case: a textual one). Also, we have seen in section 2.1.4 that there are several strategies

used in Text Generation to create more realistic / human like phrases. However, all those

methodologies assume that at any time, every token can be used and the most probable

token is the token to which the model assigns the biggest probability. There are times,

however, where we want to constrain, or alter the probabilities in an attempt to guide

the models in generating sentences which follow better our intentions. We also experi-

mented this approach, by trying to guide the text generation to follow the knowledge and

relations pre-existent on a Commonsense Knowledge Graph. We studied two approaches:

1. Eager KG Logits Manipulation & 2. KG Disjunctive Positive Constraint Decoding.

The former is strongly related to a manual direct manipulation of the token probabilities,

based on a set of rules defined to conform to the Knowledge Graph. The latter is bounded

to the idea of coming up with words/sub-words we want to force our model to use, while

giving the “model” the freedom to: 1. add the sub-words in a position which supposedly

is the more likely (high probability), and, at the same time 2. to choose from a set of

words which is best, while not using all of them.

Even though, we did some ad hoc experiments on Eager KG Logits Manipulation, we

will focus only on the KG Disjunctive Positive Constraint Decoding manipulation, since

we believe it is the most interesting one in the matter of Textual Generation. For Story

Telling problems, there is a vivid need for scenarios substantially rich in diverse concepts.

Using external Knowledge Graphs, such as a Commonsense Knowledge Graph there is a

possibility to condition a sentence on a more rich scenario, using related concepts. Let’s

cover an example: Imagine we have a set of concepts 〈sway, flower, breeze〉 from which

we want to build a scenery of. A gold sentence in the CommonGen dataset would suggest

something like: “a group of flowers swaying in a gentle breeze” . Using our technique,

we will further cover, we could get something like: “flowers, soft yellow and green,

swaying in the breeze” . One could argue which one is best, but our objectively adds

more information. It is commonly assumed, flowers have colours, so we paint them using

adjectives. This simple example showcases how useful such method could be. In para-

graph 3.2.1.3 we cover the details of this approach, but for a easier understanding see

fig 3.14, where we take the example seen in the Concepts Expansion section, and visually

see how terms could help generate a vivid descriptive sentence.
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puppy, life, soul, fur, bark doghouse, mouse, kitten, human
Group 1 Group 2

A cat is chasing a mouse while a person is petting the fur of a dog
Figure 3.14: Abstract overview of the KG Disjunctive Positive Constraint Decoding pro-
cedure.

Methodology: From a set of concepts C, we select 1-hop concepts which are semanti-

cally close to the concepts C. The way we extract these concepts is based on the Concepts

Expansion mechanism, mentioned before. During the decoding (text generation) pro-

cedure, we divide these 1-hop concepts C in nMaxConcepts (nC) groups and force the

model to use one concept from each group. We do this to maximise the odds of forcing a

concept which fits best the context of a certain sentence.

3.2.2 Relation-Aware Masked BART (RAM-BART) Model

Scaling Language Models in parameters size and training data, has unaccountably proven

to be a Goliath empowerment in a Language Model output quality, however, applying

other techniques especially when such measure tweaks are not possible are also at the

vanguard of better Language Models.

Regarding the work of Voita [111], it has been shown that multiple heads allow for

different data patterns to be learnt. Work [114], even took this idea and guided the atten-

tion heads to specific hand-chosen patterns to be learnt on each of them. Inspired by this

work, we challenge ourselves to try an alternative approach to guiding the introduction

of Commonsense Knowledge simply through attention masks.

As mentioned previously on chapter 2, not all heads learn “healthy” patterns, from

which we purpose to automatically find heads which are on a bad relevance performance

and replace them with focused Commonsense Heads, in order to transmit new Common-

sense Knowledge awareness and make better use of less relevant heads (see Fig 3.15 for

an overview of red (less relevant) heads getting “replaced” with Commonsense Heads).

What exactly are these Commonsense Heads? Like in the previous Relation-Aware

BART (RA-BART) model approach, we want to, linguistically, capture concepts and fur-

ther enrich the learning process with internal relations between concepts. One simple way

to model this idea in the mechanism of Attention, is by creating a binary mask (matrix),

where 0s represent the absence of a Commonsense Relation between language units, and

1s represent intrinsic relations, extracted from a Commonsense KG, between these lan-

guage units. To understand, at which Self-Attention algorithmic point the commonsense
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Figure 3.15: Commonsense Heads (red) replacing default heads (blue) and their be-
haviour.

masking takes place, observe Fig 3.16

MatMul

Softmax

Mask

Scale

MatMul

Commonsense Mask

Q K V

Figure 3.16: Scaled-dot product with a Commonsense mask.

Mathematically, we model this new BART Encoder with gated heads, masking the

heads conforming to their importance (see equation 3.6).

MultiHead(Q,K,V ) = Concat(gh1, ..., ghh)WO,

gatedHeadi =

headnormal , if head is important

headcommonsense, if head is not important

(3.6)

How do we define which heads are aiding the model and which not are lacking expres-

siveness? To achieve this, we suggest to capture the heads importance over all Encoder

layers during the first epoch of training. We could replace a normal head with a Com-

monsense one, if it’s importance value departs significantly from the most important
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ones. Mathematically, we can define a z-score, which tells us how far away a specific

head’s importance is from the general importance distribution. We could further define

a variable λ, let’s say λ = 1.96 to bound the z-score, meaning that any head which fails

to be less λ standard deviations from the mean, we consider it to be a less useful head

and re-purpose it with a Commonsense one (see equation 3.7 for z-score calculation and

equation 3.8 for a mathematical overview of heads masking).

z-score =
(hi −µ)
σ

(3.7)

gatedHeadi =

headnormal , if z-scorehi > −λ

headcommonsense, if z-scorehi ≤ −λ
(3.8)

Note: Head importance, in this context, refer to the accumulative gradients values in

regards to an Encoder head, obtained when feeding the model with data. Furthermore, a

Commonsense Head is a head which nulls out the attention between tokens which have

no “Commonsense” relations between them. The weight itself between relevant tokens is

preserved by what the model thinks their importance should be and not forced by us in

any way.

One limitation with this attention masking approach is in the lack of relations richness,

when modelling the relations between concepts. Since the Commonsense Mask is binary,

meaningful relations get squashed into a 1 dimension relation (related_to). An example

of this behaviour could be, for instance: 〈 airplane , at_location , sky 〉 → 〈 airplane ,

related_to , sky 〉.

3.3 Model Preparation

We have introduced the tasks we wanted to tackle and their respective data, their data

preparation techniques, and even about the Commonsense Knowledge retrieving and

integration process. Now we mention how we bridge all these things into the BART

Language Model.

3.3.1 Data Splits

When training models, one must be careful to strive for unbiased quality estimations.

Therefore we divide each task in 3 subsets of data: the training data (∼90% of data), the

validation data (∼5% of data), and the testing data (∼5% of data). Training data is only

used to update the model parameters. The validation data is used to choose which model

is best, on a given moment in time, according to a certain metric. Finally, the testing data

is crucial for an unbiased estimation of the models’ output, since, hopefully, the testing

data has not been seen either in the training, or in the validation phase (See Fig 3.17).

Cross Validation is commonly avoided in Deep Learning especially due to high intensity

computational runs.
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Training data
(Update model's Parameters)

Validation Data
(Choose best model)

Testing data
(Unbiased Evaluation Estimation)

Figure 3.17: Dataset split strategy.

3.3.2 Transforming tasks data into model input

The tasks we are considering are independent and have their own specifications in terms

of the data used, but also in the way they get introduced to the models. In Fig 3.18, we

go through an overview exactly of what data and how data is fed to the (tokenizers →
models) pipeline. Worth referring that this depiction concerns only the Commonsense

models, which are fed with the Commonsense Knowledge extracted from the correspon-

dent input data. In summary, Fig 3.18 depiction helps us understand, that even though

CommonGen

Concepts

Token n Token

<s> </s>

Phrase

Token n Token

<s> </s>

Commonsense
QA

ContextQuestion

Token n TokenToken n Token

<s> </s><s>

Answer

Token n Token

<s> </s>

Abstractive QA
(ELI5 &

StackExchange) Question

Token n Token

<s> </s>

Answer

Token n Token

<s> </s>

Commonsense
Knowledge

<s> • • • • • • • • • • • • • • • </s>

<s>

• • •

• • •

• • •

• • •

• • •

</s>

Encoder (Input) Decoder
(Output)

Figure 3.18: Overview of the model input for each task, regarding our Commonsense
Models.

all tasks are different, this difference to the model is, more or less, homogeneous. Even if

we are working with Concepts (CommonGen), multi-choice questions (CSQA) or general

questions (Abstractive QA), in the end this textual data gets parsed by a Tokenizer module,

which converts text units with numeric ids bounded by Special Tokens (<s>,</s>), which
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respectively relate to the beginning of contextual data and the end of contextual input.

Not represented in the figure, we also have the <pad> Special Token to fill extra empty

token spaces, due to the fact that we train and normally infer in batches (collections of

input samples) which have different length. This length difference must be “hidden” to

the model when using batches, to successfully support matrix (parallel) operations.

The CommonsenseQA task, as explained previously, to be taken as a generative task

we need to append the possible answer choices to the question. We considered the use of

the <s> token to separate the question from the choices, as we observed in BART related

literature, and also decided to separate each answer choice with a ; token for two reasons.

First, an early empirical test, where we did not use a separation token between choices

showed poor results, and second because it is reasonable to believe that during the pre-

training of BART model, the ; token was seen separating ideas, as it is normally used in

English with that purpose.

In section 3.2.1, we mention a experiment (Concepts Expansion) which can alter the

models input in some ways, not covered in this figure (eg. further adding neighbour Com-

monsense Concepts to the input, observed in section 3.2.1.2). Relating to this experiment

and Fig 3.13 we can also observe the technique of using the <s> token to separate the

major important concepts and the retrieved neighbour concepts which can possibly help

providing more knowledge to the model.

3.3.3 Model Hyper-Parameters

On Fig 3.19, one can observe the hyper-parameters used to train the models in our work,

and the decoding hyper-parameters used to generate Natural Language sentences. We

briefly explored some different parameters, and found this combination to provide good

results.

Optimizer: AdamW

Beta1: 0.9

Beta2: 0.999

Learning Rate: 3e-5

Warmup Steps: 900

Weight decay: 0.01

Batch Size: 64 / 128

Scheduler: Linear

Training Parameters

nBeams: 4

Sampling: False

Temperature: 1.0

TopK: None

TopN: None

no_repeat_ngram: 2

max_length: 32 / 128

Decoding Parameters

Figure 3.19: Overview of the most important training and decoding Hyper-Parameters.
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4

Evaluation & Analysis

This chapter presents in detail the methodology used for assessing our proposed work
and comparing it with the established baselines.

As William Thomson would say “to measure is to know”. Science moves forward

because we establish standards, metrics to structurally showcase the quality of models

and approaches in comparative manners. In this section, we measure our approaches,

along with baselines using automatic measures, in order to compare them. We do not

stop here: knowing the importance of human evaluation, we further enquire humans to

assess our approaches to have a concrete human feel of their quality. We further discuss

the environmental impact of this dissertation and talk about the memory intensity of

integrating Commonsense Knowledge. Lastly, we provide a hyperlink reference to a web

page where the reader can experiment the work pursued in this dissertation.

4.1 General Evaluation

Provided that in this work we are concerned with the integration of Commonsense Knowl-

edge in Language Models, we have selected benchmarks concerned in evaluating them

in such matter. As mentioned in Chapter 3, for Commonsense Understanding and Gen-

eration capabilities, we have selected the CommonGen [56] dataset, and especially for

Commonsense Understanding we have chosen the CommonsenseQA [104] dataset. We

further evaluate our model on our custom Abstractive QA dataset, which was used in a

real project, Alexa Taskbot Challenge [59], to answer (general, cuisine, DIY) user ques-

tions.

4.1.1 Automatic Evaluation

In chapter 2, we mentioned text related automatic metrics. In regards, to that study on

the current automatic evaluation trends and our objectives, we chose to use the BLEU and

the Rouge metric for a systematic evaluation over the syntactic quality level of the text

generated. The Meteor is both for the assessment of the syntax and for a light evaluation

54



4.1. GENERAL EVALUATION

on the meaning of the generation. We use CIDEr, as it is strong for more closely accessing

the human-likeness of the generations. Finally, we use SPICE for an automatic evaluation

regarding the semantic meaning of the generated text.

These metrics, however, were not designed to measure Commonsense in the language

generation task. Therefore apart from falling back to these standard automatic metrics

we further introduce custom metrics, which we believe to a certain level, help us “au-

tomatically” observe whether the models are capturing more or less the Commonsense

Knowledge. These custom metrics are the Concepts Coverage (Coverage) and the Re-

lations Weight (R-W) metric, which respectively correspond to the amount of concepts

within the generated text versus the reference one and the amount of relations between

concepts within the generated text versus the reference one.

Note: On the tables, when BLEU and Rouge appear we are respectively using BLEU-3

(cumulative 3-gram matching) and Rouge-L (longest matching sequence) scores. Bold is

used on the tables to highlight the best values, while dotted values represent the second

best result. Furthermore, since Concepts Coverage (Coverage) and the Relations Weight

are relative to the corresponding gold references, any score under 100% mean that the

generations are utilising, respectively, less concepts and relations, whereas the opposite,

mean that the generated sentences are using more concepts and relations.

4.1.1.1 CommonGen Task:

Generating sentences which make sense constrained under bounding concepts is interest-

ing for many use cases (eg. story telling [123], etc). We were interested in using it to help

understand if our proposed model could capture better concept relations and create more

sounding sentences. Regarding this task, we performed several studies as mentioned in

Chapter 3 and we will now cover their results.

Table 4.1: Commonsense Loss Comparison.

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

RA-BART 22.85% 46.36% 46.32% 18.36% 50.13% 73.30% 70.13%
RA-BART (CL) 23.75% 46.59% 46.71% 18.96% 50.19% 74.90% 71.90%

+0.90% +0.24% +0.38% +0.61% +0.07% +1.60% +1.77%

Commonsense Loss: As a reminder, we set out to test whether the manipulation of the

standard Seq2Seq loss on Text Generation could be improved using a custom Common-

sense Loss. Looking at the results, presented in the table 4.1, we see some improvements

in using this custom Commonsense Loss. More concepts seem to appear in the generated

phrases, as well as relations between them. Overall generated text, in the eyes of the

automatic metrics also seems to improve, where BLEU score improves almost 1%.
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Table 4.2: Concept Expansion Comparison.

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

RA-BART 22.76% 46.35% 46.26% 18.28% 50.12% 73.27% 70.35%
RA-BART (CE) 22.79% 46.13% 46.23% 18.56% 50.18% 74.02% 71.89%

+0.03% -0.22% -0.03% +0.28% +0.06% +0.75% +1.54%

Concept Expansion: Here, we were concerned whether directly enforcing 1-hop con-

cept information and their relations would be useful to the model. According to our

results (table 4.2), there seems to be a solid positive impact on the richness on the number

of concepts and relations, but when considering the other metrics, this approach shows a

not so relevant impact.

Decoding Strategy: In table 4.3, we take the Commonsense Knowledge Graph Decod-

ing Strategy forcing both 1 concept and 2 concepts from input concept neighbours and

compare them with the baselines approaches. One thing to be aware is that, normally,

some metrics will score lower since we are adding up entropy in the generation. Most

metrics we use are n-gram dependent so if between concepts we add other concepts, an

n-gram overlap will suffice. The acronym: KGD-nC stands for using the Knowledge

Graph Decoding Strategy, using nC groups of concepts (nMaxConcepts).

Table 4.3: Decoding Strategy Comparison.

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

RA-BART 22.85% 46.36% 46.32% 18.36% 50.13% 73.30% 70.13%
KG-BART 19.15% .. . . . . . . .43.90% 43.03% .. . . . . . . .17.37% .. . . . . . . .47.06% 77.02% 97.92%

RA-BART (KGD-1C) . . . . . . . . .21.74% 42.54% .. . . . . . . .44.60% 16.59% 44.89% .. . . . . . . .85.72% .. . . . . . . . . .103.45%
RA-BART (KGD-2C) 19.48% 39.05% 43.37% 14.01% 39.00% 103.21% 159.25%

Considerations: It is worth mentioning, that such method, without further engineer-

ing, sometimes attempts to start formulating a new sentence just to add a KG concept (eg.

concepts: “sky, dark, moon”; KG Concepts: “clouds”; generation: “The moon lies over

a dark sky. clouds”. This is not ideal, because the dataset we are using only possess one

sentence and so the generation can get stuck on a sentence followed by an incomplete

one. There is a naive approach of clipping a generation on a full point to ingenuously only

have one useful sentence. This approach falls short for several reasons: Firstly, we would

probably loose an external concept which could better help textually paint the previous

sentence; Secondly, this would be a way to suggest to our model that it is doing a good

job, when it is not. Therefore, we came up with a solution consisting in a loss penalisation

for the model training, provided that a generated text contains more than one sentence.
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Following this loss penalisation procedure, we endure the model in understanding that

generating more sentences is not supposed to happen.

This experiment can be observed as an interesting take on the quality bias of most

automatic metrics. Labels/gold references not always are ultimate truths, as it is the

case of datasets like ELI5 or CommonGen. Possibly, a larger amount of human-like

generations end up getting penalised by the enforcement of metrics strongly dependent

on labels likeness. Having said this, looking at the Textual Generations scores in Table 4.3,

we see more descriptive textual results pointed by the Coverage and R-W metrics, in

contrast with the more standard, n-gram restrictive metrics. Nevertheless, the balance of

enforcing concepts must be taken with care, since hallucinations are always a possibility

and worsened with artificial reinforcements. On the Human Evaluation section 4.1.2, we

will see that humans acknowledge better generations to this model experiment.

CommonGen Results Summary: In table 4.4, we showcase the results of all models

from experiments done over the task of CommonGen, trained for 10 epochs each.

Table 4.4: Comparison between methodologies on CommonGen.

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

BART 21.95% 45.38% 45.65% 17.97% 49.95% 73.21% 70.84%
KG-BART 19.15% 43.90% 43.03% 17.37% 47.06% .. . . . . . . .77.02% .. . . . . . . .97.92%

RA-BART .. . . . . . . .22.85% .. . . . . . . .46.36% .. . . . . . . .46.32% .. . . . . . . .18.36% 50.13% 73.30% 70.13%
RA-BART (CL) 23.75% 46.59% 46.71% 18.96% 50.19% 74.90% 71.90%
RA-BART (CE) 22.79% 46.13% 46.23% 18.56% .. . . . . . . .50.18% 74.02% 71.89%
RA-BART (KGD-1C) 21.74% 42.54% 44.60% 16.59% 44.89% 85.72% 103.45%

For a visual overview of the standard RA-BART results, look at the Fig 4.1. Three

examples are presented showcasing the ability of creating meaningful sentences from

a set of concepts. For a more detailed view comparing the outputs of every considered

model, see Fig A.1.

pond, dog, swim a dog is swimming in a pond. a dog is going for a swim in a pond.Example 1

embed,clock,
building,top

a clock embedded in the top of a building. a clock that is embedded in the ornate top of a
building.

Example 2

swimsuit,summer,
wear

the boy wears a swimsuit during the summer. a child wears a swimsuit in the summer.Example 3

Input Generation Human ReferenceExamples

Figure 4.1: Examples of phrases generated over Commmonsense Generation Task (Com-
monGen) using our standard Relation-Aware BART.
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Discussion: Looking at the table 4.4, the approach of Relation-Aware Attention

allied with some other techniques explained in further detail in chapter 3, such as adding

a custom loss function, expanding concepts or even using a special decoding strategy

algorithm suggest better results on this task. KG-BART, on our tests, seems to lack some

quality in the Text Generation task, as seen in Fig 4.2, Fig A.1 and looking at their table

results (Table 4.4). KG-BART’s concepts coverage and relations presence are, however,

remarkable.

serial killer, police, victim,
shot, church, park

A police officer takes a shot of a victim of serial killer in a park near a churchKG-BART

serial killer, police, victim,
shot, church, park

Police said the serial killer shot and killed the victim at a church in a park, hours
before cops arrested him

RA-BART

Input (Concepts) GenerationModel

Figure 4.2: Examples of phrases generated over Commmonsense Generation Task (Com-
monGen) using our constrained Relation-Aware BART.

4.1.1.2 CommonsenseQA task:

To analyse how well our Commonsense models can help in the field of Commonsense Un-

derstanding, we gathered the CommonsenseQA question-answering dataset. We wanted

to see if our models could help answering questions which are mostly Commonsense

related. Since this dataset is a multi-choice question problem, we adapted the models to

also have information of the possible answer options, so the task is easier by indirectly

constraining the possible tokens. As seen in section 3.3.2, Fig 2.3, the question gets sepa-

rated by the answer choices with a <s> token and the choices themselves are separated

by a “;” token.

Consideration: We do not actually constrain the possible tokens to be extracted

from the possible choice answers, since the models implicitly understand that the pos-

sible choices can be found within their input data. We, actually, performed an ad hoc
experiment, where we created a custom constrained decoder, which would bound the

generated tokens from a standard list of ∼50k tokens to the unique tokens present in the

possible answer choices fragment of the input. As we observed no relevant difference in

performance, we abandoned the custom constrained decoder, since not using it would

make our model simpler.

Discussion In table 4.5, we can see a baseline comparison between the standard

BART model our RA-BART model, which were trained for 10 epochs. We can see that
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Table 4.5: Comparison between methodologies on CommonsenseQA.

Model Accuracy

BART 75.17%
RA-BART .. . . . . . . .57.52%

the approach of Relation-Aware Attention is considerably worse by a solid ∼-17% differ-

ence. This makes us believe that adding external relational Commonsense information,

may for some tasks confuse the model, instead of helping the model to achieve a better

interpretation of the world.

4.1.1.3 ELI5 & StackExchange task:

The Conversational engagement boost created by answering users’ questions in a more

natural way is essential in conversational systems. We trained both standard BART model

and Relation-Aware BART model on our custom Abstract QA dataset, whose main goal

was to answer a question which could pop up while conversing with a chatbot under the

cuisine and DIY theme. In table 4.6, one can observe the metrics we captured for this

problem. We trained all models for 10 epochs and evaluated them over the automatic

metrics mentioned before, except for SPICE for computational reasons (time exhausting).

Table 4.6: Comparison between methodologies on Abstractive QA.

Model BLEU ROUGE METEOR CIDEr Coverage R-W

BART 3.29% 14.51% 15.66% 0.30% 55.19% 52.58%
RA-BART 3.35% 14.57% 15.96% 0.30% 56.34% 54.95%

+0.06% +0.06% +0.30% +0.00% +1.15% +2.37%

See Fig 4.3 for an example of the quality of the generated text over the our custom task

of abstractedly answer questions. For a more detailed view comparing several outputs of

every considered model, see Fig A.2.

Discussion: In table 4.6, we can see that the approach of Relation-Aware BART is

slightly better on every metric. This, however, does not mean that RA-BART always

outperforms normal BART. Attempting to generate answers in an abstract way tends

to incite false statements sometimes. Having said this, however, we believe that since

there are 2% more Commonsense Relations on the answers, the answers might be in more

conformity with our Commonsense Knowledge Graph and therefore, generations might

suffer less from non-sense answers, which we call language hallucinations.

59



CHAPTER 4. EVALUATION & ANALYSIS

Example 1 why is maple syrup less viscous than other liquid
sugars?

because maple syrup has a lot of water in it compared to other sugars. water is a polar molecule, which means that it

likes to stick to itself. this makes it less viscous than other solids.

Example 2 how to properly clean a whiskey flask?

you can clean a whiskey flask with a bottle brush, but it's not a good idea to use a brush to clean the inside of the flask

as it will leave a residue on the outside. the best way to do this is to put a small amount of water on it and let it sit for a

few minutes. this will remove the alcohol from the whiskey and allow the water to evaporate. if you don't have enough

water, you can also use an alcohol-based cleaning liquid such as vinegar or lemon juice.

Example 3 how much fertilizer do i need for my vegetable
garden?

if you have a well-maintained garden, you should be able to grow a lot of plants in a short amount of time. if you don't,

then you're going to needmore fertilizer than you can get from the soil, and you'll need to add fertilizer to compensate

for the lack of fertilizer. the amount you need depends on the type of soil you are growing in, how much water is in it,

what kind of plant it's growing on, etc.

Question GenerationExamples

Figure 4.3: Examples of phrases generated over our custom Abstract QA dataset using
our standard Relation-Aware BART.

From our perspective and having implemented such Abstractive QA task in a real-life

chatbot (Alexa) with real users [59], we can see how important such task is in creating

positive interactions. Therefore, hallucinating less is a powerful benefit.

One could think of many problems, which could arise by using a model trained on

this task, (such as: what happens if the system does not know the answer?), but it should

not hide the fact that it is a powerful human-like engagement tool. In reality, it can gener-

ate non-sense answers, but at tricky questions it can also counter them quite nicely with

general takes on the question. There is room for improvement on this avenue, such as

working on RAG [52]-like models, which fuse retrieval models with generative capabili-

ties. We see RAG models as a more accurate alternative to “simple abstractive models”, as

long as the retrieved documents used to ground the answers, are conversationally similar

to reddit forums.

4.1.2 Human Evaluation

Ultimately, the models and algorithms we propose are targeted for a human audience,

therefore a manual evaluation performed by humans is necessary to truly understand

its impact on a real life scenario. To this end, we prepared a Mechanical Turk (mturk1),

crowd-work assessment (HIT) with 4 tasks to be completed (see Fig 4.4 for an overview

of the crowdwork HIT task). Overall, we prepared 100 HITs and paid each worker $0.5

per HIT completion. Furthermore, our HIT Assessment on average was completed in ∼5

minutes.

Let us now describe the HIT conceiving process. For each HIT Assessment, we ran-

domly extracted 1 instance from a custom CommonGen test set, and asked each annotator

to evaluate the outputs of the models we were comparing (In appendix A, Fig A.1 one can

see part of our custom test inputs and models outputs). As mentioned, each annotator

was presented with 4 tasks. In the first task, we set a general Commonsense sentence eval-

uation, where annotators were asked to rank the outputs in a scale of 1(worst) - 5(best)

1https://www.mturk.com/
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Previewing Answers Submitted by Workers

This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Instructions Shortcuts

Commonsense Textual Generation Evaluation

Introduction (Welcome to this HIT!)

What is Commonsense? Commonsense is strongly bounded to what makes sense in the world, regarding humans' knowledge, conventions and our lovely ability to reason and deduce about events 
Example: if it's raining we might grab an umbrella to go outdoors (not to get wet): this is Commonsense Reasoning. 
Motivation: Machine emulations of language, however, have difficulties dealing with such natural human behaviour, therefore we produced some research to tackle this problem.

Your task: Follow the instructions and provide your input to each step task.

Note: If you have some doubts, please check Further information

Further information

→ HIT Step 1:

Instructions: Read the next sentences below and use the sliders below to indicate how rich in commonsense they are (1 = lacking commonsense, 5 = human-like sentence)

Model Sentence Rating

a) The sky is red

b) A cat is chasing a dog

c) nlp is a really cool field.

→ HIT Step 2:

Instructions: Read the next sentences below and use the sliders below to indicate how descriptive they are (1 = not descriptive, 5 = interestingly descriptive)

Model Sentence Rating

a) The sky is red

b) A cat is chasing a dog

c) nlp is a really cool field.

→ HIT Step 3:

Instructions: Given some concepts, create a sentence which makes sense and uses all provided concepts (you can use other concepts as long as you use the ones mentioned)

duck, lake, splash
 

→ HIT Step 4:

Instructions: Read the next questions and their respective answers below and use the sliders below to indicate how reasonable thay are, even if you might not know the answer (1 = not reasonable, 5 = is right/makes sense).

Model Question Answer Rating

a)
what is the meaning of

life?

the meaning of life is the ability to create meaning in your life. for
example, if you are alive, you have a purpose in life, and you want to do
something with it.

b)
what is the meaning of

life?

the meaning of life is the ability to create meaning in your own life. it's
like asking "what's the point of living if you don't have a purpose?" the
answer is that there is no such thing as a "purpose" in life, it is just a way
for you to live your life to the best of your ability.

Thank you!

Write sentence using concepts...

SubmitFigure 4.4: MTurk HIT.

in conformity with whether the sentence made sense or not. In the second task, we asked

them to rank the sentences in terms of which output was more descriptive/verbose in

providing more detail about a scenario. The third task was designed to model an HLP

Assessment of the CommonGen task, for comparison purposes. We asked annotators

for themselves to create a sentence syntactically and semantically correct using a set of

concepts (eg. 〈shark, sea, boat〉 → a shark is attacking a boat lost in the sea). The last task

was to create an assessment of our custom Abstractive QA task, for comparison purposes.

In this case, we asked annotators to rank how reasonable, in a scale of 1(worst) - 5(best) ,

the answers were (even if the answers could be wrong or if the worker would not know

the answer).

In table 4.7, we can see the results of the first task, where we compare different model

architectures: the default BART, KG-BART, our RA-BART, our RA-BART trained with

the Commonsense Loss and the RA-BART with the Knowledge Graph special decoding
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CHAPTER 4. EVALUATION & ANALYSIS

Table 4.7: Human Commonsense Evaluation

Model 1 2 3 4 5 Rating 0-100%

BART 24% 10% 19% 17% 30% 3.19 63.8%
KG-BART 36% 8% 14% 15% 27% 2.89 57.8%

RA-BART 25% 5% 17% 27% 26% 3.24 64.8%
RA-BART (CL) 21% 7% 13% 28% 31% 3.41 68.2%
RA-BART (KGD-C1) 18% 14% 13% 19% 36% 3.41 68.2%

strategy. We can see that through human eyes, our approaches seem to behave better

and generate more coherent phrases by a solid margin (∼ 4%). KG-BART scores the

worst, which further verifies the poorer automatic scores obtained in the previous sections

and also suggests that both Coverage and R-W metrics are not an enough measure for

meaningful textual results.

Table 4.8: Human Information Richness Evaluation

Model 1 2 3 4 5 Rating 0-100%

BART 15% 10% 28% 25% 22% 3.29 65.8%
KG-BART 17% 15% 26% 26% 16% 3.09 61.8%

RA-BART 13% 10% 30% 25% 22% 3.33 66.6%
RA-BART (CL) 13% 8% 23% 31% 25% .. . . . .3.47 . . . . . . .69.4%
RA-BART (KGD-C1) 10% 6% 19% 26% 39% 3.78 75.6%

In table 4.8, we can see the results of the second task, where we focus on seeing

whether the sentences generated are more rich in content (eg. “a boy eats an hamburguer”

is less semantically rich than “a boy eats a juicy hamburguer” , even through they are

both syntactically and semantically correct). Here we can see that, even though both

RA-BART (CL) and RA-BART (KGD-C1) score similarly in terms of Commonsense, the

Knowledge Graph decoding strategy seem to further enrich the sentences with more

information (more ∼10% compared to best baseline).

Table 4.9: CommonGen HLP vs Baseline Models - Comparison

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

BART 5.88% .. . . . . . . .24.76% 23.28% 5.50% .. . . . . . . .23.39% 86.40% 84.14%
KG-BART 5.16% 23.18% 20.48% 5.38% 20.76% 87.83% 109.15%

HLP 9.62% 28.56% 34.245% 8.26% 36.04% . . . . . . . . . . .105.01% .. . . . . . . . . .132.93%

RA-BART .. . . . . .6.96% 23.90% .. . . . . . . .23.43% .. . . . . . .6.56% 22.97% 84.44% 85.98%
RA-BART (CL) 6.14% 23.44% 23.14% 6.25% 22.67% 78.05% 84.62%
RA-BART (KGD-1C) 6.132% 22.37% 22.53% 5.33% 22.62% 106.62% 167.07%
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4.2. ABLATION STUDIES

In table 4.9, we find the HLP assessment of the CommonGen task. HLP let’s us under-

stand what to expect from the models, and what yet can realistically be achieved. These

metrics were obtained using a realist small custom CommonGen alike-set created for the

purpose of the MTurk Assessment. We created a 100 sized dataset to realistically evaluate

the models on human-like events and even a small amount on “fantastic” scenarios.

As it would be expectable, the human performance outperforms the automatic met-

rics, except for the Coverage and Relation-Weight ones. This is surprising and even

interesting, because it shows how the Knowledge Graph Decoding Strategy furiously en-

forces Commonsense Knowledge in creative ways. As we have also seen, regarding the

Knowledge Graph Decoding Strategy approach, even though the other standard metrics

lack a small percentage in comparison, humans seem to like them more. Additionally,

we found it interesting that the Commonsense Loss BART Model, in terms of metrics,

performs worse than RA-BART, even though humans suggest that Commonsense Loss

BART is better by a significant difference (see table 4.7 and table 4.8).

Table 4.10: Human Abstractive QA Evaluation

Model 1 2 3 4 5 Rating 0-100%

BART 26% 12% 13% 24% 25% .. . . . .3.10 . . . . . . .62.0%

RA-BART 16% 9% 13% 28% 34% 3.55 71.0%

Lastly, we have table 4.10, where we compare both the default BART architecture and

the RA-BART one on the Abstractive QA task surveyed on the forth HIT task. Looking

at the results we see quite a solid improvement on the RA-BART model over the default

one (more ∼9%). For further context, Abstract QA models answers from this MTurk

evaluation, can be consulted in Fig A.2, on the appendix A.

Special Notes: We did our best to ensure the human evaluations were well behaved

(not random or with bad intentions), by forcing evaluators to go through control tests

and discard crowd-workers which did not follow the minimum criteria. Having a more

difficult task made sure we could spot easily several bad intended assessors, making our

statistics more credible. One observation worth being made is how crowd-workers seem

to arrange clever ways of by-passing a rejection status: from Wikipedia information span

retrieval to what seemed to be the usage of Language Generation Models to fill our task’s

step 3. This came as an eye-opener to how “dangerous” crowd-working results can be, if

not carefully analysed.

4.2 Ablation Studies

The Machine Learning field is much broader than conceiving models and petting data.

It is dependent on a critical thinking life-cycle, where researchers, developers, project
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stakeholders meditate about the value being created, the trade-offs and critical points

for relevant experiments and optimisations. Objectively, in this section, we cover: 1. how
the model size can impact the benefits of using External Commonsense Knowledge, 2.

whether dynamically selecting attention heads, which might be less relevant and replacing

them with Commonsense Heads, can help the BART model to perform better.

4.2.1 Language Model Scaling Law (Explicit Knowledge)

In Language Models realm, scaling in parameters along with data size incites better model

performance [41]. In our work, we would like assess whether explicit knowledge helps

when we have less parameters or if, in contrary, explicit knowledge goes hands in hands

with the increased implicit capabilities of larger Language Models. We wish to compare

a Bart-base model, consisting of 140M parameters (size: ∼0.5GB) and Bart-Large model

consisting of 400M parameters (size: ∼1.5GB).

Table 4.11: Language Model Scaling Law Model Comparison.

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

BART-Base (Normal) 19.43% 44.49% 43.74% 16.37% 49.33% 69.03% 61.02%
RA-BART-Base 19.88% 44.57% 43.60% 16.71% 49.19% 69.19% 64.24%

+0.45% +0.08% -0.15% +0.34% -0.14% +0.16% +3.22%

BART-Large (Normal) 21.95% 45.38% 45.65% 17.97% 49.95% 73.21% 70.84%
RA-BART-Large 22.85% 46.36% 46.32% 18.36% 50.13% 73.30% 70.13%

+0.89% +0.97% +0.67% +0.38% +0.18% +0.09% -0.71%

Discussion: As mentioned, we compare two family-alike models different in the mag-

nitude of parameters (∼3x). In table 4.11 we can observe a direct comparison between

the smaller BART models with and without the Commonsense Knowledge integration

and between the bigger BART models on the same matter. Commonsense Knowledge

Integration, on both cases seem to aid the model in more quality text generation (looking

at the metrics). Concerning the overall improvements of the Relation-Aware approach

we can also suspect the the Commonsense integration seem to have a bigger impact on

models with more parameters.

4.2.2 Relation-Aware Masked BART (RAM-BART) Model:

We used the CommonGen task as a case study and trained the Relation-Aware Masked

BART for that task. Objectively, we train the BART model, for 1 epoch, and after that

we adapt the heads according to their heads importance for 10 more epochs of training.

During the training, therefore, we train the model with two different types of heads, the

regular ones, and Commonsense enriched ones. In table 4.12, we present the results of

these two models in comparison with the baselines we established.
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4.3. TAKE ON ME: THE READERS EMPIRICAL EVALUATION

Table 4.12: Masked Relation Aware BART compared to baseline models on the Common-
Gen task.

Model BLEU ROUGE METEOR CIDEr SPICE Coverage R-W

BART (Normal) 21.95% 45.38% 45.65% 17.97% .. . . . . . . .49.95% 73.21% 70.84%
KG-BART 19.15% 43.90% 43.03% 17.37% 47.06% 77.02% 97.92%
RA-BART 22.85% 46.36% 46.32% 18.36% 50.13% 73.30% 70.13%

BART-RAM .. . . . . . . .22.63% .. . . . . . . . .45.602% .. . . . . . . .45.87% .. . . . . . . .18.29% 49.95% .. . . . . . . . . .75.101% .. . . . . . . .75.47%

Discussion: Interestingly, this masking approach of integrating Commonsense Knowl-

edge seems to capture more the ability to use concepts, and concepts rich in relations.

One can see, that it stumbles subtly in the generated sentences according to the standard

NLP metrics, in comparison with RA-BART. However, Relation-Aware Masked BART

appears to offer a fair balance between concepts/relations usage and generation quality.

We could also argue whether using a different methodology to choose the importance of

heads, could benefit the generation.

4.3 Take on me: The readers empirical evaluation

In this section, we showcase a web demo interface2 for the reader to try out some of

the models proposed in this thesis, as well as to explore introspection tools for visual-

ising the models. On Fig 4.5, an overview of the demo can be foreseen. The demo has

two main sections, one related to interactively test the actual textual generations of our

models. One can select the type of model, several tasks and decoding strategies and see

the respective results. The other section intends to showcase what importance is the

model giving to each input data unit, over the Encoder components. One can select the

respective heads from all available Encoder layers and see the importance given to each

language unit. Commonsense knowledge concepts/ideas are mapped with colours, for

easier visualisation, where the green colour relates to a departing relationship, and the

red colour a receiving one.

2https://huggingface.co/spaces/MrVicente/RA-BART
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Figure 4.5: Thesis Demo snapshot.
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Real-Life Impact

This chapter shall address the impact of the RA-BART model application in real-life,
either being it’s carbon footprint, or the model’s memory consumption.

5.1 Human Impact - Carbon Footprint

There is work [7, 101], urging for more consideration over Deep Learning models carbon

emissions, mentioning green training/research strategies and even evaluation on current

tools for predicting carbon emissions. Therefore, there is a scientifically and humanis-

tic responsibility to not only work on the more mainstream ethical aspects of bias and

fairness but also on environmental ethics such as keeping track of the carbon footprint

of training and inference over Deep Learning models. One solid python framework is

CodeCarbon [93], which we used to keep track of the electrical energy consumed and

consequently, a prediction for the carbon emissions produced during the course of this

dissertation. We believe that being transparent on ethical computations is essential to

a more sustainable world. Next we present an underestimate of the carbon foot print

resulted from this dissertation.

Experiments were conducted using a local cluster server in Portugal (NOVA FCT/SST).

An underestimated approximation cumulative of ∼240 hours of computation was per-

formed specifically on the following hardware:

• GPU: A100-SXM4-40GB (NVIDIA) with a TDP of 400W

• CPU: EPYC 7532 32-Core Processor (AMD) with a TDP of 200W

Total emissions are estimated to be of around 8 kgCO2eq.

These estimations were performed using the project: CodeCarbon emissions tracker

[93], a joint effort from authors of [48] and [65].

Discussion: To put this environmental impact in due perspective, take a look at Fig 5.1.

As we can see, the impact is somewhat reasonable, and worth having in consideration
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CHAPTER 5. REAL-LIFE IMPACT

for future work iterations and for having a granular intuition on working with “heavy

machinery”. We consider these estimations to be underestimations, because we consider

only the computations of working versions, not the debugging runs which can be quite

considerable. Furthermore, we did not account for all training procedures, as there was

runs which were not tracked. It is also worth meditating about the impact that Trans-

former models can have on inference machines. Using techniques, such as quantisation,

using standards such as ONNX to decouple the essence of the models and optimise them

for inference purposes and specific machines, can speed up these models and reduce

carbon footprint.

Figure 5.1: Environmental impact of this dissertation computation compared to intuitive
life situations.

5.2 Memory Overhead

Working with Transformers Language Models is normally associated with a memory

overhead, due to the amount of parameters these models have. When training and

performing inference on such models, there is also the issue of sequence length over-

head. On RA-BART, we also have to consider that we are introducing external explicit

knowledge, along with the standard sequence data, which accounts for a bigger memory

footprint. Computationally, with Relation Self-Attention, the space complexity increases

fromO(batchSize∗numHeads∗SeqLength2∗headsDimension) toO(batchSize∗numHeads∗
SeqLength2∗headsDimension+batchSize∗SeqLength2∗relationsDimension). This increase

in space complexity ends up having an impact on the attention mechanisms memory con-

sumption’s, using around ∼8% more memory, forcing (on some cases) the batches to be

smaller during training and even inference, prolonging the training time. For the metrics

gains and for production purposes this could be a killing trade-off.
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5.3 Experiments Infrastructure: Transparency

Experiment tracking tools: The experiments were tracked through a third-party frame-

work, named Weights and Biases (wandb [11]). We chose to mention this, because of the

importance of such aiding tools. It increases reproducibility, experiment transparency

and descriptive logging, which fastens experiments, helps finding bugs early on, reducing

computing time and therefore models’ carbon footprint as well.
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Conclusion

Language Models are on a highway avenue of becoming larger and larger (in terms of

parameters). Open AI [41] has pointed out that augmenting data proportionally to pa-

rameters amount increases Language Model’s performance. A moon race in achieving

better results by scaling models, without meditating on the usefulness of the parameters

is a current trend. This is not always the case, where works, like Amazon’s AlexaTM [98]

using a solid fraction of parameters have outperformed SOTA Large Language Models,

however still in the magnitude of billions of parameters. Also there is work concerned

with ethical models growth, such as Bloom 1. We are, as well, concerned about how we

can better guide the learning procedure of these models, taking further advantage of

their parameters. This dissertation, proposes ideas to model fragments of Commonsense

Knowledge, following the hypothesis that by indirectly traversing a Knowledge Graph

we are guiding Language Models towards meaningful Text Generation. Next, we present

the two most important insights taken from this dissertation.

Insights:

1. Explicit Commonsense Knowledge injection can help models on some tasks (Ab-

stractive QA and CommonGen) and harm on others (CommonsenseQA). The perfor-

mance improvement on the CommonGen and Abstractive QA tasks are promising,

however, subtle. Knowledge Noise is a known issue when introducing external

knowledge, which can be distracting to a model learning a task. We believe that

on the CommonsenseQA task the model was a victim of this issue. From our ex-

periments, we also reckon that increasing model size in terms of parameters can

help further obtain more gains in knowledge injection. The subtle results we had

makes us wonder that maybe, injecting external Commonsense Knowledge on the

Encoder of generative models might not be the optimal way to provide Common-

sense Knowledge.

1https://bigscience.huggingface.co/blog/bloom
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2. Human Level Assessment & Performance is extremely relevant to really grasp a

human take on the models’ quality and establish reasonable upper-bound base-

lines, especially in fields and tasks, where automatic metrics fail to capture subtle

characteristics such as Commonsense.

Takeways: What is my hope for the reader who took their time reading this dissertation?

First of all, Commonsense is a subjective field and extremely hard to encode in Ma-

chine Learning Models. Computationally, Commonsense can be segregated in Knowledge

and Reasoning. Commonsense Knowledge is one obvious case of Explicit Knowledge,

which can be integrated during the training and inference of models. There are several

ways to undergo this integration and this dissertation showcases some possible avenues.

Commonsense Reasoning, in contrast, is a completely scientific jigsaw, which we leave

for future work.

In summary, we integrated Commonsense Knowledge on a the Encoder of seq2seq

model (BART) and further tested techniques which could aid this integration (loss ma-

nipulation, neighbour knowledge injection, knowledge aid decoding strategies). Even

though, theoretically, this approach is promising, the results we obtained are somewhat

substantial, which suggest that the Commonsense signals might not be strong enough to

systematically aid the training procedures. Nevertheless, this dissertation should strike

as an urgent reminder that explicit knowledge should not be ignored. It is fair that we

recur to Deep Learning for their implicit understandings in subjective fields. After all,

Deep Neural Networks are utterly powerful in capturing abstract understandings. Intro-

ducing deep models has forever changed multiple real world domains and fields, however,

production ready models go beyond percentage gains on well behaved datasets. In reality

and in most cases there is the need for complex stacked models, which also incite the

need for the providence of a explainability framework. Furthermore, robust decision

making, custom domains integration, and more problems are utterly relevant during

learning procedures and are not purely solved without the aid of engineered Knowledge

Models. Mixing external knowledge, such as Commonsense Knowledge, and studying

better efficient ways to integrate explicit knowledge might explain better decisions/re-

sults and result in models more aware of specific domains, which in turn result in better

downstream utilisation.

Finally, falling back to our work, we believe that our work adds up to the pile of rele-

vant work regarding Models’ Commonsense acquisition. The use of structured explicit

Commonsense Knowledge (either in the form of Knowledge Graphs or ontologies, etc)

can be a step onto better extrapolating information not blatantly present in texts.

6.1 Future Work

As discussed in the computational commonsense work from David [19], Commonsense

Knowledge can be described as the human’s intrinsic knowledge regarding the world
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which might fail to have a textual identity and therefore end up sometimes not being

captured by Language Models.

Moreover, when pursuing Commonsense we strive for much more than the mere ac-

quisition of its knowledge, we want the ability to reason over it. This is hard, really

capturing Commonsense is having the ability to fuse humans’ intrinsic knowledge, be

adaptive to a changing world state and make meaningful, logical decisions over them.

Therefore, to tackle the Commonsense Reasoning problem more systematically we envi-

sion several takes:

Take 1 (Sentence Generation Guidance with ASER): Currently, there is work (ASER

[128]) in documenting, at a large magnitude, fragments of speech conveying events, world

states and their relations. Using a Semantic Parsing Tree on a given input and tagging

similar documented fragments of speech can be used to search on the ASER graph and

provide more realistic Text Generation, especially regarding abstract chatbot interactions

or storytelling. This can be seen as an interesting approximation to reasoning over a set

of rules and axioms, as seen in Symbolic AI.

Take 2 (Neuro-Symbolic BART): Also, as mentioned in Chapter 2, there is really

promising work on SubSymbolic AI. Creating approximations to Logical Reasoners and

combining them with Language Models might be inevitable. Large Language Models are

great at creating implicit relations between concepts and using them for some task, but

making use of explicit structured knowledge to guide them is for sure work to be pursued

(See 6.1 for an example).
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Figure 6.1: Neuro-Symbolic BART
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Take 3 (Knowledge Embeddings): More related to the work pursued on this thesis,

one could use Entity embeddings / Graph embeddings both in the Encoder and Decoder

architecture and study whether these introduction of knowledge also helps guiding the

model. K-Bert [62], Luke [122], among others, used this approach, for example to in-

troduce domain knowledge more fruitfully, which in our case would be Commonsense

domain knowledge. One caveat, which K-Bert also mentions is the problem of knowledge

noise (KN) issue. Using too much knowledge, may be distracting to the model especially

when combining embeddings which are the product of two non-related encoding map-

pings. However, one could also argue the latter problem would be non-existent as it is

plausible to assume that a model could learn to map this two different mappings into a

meaningful one.

Take 4 (Neuroscience): Computationally, we are stuck in a ill learning-procedure ma-

trix. No surprise, the community knows we are far from intelligently teaching models

“inteligence”, we just don’t know it any better. Do we really need to teach “inteligence”?

In practice, current methodologies already give outstanding and quite seamlessly un-

beatable results for some use cases. Therefore, it depends on the task at hand and our

expectations of a certain deep neural model. For Artificial General Intelligence, we need

reasoning. We have mentioned some artificial avenues to approximate this reasoning

ability, however one could argue that the very best mimicking ability will prevail from

decoding our own humanistic biological neural capabilities.

6.2 The End

Like Steve Jobs once brought us 1000 songs to our pockets, we are at the dawn of having

1000 deep neural models in our pockets. Yet, far from the Greek Chaos, I am the first to

say that we are no gods, but if you ask me: that is an undoubtedly specimen of god-like

superpowers. An open highway to such power requires responsible accountability. In the

end, not every obstacle has to be tackled with a Goliath’s solution. Provided that one is

not conveying under a critical system, a 1% increase on some metric, should generally

not be a strong motive to shift to using a more computational exhaustive model. As

mentioned and as has been studied, Deep Learning inference end-points will account for

a fair amount of CO2 emissions in the future. Therefore, it starts with every one of us

to strive for innovation, break boundaries, but always be accountable for our actions. To

end on a last note, whatever you build: do it for kindness, be kind.
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A

Further Models Generations

This appendix provides multiple examples showcasing differences in Text Generation,

regarding comparative models both on the CommmonGen and Abstractive QA task. In

Fig A.1 one can further observe interesting results in our models, such as being able

to “answer” a mathematical question (1 + 1 equals 2), when the others totally miss it.

It can be the case that intrinsically, the external Commonsense Knowledge guided this

understanding.

In Fig A.2, we further observe how adding Commonsense Knowledge helps being

more assertive and providing more knowledgeable answers in the Abstractive QA task.
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Figure A.1: Models text generation - CommonGen Task
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Figure A.2: Generative Question Answering - Abstractive QA Task
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I

Curiosity

Curiosity
Dataset

• Did you know that: Chopsticks were initially created for cooking, not as an eating
utensil? •

I.1 Proposal

We propose to model a Curiosity Dataset, a dataset containing pairs of fun facts and

keywords related to these facts covering the domain of cuisine and DIY. The Curiosity

Dataset can be consulted in the following open source GitHub repository: Curiosity-

Dataset

I.2 Motivation

Keeping a chatbot user engaged when pursuing a continuous 1-to-1 conversation is a

complex task. User’s psychological factors aligned with the chatbot system efficiency

and correctness in responding will determine how well an user will keep engaged in

the system. The search for the aid of an assistant chatbot is normally rather objective,

meaning that when an user has a goal in mind, they wish to see it fulfilled in the most

efficient amount of conversation turns. Therefore, any attempt to fruitfully extend a

conversation flow, must be taken with care. Even though user satisfaction is relevant in

terms of providing an interesting flow of conversation, ultimately, correctness must be

ensured.

In an attempt to further improve user’s satisfaction/engagement when interacting

with a virtual assistant, such as the Alexa virtual assistant, we propose the introduction

of curiosity phrases closely contextualised with a certain flow of a conversation. As seen

in the work of Alquist 4.0 [44], trivia facts if rightly used, do have a positive impact on a

virtual assistance conversation. However, an important note is that a curiosity follows the
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ANNEX I. CURIOSITY

formality of a statement, which naturally discourages an user to further engage it when

compared with a question. We take this rational into account in our work.

I.3 What is a curiosity?

The concept of curiosity has for decades been debated by neuroscientists and psycholo-

gists. As mentioned in [43], some have separated it in two research views: 1. Curiosity as

a natural impulse for seeking extended cognition; 2. A phenomena related to exploring,

playing, learning, the desire for information;

Berlyne in 1966 [9], went even further meditating about how humans had inherently

a special type of curiosity: an epistemic curiosity. Meaning that, above the exploration

and information seeking need, humans also strove for knowledge, being relevant to our

use case since the curiosities we are building are epistemological related.

Inspired by Berlyne work, an attempt to computationally model curiosity was pre-

sented taking in consideration the key concepts which define it, positively or negatively

[119]. We adapt their computational model to better resemble textual epistemological

curiosity, which is the focus of our work (see Fig I.1).

memory frequency

novelty complexityconflict

curiosity

w(-) w(-) w(-)

w(+) w(-)
w(+)

similarity

Legend

w(-)

w(+) Affects Positively

Affects Negatively

Figure I.1: Curiosity Computational Model

Curiosity, but more importantly curiosity phrases, are deeply rooted to measurable

intrinsic features. Complexity hardens the comprehension of a phrase, which can have a

negative impact. Conflict and novelty play positively with, respectively, how much new

information is gained from a curiosity and the freshness quality of the information. Neg-

atively bounding novelty, and therefore curiosities, lie in the memory , frequency and

similarity characteristics of a curiosity. The more we hear about a concept and similar

ones might, for instance, turn a curiosity which uses such terms more dull. Considering

the computational model mentioned in I.3, we go further in providing an objectified

definition for building up a curiosity, formulating curiosity, in our work, as being the fol-

lowing: Curiosity is a Natural Language phrase which ignites a reader to seek for more

information, while providing an extension to reader’s knowledge rich in athirst data.

With a well thought distillation over the curiosity meaning and having removed some

subtle subjectivity, we depart to develop a dataset which strives to capture the true essence

of our formulation of Curiosity.
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I .4. CURIOSITY DATASET

Since the domain of our work relates to recipes and home improvement tasks, the

curiosity dataset will focus on this domain.

I.4 Curiosity Dataset

Having pursued a survey on curiosity datasets, we found no curiosity dataset which

could fulfil the characteristics in need for both Alexa’s chatbot and the enclosed domain

where our work was focused on (home improvement tasks and recipes). In 2020 [87], a

work accompanied by a curiosity dataset of geographical facts for improvement of dialog

agents is the most similar work and data we were able to find. However as stated, the

domain of the curiosities present in this work fail to match ours. Therefore, there were

two possible paths to follow: either we had to crawl and parse curiosities from websites

such as wikipedia or we could manually search for curiosities and curate a custom dataset.

We chose the second approach, since there were some aspects that were very relevant to

us:

• There was a need for curiosities, not facts;

• Curiosity phrases length matters significantly;

• Quality of the phrases meant more than the quantity of them;

• Simplicity in the sentences was of great concern. Dense reasoning behind curiosities

could have a negative impact on user engagement.

I.4.1 Special Days

Special days are titles attributed to days of the year for honouring something or someone.

These days can be conveyed as curiosities which are rather sympathetic to local users,

where days’ titles are attributed. Alexa is a live system which is used daily, thus on any

special day being able to greet the user with a personalised curiosity regarding a special

day makes a companionable incentive to continue using the system.

Since special days are somewhat curated on websites such as, thereisadayforthat, we

were able to automatically generate curiosities for cuisine special days, using the tem-

plate: In the United States, on the 〈DATE〉 , it’s the 〈EVENT〉 .

For this we built a web scrapper to retrieve them, by making a request to the web-

site for each month of the year to the food category present in the website Application

Programming Interface (API). After fetching the website HTML raw data, we parsed

it, retrieving the special days dates and days names. Then, we built custom curiosity

sentences from the data collected.

Unfortunately, since DIY related special days are less existent we followed a manual,

succinct retrieval for them.
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ANNEX I. CURIOSITY

• Do you believe that: In the United States, on the 23rd of March, it’s the national

chip and dip day? •

I.4.2 Organisation

The dataset has been split in two main categories, since our problem domain consisted in

recipes and wikihow articles. For an in depth description of each domain, we present a

brief list of general classes covered in each of them:

Recipe task coverage: 1. Fruit (eg: Avocado, Vitamin C fruits, etc); 2. Meat (eg: cow,

etc); 3. Seafood (eg: shrimp, etc); 4. Food tools (eg: oven, etc); 5. Cuisine related

concepts (eg: temperature, etc); 6. Popular countries’ food (eg: pizza (Italian), sushi

(Japanese) etc); 7. United States (eg: U.S. National food days, etc)

Wikihow task coverage: 1. American DIY statistics; 2. DIY tools (eg: hammer, etc);

3. United States (eg: U.S. National days related to DIY, etc) 4. House furniture (eg: sofa,

etc) 5. Yard objects and tools (eg: lawn moaner, etc) 6. Garage objects (eg: car, etc)

Dataset organisation: An instance of the curiosity dataset follows the structure:

curiosity
(sentence)

, Class 1 ..., Class n,

Figure I.2: Curiosity instance structure

The focus of this curated dataset was more on gathering and creating curiosities fol-

lowing pre-defined characteristics, therefore the annotation was vaguely added just for

having in mind possible usage of this curiosity dataset in downstream tasks. Our major

interest was not so much on the annotation aspect, as we had envisioned an automated

annotation for the curiosities, so the labelling and the articles-curiosities matching task

would not be costly in time.

Adding to the careful creation of the curiosities dataset, we also worked on the end-

user experience, thus appending to the dataset: introductory and terminating phrases

for the curiosities. To introduce a curiosity within an user-Alexa conversation flow we

used an “introducer” randomly sampled from a pre-defined curated list. For terminating

a curiosity insertion, similarly, we introduced a “terminator” phrase after the curiosity

sentence, sampled over a list of possible ending questions, whose objective is to represent

a rhetorical question. (See Fig I.3 for an example of a curiosity which could appear within

an user-Alexa conversation flow)
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I .4. CURIOSITY DATASET

Do you believe that:
(introducer)

In the United States, on the 23rd of March,
it's the national chip and dip day.

(curiosity)
Interesting right?

(terminator)

Figure I.3: End-User view of a recipe’s special day Curiosity

I.4.3 Statistics

I.4.3.1 Distribution of curiosities: Curiosity Type

The dataset consists of 1350 curiosities distributed through both the cuisine and DIY

categories (See Fig I.1 for a realisation of the distribution of curiosities per Curiosity

Type).

Table I.1: Curiosity Dataset statistics

Curiosity Types Amount

Recipe / Cuisine 743
Home Improvement / DIY 607

Total 1350

I.4.3.2 Distribution of curiosities: Length per Curiosity Type

Throughout the curiosities dataset creation we deposed careful attention into conforming

the curiosities length distribution to an average of 15 words, avoiding big sentences so as

to maximise readers comprehension (See Fig I.4 for an overview of the length distribution

(in words) of the curiosities dataset).

Apart from users curiosity comprehension, there was also a relevant characteristic

about our users and our virtual assistant, which we had to be careful about. Curiosities

were not the reason users were using our virtual assistant, therefore we had to balance

the intrusion of curiosities and the normal carriage of tasks users were executing.

I.4.4 Recipes & Wikihow: curiosity matching

The curiosities we engineered had the goal to be introduced within a virtual assistant

chatting conversational flow, when executing a recipe or Wikihow (DIY) task. Having

this in consideration, if we wanted to deliver a contextualised curiosity similar to a corre-

sponding internet resource, we had to carefully extract the articles/documents content

into a categorised and contextualised mapping space for them to reside in a equivalent

searchable space.

To reach the mentioned goal, we first had to pre-process the data (the articles) we

wanted to match the curiosity phrases with. Recipes and wikihow articles in their raw

form are just JSON files scrapped from their API websites. Therefore, to process such

resources we had to analyse and extract the most relevant content of the corresponding
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Figure I.4: Curiosities length distribution

JSON files, which better depicted them. Upon some consideration and grounding experi-

ments, we decided that for the recipes articles, we would extract the title text, the steps

text and the ingredients text, whereas for the Wikihow data we would extract only the

title and steps. The rational behind this was rooted to two main aspects: 1. There was

a need to capture a set of curiosities with a fine-grain detail of each specific part of an

article. 2. The other information present in the articles were mostly noisy data, hindering

a positive similarity search.

We pursued the methodology of trying to match sets of curiosities to the recipes or

Wikihow contexts using the Semantic Similarity Search methodology. This is not a

simple and direct task since to perform such task we have to have a computational tool

able to map a certain article contexts to an n-dimensional space where we can further

query the space on the curiosities equivalent n-dimensional space, finding which context,

in distance, more closely matches our set of curiosities. See Fig I.5 for an abstraction view

of what it means to try to match a certain article context to the space of curiosities.

To deal with the Semantic Similarity Search problem, we resorted to a sentence

transformer[85], which consists of a Sentence-BERT, a modified version of BERT, specially

created to deal with comparative semantic understanding. Our task perfectly matches

the objective of Sentence-BERT, therefore we applied it to our use case.

For each recipe and Wikihow article we have matched them with curiosities, based on

the following algorithm:

1. Segregate an article in several parts: the title, steps (and ingredients for recipes);
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I .4. CURIOSITY DATASET

Mushroom Like
Curiosities

Carrot Like
Curiosities

Magic Mushrooms are called "magic" for their psychedelic
properties.

Mushrooms are more closely related to humans than to plants.

There is a wild mushroom that tastes nearly identical to
chicken or fried chicken.

Back in the day, most carrots were purple.
Broccoli contains more protein than steak.

Place the mushrooms in a bowl.

China is the world’s largest carrot producer.

Article Context
(eg: step)

Frontier
Space

Curiosity
Space

Embedding
Point

Embedding

Figure I.5: Curiosity semantic search

2. Perform Semantic Search for each article context to the space of all curiosities avail-

able (recipes or wikihow articles), selecting the top-10 curiosities for each context;

3. To ensure we remove false-positive curiosities, and relate top-3 curiosities to each

article context, for each context we:

a) Run a Cross-Encoder (re-ranker) model through all combination pairs (curiosi-

ties list with the top-10 selected curiosities) and select the top-3 ones;

b) Build a JSON object, storing the identifier of each article and the top-3 curiosi-

ties for each article context;

See Fig I.6 for an example of curiosities matching with both a title and recipe step

context.

Quick Peanut Butter Cookies

Title

Step 1

Peanut butter cookies are the second most
popular type of cookies in the United States.

Recipe

Americans eat around 500 million pounds of
peanut butter each year.

Ancient Greeks used ovens mainly to make
bread.

An oven made specifically for use in metalwork
is known as a furnace.

Preheat oven to 325 degrees F (165
degrees C).

Figure I.6: Recipe article semantic match with curiosities
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I.5 Generative Take on Curiosities

We launch ourselves on a mission to further charismatically personify a Virtual Assis-

tant, which users could trust and be enlightened by a more natural interaction. However,

combining both human-like interactions and well-defined step-by-step tasks naturally

stands as a challenge when attempting more creative interaction flows and whilst ensur-

ing a robust controlled flow. Having this in mind, we weighted both the hallucination

risks and human-like answering possibilities and put together a curiosity clarifying and

explaining generator BART [51] model. This model consists in a generative model with

the ability of elaborating on curiosities (fun facts). For instance, prompting a question

or an elaboration request (e.g. “why?”, “why is that”,“tell me more about that”) after a

curiosity, our model will attempt to reason about it and provide a friendly response to the

user (See I.7 for a curiosity clarification example). In summary, this model was fine-tuned

on the Abstractive QA task, mentioned in section 3.1.1 and prompt engineered to work

on the curiosities dataset.

Milk chocolate was invented in Switzerland.Curiosity:

<Question Prompt>Milk chocolate was invented in Switzerland ?Model Input:

It was invented in Switzerland in the late 19th century. The swiss
had a lot of cocoa butter, which they used to make milk chocolate.

Model Output:

Figure I.7: BART Prompt Engineering - Fun Fact Domain

To fine-tune the BART model, we collected several different datasets and pre-processed

them to remove non-linguistic textual artefacts (e.g. URLs and image references). The

data collected was the following: the ELI5 and the AskScience subreddit dump [25], and

additionally, we captured questions and answers from 5 forum communities (cooking,

crafts, DIY, gardening, and pets) of the stack exchange forum1. This variety of QAs tex-

tual data permitted BART to gain insights over the custom domains of cuisine and general

tasks.

Our fine-tuned model also had a surprising tendency to contradict itself, which we

tried to abolish by detecting negation of statements.

On Fig I.8, one can observe further results of utilising the BART model and our RA-

BART model to clarify fun facts and even attempt to explain them. Additionally, one

can also see that RA-BART seems to formulate more reasonable answers than the default

BART model.

1https://archive.org/download/stackexchange
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Figure I.8: Curiosities Clarification & Explanation - Curiosities dataset
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