
DEPARTAMENTO DE ENGENHARIA
ELETROTÉCNICA E DE COMPUTADORES

MARCOS MIGUEL TEIXEIRA PEREIRA MATEUS

Licenciado em Ciências da Engenharia Electrotécnica e de
Computadores

END-TO-END PERFORMANCE ANALYSIS OF
A RESOURCE ALLOCATION SERVICE

MESTRADO EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Universidade NOVA de Lisboa
Fevereiro, 2022

DEPARTAMENTO DE ENGENHARIA
ELETROTÉCNICA E DE COMPUTADORES

END-TO-END PERFORMANCE ANALYSIS OF A RESOURCE
ALLOCATION SERVICE

MARCOS MIGUEL TEIXEIRA PEREIRA MATEUS

Licenciado em Ciências da Engenharia Electrotécnica e de Computadores

Orientador: Luís Bernardo
Professor Associado, Universidade Nova de Lisboa

Coorientadora: Daniela Oliveira
Senior System Developer, Skyline Communications

Júri:

Presidente: Anabela Monteiro Gonçalves Pronto
Professora Auxiliar, Universidade Nova de Lisboa

Arguente: Rodolfo Alexandre Duarte Oliveira
Professor Associado, Universidade Nova de Lisboa

Orientador: Luís Bernardo
Professor Associado, Universidade Nova de Lisboa

MESTRADO EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Universidade NOVA de Lisboa
Fevereiro, 2022

End-to-end Performance Analysis of a Resource Allocation Service

Copyright © Marcos Miguel Teixeira Pereira Mateus, Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Acknowledgements

This work would not have been possible without the collaboration and support of

many people special to me.

First, I would like to thank my advisor, professor Luís Bernardo, for the support and

precious advice given throughout this course and especially, in this dissertation, for all

the patience and availability shown. Thank you for being an excellent advisor.

A special thanks has to be given to my excellent co-advisor, Daniela Oliveira, for the

huge help given throughout this dissertation, the feedback provided, the sharing of her

expert knowledge, and more importantly, for all the patience. I would also like to thank

the members of Skyline Communications’s System Developer team, for the help and for

the teachings that enabled me to complete this dissertation.

Then, I would like to thank my friends for being supportive and being with me in

all moments of my life, and also thanks to all my colleagues for providing me with great

years of college.

Last but not less important, I want to thank my family that made so many sacrifices

to raise me into the man that I am today. Without them, I would not be where I am now.

iv

“Education never ends, Watson. It is a series of lessons, with
the greatest for the last.” (Sir Arthur Conan Doyle)

Abstract

This dissertation is centered around the monitoring and control platform of the com-

pany Skyline Communications, the DataMiner. This platform has a specific module called

SRM (Service and Resource Management). One of SRM’s many features is the capacity

to make an advance reservation (booking) of resources of the client’s network. When a

booking is created, there is a time interval/delay between the moment that a booking

is requested and the moment that all necessary configurations for this booking actually

start to be made at the Resource level. This delay is called SyncTime.

The SyncTime is affected by the dynamics of the network (e.g, a sudden increase in

the number of bookings made, at a given time). In order to guarantee the maximum

possible quality of service to the client and ensure that the network dynamics will have

minimal impact in the real-time delivery of the desired content, the SRM module must

be able to estimate if a booking can be done in an acceptable SyncTime value. Given

this problem, the main goal of this dissertation is to develop a machine learning based

estimation/classification module that is capable of, based on the temporal state of the

SRM module, make a prediction or classification of the SyncTime.

Two approaches were considered: Classify the SyncTime based on classes or estimate

the value of it. In order to test both approaches, we implemented several traditional

machine learning methods as well as, several neural networks. Both approaches were

tested using a dataset collected from a DataMiner cluster composed of three DataMiner

agents using software developed in this dissertation. In order to collect the dataset, we

considered several setups that captured the cluster in different network conditions.

By comparing both approaches, the results suggested that classifying the predicted

SyncTime using a classification model and classifying the predicted SyncTime of a esti-

mation model are both equally good options. Furthermore, based on the results of all

implementations, a prototype application was also developed. This application was fully

developed in Python and it uses a Multilayer Perceptron in order to do the classification

of the SyncTime of a booking, based on several inputs given by the user.

Keywords: DataMiner, Data Mining, Classification, Regression, Machine Learning

vi

Resumo

Esta dissertação centra-se na plataforma de monitorização e controlo da empresa

Skyline Communications, o DataMiner. Esta plataforma possui um módulo específico de-

nominado de SRM (Service and Resource Management). Uma das características do SRM é a

capacidade de fazer uma reserva antecipada (booking) dos recursos da rede de um cliente.

Quando uma reserva é criada, existe um intervalo de tempo/atraso entre o momento em

que uma reserva é solicitada e o momento em que todas as configurações necessárias para

a mesma realmente começam a ser feitas ao nível de Recurso do DataMiner. Este atraso é

chamado de SyncTime.

O SyncTime é afetado pela dinâmica da rede (por exemplo, um aumento repentino

no número de reservas feitas num determinado momento). De forma a assegurar a má-

xima qualidade de serviço possível ao cliente e garantir que a dinâmica da rede tenha o

mínimo impacto na entrega em tempo real do conteúdo desejado, o módulo SRM deve

ser capaz de estimar se uma reserva pode ser feita com um valor de SyncTime aceitável.

Diante deste problema, o principal objetivo desta dissertação é desenvolver um módulo

de regressão/classificação baseado em aprendizagem automática (machine learning) que

seja capaz de fazer uma previsão do valor do SyncTime ou classificação do mesmo, com

base no estado temporal do módulo SRM.

Duas abordagens foram consideradas: Classificar o SyncTime com base em classes ou

estimar o seu valor. Para testar as mesmas, implementou-se vários métodos tradicionais de

machine learning, bem como várias redes neuronais. Ambas as abordagens foram testadas

utilizando um conjunto de dados recolhido de um cluster composto por três agentes

DataMiner usando software desenvolvido nesta dissertação. Para a recolha dos dados,

considerou-se várias configurações que capturam o cluster em diferentes condições.

Ao comparar ambas as abordagens, os resultados sugerem que classificar o SyncTime

usando um modelo de classificação e classificar o valor do SyncTime previsto por um

modelo de regressão são ambas boas opções. Com base nos resultados obtidos, foi criada

ainda uma aplicação protótipo. Esta foi totalmente desenvolvida em Python e utiliza um

Multilayer Perceptron para realizar a classificação do SyncTime de uma reserva, a partir

dos dados introduzidos pelo utilizador.

Palavras-chave: DataMiner, Data Mining, Classificação, Regressão, Machine Learning

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Context . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Outline . 2

2 State of Art 4

2.1 Introduction . 4

2.2 Classification and Regression Problems 4

2.2.1 Classification . 4

2.2.2 Regression . 5

2.3 Machine Learning Taxonomy . 5

2.3.1 Supervised Learning . 6

2.3.2 Unsupervised Learning . 6

2.3.3 Semi-supervised Learning . 6

2.4 Principal Components Analysis (PCA) 7

2.4.1 Implementation Examples . 8

2.5 Random forest (RF) . 8

2.5.1 Implementation Examples . 10

2.6 Support Vector Machine (SVM) . 11

2.6.1 Implementation Examples . 12

2.7 Multilayer Perceptron (MLP) . 13

2.7.1 Implementation Examples . 15

2.8 Autoencoders (AE) . 16

2.8.1 Autoencoder Variants . 18

2.8.2 Implementation Examples . 18

2.9 Long Short Term Memory (LSTM) . 19

2.9.1 Implementation Examples . 20

2.10 Hybrid ML models . 22

viii

CONTENTS

2.10.1 Implementation Examples . 22

2.11 ML Methods Evaluation . 24

2.11.1 Cross-Validation . 25

2.11.2 Confusion Matrix . 25

2.11.3 Evaluation Metrics: Classification 27

2.11.4 Evaluation Metrics: Regression 29

3 Dataset Acquisition 30

3.1 Dataset Description . 30

3.2 Data Collection Process . 32

3.2.1 Booking & Cluster State Information 32

3.2.2 Setups Definition . 34

3.2.3 Dataset Setups . 35

3.3 Data Aggregation . 36

4 Data Analysis 41

4.1 Cumulative Density Function (CDF) . 41

4.2 t-SNE: t-distributed Stochastic Neighbor Embedding 43

4.3 Correlation Matrix . 45

5 Classification Approach: Implementation 49

5.1 Data Pre-Processing . 49

5.2 SVM Implementation . 50

5.3 RF Implementation . 52

5.4 MLP Implementation . 53

6 Regression Approach: Implementation 59

6.1 Data Pre-processing . 59

6.2 MLP Regressor Implementation . 60

6.2.1 Initial Test . 60

6.2.2 2 Hidden Layers Test . 62

6.3 Hybrid Regressor Implementation . 64

7 Discussion of Results & Developed Software 68

7.1 Classification Approach . 68

7.2 Regression Approach . 70

7.3 Classification vs. Regression Approaches 71

7.4 Developed Software . 73

8 Conclusion & Future Work 77

8.1 Conclusion . 77

8.2 Future Work . 79

ix

CONTENTS

Bibliography 80

x

List of Figures

2.1 PCA with two principal components . 7

2.2 Random Forest Decision Scheme . 9

2.3 Feature Randomness . 9

2.4 Application of Linear SVM on linearly separable data 11

2.5 Linear SVM with Non-linearly Separable Data 12

2.6 MLP Network . 13

2.7 Sigmoid Function Plot . 14

2.8 ReLu Activation Function . 14

2.9 Linear Activation Function . 15

2.10 Structure of a autoencoder with one hidden layer 17

2.11 Deep Autoencoder with L layers . 17

2.12 Memory Block on LSTM . 21

2.13 Split Process done in 5-Fold Cross Validation 25

2.14 General Structure of a Confusion Matrix . 26

2.15 ROC Curve . 28

3.1 CPUSTRES Main Interface . 34

3.2 Clumsy Main Interface . 35

3.3 Concurrent Bookings Example . 40

4.1 Dataset CDF plot . 42

4.2 Class Distribution in the dataset . 43

4.3 2-Dimensional plot of the dataset . 44

4.4 Dataset Classes . 44

4.5 Zoom In View of Clusters A and B . 45

5.1 Loss plot of Configuration 1 . 55

5.2 Loss plot of Configuration 2 . 55

5.3 Loss plot of Configuration 3 . 56

5.4 Loss plot of Configuration 1 using EarlyStopping 57

5.5 Loss plot of MLP with 1 unit . 58

6.1 Loss plot of Configuration 2 MLP Regressor - Initial Test 61

xi

LIST OF FIGURES

6.2 Predicted vs. Actual SyncTime values for MLP Regressor - Initial Test . . . 62

6.3 Loss plot of Configuration 3 MLP Regressor - 2 Hidden Layers Test 64

6.4 Linear Regression Model . 65

6.5 Loss plot of Configuration 3 Hybrid Regressor 66

6.6 Loss plot with Overfitting effect . 67

7.1 SVM Confusion Matrix . 69

7.2 RF Confusion Matrix . 69

7.3 MLP Classifier Confusion Matrix . 69

7.4 Predicted vs. Actual SyncTime values . 70

7.5 Predicted SyncTime values below 13 s . 71

7.6 Predicted SyncTime values below 13 s with class I samples identified by red

rectangles . 72

7.7 MLP Regressor Confusion Matrix . 73

7.8 Hybrid Regressor Confusion Matrix . 73

7.9 Application Main GUI . 75

7.10 New Prediction Diagram . 75

xii

List of Tables

3.1 Dataset Setups Table - Part 1 . 37

3.2 Dataset Setups Table - Part 2 . 38

4.1 Setups Correlation Table . 47

5.1 Grid used in the SVM implementation . 51

5.2 Best SVM Hyperparameters . 52

5.3 Grid used in the RF implementation . 53

5.4 Best RF Hyperparameters . 53

5.5 Configurations Tested for the MLP Classifier 54

6.1 Configurations Tested for the MLP Regressor - Initial Test 61

6.2 Initial Test MLP Regressor Results . 61

6.3 Configurations Tested in the 2 Hidden Layers Test 63

6.4 2 Hidden Layers Test Results . 63

6.5 Hybrid Regressor Configurations . 65

6.6 Hybrid Regressor Results . 66

7.1 Classification Approach Best Results . 68

7.2 Regression Approach Best Results . 70

7.3 Classification vs. Regression Approach Results 72

7.4 Comparison between the MLP Classifier and Hybrid Regressor 73

xiii

C
h
a
p
t
e
r

1
Introduction

1.1 Context

This dissertation’s challenge is centered around the monitoring and control platform

of the company Skyline Communications, the DataMiner. This platform has a specific mod-

ule called SRM (Service and Resource Management). Through this module, DataMiner

manages the orchestration of resources, bookings and ensures the delivery of multimedia

content in real time to the customers network. DataMiner supports any type of network

based on various technologies (from mobile networks to satellite networks).

One of the features available in the SRM module is the capacity to make an advance

reservation (booking) of resources of the client’s network. When a booking is created,

there is a time interval between the moment that a booking is requested and the moment

that the necessary configurations for this booking start to be made at the Resource level.

In resume, this delay corresponds to the time that the system takes to do all the neces-

sary steps to prepare for a booking. In this dissertation, we name this time interval as

SyncTime.

The SyncTime value of a booking is affected by the dynamics of the network. These

can be, for example, the consequence of the stress put on the network due to a sudden

increase in the number of bookings made, at a given time. In order to guarantee the

maximum possible quality of service to the client and ensure that the network dynamics

will have minimal impact in the real-time delivery of the desired content, the SRM module

must minimize as much as possible the SyncTime value of all bookings.

1

CHAPTER 1. INTRODUCTION

1.2 Objectives

The first objective of this dissertation is to develop an estimation module that is capa-

ble of, based on the temporal state of the SRM module, make a prediction or classification

of the SyncTime of a booking. This estimation module can be used alongside the SRM

module in order to minimize the SyncTime delay of a booking and ensure real-time

delivery of the content requested in said booking.

The second objective of this thesis is to build a portable desktop application that

integrates one of the delay estimators/classifiers implemented in this thesis. The main

functionality of this application will be to predict, based on a set of input data given by

the user, the booking’s SyncTime value or in alternative, show a label that classifies the

booking’s SyncTime value based on classes (e.g, Ideal or Not Ideal).

1.3 Contributions

The main contributions of this thesis are:

• We discover which input parameters had more impact in the SyncTime of a booking.

• We selected the best algorithms that can better deal with the estimation and classi-

fication of the booking’s SyncTime;

• We developed a prototype application which classifies the SyncTime of a booking

based on a set of input parameters. This classification is done by a pre-trained

Multilayer Perceptron. The goal of this software is to aid in the assessment and

development of future SRM projects deployment.

1.4 Outline

After this introductory chapter comes the State of Art chapter (Chapter 2), which gives

a brief introduction to the machine learning concepts and to classification and regression

problems. Several ML methods are also described, along with implementation examples

that show their utility in different scenarios.

Chapter 3 describes the dataset used in this thesis and the data collection process

used to acquire it.

Chapter 4 presents the data analysis done and the discoveries that came from it.

Chapters 5 and 6 show the implementation process of some of the ML algorithms

studied in chapter 2.

2

1.4. OUTLINE

In chapter 7, we selected the best implementations of the previous two chapters and

discuss the results obtained by of each of them.

Lastly, chapter 8 resumes all work done in this thesis and provides directions for

future work.

3

C
h
a
p
t
e
r

2
State of Art

2.1 Introduction

In this chapter, we do a brief introduction to the concept of machine learning and

address all the machine learning methods considered to be adequate to deal with the

problem of this master’s thesis.

Two approaches are considered: The first one is the classification of the total time

between the request of a booking and the moment the booking configuration is fully

executed at the Resource level based on classes (i.e, acceptable and non-acceptable). The

other approach is to estimate the value of this time interval. In other words, this prob-

lem can be seen from a classification perspective or regression perspective. A review is

presented on methods that can be used for classification or regression problems.

2.2 Classification and Regression Problems

2.2.1 Classification

The main goal in a classification problem is to classify the input dataset using differ-

ent categories or classes. The task of a classification algorithm (or classifier) is to find a

function that divides the input dataset into multiple classes, depending on different char-

acteristics/features present on the dataset. The output of a classifier can be a class label

(i.e, "ideal" or "not ideal") or it can be a discrete value. This discrete value is associated

with the probability of a sample being part of a certain class.

A classification problem can be further divided in two types, depending on the num-

ber of output classes:

4

2.3. MACHINE LEARNING TAXONOMY

• Binary Classification: It is a type of classification problem, in which a given dataset

is classified into two classes. An example of binary classification problem is the

email spam detection.

• Multiclass Classification: It is a type of classification problem, in which a given

dataset is classified into three or more classes. Examples of multiclass classification

problems are face classification and plant species classification.

There are several examples of machine learning algorithms that are used in classifi-

cation problems. Some common examples are the Support Vector Machine (section 2.6)

and Random Forest (section 2.5).

2.2.2 Regression

Unlike classification, the main goal of a regression algorithm is to find a function or a

model that predicts a continuous real value based on the input data. In other orders, as

stated in [8], its main task is to approximate a function f that maps input variable x to a

continuous output variable y. This output variable is a real-value variable so it can be an

integer variable or floating point variable.

Common regression problems are stock price prediction, weather prediction, etc.

There are several examples of machine learning algorithms that are used in regres-

sion problems. Some examples are the Linear regression and the Multilayer Perceptron

(section 2.7).

2.3 Machine Learning Taxonomy

According to [31], "machine learning is the idea of teaching computers to predict

or classify data without being explicitly programmed for such tasks". Different ways of

dealing with multiple problems resulted in a wide variety of different machine learning

algorithms.

Machine learning algorithms can be classified into three main groups:

• Supervised Learning;

• Unsupervised Learning;

• Semi-supervised Learning.

In the following subsections, we describe each of these three groups in detail.

5

CHAPTER 2. STATE OF ART

2.3.1 Supervised Learning

Supervised learning refers to machine learning algorithms that learn a mapping func-

tion that associates a collection of input training data points X1, X2, ..., Xp to the corre-

sponding output data points Y1, Y2, ..., Yp. Supervised learning algorithms work based

on equation 2.1.

Y = f (X) (2.1)

In this equation, X corresponds to a set of input data points, Y corresponds to a set

of output data points and f is the mapping function created by a machine learning

algorithm.

Some examples of supervised learning algorithms that are commonly used are Support

Vector Machine (SVM) (described in section 2.6), Random Forest (described in section

2.5), Decision Trees, Linear regression, Naive Bayes Classifiers and many others [24].

2.3.2 Unsupervised Learning

Unsupervised Learning is the opposite of supervised learning, where only exists input

data but no output variables or labels. None of the data can be pre-classified beforehand

so, the machine learning algorithm has to model and classify the input data based on

distinct features present on the data.

Some examples of unsupervised learning algorithms that are commonly used are Prin-

cipal Components Analysis (PCA) (described in section 2.4), One-Class SVM, Isolation

Forest, K-means, Autoencoder (described in section 2.8) and many others [45].

2.3.3 Semi-supervised Learning

Semi-supervised learning is a mixture of unsupervised and supervised learning be-

cause, of the input data points that exist, only a few are labeled (have a corresponding

output data point or label) and, the rest is unlabeled.

Because most of the data is unlabeled, according to [64] and [25], semi-supervised al-

gorithms, in general, operate in the following manner: First, a semi-supervised algorithm

is trained using the labeled data to obtain a model that is capable of labeling future data.

Then, this model is used to predict the labels of the unlabeled input data. Finally, these

predicted label data and the initial labeled data are combined into a new dataset that will

be used to train again the same semi-supervised algorithm used initially.

In [45], we have some examples of semi-supervised learning algorithms.

6

2.4. PRINCIPAL COMPONENTS ANALYSIS (PCA)

2.4 Principal Components Analysis (PCA)

According to [70, p. 99], reducing the dimension of a set of data is about getting rid

of "uninformative information" while maintaining the data that is crucial. PCA focuses

on the notion of data that linearly depends on each other (that is, linear dependent) as

data that does not contain relevant information [70, pp.99–100].

PCA has applications in many types of problems like classification of datasets, ex-

traction of relevant features (attributes) from the data, and dimensionality reduction of a

dataset.

To demonstrate how PCA works, we have a simple example in figure 2.1. This example

is based on [3, pp. 158–159]. In this figure, we have a plot with two axes: X1 and X2.

These represent the two features from dataset X. We can also see that the samples of

dataset X take a form of a stretched circle. Furthermore, we can say that it is much more

stretched along the 1st principal component direction compared to the 2nd component

direction. In mathematical terms, we refer that the variance of 1st principal component

direction is greater than the variance of the direction of the other component. In PCA,

these directions are named after the main components (Principal Components).

Figure 2.1: PCA with two components (adapted from [3, p. 159])

As stated in [3, p. 159], PCA’s strategy, to reduce the number of features of dataset X,

is to project all the samples from this dataset, from a 2D plane to a 1D plane (with only

one dimension). The data of the second component (PC2) will be lost in the reduction

process and, the total number of features of dataset X is reduced to one.

In summary, the basic idea behind the PCA technique is to replace the original re-

dundant features with a reduced number of features that can adequately summarize the

information contained in the original dataset [70, p. 101].

Standard PCA is able to reduce linearly separable data (e.g, data that can be separated

7

CHAPTER 2. STATE OF ART

using a hyperplane) but with data that is not linearly separable, the linear transformation

will not work as well as in the first case. So, to solve this problem, we have to use an

extension of the Standard PCA called Kernel PCA (kPCA). This method uses a kernel

function to project linearly inseparable data into an higher dimension where it is linearly

separable [3, p. 161].

2.4.1 Implementation Examples

In [38], the authors proposed a load estimation system for cloud networks. This system

is based on an ESN (echo state network) neural network for the study of the network’s

temporal evolution. In this case, they used kPCA to reduce the size of the initial database

and so, avoid the problem of over-fitting. Overfitting occurs in situations where, the

model produced by a neural network or another machine learning algorithm perfectly

adapts to the training data and does not consider minor errors in it. We address the

overfitting problem in section 5.4, when we implement a multilayer perceptron (see 2.7).

According to [38], kPCA was chosen in deterioration of linear PCA, given the former’s

ability to apply a nonlinear transformation from the input data space to a larger space.

With this transformation, kPCA is able to represent and extract the main components of

the data set.

Another example is the implementation proposed in article [60]. In this article, the

authors proposed PCA as a method for improving the accuracy of an SVM classifier for

intrusion detection. In a first stage, PCA had the function of finding the optimal subset

of all attributes present in the initial dataset. Then, in a second stage, this subset is used

as a training dataset and test dataset for the SVM classifier. After applying this method

to a dataset, they achieved better accuracy, detection rate and reduced false alarm rate

with the implemented method (PCA + SVM) compared to the stand-alone SVM classifier.

2.5 Random forest (RF)

The Random Forest algorithm uses an aggregation of several different decision trees

to make predictions or classify data. The main philosophy behind Random Forest is that

the joint use of several decision trees can give more accurate results compared to the use

of a single tree.

As we can see in figure 2.2, each decision tree has its own result for the classification

of the input data. The result that is obtained by the majority of the trees, will be the final

result of Random Forest.

The prerequisites (according to [66]) that have to be fulfilled for Random forest to

perform well are:

8

2.5. RANDOM FOREST (RF)

• the predictions and errors produced by each tree must have a low correlation;

• the features present in the data has to be poorly correlated.

Figure 2.2: Random Forest Decision Scheme (adapted from [66])

To guarantee these prerequisites, strategies such as Bagging (Bootstrap aggregation)

can be applied. As described in [66], decision trees are very sensitive to changes in the

training dataset so this strategy takes advantage of this fact by making each tree choose

random samples from the training dataset and use it in their training phase. In the end,

Bootstrap aggregation can assure that we have a set of trees that are not correlated with

each other (that are different from each other).

Figure 2.3: Feature Randomness (adapted from [66])

Another strategy used is Feature Randomness. In the simple decision tree method

(left side of figure 2.3), a node is split using only one feature which is chosen from all

the available features in the dataset. As stated in [66], the feature that is considered is

the one that produces the most separation between the data in the left node vs. the data

in the right node. But in random forest (right side of figure 2.3), we can only consider a

9

CHAPTER 2. STATE OF ART

feature that is part of a randomly selected subset of the total number of features in the

dataset. This allows for greater variation between the trees and guarantees low correlation

between them [66].

2.5.1 Implementation Examples

As an example of a real implementation of this algorithm, we have [33]. The authors

proposed a regression model that could be used to estimate the number of containers

necessary to satisfy the needs of the network, in a determined time window. In order

to choose the machine learning method to create the regression model, a comparison

was made between SVM (described in 2.6), Random Forest (described in 2.5) and other

methods (presented in [33]) for three load levels of the system: normal load, ladder load

(abrupt drop in load for a few minutes and then, an abrupt rise in network load) and

load in Zigzag (sudden load spikes). In the end, the authors obtained, on average, better

results with Random Forest.

Another example is the article [19]. The authors proposed a model of a IDS (Intrusion

Detection System) using a random forest classifier. The main goal was to make an IDS

system that could identify and notify the activities of users as normal or abnormal (prob-

ably an intruder) based on the network traffic data. The authors implemented Random

Forest to classify four different attack types [19].

In the experimental phase, the authors decided to do three implementations and

compare them based on certain performance metrics. These three implementations were

a single decision tree based classifier, random forest using a feature selection metric

named Symmetrical uncertainty (detailed in [19]) and random forest without previous

feature selection.

As stated in [19], the performance metrics used to evaluate this implementation were:

• Accuracy: Metric described in subsection 2.11.3;

• Detection Rate: It is the ratio between the total numbers of attacks detected by the

system and the total number of attacks present in the dataset;

• False Alarm Rate: It is defined as the ratio between the wrong detection of attack

(essentially, a false alarm) and the total number of attacks detected by the system;

• Mathews Correlation Coefficient: This metric is defined as the ratio between the

observed and predicted binary classifications (more details in [19]).

Results showed that random forest with previous feature selection is on average better

than the other two approaches.

10

2.6. SUPPORT VECTOR MACHINE (SVM)

2.6 Support Vector Machine (SVM)

SVM is a machine learning algorithm that is commonly used in classification problems

but, it can also be used in regression problems. When used in regression problems, SVM

is named as SVR (Support Vector Regression).

SVM can deal with two types of situations. The first one is when the data that must

be classified is linearly separable (as in figure 2.4). The other one is when the data that

must be classified is not linearly separable (as in figure 2.5).

In subfigure 2.4(a), there are several data points associated with two classes: I and

NI. There are several possible linear hyperplanes (represented in the figure as dashed

lines) that can separate these data points, but linear SVM has to find only one of those.

So, the way that linear SVM approaches this problem is by choosing the hyperplane that

provides the largest margin between the samples from classes I and NI (subfigure 2.4(b)).

This hyperplane serves as the decision boundary between the samples from both classes

and, according to [26], it is called maximum marginal hyperplane (MMH). The margin

corresponds to the shortest distance from the MMH to the closest data points of both

classes. These data points are shown with a thicker border on subfigure 2.4(b), and they

are called support vectors.

(a) Linearly Separable Data (b) Linear SVM and Decision Boundary

Figure 2.4: Application of Linear SVM on linearly separable data (both figures were
adapted from [26, pp. 409–410])

In the case of data that is not linearly separable, linear SVM does not separate very

well the two classes, as seen in figure 2.5. So, we have to extend the linear SVM method

to a nonlinear one. As stated in [26, p. 413], the idea is that data, which is not linearly

separable in a n dimensional space may be linearly separable in a higher-dimensional

space. So, what nonlinear SVM does is using a kernel function to obtain the hyperplane

that best fits the input data.

11

CHAPTER 2. STATE OF ART

Figure 2.5: Linear SVM with Non-linearly Separable Data (adapted from[26, p. 413])

2.6.1 Implementation Examples

In [35], the authors proposed two different approaches for creating a failure estima-

tion model for a HPC (High Performance Computing) network. The authors tested two

approaches: classification and prediction using time-series.

For testing the classification approach, the authors implemented a SVM classifier

and compared it with other machine learning methods namely, Random Forest, kNN (K-

Nearest Neighbor) and other methods described in [35]. After pre-processing the dataset,

the authors tested all the implemented methods based on how well these models could

classify these five types of failures: Human error, Software, Hardware, Network and

Undetermined. To measure how well these models could classify the dataset, the authors

used metrics like Accuracy (described in subsection 2.11.3), RMSE (presented in section

2.8.2) and other metrics described in [35].

In the end, the results showed that SVM obtained good results in terms of accuracy.

Hence, this method based model has higher prediction accuracy compared to the other

models.

As a second example of implementation, we have [39]. The authors proposed an

SVM classifier for fault detection in wireless sensor networks (WSN). SVM is used to

define a decision function. This decision function is then executed at cluster heads to

detect anomalous sensors. Through some experiments, the authors’ goal was to show

the effectiveness of the two proposed methods when compared with other classification

methods described in [39].

In the experimental phase, the proposed solution was tested with a dataset that con-

tained several common faults that occur in WSNs. Namely, these were gain fault, stuck-at

fault, data loss fault, out of bonds fault and random fault. After training all the imple-

mentations, the authors used two metrics: Detection accuracy and false positive rate

12

2.7. MULTILAYER PERCEPTRON (MLP)

(described in subsection 2.11.3). These metrics were used to compare all the implemen-

tation methods and to see which was the most effective in detecting faults in the dataset.

The results showed that the SVM classifier could detect with an accuracy of 90% or above

faults that occur with 10% to 50% of probability. The average value of false positive rates

of SVM classifier were inferior to the other methods implemented.

2.7 Multilayer Perceptron (MLP)

A multilayer perceptron or feed-foward neural network (FFNN) is an artificial neural

network. The reason this network is called feed-foward is that information only flows

forward through the network. First, it comes from the input layer, then goes through the

hidden layer (s) and finally, arrives at the output layer.

Figure 2.6 shows the structure of the MLP. As we see in the figure, MLP is divided in

three main layers: Input layer, Hidden layer and Output layer.

Figure 2.6: Model of an MLP network with one hidden layer (adapted from [1, p 328])

The input layer provides the input data to the MLP network. No computation is

performed in this layer. Its main goal is to pass information to the hidden layer(s). The

hidden layer is where the multiple computation operations are performed. The MLP can

have one or more hidden layers, depending on the problem. The output layer provides

the results of all computations done by the network.

Each MLP layer is composed of neurons. These neurons grant a non-linear behavior

to the MLP because they have activation functions. These functions can be changed

according to the purpose of the network. Depending on the activation function used,

the MLP can be used in many different problems, including classification and regression

problems (both described in section 2.2). There are several functions that can be used in

an MLP (see [40] and [41]) but, the main three used in this dissertation are the Sigmoid,

ReLu and Linear functions:

13

CHAPTER 2. STATE OF ART

• Sigmoid: The sigmoid or logistic sigmoid function is described by equation 2.2,

where x represents any variable that can take any real-valued input.

φ(x) =
1

1 + e−x
(2.2)

Figure 2.7 shows the plot of the Sigmoid function. As we can see, the Y-axis is

bounded between 0 and 1. Because of this, Sigmoid is often used in problems where

the main goal is to predict a probability as an output, since the probability of a

certain event is always in the range of 0 and 1.

Figure 2.7: Sigmoid Function Plot

• ReLu: Rectified Linear Unit or ReLu is a rectified function which means that, unlike

Sigmoid, this function is a branch function. ReLu can be described by equation 2.3.

φ(x) =

 0 if x < 0

x if x ≥ 0
(2.3)

As we analyze equation 2.3, we notice that, depending on the value of x, φ(x) can be

either 0 or greater. This means that the output of a ReLu function is always between

0 and +∞. This can be observed in the plot of the ReLu function, which is present

in figure 2.8.

Figure 2.8: ReLu Activation Function

14

2.7. MULTILAYER PERCEPTRON (MLP)

In the context of this thesis, ReLu is used as the activation function in the hidden

layers of all MLP implementations presented in sections 5.4, 6.2 and 6.3.

• Linear: The linear activation function is the identity function (φ(x) = x), where

the input dependent variable x is equal to independent variable f (x). In resume,

it means that this function does not changed the input variable value. Figure 2.9

shows the plot of the linear activation function.

Figure 2.9: Linear Activation Function

As described early in this section, the MLP can be used in many types of problems

including classification and regression problems. Until now, we described only a simple

MLP configuration with just one hidden layer. When dealing with more complex and

harder to solve problems, this configuration might not be enough. There might be the

need to add more hidden layers and more units to these layers. This is the main goal

behind Deep Neural Networks (DNNs). DNNs are neural networks that use many hidden

layers and units to extract more complex features from the input data and improve the

performance of these networks. Depending on the input dataset, MLP networks with two

hidden layers can even outperform simple MLPs with one hidden layer [61].

2.7.1 Implementation Examples

In [46], the authors implemented and evaluated the performance of several models

used for predicting the end-to-end tail latency of microservice workflows on cloud plat-

forms. The methods implemented were Linear regression, SVR, Decision Tree, RF and

a deep MLP composed of multiple hidden layers. Initially, the authors selected a few

input features for defining the input data of the implemented methods. These features

were the average CPU (Central Processor Unit) utilization of load-balanced pods for each

microservice, CPU utilization or the CPI (Clock Cycles per Instruction) of VMs that host

the pods and number of concurrent clients.

15

CHAPTER 2. STATE OF ART

With the final results, the authors concluded that the proposed deep MLP regression

model fits the data better than the other models and outperforms all the other models in

terms of prediction accuracy.

The second example of an MLP implementation is article [36]. In this case, the authors

proposed a model for classifying web services based on a MLP. The methodology was

training a MLP with three different algorithms and compare them using the same dataset

for training and testing. The three algorithms used were: Backpropagation, Tabu search

and Levenberg-Marquardt. All these three learning algorithms are described in detail in

[36].

After the training phase, the authors evaluated the three implementations based on

metrics like classification accuracy, average recall, average precision and RMSE (described

in subsection 2.11.4). Classification accuracy is the same as the accuracy metric presented

in subsection 2.11.3. Both the average recall and average precision are just the average

values of the recall and precision metrics described in subsection 2.11.3.

The results showed that MLP with Tabu search algorithm outperformed the other two

implementations in all the considered metrics.

2.8 Autoencoders (AE)

The basic idea behind the autoencoder is to try to replicate the input data so that the

output is as similar as possible to the input.

It seems that the replication of the input is an extremely easy process because the

network can just copy the input data and pass it from the input layer to the Hidden

Layer(s) and finally, copy it to the Output Layer. However, according to [2, p. 71], this

is not possible when we impose a restriction on the number of units that are part of the

hidden layer. This imposed "bottleneck" forces the autoencoder to perform a compressed

replication of the original input data. As stated in [27], this compression also forces the

network to find patterns in the data that can somehow be used to obtain a final result

that has a smaller state space. In short, this replication process will inevitably be lossy

[2, p. 71]. In the figure 2.10 we can see the structure of a basic autoencoder with the

"bottleneck" constraint.

As explained in [2, pp. 71–72], the reduced representation of the data is also called

code and the number of units in the hidden layer corresponds to the code size. The phase

corresponding to the entry of the data in the input layer plus the processing in the hidden

layer, is called encoding (because the size of the data under analysis is reduced, after

the encoding phase). In the output phase, the data is reconstructed again to its original

dimension. This reconstruction is done based on the reduced version of the input data

16

2.8. AUTOENCODERS (AE)

Figure 2.10: Structure of a autoencoder with one hidden layer (adapted from [27])

produced in the encoding phase. This final phase is called decoding.

As problems escalate in complexity, there is a need to increase the number of inter-

mediate layers in the autoencoder. This gave birth to what is called a deep autoencoder

(depicted in figure 2.11). According to [2, p. 78] and [23], the increase in the number of

intermediate layers can have two main advantages:

• It improves data representation capacity (that is, it improves the autoencoder’s

ability to retain the same amount of information present at the input but in a more

compact dataset);

• It increases the autoencoder’s ability to identify data with even more complex pat-

terns, which may be present on the input dataset(s).

Figure 2.11: Deep Autoencoder with L layers (obtained from [13])

17

CHAPTER 2. STATE OF ART

Given their ability to reduce data representation, autoencoders are used for reducing

the dimensionality of the data sets under analysis.

2.8.1 Autoencoder Variants

An inherent disadvantage of autoencoders is that "they can simply copy the entire

input data to the output, without learning any meaningful representation"[14]. This is

because it is not enough to choose the number of intermediate layers and the number of

units in those layers. We have to adopt strategies that allow us to restrict the autoencoder’s

ability to just copy the input to the output. One is the bottleneck strategy that has been

described in this section. However, this is not the only one. We also have other variants

of autoencoders such as sparse autoencoders (SAE), denoising autoencoders, variational

autoencoders, among others (examples and explanation of other methods are presented

in [14] and [23]).

These variants have different philosophies from the autoencoders referred in this

section. For example, the philosophy behind SAE is that instead of reducing the number of

nodes in the hidden layer, restrictions are imposed on the minimum number of units that

can be active in the hidden layer(s). This additional restriction will cause the autoencoder

to represent the input data through a reduced number of active units (which are units that

produce non-zero results on its computations) and, forcing it to discover new patterns

within the data. According to [27], an immediate result of this fact is that it allows this

neural network to assign each unit present in the hidden layer to attributes present in the

data (more details in [27] and [14]).

2.8.2 Implementation Examples

Autoencoders can be used for creating a reduced representation of the original dataset

and then, "feed it" to the machine learning algorithm like what was done in [10]. The

authors proposed an hybrid approach, which is based on a autoencoder and in a deep

neural network, for classification and detection of malicious network traffic, primarily,

distributed denial of service(DDOS) attacks.

In the proposed hybrid classification model, the autoencoder is used to learn a com-

pressed representation of the network traffic data. Then, DNN classifies the compressed

data using two class labels: Normal or Malicious.

To verify the performance of their approach, the authors considered metrics like

F1-score, accuracy, precision and recall (all these metrics are mentioned in subsection

2.11.3). The ROC and Precision-Recall (PR) curves were also used to measure the overall

performance of the hybrid classification model. A discussion about ROC curves and how

we can acquire information about them is presented in subsection 2.11.3. The PR curve

18

2.9. LONG SHORT TERM MEMORY (LSTM)

shows the trade-off between precision and recall for different classification thresholds. A

classification threshold represents the boundary between two classes.

The results showed that the proposed approach obtained very high values in all met-

rics considered. Also, according to [10], the analysis of the ROC and PR curves also

suggested that the hybrid classification model is very robust. This is because the false

positive rate is very low (close to 0) and the true positive rate is close to 1 (nearly perfect).

The PR curve also confirms that the precision and recall scores obtained by the proposed

model are very high.

Autoencoders can also be used for anomaly detection or outlier detection based on di-

mensionality reduction. In [49], the authors describe a nonlinear autoencoder for anomaly

detection in a real dataset and in a artificial dataset. As stated by the authors, the logic

behind the proposed idea is to train an autoencoder with a previous selected dataset to

create a model that fits this same dataset. This model will create a compressed repre-

sentation of the original dataset. After that, the reconstruction of the original data is

done using this compressed representation. The reconstruction error is measured using

the RMSE (Root Mean Square). Essentially, RMSE is the square root of the mean of the

square of all of the error. The error is the difference between the original data and the

reconstructed data. This metric is described, in more detail, in subsection 2.11.4.

According to [49], if the RMSE value begins to increase as the reconstruction process

is done, it means that anomalies were found. The authors compared the autoencoder with

other methods used for dimensionality reduction like Standard PCA and kPCA (presented

in section 2.4) and another variant of autoencoder, that is denoising autoencoder. These

comparisons were made by doing some experiments with two datasets: a real dataset

and a artificial dataset generated using the Lorenz equations system (further described

in [49]). The final results showed that: For the first dataset, Standard PCA had failed to

show a significant difference between the anomalies and the normal data but, the other

non-linear techniques (kPCA, autoencoder and denoising autoencoder) performed very

well by finding most of the anomalies. The authors was also noted that denoising autoen-

coder performs better than the normal autoencoder. For the second dataset, all methods

succeeded in detecting anomalies although, denoising autoencoder outperformed the

other three techniques.

2.9 Long Short Term Memory (LSTM)

LSTM is a type of RNN (Recurrent Neural Network) that can process entire sequences

of data (such as videos or voice). It learns from past experience (long-term). Unlike FFNN

units (see section 2.7), RNN units can have feedback loops. This allows the network to

take information from prior learning steps in order to use it as input in the next step.

19

CHAPTER 2. STATE OF ART

While FFNNs assume that both the inputs and outputs are completely separated and

independent from each other, the output of a RNN depends of prior inputs [18].

LSTM was developed to overcame the disadvantage of standard RNNs that "quickly

forget what they learn" [12]. Therefore, the purpose of using this neural network is to

improve memory capacity by training it to memorize relevant information from past

events and "forget" what is not relevant information [12].

In figure 2.12, we can observe a block of memory present in the common LSTM. This

is composed of several memory blocks such as the one in the figure.

Each memory block contains memory cells, which make up the LSTM memory part

and three regulators: input gate, output gate and forget gate. Depending on the LSTM

variant, there are different types of gates and different structures of memory blocks:

• The memory cell (cell in figure 2.12) is responsible for memorizing all dependencies

between the input data sequence;

• The input gate (in the figure we have input) controls the input of the block and

defines the data that will enter the cell;

• The forget gate defines what data remains in the memory cell and for how long it is

stored;

• Finally, the output gate defines which values will be used in the calculation of the

estimated value (final result). The result of the calculation will be the estimation of

the LSTM based on the input data sequence.

2.9.1 Implementation Examples

This type of neural network, as well as classical RNN, is widely used to estimate the

temporal evolution of a system based on time-series data of said system. However, it can

also be used in data classification problems.

The first example of application is [5]. In this, the authors intend to estimate the

traffic matrix of a network. They further define that "the estimation of a traffic matrix

corresponds to the problem of predicting future traffic based on samples from the past".

These samples correspond to the collection of traffic data from the network carried out

in the past. With the samples of data obtained, the authors decided to choose the imple-

mentation of an LSTM instead of the classic RNN as the former is more indicated in the

classification, processing and estimation of time series.

In addition to implementing an LSTM, the authors also developed models using

classic estimation techniques such as ARIMA and HoltWinters (both described in [5]),

20

2.9. LONG SHORT TERM MEMORY (LSTM)

Figure 2.12: Memory Block on LSTM (obtained from [69])

and a FFNN (see section 2.7) for the purpose of comparison and analysis between classical

estimation methods and neural networks. In order to assess the accuracy of each model,

the authors used as performance metrics the mean square error or MSE. MSE is basically

the RMSE metric but without the initial root square so it is just defined as the mean of

the squares of the difference between all predicted data and all sample data. MSE and

RMSE metrics are described in subsection 2.11.4.

The results obtained favored the LSTM instead of the other techniques, which pre-

sented higher MSE values.

The second example of application is described in article [48]. In this, the authors

implement an LSTM-autoencoder and an One-class SVM to detect network anomalies in

an unbalanced dataset. This hybrid model was proposed with the goal of archiving better

results on the detection of anomalies in a SDN (Software-defined Network) by using a

lower representation of the input data that is, the result of a LSTM-autoencoder.

The basic idea behind [48] approach is to train an LSTM-autoencoder with normal

traffic data (without anomalies) to learn a compressed representation of the input data

and learn patterns that can classify this data as normal. Then, the compressed represen-

tation is the input data of a One-class SVM. The authors stated that this hybrid model

overcomes the shortcomings of the One-class SVM, namely its low capability to operate

with large and high-dimensional datasets.

The authors evaluated the proposed model by comparing it to a stand-alone One-class

SVM approach (more details in [48]). The final results favored the proposed model in all

21

CHAPTER 2. STATE OF ART

the metrics used: F1-score, accuracy, recall and precision. The hybrid model was faster in

terms of training time and test time in comparison with the stand-alone One-class SVM

approach.

2.10 Hybrid ML models

Hybrid ML models are the combination of two or more different ML models. These

models have the potential to produce better results compared to a single ML model.

In this dissertation, we combine Linear Regression model and a MLP model to archive

better prediction results. This improvement can be seen when comparing with the results

archived by the MLP Regressor alone.

Another example of hybrid model is the use of an autoencoder plus another different

model like Random Forest. The autoencoder learns how to compress the input data. The

resulted compressed data is then, fed to Random Forest to classify this same data into

different classes.

2.10.1 Implementation Examples

In [17], the authors propose an hybrid ML model for network intrusion detection.

This technique consists of a combination of a multi-layer Autoencoder (deep autoencoder

2.8) and a Deep MLP classifier (MLP with four hidden layers).

As stated in [17], the proposed model is organized in two stages. In the first stage,

a deep Autoencoder is used to find the most relevant features in order to maximize the

classifier performance. According to [17], "the performance of a classifier highly depends

on the selected features". In resume, the main function of the deep Autoencoder in the

first stage is to only select the most important features of the input dataset and produce

a compressed dataset that only contains these features (The Autoencoder compression

process was already discussed in section 2.8). So, the output of the first stage is a com-

pressed version of the input dataset. The second stage is composed of a Deep Neural

Network (DNN). This DNN is a four-layer MLP or four-layer feed-forward DNN. The

main function of this neural network is to classify the input data in two different classes:

"Normal"and "Anomaly".

The authors of [17] evaluated the proposed approach by comparing it to a stand-alone

Random Forest classifier and a standalone Deep MLP classifier. The performance metrics

used to evaluate the three algorithms were: F1-score, accuracy, recall, precision and False

Positive Rate (FPR). All these metrics are described in subsection 2.11.3. The final results

favored the proposed hybrid model in all performance metrics used. Finally, the study

concluded that the proposed model differs from the other two models because of the

use of a deep autoencoder, which performs a latent representation of input data and the

22

2.10. HYBRID ML MODELS

Deep MLP Classifier which has greater generalization capabilities that help improving

the performance of the classification decision.

Another example of hybrid models is the joint use of deterministic models and neural

networks. In [11], the authors propose an hybrid approach, which combines empirical

propagation models and neural networks in order to predict the signal path loss for sub-

urban areas. Empirical models are one type of propagation models that "do not accurately

predict the radio waves comportment, depending more on field strength from that spe-

cific environment to give an approximation based on measurements."[11]. The empirical

propagation models used were Ericsson 9999, Free Space, ECC-33, and TR 36.942 (these

models are described in [11]).

According to [11], the problem of predicting the path loss between two terminals

can be resumed to finding a function of several inputs and a single output (which is

the predicted path loss). The inputs can contain information about the locations of the

transmitter and receiver, frequency of the transmitted signals, location of surrounding

buildings, etc.

Before implementing the proposed approach, the authors of [11] did a measurement

campaign on an area that presented a regular density of vegetation and medium-sized

buildings. In [11], this environment is characterized as suburban. The main goal of the

measurement campaign was to acquire real measurement data. It was measured the path

loss archived by several radio waves, transmitted at 800 MHz and 2600 MHz.

After doing the measurement campaign, the authors calculated the theoretical path

loss using all of the four empirical propagation models. According to [11], there were

four parameters that were necessary to provide for each model:

• Parameter d, which is the distance between transmitter and receiver;

• Parameter f that represent the frequency (in MHz) of the transmitted signal;

• Parameters hTX and hRX represent the transmission antenna height and reception

antenna height, respectively. Both are measured in meters (m);

• ParameterGr , which is the receiver antenna gain. This parameter was only necessary

for EEC model [11].

The proposed hybrid approach is composed of a FFNN neural network, which is

trained to learn the difference between the measured path loss and theoretical path loss

(called E). The neural network has two inputs: the parameter d and the difference be-

tween measured and theoretical path loss. The output is the path loss correction, which

23

CHAPTER 2. STATE OF ART

is the difference between the measured path loss (obtained from the measurement cam-

paign) and the difference E. The authors did four different implementations of the hybrid

approach. Each uses one of the four propagation models available.

In order to compare the performance of the four hybrid implementations, the authors

implemented a simple FFNN neural network, which is trained using the measured data.

This network also is trained to predict the path loss archived by the transmitted signals.

They also compared the performance of the hybrid approach with another approach that

is, the use of only the four empirical propagation models to calculate the path loss. In

resume, the authors of [11] compared these three options:

• The hybrid approach, which is composed of four different implementations, each

using one of the considered propagation models: Ericsson 9999, Free Space, ECC-33,

and TR 36.942 (these models are described in [11]);

• The simple approach, which uses a simple FFNN neural network. This network is

trained using the measured data, in order to predict the path loss of a transmitted

signal;

• The use of the four empirical propagation models alone in order to predict the path

loss of a transmitted signal.

The authors chose the performance metric RMSE (described in subsection 2.11.4) to

evaluate and compare the performance of the three options described above.

The final results [11] suggested that the hybrid approach was the better option out

of the three because it achieved the lowest RMSE (very close to zero). The results also

showed that the simple neural network approach was also a viable option because it

obtained good results in terms of RMSE and the predicted path loss is very similar to

the measured path loss (for both frequencies). The use of only empirical propagation

models to calculate the path loss of transmitted signal showed the worst results in terms

of RMSE.

2.11 ML Methods Evaluation

After the implementation of multiple ML methods, we need to evaluate and compare

all of them, based on their performances. In order to do this, we used certain metrics,

commonly used in classification and regression problems, and specific methods to do our

performance evaluation.

We begin this section with the definition of the cross-validation method. Next, we

present the notion of the confusion matrix. Finally, we state all evaluation metrics used

to evaluate the performance of all methods implemented in chapters 5 and 6.

24

2.11. ML METHODS EVALUATION

2.11.1 Cross-Validation

Cross-validation is a statistical method commonly used in machine learning to eval-

uate ML models. In the context of this thesis, we used K-Fold cross-validation. This

method is primarily used in the implementations discussed in sections 5.2 and 5.3.

K-Fold Cross-validation[51] is a method that splits the dataset equally into K groups.

One group is selected to test and evaluate the model while the remaining groups are used

to train the model. Then, after training and testing the model, a different group is selected

to evaluate and test the model. This process is repeated K times until all groups are used

for testing the model. After K rounds, the performance of the model is the average of all

the performances obtained in all K rounds. When using an Hyperparameter tuner like

RandomizedSearchCV[56], each grid combination is used to train a model and then, it

is evaluated using a Cross-validation method like, K-Fold. In figure 2.13, we can see the

split process done in 5-Fold Cross-validation. In this case, K is equal to 5 so, we have a

total of 5 iterations for training the model. Common K values used are 3, 5 and 10.

Figure 2.13: Split Process done in 5-Fold Cross Validation

2.11.2 Confusion Matrix

First, in order to distinguish the predictions made by the classification algorithms and

to make the explanations of the metrics used to evaluate the classification methods easier,

we decided to define the following terms:

• Positive predictions: Total number of bookings that were classified as being part

of the class NI (Positive Class);

25

CHAPTER 2. STATE OF ART

• Negative predictions: Total number of bookings that were classified as being part

of the class I (Negative Class).

After introducing the above terms, we can now describe the confusion matrix. A

confusion matrix is commonly used to evaluate the overall performance of a classifier

in a test dataset. In the context of this thesis, we only implemented binary classifiers

(classifiers that only consider two classes) so, the structure of the confusion matrix used

is like the one present in figure 2.14.

Figure 2.14: General Structure of a Confusion Matrix (adapted from [37])

In order to construct a confusion matrix, it is necessary to know the value of these

four classification terms:

• True Positives (TP): True positives correspond to the number of positive predic-

tions that the classifier correctly predicted. In this case, these predictions corre-

spond to bookings that are actually part of class NI and were classified as being part

of that class;

• False Positives (FP): False positives correspond to the number of negative pre-

dictions that the classifier incorrectly predicted. In this case, these predictions

correspond to bookings that are actually part of class I but, were classified as being

part of class NI;

• True Negatives (TN): True negatives correspond to the number of negative pre-

dictions that the classifier correctly predicted. In this case, these predictions corre-

spond to bookings that are actually part of class I and were classified as being part

of that class;

26

2.11. ML METHODS EVALUATION

• False Negatives (FN): False negatives correspond to the number of negative pre-

dictions that the classifier incorrectly predicted. In this case, these predictions

correspond to bookings that are actually part of class NI, but were classified as

being part of class I.

2.11.3 Evaluation Metrics: Classification

In this subsection, we present the metrics used to evaluate all classification methods

implemented in chapter 5.

Accuracy

Accuracy measures the percentage of correctly classified samples in all the predictions

made by the classifier. This metric is calculated using equation 2.4, where n_samples

corresponds to the total number of predictions made by the classifier.

Accuracy =
T rueP ositives+ T rueNegatives

n_samples
(2.4)

Recall

The recall metric tells us how well the classifier is at correctly identifying all class NI

samples. In other words, of all class NI samples present in the dataset, how many of these

could the classifier correctly identify as being part of this class. Recall is calculated using

equation 2.5.

Recall =
T rueP ositives

T rueP ositives+FalseNegatives
(2.5)

Precision

The precision metric corresponds to the ratio between the true positives and all the

positive predictions. In other words, of all the positive predictions made by the classifier,

how many are correct. This metric is calculated using equation 2.6.

P recision =
T rueP ositives

T rueP ositives+FalseP ositives
(2.6)

F1-score

F1-score is the harmonic mean between the precision and the recall metrics. In other

words, this metric gives the same importance to both precision and recall metrics. It

conveys how balanced are the precision and recall obtained by a classifier. This metric is

calculated using equation 2.7.

F1-score = 2 × P recision×Recall
P recision+Recall

(2.7)

27

CHAPTER 2. STATE OF ART

ROC-AUC

The ROC curve (Receiver Operating Characteristic curve) is a probability curve that

shows the overall performance of a classification algorithm at all classification thresholds.

A classification threshold represents the boundary between two classes. All values that

are greater or equal to the threshold are classified as one class and the other values are

classified as another class. The ROC curve is plotted based on two parameters: the true

positive rate (TPR) and the false positive rate (FPR). The TPR (or, recall) is presented on

the Y-axis of the plot and FPR is on the X-axis. The ROC-AUC is the area under the ROC

curve and it measures the classifier’s ability to distinguish between two classes (Positive

and Negative classes). The higher the AUC value, the better the classification model is at

predicting both classes correctly. The AUC value ranges from 0 to 1. The TPR is described

by the same equation as the Recall metric (equation 2.5). The FPR metric is described by

equation 2.8:

FPR =
FalseP ositives

T rueNegatives+FalseP ositives
(2.8)

Figure 2.15: ROC Curve

Figure 2.15 shows two curves. The ideal ROC curve achieved by the perfect classifier

(red line) and the ROC curve (blue line) achieved by a classifier that has no ability to

distinguish between the different classes. We can also see that the ideal classifier has

a ROC-AUC value of 1. Also, according to [37], the No Skill curve corresponds to a

ROC-AUC value of 0.5.

28

2.11. ML METHODS EVALUATION

2.11.4 Evaluation Metrics: Regression

In this subsection, we present the metrics used to evaluate all regression methods

implemented in chapter 6.

Mean Squared Error (MSE)

The MSE metric measures the average squared error between the values predicted

by a regression model and the actual values. By calculating the square difference, MSE

is a metric that penalizes higher differences between actual and predicted values. The

lower the MSE value achieved by a regression model is, the better the model is. This is

because the difference between actual and predicted values is small. In the opposite side,

if a regression model achieves a high MSE, it means that the predicted values are very

different from the actual values. In the context of this thesis, we use both MSE and RMSE,

in order to penalize models that have higher values in these two metrics. So, we used MSE

and RMSE to evaluate the performance of all implementations presented in this chapter.

MSE can be calculated using equation 2.9:

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (2.9)

where: n = Total Number of Data Points in the Dataset

y = Actual Values

ŷ = Predicted Values

In this dissertation, y represents the true SyncTime of a sample and ŷ represents the

predicted SyncTime of that sample.

Root Mean Squared Error (RMSE)

The RMSE is the square root of MSE. It is calculated using equation 2.10.

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2 (2.10)

Mean Absolute Error (MAE)

The MAE measures the average of the absolute difference between the actual and pre-

dicted values. This metric differs from MSE because it calculates the absolute difference

and not the squared difference. Another difference is that MAE is a linear metric. This

means that all errors are weighted equally on average unlike MSE/RMSE that penalizes

large errors (large errors have more weight than small errors). MAE can be calculated

using equation 2.11:

MAE =
1
n

n∑
i=1

|yi − ŷi | (2.11)

29

C
h
a
p
t
e
r

3
Dataset Acquisition

In this chapter, we give a detailed description of the dataset that was used in this study.

In the next section, we describe the data collection process used and scripts developed

to automate this process. Finally, we summarize the process of aggregating all acquired

data to produce the dataset used.

3.1 Dataset Description

All data was collected from a cluster of three DataMiner agents: Agent 384, Agent

385 and Agent 387. These numbers are the DataMiner agent id or DMAID and they serve

to uniquely identify each agent in the cluster. From now on, in order to simplify their

identification, we will named them as DMA1, DMA2 and DMA3, respectively.

One of the main functions of these agents is to monitor multiple devices that are

part of this cluster and collect information about these devices, which can be used to

orchestrate and manage the network. A device or DataMiner device is defined as any

device with a network interface. In this dissertation, the software version of DataMiner

used was 10.1.2.0-9866 and the SRM framework used was 1.2.10.

The dataset used contains information about a total of 1472 different bookings made

between the 7th of May and the 16th of November of 2021. All steps that were taken to

acquire this dataset are presented in section 3.2.

The dataset is composed of 19 main columns:

• Booking ID: Unique identifier used to identify each booking;

30

3.1. DATASET DESCRIPTION

• Date: Date when a specific booking request was created. All bookings samples are

sorted by Date;

• Start time: Time at which the booking should start;

• SyncTime: Time difference, in seconds, between the start time and the time in

which all the resources requested in a specific booking are finally configured and

are available for use. The SyncTime is a discrete parameter and its value must be

positive and cannot be zero. It is important to note that this is the parameter that

we want to focus our study;

• Number of Resources: Number of resources included in a specific booking. A

resource exposes a functionality of a device that is available for use. (e.g. A device

that can demodulate or modulate a signal can expose two resources/functionalities);

• Number of Concurrent Bookings: Number of bookings that were scheduled or

already "started" at the same time as the booking in analysis;

• Number of Active Alarms: This parameter aggregates information about the total

number of active alarms in the cluster at a specific date and time;

• Number of Elements: Number of elements present in the cluster at a given date

and time. An element allows the DataMiner Agents to communicate with devices

in order to, for example, acquire specific vendor information of the device;

• Number of Services: Total number of DataMiner services that are present at a given

date and time in all the agents of the cluster. A service is an aggregation of elements

and/or resources and/or other services;

• Number of Views: Number of views present in the cluster at a given date and time.

It is through the use of views that we can aggregate several elements and/or services

in separate tabs. This is done in order to organize hierarchically and distinguish

each element in the DataMiner UI (User Interface);

• Physical Memory Usage [DMAID]: Memory usage (in percentage) of the agent

with id DMAID at a specific date and time. This column type appears three times

in the dataset, one for each agent;

• Total Processor Load [DMAID]: Total processor load (in percentage) of agent with

id DMAID at a specific date and time. In the same manner as the previous column,

the dataset has three columns of this type;

• Ping Src-[DMAID_SRC] Dst-[DMAID_DST]: Contains the response time in ms

(milliseconds) of a communication between two agents. The agent that originated

the ping has an id DMAID_SRC and the agent that is the destination of the ping

has an id DMAID_DST. There are three possible combinations: Ping Src-DMA1

Dst-DMA3, Ping Src-DMA1 Dst-DMA2 and Ping Src-DMA2 Dst-DMA3.

31

CHAPTER 3. DATASET ACQUISITION

3.2 Data Collection Process

Before implementing any machine learning algorithm, it is important to collect suf-

ficient data from different sources so that, these algorithms can be trained to produce

good results. In this section, it is explained the methodology used to acquire the dataset,

described in the previous section.

Before going into the details about the data collection process adopted, it is important

to clarify some aspects about the 19 parameters described in the previous section. Some

of them were very important to the data collection process while others were merely used

for indexing and sorting purposes. So, in order to make the explanations given in this

section easier to understand, we divided these parameters in three groups:

• Index specific parameters: These parameters were only used for sorting the dataset

and to uniquely differentiate each sample. Booking ID, Date and Start time are

included in this group;

• Booking specific parameters: These parameters describe a specific booking in

detail. They are the main source of information that we can acquire about each

booking. This group is composed of the Number of Resources and the Number of

Concurrent Bookings;

• Cluster specific parameters: This group can be further divided in two subgroups.

The first subgroup is composed of Number of Active Alarms, Number of Services,

Number of Elements and Number of Views. These parameters give us specific

information related to the cluster, at a given date and time. The second subgroup is

composed of Physical Memory Usage, Total Processor Load and the ping value for

each agent. These parameters give us information about the performance of each

agent, at a given date and time.

3.2.1 Booking & Cluster State Information

The first step in the data collection process is to know how to acquire information

about all bookings that were created in the cluster and how to acquire information about

the cluster state, at the time that a booking should start. With this in mind, we developed

three main scripts. These allowed us to automate the data collection process.

C# Script 1 - ThesisSilentBooking

One way to create a booking is through the DataMiner main UI. This is normally a

manual process that involves selecting a multiple set of necessary parameters, like the

number of resources described in the previous section. In order to automate the booking

creation process, we developed a C# script with the aid of both the Skyline Communi-

cations’s System Developer team and Daniela Oliveira (Co-advisor of this thesis). This

32

3.2. DATA COLLECTION PROCESS

script allowed us to automate the booking creation process by setting all the necessary

parameters beforehand.

C# Script 2 - CollectRealTimeTrendData

C# script 2 was also developed with the aid of Skyline Communications’s System

Developer team and the co-advisor of this thesis, Daniela Oliveira. Its main function is

to collect the history of all cluster specific and booking specific parameters, in a certain

day. The output of this script are multiple files. These can be grouped in the following

manner:

• Booking History: JSON files that contain information about all bookings created

in a specific day. Information about the date, booking start time, booking end

time, SyncTime value, booking ID, number of resources included in the booking

and many others can be acquired through these files. In resume, each file contains

information about multiple bookings created in a specific day.

• Cluster History: Excel .csv files that contain information about the number of active

alarms in the cluster, number of services, number of elements and number of views

for a specific day. Furthermore, it also contains the history of processor load per

agent, memory usage per agent and the ping between each agent, in a specific day.

In resume, for each parameter mentioned, we have one .csv file. So, for each day,

we have 13 .csv files in total.

All files described above are indexed by date and time in order to make the development

process of the next script easier. Finally, C# Script 2 is scheduled to run every day at

exactly at 19:20 CEST (Central European Summer Time) using the Scheduler feature

available in DataMiner.

Python Script

Although, we have the history of each cluster parameter for a certain day, we only

need the value of each parameter, at the time the booking is created (Start time). So,

in order to filter the parameter history and discover only the value of, for example, the

number of active alarms at the time a booking was created, we developed another script.

The script was fully developed in Python with the aid of the co-advisor of this thesis,

Daniela Oliveira. This script also has the goal of aggregating information. It is used to

combine all information that is outputted by C# script 2 in a single .csv file. In section

3.3, we describe the development of this script.

33

CHAPTER 3. DATASET ACQUISITION

3.2.2 Setups Definition

Now that we know how to acquire the necessary information about the bookings and

the cluster state, we need to define several test setups. These setups capture the cluster

in different network conditions, such as high processor load in all agents, low processor

load in all agents, high memory usage in all agents, etc. So, we defined these to acquire

data that describes the cluster in different network conditions.

Depending on the setup, we manually controlled the value of all the booking and

cluster specific parameters. The values of the remaining parameters, which were not

manually controlled by us, can still change due to certain factors. The first factor is

associated with the changes in the total processor load and the physical memory usage

of each agent. These parameters can change significantly, depending on the number of

events/processes that are running on each DataMiner agent. Another factor is that a

parameter’s value can be affected due to a change in another parameter. This relation

between two parameters can be discovered by analyzing correlation matrices. In section

4.3, we describe them in more detail.

The number of active alarms, number of services, number of elements, and number

of views are parameters that can be controlled manually when using DataMiner.

In order to modify the total processor load in each agent, we used a tool called CPUS-

TRES [68]. This tool allows the user to simulate high processor load conditions by defining

multiple threads running in a loop. The user can also define the load percentage per pro-

cessor core. Figure 3.1 shows the main interface of CPUSTRES. We can see that four

threads were created. Each one is running in a different processor’s core. This informa-

tion can be seen in the Ideal processor column. Each thread process is classified as a low

activity process and has normal priority.

Figure 3.1: CPUSTRES Main Interface

The Physical memory usage per agent was modified by a command-line tool called

Testlimit. This tool allows the end-user to allocate a fixed amount of memory (in MB).

Testlimit is commonly used "to stress-test your PC and/or applications by simulating

34

3.2. DATA COLLECTION PROCESS

low resource conditions for memory, handles, processes, threads, and other system ob-

jects"[47]. Both CPUSTRES and Testlimit were chosen based on [62].

Finally, to control the ping between each agent, we used a tool called Clumsy [57].

Clumsy is a network tool used to degrade the network conditions on Windows systems. It

gives the end-user several options (or, functions) to degrade the network like simulating

lag in the delivery of a packet, simulate out of order packets, simulating packet drop

conditions, etc. The option used was lag because it allows us to introduce a certain

amount of delay on the delivery of all packets between two agents.

In figure 3.2, we can observe the main interface of Clumsy. In the application’s main

interface, we can see that there is a field called filtering. This field is used to filter the

packets that we want to apply a function, which is, in our case, the lag option. In this

field, we first specify the IP address of the agent(s) that we want to delay the delivery of

packets. Then, we define the delay value in ms.

Figure 3.2: Clumsy Main Interface

3.2.3 Dataset Setups

The Dataset used is composed of data that was collected from 13 different cluster

setups.

Tables 3.1 and 3.2 show the values of all booking and cluster specific parameters for

all dataset setups. Both tables are composed of 17 columns:

• Setup: Refers to the setup number;

• No Test: Refers to the test number of a specific setup;

35

CHAPTER 3. DATASET ACQUISITION

• No Resources, No Concurrent Bookings, No Active Alarms, No Elements, No Ser-

vices and No Views: These columns refer to some of the parameters already intro-

duced in section 3.1, which are the Number of Resources, Number of Concurrent

Bookings, Number of Active Alarms, Number of Elements, Number of Services and

Number of Views, respectively;

• ProcessorLoad_1, ProcessorLoad_2, ProcessorLoad_3: Refers to the total processor

load present in agent DMA1, DMA2 and DMA3, respectively;

• MemoryUsage_1, MemoryUsage_2, MemoryUsage_3: Refers to the physical mem-

ory usage present in agents DMA1, DMA2 and DMA3, respectively;

• Ping_All: Refers to the interval composed of the minimum and maximum ping

values observed in all links connecting the three agents. This interval aggregates

the values of Ping Src-DMA1 Dst-DMA3, Ping Src-DMA1 Dst-DMA2 and Ping Src-

DMA2 Dst-DMA3 (described in section 3.1).

Each setup can be divided into a series of tests. In each test, we changed the value of

one or more parameters, depending on the setup. The difference between all setups is

the parameters that were manually controlled in each test. In the table below, we can see

that, depending on the setup, some parameters have values highlighted in bold. These

were the parameters that were manually controlled, to make that specific setup.

All 13 setups present in tables 3.1 and 3.2 can be divided in three groups, depending

on their goal. The first group of setups was done with one strategy in mind, which is to

control and modify the value of one or more parameters, in order to see their individual

effect on the SyncTime value. This group is composed of all setups between 1 and 6.

The second group of setups was done to see the effect of changing multiple parameters

at the same time in the SyncTime value. Instead of seeing the individual effect of each

parameter, we wanted to know the effect of changing multiple parameters per setup. This

group is composed of all setups between 7 and 12. Lastly, the third group is composed

of only one setup that is setup 13. Setup 13 was done in order to balance the dataset that

resulted from the previous 12 setups. We will explain the need to balance the dataset in

section 4.1.

3.3 Data Aggregation

After acquiring the data from all setups, it was necessary to aggregate it into a single

dataset. This process was fully done by the python script introduced in subsection 3.2.1.

As previously explained in that subsection, the output of C# script 2 is a group of several

files that contain information that needs to be filtered. This is because we only want

to know the values of the cluster and booking specific parameters at the start time of a

36

3.3. DATA AGGREGATION

Ta
bl

e
3.

1:
D

at
as

et
Se

tu
p

s
Ta

b
le

-P
ar

t
1

37

CHAPTER 3. DATASET ACQUISITION

Ta
bl

e
3.

2:
D

at
as

et
Se

tu
p

s
Ta

b
le

-P
ar

t
2

38

3.3. DATA AGGREGATION

booking. So, to filter the unneeded information, we developed the python script. The

other goal of this script is to aggregate relevant information into one single file. So, in

resume, the python script has two functions: filtering of non-relevant information and

aggregating relevant information that comes from the filtering process. The output of the

python script is a .csv file.

First, the python script reads multiple JSON files containing information about the

bookings that were done on a specific day. For each booking, the script only copies the

following parameter values to a .csv file: the date when the booking was created, start

time of the booking, booking ID, SyncTime value, DataMiner time of the booking, end

time of the booking, and the number of resources that are part of the booking. So, each

row of the .csv file is a booking. After this step, the script creates a column called the

number of concurrent bookings. In order to discover the number of concurrent bookings

when the service starts, the script has to know if two bookings are concurrent. So, for

example, to know if two bookings are concurrent or not, the script has to compare the

start and end time of booking 1 with the start and end time of booking 2.

Figure 3.3 illustrates a common example of booking concurrency. In the figure below,

we have three bookings: booking 1, 2, and 3. Each one of them is represented by a

different colored rectangle. The borders of the three rectangles represent the start and

end time of that booking. In this explanation, we will consider that all three bookings

start immediately, making the SyncTime value of the three bookings equal to 0 seconds.

In practice, this never occurs, it only serves to simplify the example explanation. The way

that the script knows that if two bookings are concurrent or not is by comparing the start

and end time of the two bookings. For example, booking 1 has 0 concurrent bookings

but booking 2 has 1 concurrent booking. This is because when booking 1 started, there

were 0 bookings created. Because booking 2 is created later than booking 1 and booking

1 is already running when booking 2 is created, booking 1 is considered concurrent to

booking 2. In resume, the logic applied is if booking 2 has a start time that is less or

equal to the start time of booking 1 and booking 2 has an end time that is greater than

the end time of booking 1 then, bookings 1 and 2 are concurrent.

The same logic is applied to booking 3 but in this case, booking 3 has 2 concurrent

bookings: booking 1 and 2.

After discovering the number of concurrent bookings for each entry in the .csv file,

the script needs to acquire the cluster specific parameter values, at the start time of a

booking. To do this, it has to read multiple files, which are part of the cluster history

group described in subsection 3.2.1 at C# script 2 section.

For example, if we want to know the number of active alarms present in the cluster

at 15:35, the script has to filter the number of active alarms history file and search only

39

CHAPTER 3. DATASET ACQUISITION

Figure 3.3: Concurrent Bookings Example

for an entry registered at that time. If an entry is found at that time then, the script

copies that value to the .csv file. If not, then it must search for an entry that is closer

to the time that we want. So, if the file contains an entry registered at 12:00 and then,

the next entry is only registered at 17:00, the script copies the value that is in the 12:00

entry. This can be done because the DataMiner software only registers the changes in

the parameters values, at the moment they occur. So, if the number of active alarms in

the cluster changed at 12:00, an entry is created in the number of active alarms history

file. If the file has another entry registered at 17:00, it means the parameter value did not

changed until 17:00.

40

C
h
a
p
t
e
r

4
Data Analysis

In order to gain further insight of the dataset, we decided to use some methods to

analyze it. In this chapter, we describe the three methods used: t-SNE (t-distributed

Stochastic Neighbor Embedding), CDF (Cumulative Density Function) and Correlation

matrix.

4.1 Cumulative Density Function (CDF)

In a first instance, we study the cumulative density function of the SyncTime parame-

ter, in the dataset. The CDF describes the probability that a given variable X has a value

less than or equal to a given value x. In the context of this thesis, the CDF describes the

probability of a given booking sample to have a SyncTime below or equal to 10 s, for

example. The CDF is characterized by the following equation:

FX(x) = P (X ≤ x), x ϵR (4.1)

In equation 4.1, X represents the SyncTime parameter, x represents an arbitrary value,

FX is the cumulative function of variable X and P (X ≤ x) is the probability of variable X

be below or equal to an arbitrary value x.

The main goal of the CDF analysis is to study the frequency distribution of SyncTime

values in the dataset.

Figure 4.1 shows the plot of the dataset CDF. In the x axis, we have the range of Sync-

Time values present in the dataset and in the y axis, we have the cumulative frequency of

the samples in the dataset. The plot shows that nearly 50% of the total dataset samples

have a SyncTime value between 1 and 5 s. This means that the samples of this dataset can

be almost equally divided in two groups or classes, depending on the SyncTime value.

41

CHAPTER 4. DATA ANALYSIS

Figure 4.1: Dataset CDF plot

After seeing the dataset CDF, we decided to divide it in two classes, based on the

SyncTime value. This process was done in order to begin the implementation of the

classification approach. Based on Skyline’s business model and on what the clients of

said company consider to be an ideal SyncTime value, we decided to divide the dataset

in the following manner: If a booking has a SyncTime below or equal to 5 seconds then,

it is classified as I (Ideal). If not, it is classified as NI (Not Ideal).

The following class distribution, presented in figure 4.2, resulted from using 5 seconds

as the threshold between the two classes. In this figure, we have a blue bar representing

class I and an orange bar representing class NI. The X-axis represents both classes and the

Y-axis represents the sample count values. Both numbers on top of both bars represent

the total number of samples associated with that bar. From visual inspection of the plot,

we can conclude that we have slightly more samples in class NI than in class I. This was

expected because in the CDF plot present in figure 4.1, we observed that we could not

perfectly divide the dataset using a threshold of 5 s. This is because nearly 50 % of the

total samples of the dataset have a SyncTime below or equal to 5 s.

There are several methods that can be used to balance a dataset. Common exam-

ples are the oversampling and undersampling techniques. These can be used to balance

datasets by creating (oversampling) or removing (undersampling) samples from the orig-

inal datasets. Reference [22] can be consulted to know more about these techniques. In

order to compensate this slightly unbalanced between the samples of both classes, we

decided to collect more data, specifically, more data from bookings with a SyncTime be-

low or equal to 5 s. To do this, we used setup 13 which was described in subsection 3.2.3.

42

4.2. T-SNE: T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING

Figure 4.2: Class Distribution in the dataset

Through this setup, we collected information about 29 additional bookings.

4.2 t-SNE: t-distributed Stochastic Neighbor Embedding

To better understand the structure of the dataset, we used a method called t-SNE in

order to visualize the dataset on a 2D plot. t-SNE is a method commonly used to visualize

high-dimensional data [54].

Figure 4.3 shows the plot of all data points of the dataset used. These points are

distinguished by different colors. Each color represents a different setup. We can see that

the data points tend to aggregate in little "islands" or clusters. Furthermore, we see that

these clusters are also separated from each other. This is caused by the fact that each setup

is different in its own accord. Different setups consider different network conditions and

also consider different parameter values, as described in section 3.2.3.

As described in section 4.1, we divided the dataset into two classes based on SyncTime

value: Class I and class NI. In figure 4.4, we can see clearly the distinction between the

two classes. The blue dots represent class I samples and the orange ones represent class

NI samples.

In figure 4.4, we can see that almost all orange clusters are located in the top right

corner of the figure whereas, the blue clusters are located near the bottom left corner of

the figure. From a simple observation of this plot, we can infer that classifiers like SVM,

which use hyperplanes to separate the dataset in regions that can be classified into classes,

can possibly achieve good results. This is because the clusters of orange dots (class NI)

are well separated from the other class I clusters, which facilitates SVM job of finding the

43

CHAPTER 4. DATA ANALYSIS

Figure 4.3: 2-Dimensional plot of the dataset

hyperplane that provides the largest possible margin (described in section 2.6).

After coming to these conclusions from a simple observation of the plot, we decided

to analyze in detail the clusters where class NI and I data points are packed in a cluster.

We highlight two clusters that contained some interesting data points. We named these

clusters, A and B, and they are represented in figure 4.4 with black circles.

Figure 4.4: Dataset Classes

In order to analyze them, we have figure 4.5 which shows the zoom in view of both

clusters. Both clusters contain orange data points that are close to other blue data points.

44

4.3. CORRELATION MATRIX

As we have seen in figure 4.4, the orange points represent data points associated with

class NI and blue points represent data points of class I. These data points can be very

challenging for classifiers like SVM to correctly classify because, as we have described

in section 2.6, SVM uses hyperplanes to separate the data but if this data is not linearly

separable (data points of different classes are very close to each other), SVM can have

difficulties to find the optimal linear hyperplane that can correctly classify all these data

points. In this case, these orange data points present in both clusters can be easily miss-

classified as false negatives (class NI data points incorrectly classified as a class I data

points).

Figure 4.5: Zoom In View of Clusters A and B

4.3 Correlation Matrix

Correlation is a statistical measure of the relationship between two variables. This

measure is used to identify if a pair of variables demonstrate a linear relationship between

each other. The correlation value can be between -1 and 1. To interpret a correlation

matrix, we need to know the meaning of the following three values:

• -1: Perfect negative correlation. This correlation value means that the two variables

tend to "move" in opposite directions. If one variable increases, the other decreases

in the same amount;

• 0: Null correlation. This correlation value means that the two variables do not have

any linear relationship with each other;

• 1: Perfect positive correlation. This correlation value means that the two variables

tend to "move" in the same direction. If one variable increases, the other also in-

creases a proportional amount.

The correlation matrix displays the correlation values of all parameters in a dataset.

45

CHAPTER 4. DATA ANALYSIS

Considering the usefulness of the correlation metric in data analysis and to further visu-

alize potential relationships between parameters, we decided to do the correlation matrix

for every setup mentioned in subsection 3.2.3. The Excel function, CORREL [34], was

used to calculate the correlation values of each matrix. This function allows the selection

of two columns to calculate the correlation value between those two. In our case, these

columns are each cluster and booking specific parameters (mentioned in section 3.2) as

well as, the SyncTime parameter.

Table 4.1 displays the first column of each correlation matrix of the 13 setups. In the

context of this dissertation, the first column of a correlation matrix contains the value

of the correlation between each of the booking and cluster specific parameters and the

SyncTime. This table also shows the color scale that we used to better visualize the

different correlation values. In the color scale used, a perfect positive correlation value

is represented in green, a null correlation value is displayed in yellow and, a perfect

negative value is represented in red.

Before analyzing the table below, we can see that some parameters have a correlation

value of #DIV/0!, returned by the CORREL function. According to [34], this error means

that the standard deviation of at least one of the parameters of the pair selected to calcu-

late the correlation value is 0. To know what parameters change in each setup, see tables

3.1 and 3.2, which are present on chapter 3.

From the analysis of table 4.1, we had a better understanding of the relation between

all eleven cluster and booking specific parameters and the SyncTime. During this analysis,

we encountered some interesting correlations. We will analyze these in the following

paragraphs.

In setup 2 column, the number of resources has a correlation value of 0.81 with the

SyncTime. This parameter had the most impact on the SyncTime value of a booking

because, it has the highest correlation value comparing to the other 14 parameters. This

result indicates that, as the number of resources requested in a booking increases, the

SyncTime of said booking increases as well.

Setup 4 is the setup used to study the multiple contribution of the ping between agents

in the SyncTime value (review table 3.1 to see the composition of setup 4). As we can see

in table 4.1, on setup 4 column, there are three parameters that have a very high positive

correlation value: Ping DMA1-DMA3, Ping DMA1-DMA2 and Ping DMA2-DMA3. These

high correlations indicate that they have almost a perfect linear relationship with the

SyncTime parameter. This, in turn, means that these three can be used to produce a

linear regression model that maps the ping between agents to the SyncTime value of a

booking. So, we decided to analyze if we can take advantage of this by considering an

hybrid approach. This consists in the association of a liner regression model plus an MLP

46

4.3. CORRELATION MATRIX

Ta
bl

e
4.

1:
Se

tu
p

s
C

or
re

la
ti

on
Ta

b
le

47

CHAPTER 4. DATA ANALYSIS

regression model. The implementation of this approach is called Hybrid Regressor and

will be discussed in section 6.3.

Setup 6 column shows that the processor load had a high positive correlation value on

a booking’s SyncTime value. So, as the processor load in all agents increases, the SyncTime

value of bookings increases as well. We also see in this column that, the number of active

alarms had also a negative impact on the SyncTime. The number of active alarms and

the total processor load are closely related because, as the total processor load in an agent

reaches a certain percentage (e.g, 50%), the DataMiner creates an alarm, which gives

the user the indication that an agent in the cluster (one or more) is above a certain load

percentage. This alarm is then added to the total number of active alarms.

In table 4.1, Setups 9, 10 and 11 columns show the multiple contribution of sev-

eral parameters on the SyncTime. Almost all parameters had similar correlation values.

Reviewing table 3.2, we see that on these setups, several parameters were manually con-

trolled to simultaneously put stress in all cluster agents. There are some parameters

that did not have much individual impact on the SyncTime value but, when they were

controlled simultaneously with other parameters, their impact became more noticeable.

For example, the number of elements did not have the same correlation value in setup 1

column compared to the setups 9, 10 and 11 columns. In setup 1, we manually controlled

the number of elements to know the individual contribution of this parameter in the

SyncTime of each booking. So, the number of elements did not have a significant impact

alone but when we have setups that simulate the cluster in a high load state, the impact

of the number of elements in the Synctime of bookings becomes more noticeable. The

same can be said about the number of concurrent bookings. This parameter did not have

the same impact in setup 5 compared to setups 9, 10, 11 and 12.

48

C
h
a
p
t
e
r

5
Classification Approach: Implementation

In this chapter, we present several ML methods that were implemented with the goal

of classifying the booking’s SyncTime as I (Ideal) or NI (Not Ideal). These methods are:

SVM, Random Forest and MLP.

We begin this chapter by presenting all the data pre-processing steps taken and ex-

plain why they were necessary. Following this, we describe each implementation of the

ML methods that compose the classification approach. Furthermore, we also describe all

discoveries made during these implementations and state all implementation changes

that were made because of these discoveries.

5.1 Data Pre-Processing

Before the implementation of any classification algorithm, we had to do several data

pre-processing steps. These steps were done in the following order:

1. Label Encoding: Label encoding is the transformation of all categorical classes to

numeric classes. This step is necessary because none of the methods selected for the

classification approach can work with categorical class labels. So, we defined class

I as 1 and class NI as 0.

2. Train-test split: In order to train both the SVM and RF models, we used train_test_split

from [55] to split the dataset: 60% of the dataset was used for training the model

(called, train set) and 40% for testing these models (called, test set). From this split

resulted 4 data subgroups: train data, train class labels, test data and test class

labels.

49

CHAPTER 5. CLASSIFICATION APPROACH: IMPLEMENTATION

In order to train the MLP, we split the dataset in 6 subgroups: train data, train class

labels, test data, test class labels, validation data and validation class labels. The

split ratio used was: 60% of the dataset was used for training the model, 20% for

validating the model and 20% for testing the model.

3. Normalization: Data normalization is essential to the data pre-processing process

because, it gives equal weight/importance to each parameter in a dataset. If a set of

parameters is not normalized then, a single parameter can increase the classification

algorithm performance just because it has bigger values than the other parameters.

So, the goal of data normalization is to change the values of numeric features in a

dataset to a common scale. In our case, we have some features with different scales:

SyncTime, which is measured in seconds and for Total Processor load, which is mea-

sured in percentage. To normalize the dataset, we used StandardScaler method[53].

StandardScaler normalizes the values of each feature based on the feature mean (µ)

and standard deviation(σ). A value x is normalized to X by using equation 5.1:

X =
x −µ
σ

(5.1)

5.2 SVM Implementation

We used the implementation from scikit-learn python package [15] to implement SVM.

The parameters (commonly called hyperparameters) that we considered when imple-

menting SVM are:

• Kernel Type: Specifies the kernel type to be used by SVM to separate the data. In

the context of this dissertation, we test these options: poly (polynomial), radial basis

function (RBF), Linear (Poly kernel with degree equal to 1) and Sigmoid;

• C parameter: Penalization parameter. Depending on the value of this parameter, we

can change the way the incorrect classifications of a SVM classifier are penalized. In

other words, as stated in [67], if a low C value is chosen, then incorrect classifications

are less penalized, but if a higher value is chosen, incorrect classifications are heavily

penalized. Furthermore, when we increase the C value, SVM tries to minimize the

penalization of having too many incorrect classifications by choosing a decision

boundary with a smaller margin;

• Gamma: According to [15], it is a coefficient used in poly, RBF and Sigmoid kernel

types. In [30], it is said that the gamma value influences the curvature of a decision

boundary. If a high gamma value is used, then the decision curve will be more

curved than a low gamma value;

50

5.2. SVM IMPLEMENTATION

• Degree: Specific parameter of the polynomial kernel. It is the degree of the polyno-

mial used as the kernel function.

For tuning all the above hyperparameters, we used RandomizedSearchCV [56] from

scikit-learn library, and for an implementation reference, we used [21]. First, we define

a grid with a group of values for each parameter. This method will test only a limited

number of combinations of parameter values in a specific number of iterations. In our

case, we considered 460 iterations. We chose this value because, according to [63], we can

obtain the top 1% of the best hyperparameters values that can be found in the grid used

with 99% confidence. In the final step, RandomizedSearchCV shows the parameters that

obtained the best results in terms of F1-score.

It is important to note that RandomizedSearchCV also has the option of using cross-

validation (described in section 2.11.1). We decided to use 10-Fold Cross validation.

The grid used to search for the parameters values is presented in table 5.1. We used

the same grid in both implementations of SVM. The choice of this grid was based on [21]

and [32].

Table 5.1: Grid used in the SVM implementation

SVM Hyperparameters Tested Values
Kernel T ype Polynomial (Poly) RBF Sigmoid
C parameter 0.1 1 10 100 1000

Gamma 0.001 0.01 0.1 1 auto scale
Degree 0 - 6

It is important to refer two things about the grid shown above. The first one is that the

values of the C and degree parameters were the same as the implementation done in [21]

and, the values of the gamma parameter were the same as the implementation done on

[32]. The second thing is that the values for the gamma parameter include two options:

auto and scale. In auto option, the value for Gamma is calculated using (5.2). In scale

option, it is calculated using (5.3).

auto =
1

n_f eature
(5.2)

scale =
1

n_f eature ∗V ariance
(5.3)

In equation 5.3, V ariance corresponds to the variance of the input dataset and n_f eature

corresponds to the number of features of the dataset.

After doing the tuning of the hyperparmeters using the above grid, we obtained the

following configurations:

51

CHAPTER 5. CLASSIFICATION APPROACH: IMPLEMENTATION

Table 5.2: Best SVM Hyperparameters

Kernel Type C value Gamma Degree

Sigmoid 100 0.001 -

5.3 RF Implementation

For implementing RF, we used the implementation from scikit-learn python package

[16].

We decided to consider the following hyperparameters in the tuning process of the

RF classifier:

• n_estimators: Defines the number of decision trees to be use by Random Forest to

classify the samples of the input dataset;

• max_features: The number of features to consider when splitting a node. As de-

scribed in section 2.5, each time the Random forest splits a node, it has to randomly

select a subset of features of all the available features in the dataset. The number of

features that are randomly selected is defined by this parameter;

• max_depth: The maximum depth that any tree can have. According to [20], as the

RF trees grow in depth, the more the Random Forest can capture information about

the input data and obtain better performance results;

• min_samples_split: Represents the minimum number of samples that have to be

present at a node so that it can be splitted into more nodes (namely, child nodes);

• min_samples_leaf: The minimum number of samples that are allowed at a leaf

node. As stated in [16], a node can only be splitted if the child nodes will have at

least the minimum number of samples specified in this parameter;

• Bootstrap: Refers to the Bootstrap resampling technique used to draw samples and

construct all decision trees. If true is selected, the samples are drawn using the

Bootstrap resampling technique and if not, they are drawn without replacement.

For more details about the Bootstrap procedure, see [29] and [7].

The optimization process of the hyperparameters described above was done with the

aid of RandomizedSearchCV[56]. The whole optimization process and grid choice were

based on [28] and [20]. Furthermore, similar to the SVM implementation (described in

section 5.2), we used 10-Fold Cross-validation. Table 5.3 shows the grid used to search

for the parameters values, in both implementations.

52

5.4. MLP IMPLEMENTATION

Table 5.3: Grid used in the RF implementation

RF Hyperparameters Tested Values
n_estimators 1, 2, 4, 8, 16, 32, 64, 100, 200
max_f eatures 1 - 15
max_depth 11 evenly spaced numbers between 10 and 110

min_samples_split 2, 5 and 10
min_samples_leaf 1, 2 and 4

Bootstrap True and False

After doing the tuning of the hyperparmeters using the above grid, we obtained the

best values for the different RF hyperparameters. These values are presented in table 5.4.

Table 5.4: Best RF Hyperparameters

Hyperparameter Value

n_estimators 4
max_features 12
max_depth 54

min_samples_split 2
min_samples_leaf 1

Bootstrap False

5.4 MLP Implementation

In the context of this thesis, we tested several MLP configurations using Python and

Keras ML library was used to implement all MLP networks.

In an implementation of a MLP, there are several degrees of freedom that can be taken

into account. These are the following:

• Activation Function: Defines the type of activation function to use on the output

layer and/or hidden layer(s) of the MLP. In section 2.7, we described the three

activation functions used in this dissertation;

• Loss Function: This parameter is necessary for the training phase. It computes a

value (Loss) that the model should seek to minimize as best as possible during the

learning stage. The choice of the loss function is specific to the problem at hand;

• Number of Hidden Layers: It defines the number of hidden layers present in the

MLP. As seen in section 2.7, this number is not limited to one;

• Number of Units: In the case of this dissertation, this parameter defines the number

of units per hidden layer.

53

CHAPTER 5. CLASSIFICATION APPROACH: IMPLEMENTATION

To implement the MLP, we decided to do the implementation of a simple MLP with 1

hidden layer. We named this implementation MLP classifier. We initially did a total of

four tests in order to choose the best unit configuration for the MLP. Table 5.5 resumes

the MLP parameters used for each configuration.

The loss plot obtained for each configuration was also analyzed. According to [9], it

is through this plot that we can conclude if a model produced by the MLP classifier is

overfitting or underfitting the dataset. An overfitted model is a model that achieves an

extremely good performance in the training data but, when testing it with new data, it

performs extremely poorly. This is because the model learns every detail of the training

data that it affects negatively its performance when testing it with new data. Underfitting

is the opposite of overffiting. Underfitting means that the model is capable of further

learning and possible further improvements during the training phase.

Table 5.5: Configurations Tested for the MLP Classifier

MLP Parameters Config. 1 Config. 2 Config. 3

Nº Units Per Layer 2 4 6

Activation Function (Hidden Layer) ReLu

Activation Function (Output Layer) Sigmoid

Loss Function Binary Cross-entropy

In all three tests done, we decided to use Binary Cross-entropy as the loss function.

This is a special case of the cross-entropy loss function, and it computes the cross-entropy

loss between predicted classes (which are the output of the MLP classifier) and true classes

(which are present in the dataset). It is commonly used in binary classification problems

(see subsection 2.2.1 for the definition of binary classification). Binary cross-entropy uses

equation 5.4 to compute the loss:

Loss = − 1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (5.4)

where: N = Total Number of Samples on a Dataset

yi = Class Label (0 for class I and 1 for class NI) of sample i

p(yi) = Probability of sample i being part of class I for all N samples

Initially, we implemented configuration 1 MLP and analyzed the loss plot present on

figure 5.1. The analysis of it was based on [9]. In the figure we can see two lines. The

red line represents the validation loss and the blue line represents the training loss. The

X-axis represents the number of epochs of the training phase and, the Y-axis represents

the loss/validation loss values.

54

5.4. MLP IMPLEMENTATION

This plot represents an example of an overfitting situation. This is because the red line

(validation loss) continues to increase, while the blue line (training loss) stays almost con-

stant. As we tested the remaining two configurations, this overfitting is increasingly more

noticeable (see figures 5.2 and 5.3). So, we decided to discard the other two configurations

and focus our attention in configuration 1 MLP.

Figure 5.1: Loss plot of Configuration 1

Figure 5.2: Loss plot of Configuration 2

There are many ways to solve overfitting (see more details in [65] and [6]). One

possible option is to avoid overfitting by halting the MLP training before the validation

loss increases. So, in order to do this, we used the EarlyStopping [4] function, which is part

of the Keras ML library. This function halts the training phase of a neural network, based

on the value of the metric that is being monitored. EarlyStopping has four important

parameters: monitor, mode, patience and restore_best_weights.

55

CHAPTER 5. CLASSIFICATION APPROACH: IMPLEMENTATION

Figure 5.3: Loss plot of Configuration 3

The monitor parameter defines the metric to be monitored. This metric can be metrics

like accuracy (described in subsection 2.11.3) or specific quantities like training loss and

validation loss. In our case, we chose to monitor the validation loss.

The mode parameter has three possible values: Max, Min and Auto. In Max mode,

the training phase is halted when the monitor metric value has stopped increasing. In

Min mode, the training phase is halted when the monitor metric stop decreasing. In

Auto mode, EarlyStopping infers whichever mode is more suitable to be used, Max or

Min, depending on the metric specified in the monitor parameter. In this parameter, we

selected Min mode because we want to halt the training of the MLP when the validation

loss is not decreasing anymore, and it already achieved the minimum loss value.

The patience parameter allows the user to delay the halt trigger (which stops the

training phase of the MLP) by X number of epochs. So, the training phase is halted if

after X epochs, the EarlyStopping function sees that there was no improvement in the

value of the monitor metric. If X equals to zero and there is no improvement in the value

of the monitor metric, the training is halted. The patience value can vary depending on

the implementation and dataset.

The restore_best_weights parameter has two options: T rue and False. If T rue, the

MLP model obtained from the epoch with the best value in the monitored parameter is

returned. If it is False, the MLP model obtained at the last epoch of training is returned.

We use the first option because we want the MLP model obtained in the epoch, where the

minimum validation loss was reached.

Figure 5.4 shows the loss and validation loss achieved by configuration 1, when using

EarlyStopping. We used a patience value of 10 because it was enough to stop the training

56

5.4. MLP IMPLEMENTATION

right before the validation loss began to increase. We see that the training is halted at a

very early stage, precisely at epoch 18. In turn, this shows that the minimum validation

loss was achieved at epoch 18.

Figure 5.4: Loss plot of Configuration 1 using EarlyStopping

We can see in the figure 5.4 that now the model produced by configuration 1 is slightly

underfitting the data. This is because the training loss (blue curve) keeps decreasing.

As mentioned in [9], "an underfit model can be identified by the training loss that is

decreasing and keeps decreasing at the end of the plot". This is what it is observed

in the figure. The reason behind the underfit model is because the MLP training was

halted too early. But if kept increasing the number of epochs of training, configuration

1 will produce an overfitted model (as seen in figure 5.1). As such, we decided to take

another option which is to simply reduce the complexity of the MLP. In other words,

we implemented an MLP with only one unit in the hidden layer. Figure shows the loss

plot obtained for the MLP implementation with one unit in the hidden layer. Similar to

configuration 1, we used EarlyStopping with a patience value of 10 epochs.

When observing the loss plot shown in figure 5.5, it clearly shows that both the train

and validation loss curves meet each other during the training process of the MLP. The

same did not occur when we described the loss plot of configuration 1 MLP (see figure

5.4). Based on this plot alone, we can see an improvement in terms of model performance,

when compared to the previous configurations.

57

CHAPTER 5. CLASSIFICATION APPROACH: IMPLEMENTATION

Figure 5.5: Loss plot of MLP with 1 unit

58

C
h
a
p
t
e
r

6
Regression Approach: Implementation

In this chapter, we present the implementations of the regression approach. These

are: MLP Regressor (see section 6.2) and Hybrid Regressor (see 6.3)

We begin this chapter by presenting all the data pre-processing steps taken before

beginning the implementation of any method. Following this, we describe in detail each

implementation that compose the regression approach. Furthermore, we also describe all

discoveries made during these implementations and state the several optimizations that

were made because of these discoveries.

6.1 Data Pre-processing

Similar to what was done in the classification approach, some data pre-processing

steps were necessary. These are:

Normalization: Data normalization was done using MinMaxScaler function [52],

which is part of scikit-learn library. MinMaxScaler rescales each feature data, from the

original range to a new given range. The rescaling process is based on the minimum

and maximum data values. A feature/variable X is normalized to Xscaled by using

equation 6.1:

Xscaled =
X −Xmin

Xmax −Xmin
(6.1)

In equation 6.1, Xmax and Xmin are, respectively, the maximum and minimum values

of feature X.

59

CHAPTER 6. REGRESSION APPROACH: IMPLEMENTATION

Train-test split: In order to implement the MLP Regressor and the Hybrid Regressor,

we used train_test_split from [55].

The dataset was split in the following manner: 80% was used for training (train set),

10% for validating the model (validation set) and 10% for testing the model (test

set).

6.2 MLP Regressor Implementation

The implementation of the MLP Regressor was done based on two different sets of

tests. These sets were done in the following order:

• First, an initial set of tests was done with a simple MLP composed of one hidden

layer. Details about this implementation are shown in subsection 6.2.1;

• Then, in order to further improve the results achieved by the previous tests, we

implemented an MLP with 2 hidden layers. Details about the implementation are

described in subsection 6.2.2.

Similarly to the previous MLP implementation, we used EarlyStopping (described in

section 5.4) to halt the training of the MLP when the minimum value of validation loss

was achieved.

In the following subsections, we present the results obtained in each test and the

analysis done of these results.

6.2.1 Initial Test

This initial test is based on four different configuration tests. We did these tests in

order to choose the best configuration to implement in the MLP Regressor. We tested

the configurations presented in table 6.1. To tune the patience value, we decided to test

several values between 100 to 1000. The patience value used was 200 epochs because, by

increasing it, we did not see any improvement in any performance metric values achieved

by the four tested configurations.

After testing all configurations, we obtained the results shown in table 6.2. We can

see that configuration 2 achieved the lowest RMSE and MAE values, followed by config-

uration 1. Both configurations 3 and 4 showed higher RMSE and MAE values than the

other two configurations. In the end, we decided to focus our attention on configuration

2.

Figure 6.1 shows the loss plot obtained for configuration 2 MLP regressor. As we

can see, the validation and training loss are steady and do not increase throughout the

60

6.2. MLP REGRESSOR IMPLEMENTATION

Table 6.1: Configurations Tested for the MLP Regressor - Initial Test

Parameters Config. 1 Config. 2 Config. 3 Config. 4

Nº Units Per Layer 2 4 6 8

Activation Function (Hidden Layer) ReLu

Activation Function (Output Layer) Linear

Loss Function MSE

Patience 200 epochs

Table 6.2: Initial Test MLP Regressor Results

Performance Metrics Config. 1 Config. 2 Config. 3 Config. 4

MSE 988.5864 971.9015 1035.8415 1055.6336
RMSE 31.4418 31.1753 32.1845 32.4905
MAE 15.0178 14.5358 16.9965 16.7998

training. Furthermore, we can also perceive that the gap between the validation curve and

the training is small. This an indication that this model is a good fit for the training data.

Compared to the perfect fit shown in the loss plot presented in figure 5.5, configuration

2 MLP does not produce a perfect fit.

Figure 6.1: Loss plot of Configuration 2 MLP Regressor - Initial Test

In figure 6.2, it is presented the distribution of predicted values and actual values

obtained for the configuration 2 MLP Regressor, based on two views. Subfigure 6.2(a)

shows a general view of the distribution of predicted and actual values and subfigure

6.2(b) restricts the previous plot to show only the predicted SyncTime values below 10 s.

In both subfigures, the y-axis represents the predicted SyncTime and the x-axis represents

the actual SyncTime. Both axis are measured in seconds. The blue dots represent a pair

61

CHAPTER 6. REGRESSION APPROACH: IMPLEMENTATION

of values: predicted and actual SyncTime. Predicted SyncTime is a decimal value so, in

order to compare both the actual and the predicted SyncTime values, we always round

the predicted value to the nearest integer number.

Both plots show how well the MLP Regressor model is at predicting the test samples.

If the predicted value and the actual value are equal then, the correspondent blue dot of

this pair will be located in the black diagonal. In other words, a perfect regression model

has all blue dots located in the black diagonal.

(a) General View (b) Restricted View

Figure 6.2: Predicted vs. Actual SyncTime values for MLP Regressor - Initial Test

In subfigure 6.2(a), we can see that the model can’t accurately predict samples that

have a SyncTime above 150 s. This is because all actual values above or equal to 150 s

are being predicted has being below 150 s. Furthermore, we can see that there are no

predictions above 150 s and the maximum predicted SyncTime is 150 s. In conclusion, the

MLP regressor showed difficulties in predicting booking samples that have a SyncTime

above 150 s.

Subfigure 6.2(b) shows that the model respected the SyncTime’ lower bound of 1 s.

This means that the configuration 1 MLP did learn that the SyncTime’s lower bound is 1

s and did not make any predictions below this value.

6.2.2 2 Hidden Layers Test

As described in section 2.7, an MLP with more than one hidden layer, depending on

the input data, can achieve better results by acquiring more high-level and complex fea-

tures from the input data. So, to further improve the results obtained in the previous tests,

we decided to test the addition of one more hidden layer to the MLP. We implemented

four different MLP configurations (see table 6.3) and we chose the best configuration

based on the RMSE and MAE values achieved by each configuration.

62

6.2. MLP REGRESSOR IMPLEMENTATION

Table 6.3: Configurations Tested in the 2 Hidden Layers Test

Parameters Config. 1 Config. 2 Config. 3 Config. 4

Nº Units 6-6 7-7 8-8 9-9

Activation Function (Hidden Layer) ReLu

Activation Function (Output Layer) Linear

Loss Function MSE

Patience 700 epochs

Table 6.4 summarizes the results achieved by each configuration.

Table 6.4: 2 Hidden Layers Test Results

Performance Metrics Config. 1 Config. 2 Config. 3 Config. 4

MSE 989.1383 1019.3781 948.4013 964.2601
RMSE 31.4506 31.9277 30.7961 31.0525
MAE 15.5475 15.7685 14.1915 14.2095

Configuration 3 has the lowest RMSE and MAE of all tested configurations. A lower

RMSE means that, on average, the squared differences between the actual and predicted

SyncTime values are lower compared to the other configuration models. A lower MAE

also shows that the absolute differences are, on average, lower compared to the other

models. In resume, both metrics indicate that configuration 3 produced a estimation

model that better fits the train data and presented on average, lower errors.

Configuration 1 and 2 achieved the worst results in terms of RMSE and MAE, which

means that these configurations obtained models that have large errors between the

predicted and actual SyncTime.

As described in subsection 2.11.4, we want to choose regression models that present

lower MSE/RMSE values and penalize models that have large errors between the actual

and predicted SyncTime. Based on the analysis of the results in table 6.4, we chose

configuration 3 to implement in the final implementation of the MLP Regressor. The

performance results of this implementation are analyzed in section 7.2.

Figure 6.3 shows the loss plot obtained for configuration 3. As we can see in the plot,

the validation and training loss are steady and do not increase throughout the epochs of

training, which means this model is a good fit for the train data. Furthermore, we can see

that this loss plot is similar to the one presented in figure 6.1.

63

CHAPTER 6. REGRESSION APPROACH: IMPLEMENTATION

Figure 6.3: Loss plot of Configuration 3 MLP Regressor - 2 Hidden Layers Test

6.3 Hybrid Regressor Implementation

As seen in section 4.3, the average ping between all agents has a very high correlation

with the SyncTime parameter. The Hybrid Regressor is an attempt to try to take advantage

of this.

This implementation is divided in two parts. In the first part, we implemented a

linear regression model that can predict a SyncTime of a booking based on the average

ping in all agents. In the second part, we implemented an MLP Regressor in order to

predict the difference between the predicted SyncTime from the linear regression model

(LR) and the actual SyncTime (A). We called this difference, difference error (E), which is

given by equation 6.2:

E = A−LR (6.2)

where: E = Difference Error

A = Actual SyncTime Value

LR = Linear Regression Model Predicted Value

E is a real variable, unlike the SyncTime value, which is a nonzero positive variable.

Regarding the first part, we implemented a linear regression model using Linear-

Regression function, which is available in the scikit-learn library [50]. We decided to

use the average ping in all agents (it is the average value between the Ping Src-DMA1

Dst-DMA3, Ping Src-DMA1 Dst-DMA2 and Ping Src-DMA2 Dst-DMA3) as input to the

linear model.

64

6.3. HYBRID REGRESSOR IMPLEMENTATION

Figure 6.4 shows the linear regression model (blue line) produced from the average

ping in all agents and the SyncTime samples from Setup 4. In this setup, the average ping

in all agents has a correlation value of 0.95 with the SyncTime parameter.

Figure 6.4: Linear Regression Model

The obtained linear regression model is described by equation 6.3:

y = 0.4292.x+ 0.5485 (6.3)

where: y = Predicted SyncTime value

x = Average Ping in All Agents

In the second part, we implemented an MLP composed of two hidden layers to esti-

mate E. In order to configure the number of units in each hidden layer, we implemented

and tested the following four configurations, presented in table 6.5.

Table 6.5: Hybrid Regressor Configurations

Parameters Config. 1 Config. 2 Config. 3 Config. 4

Nº Units 6-6 7-7 8-8 9-9

Activation Function (Hidden Layer) ReLu

Activation Function (Output Layer) Linear

Loss Function MSE

Patience 1000 epochs

65

CHAPTER 6. REGRESSION APPROACH: IMPLEMENTATION

Table 6.6: Hybrid Regressor Results

Performance Metrics Config. 1 Config. 2 Config. 3 Config. 4

MSE 1017.0931 1041.6455 894.3314 1052.7051
RMSE 31.8919 32.2745 29.9054 32.4454
MAE 15.5882 15.3199 13.4897 15.8180

Table 6.6 shows the results achieved by each configuration for A = E +LR.

Configuration 3 achieved the best results in terms of RMSE and MAE. This shows

that configuration 3 obtained a estimation model that has all squared and absolute dif-

ferences between the actual and predicted SyncTime lower compared to the remaining

configurations models on table 6.6. This, in turn, means that the configuration 3 obtained

a estimation model that better fits the train data.

Configurations 1 and 2 presented interesting results. The RMSE of configuration 2 is

higher than configuration 1 RMSE but, in turn, the MAE of configuration 2 is lower than

the MAE of configuration 1. This is interesting because, it tells us that configuration 2

model was more penalized in terms of large errors (higher RMSE) compared to configu-

ration 1 model but, on average, the absolute differences/errors of configuration 2 model

are lower (lower MAE) than configuration 1 model.

Lastly, configuration 4 achieved the worst results in terms of all performance metrics

used.

Based on the analysis of these results, we chose configuration 3 to be the final config-

uration of the Hybrid Regressor. The results of the implementation of this configuration

are analyzed in section 7.2.

Figure 6.5: Loss plot of Configuration 3 Hybrid Regressor

66

6.3. HYBRID REGRESSOR IMPLEMENTATION

After obtaining these results, we decided to analyze the loss plot obtained for con-

figuration 3. Figure 6.5 shows the loss plot obtained. As we can see, the validation and

training loss are steady until, near epoch 3000, the training loss begins to decrease rapidly

while the validation loss decreases more slowly. This is an indication that the model is

beginning to overfit. In fact, if we look at figure 6.6, we see that the model is beginning

to overfit if we increase the number of epochs of training. We can state this because, as

the number of epochs increases, the validation loss increases rapidly. Similar to what

was described in section 5.4, EarlyStopping halted the training before the model started

to overfit. More specifically, EarlyStopping halted the training at the epoch where the

validation loss was minimum.

Figure 6.6: Loss plot with Overfitting effect

67

C
h
a
p
t
e
r

7
Discussion of Results & Developed Software

In this chapter, we present and discuss the best performance results achieved by

the implementations described in chapters 5 and 6. Then, we describe the developed

software, which is an additional contribution of this thesis.

7.1 Classification Approach

In this section, we present the best performance results of the implementations de-

scribed in chapter 5.

Table 7.1 shows the best results achieved by all classification implementations.

Table 7.1: Classification Approach Best Results

Classification Metrics SVM RF MLP Classifier

Accuracy 0.9983 0.9983 1.0000
F1-Score 0.9983 0.9983 1.0000
Precision 1.0000 1.0000 1.0000

Recall 0.9966 0.9966 1.0000
ROC-AUC 0.9968 0.9983 1.0000

We can see that the MLP obtained perfect results in all performance metrics used.

In turn, the SVM and RF obtained slightly lower results compared to the MLP. Both

the SVM and RF achieved equal results in terms of F1-score, accuracy, precision and

recall. The only difference between them is the ROC-AUC value. RF achieved a higher

ROC-AUC value than the SVM, which means that the first classifier is slightly better at

distinguishing between the two classes.

68

7.1. CLASSIFICATION APPROACH

It is important to refer that both the SVM and RF did not correctly predict all NI

samples. This can be inferred by looking at the confusion matrices obtained by both

implementations. Figures 7.1 and 7.2 show the confusion matrices obtained by SVM and

RF, respectively. Figure 7.3 shows the confusion matrix obtained by the MLP Classifier.

Figure 7.1: SVM Confusion Matrix Figure 7.2: RF Confusion Matrix

Figure 7.3: MLP Classifier Confusion
Matrix

We can see in the SVM and RF confusion matrices that both these implementations

obtained one false negative. As described in section 4.2, there are two problematic class

NI data points, which are present in two clusters of the dataset: A and B. In both clusters,

there were class NI data points that were too close to class I data points. The existence

of these two data points can be the cause of the existence of false negatives in both

implementations. In turn, the MLP Classifier obtained zero false negatives and false

positives which justify the perfect precision and perfect recall values obtained.

69

CHAPTER 7. DISCUSSION OF RESULTS & DEVELOPED SOFTWARE

7.2 Regression Approach

In this section, we present the best performance results of the implementations de-

scribed in chapter 6. Table 7.2 resumes the results achieved by the MLP Regressor and

the Hybrid Regressor implementations.

Table 7.2: Regression Approach Best Results

Performance Metrics MLP Regressor Hybrid Regressor

MSE 948.4013 894.3314
RMSE 30.7961 29.9054
MAE 14.1915 13.4897

The Hybrid Regressor showed the lowest RMSE and MAE values of the two imple-

mentations. A lower RMSE value indicates that the squared differences between the

actual and the predicted samples of the MLP Regressor model are slightly lower than

the squared differences obtained by the MLP Regressor model. This means that the first

model was not as much penalized by large errors as the latter model. In turn, a lower

MAE indicates that, on average, the absolute differences between the actual and predicted

samples of the Hybrid Regressor model are lower compared to the ones obtained by the

MLP regression model. To further see how well both implementations are at predicting

samples, we analyze figures 7.4 and 7.5.

Figure 7.4 shows the distributions of predicted and actual SyncTime samples of the

MLP Regressor (subfigure 7.4(a)) and Hybrid Regressor (subfigure 7.4(b)). Figure 7.5

shows a restricted view of the previous figure. It shows only the distribution of predicted

SyncTime values below 13 s.

(a) MLP Regressor (b) Hybrid Regressor

Figure 7.4: Predicted vs. Actual SyncTime values

In subfigures 7.4(a) and 7.4(b), we can see that both the MLP and Hybrid Regressor

models still have the limitation present on the initial test model (this model was described

70

7.3. CLASSIFICATION VS. REGRESSION APPROACHES

(a) MLP Regressor (b) Hybrid Regressor

Figure 7.5: Predicted SyncTime values below 13 s

in subsection 6.2.1). Both regression models, presented in this section, do not have many

predictions above the 150 s mark and do not accurately predicted any samples that have

a SyncTime above 150 s.

We can observe in subfigure 7.5(a) that the MLP Regressor model presents some

predicted values that are below or equal to 0 s. The presence of zeros and negative

predictions implies that the regression model could not fully represent the train data

(more specifically, it could not learn the lower bound of SyncTime values, which is 1 s).

In turn, if we look at subfigure 7.5(b), we see that the Hybrid Regressor model does not

show any negative predictions. This fact is a strong indication that the Hybrid Regressor

model better fits the train data than the MLP Regressor model.

7.3 Classification vs. Regression Approaches

Figure 7.6 shows the same two subfigures views present in figure 7.5 although, this

time, the only difference is that they show two additional red rectangles. These contain all

predicted SyncTime values between 0.5 to 5.49 s. If we round to the nearest integer value

(as explained in section 3.1, SyncTime is a discrete and positive parameter), it contains

all samples between 1 and 5 s. In the classification approach, this range was considered

to be the ideal range of SyncTime values (class I). We can observe that several predictions

are contained inside these rectangles, which means that these samples can be classified

as being part of class I. This fact is a good indication that we can use both approaches

(Classification and regression) to deal with our problem. In resume, we can use one of the

two regression models to predict the SyncTime value of a booking and then, classify this

value according to the already pre-established classification rule decided in section 4.1 (a

booking with SyncTime below or equal to 5 s is classified as I, if not then it is classified

as NI). We named this new approach as Regression + Classification Approach.

71

CHAPTER 7. DISCUSSION OF RESULTS & DEVELOPED SOFTWARE

(a) MLP Regressor (b) Hybrid Regressor

Figure 7.6: Predicted SyncTime values below 13 s with class I samples identified by red
rectangles

In order to compare this new approach with the Classification approach, we classified

the predictions of both models according to the pre-established classification rule and

then, converted all predicted SyncTime values that are below or equal to 0 s to 1 s. By

doing these, we could obtain some of the classification metrics described in subsection

2.11.3. Table 7.3 shows the value of these classification metrics for the MLP Classifier,

MLP Regressor and Hybrid Regressor.

Table 7.3: Classification vs. Regression Approach Results

Performance Metrics MLP Classifier MLP Regressor Hybrid Regressor

Accuracy 1.0000 0.9797 1.0000
F1-Score 1.0000 0.9784 1.0000
Precision 1.0000 0.9714 1.0000

Recall 1.0000 0.9855 1.0000

As we can see in the table above, both the MLP Classifier and Hybrid Regressor ob-

tained perfect results in all performance metrics compared to the other implementation.

These results suggest that if we implement an MLP classifier to predict the class of a

booking’s SyncTime, it will give equal results compared to predicting the SyncTime value

of each booking using the Hybrid Regressor model and then, classify the predicted Sync-

Time in two classes.

Figures 7.7 and 7.8 show the confusion matrices obtained by the MLP Regressor

and Hybrid Regressor. We can see that the MLP Regressor obtained two false positives

and one false negative. This is why this implementation achieved a higher value in the

recall metric compared to the precision metric. This means that the MLP Regressor

model almost detected all class NI samples (higher recall) in the test dataset but, could

not correctly classify all class I samples. In comparison, the Hybrid Regressor did not

72

7.4. DEVELOPED SOFTWARE

have any false negative or false positive which justifies the prefect results obtained in all

performance metrics.

Figure 7.7: MLP Regressor Confusion
Matrix

Figure 7.8: Hybrid Regressor Confusion
Matrix

Table 7.4 shows a comparison made between the MLP CLassifier and the Hybrid Re-

gressor in terms of number of layers and number of units used by both implementations

and the number of training epochs that were required in order to train both implementa-

tions.

Table 7.4: Comparison between the MLP Classifier and Hybrid Regressor

Parameters MLP Classifier Hybrid Regressor

Nº Units 1 8-8
Nº Training Epochs 63 5358

We can see that the MLP classifier is composed of one unit and one hidden layer while

the Hybrid Regressor uses two hidden layers with eight units in each layer. This means

that the MLP Classifier achieve the same results with a much more simpler configuration.

Furthermore, due to a more simpler network, the MLP Classifier has much less training

epochs than the Hybrid Regressor, which means that the first has a much lower training

duration than the latter.

7.4 Developed Software

One of the main contributions of this thesis was the portable prototype software that

was developed, based on the results presented in the two previous sections. The main

goal of this software is to aid in the assessment and development of future SRM projects

deployment.

73

CHAPTER 7. DISCUSSION OF RESULTS & DEVELOPED SOFTWARE

Before beginning the development process, we had to decide which ML implementa-

tion to choose of all the implementations done in this thesis, in order to integrate it in

the software. After discussing the results mentioned in the previous two sections with

Skyline, we chose the MLP Classifier implementation.

The software was fully developed in Python and its main feature is the ability to

predict the class of a booking’s SyncTime, based on a set of input parameters. The classes

that were considered were the same used in this dissertation, which were class I (booking

has a SyncTime below or equal to 5 s) and class NI (booking’s SyncTime above 5 s).

The PyQt v5.15 library (see [42] for more details) was used to develop the main GUI

(Graphical User Interface) of the application. This library was chosen because it comes

with a graphical editor, which is the Qt Designer. This editor is used to make the task of

building a GUI easier by allowing users to drag-and-drop Qt Widgets (tables, textboxes,

calenders and more [43]) in order to customize windows.

One requirement made by Skyline was that this application had to be portable, which

means that the client can run the application in a Microsoft Windows operating system

without having to install a Python compiler or any Python package. In order to make this

possible, we used an application building tool called PyInstaller [59]. This tool allows the

conversion of a Python application and all its dependencies into a stand-alone executable.

The developed software main menu is shown in figure 7.9. This menu has three

options:

• New Prediction: Allows the user to make a prediction based on specific inputs

required by the MLP Classifier. This option is the main function of this software;

• Prediction Logs: History of all user predictions. These predictions are listed in a

table to make the visualization of all user predictions easier;

• About: Contains a brief description of the software features.

The implementation of the New Prediction option can be summarized by a diagram

present in figure 7.10.

First, the user has to input in the application GUI the values of several required

parameters. These are the DataMiner, DataMiner Agents and Index parameters:

• The DataMiner parameters are composed of all booking specific parameters plus

the first subgroup of the cluster specific parameters (both are explained in section

3.2);

74

7.4. DEVELOPED SOFTWARE

Figure 7.9: Application Main GUI

Figure 7.10: New Prediction Diagram

• The DataMiner Agent parameters are specific to each agent and, they are composed

of the physical memory usage, total processor load and the ping between each agent;

• The index parameters are composed of the booking name (used only to distinguish

different predictions), description (text field that can be use to describe, for example,

the test or prediction that the user is trying to do), timestamp 1 and timestamp 2.

These are optional but, if the user wants to import .csv files with ping data, they are

required.

After the input stage, all user data is then pre-processed by a pre-implemented scaler.

This was the same scaler used in the MLP implementation, described in subsection 6.2.2.

We stored and loaded this scaler from a file, using Python’s Pickle module [44]. This

module allows the serialization and de-serialization of a Python object structure (in this

case, it is a StandardScaler object) in order to be stored or loaded from a file. The main

advantage of reusing a scaler is that we do not need to fit a scaler to the input data, every

time a new prediction is requested.

Next, the scaled data is fed to the MLP Classifier as input data. The MLP classifier

model used in the software is a pre-trained model. After finishing the training of the

MLP Classifier, we exported the resulted model into a .h5 file using the ModelCheckpoint

callback function [58]. This function is available in Keras ML library and it is used to

75

CHAPTER 7. DISCUSSION OF RESULTS & DEVELOPED SOFTWARE

export neural network models into a checkpoint file, after some interval passes. In the

context of this thesis, this interval is the number of epochs which the EarlyStopping

function halted the training of the MLP. The output of the MLP classifier model is a

label (I or NI) that identifies the input data classification. The checkpoint file format is

by default .h5 and it is used by ModelCheckpoint to store a large amount of data, which

includes the MLP Classifier architecture.

Finally, we want to refer the existence of the ML_Models folder. This folder was

created so that the user could change both the MLP model and the scaler used in this

software. The user only has to replace the contents of said folder with exported files of

other scalers and/or other neural network models.

76

C
h
a
p
t
e
r

8
Conclusion & Future Work

8.1 Conclusion

Throughout this dissertation, we carried out a detailed analysis of the state of art

of machine learning methods. This study was done in order to develop a delay estima-

tor/classifier module based on machine learning methods. This module is capable of

predicting/classifying the SyncTime, based on several booking specific parameters such

as, the number of resources of each booking or the number of concurrent booking. Fur-

thermore, several cluster specific parameters are also considered like the total processor

load and the physical memory usage per DataMiner agent. In order to implement this es-

timator/classifier, two approaches were considered: Classification of the SyncTime based

on two classes (Ideal or Not Ideal) and prediction of the SyncTime value.

In chapter 2, we presented a brief introduction to machine learning and made a review

on the state of art methods that can be used for classification and prediction problems.

As described in chapter 3, the case study considered in this thesis was a cluster com-

posed of three DataMiner Agents. In the data collection process, 13 cluster setups were

defined in order to capture the cluster in different network conditions (e.g, high processor

load in all agents, low processor load in all agents, high memory usage in all agents). From

this process, we acquired the dataset used in the implementation of the classification and

regression approaches.

As described in chapter 4, we analyzed the obtained dataset using three different

methods: CDF, t-SNE and Correlation matrix. The CDF allowed us to discover the fre-

quency of samples per SyncTime value in the dataset. Furthermore, the CDF aided us in

selecting the threshold between the two classes (class I and NI) used in the classification

77

CHAPTER 8. CONCLUSION & FUTURE WORK

approach. Based on the CDF results, on Skyline’s business model and on what the clients

of said company considered to be an Ideal SyncTime value, the threshold selected was 5

s. After choosing this value, we discovered that the obtained dataset was slightly unbal-

anced dataset because, it contained more samples from class NI than from class I. Then,

to better understand the data acquired, we visualized it using the t-SNE method. Finally,

the correlation matrices obtained from all setups showed us the linear contribution of all

input variables in the Synctime of a booking. From these matrices, we discovered which

parameters had a bigger impact on the SyncTime of a booking.

As described in chapters 5 and 6, we implemented some of the classification and re-

gression ML algorithms presented on chapter 2. The classification methods implemented

were: MLP, SVM and Random forest. The regression methods implemented were: MLP

Regressor and Hybrid Regressor (MLP + Linear Regression).

As described in chapter 7, we analyzed the results obtained by the best implemen-

tations of the classification and regression approaches. From this analysis, we reached

some important conclusions:

• Considering the classification approach, the implementation that obtained the best

results was the MLP Classifier;

• In the regression approach, the Hybrid Regressor model obtained a lower RMSE

and MAE value than the MLP Regressor. Furthermore, the Hybrid Regressor model

only showed positive predicted values, unlike the MLP Regressor model. This fact

proves that the Hybrid Regressor model better fits the training data;

• Finally, to compare the classification approach with the regression approach, we

decided to classify the predicted values of the MLP Regressor and Hybrid Regressor

models. After this, we could obtain some of the classification metrics considered

in the classification approach such, as the F1-score, Accuracy, Precision, and Recall.

Comparing the MLP Regressor and Hybrid Regressor with the MLP Classifier, we

observed that the MLP Classifier and the Hybrid Regressor obtained better results

compared to the MLP Regressor. Then, we concluded that the Hybrid Regressor is

a more complex neural network than the MLP Classifier. This is because the first

one has one more hidden layer than the latter. Furthermore, the Hybrid Regressor

uses eight units per layer while the latter only uses one unit. Finally, the Hybrid

Regressor has much more training epochs than the MLP Classifier, which means

that the first has a much higher training duration than the latter.

The last objective of this dissertation is the development of a portable desktop ap-

plication, which uses the best estimator/classifier implemented to predict/classify the

SyncTime of a booking, based on several input values given by the user. After presenting

78

8.2. FUTURE WORK

the results obtained in this dissertation to Skyline, the implementation selected to be

integrated in this prototype was the MLP Classifier (see the implementation process of

this MLP in subsection 6.2.2). The developed prototype and its principal functionalities

were shown in the last section of chapter 7.

Finally, we can say that the three main contributions of this thesis are:

• The study presented in this dissertation allowed us to discover which parameters

had more impact in the SyncTime of a booking.

• We selected the best approaches that achieve the best results in all evaluation met-

rics considered;

• We developed a prototype application which classifies the SyncTime of a booking

based on a set of input parameters. This classification is done by a pre-trained MLP.

The goal of this software is to aid in the assessment and development of future SRM

projects deployment.

8.2 Future Work

Some work can be done in the future to further improve the study presented in this

dissertation. This work can be summarized as follows:

• In this dissertation, we were limited to a case study of a cluster composed of three

DataMiner Agents. As future work, we want to expand the current work by consid-

ering more complex clusters, composed of more than three DataMiner Agents;

• Implementation and performance testing of PCA, Autoencoder, and LSTM. These

methods were described in chapter 2 but were not taken into account in this dis-

sertation due to limitations of time. LSTM will be primarily used to optimize the

regression approach by using the cluster history as the input dataset. Both the Au-

toencoder and PCA will be used to optimize the results of both approaches. As

seen in [60] and [10], these methods can improve the overall performance of a

classifier/estimator by compressing the input dataset before feeding it to the classi-

fier/estimator.

79

Bibliography

[1] C. C. Aggarwal. “Data Mining: The Textbook”. In: Springer Publishing Company,

Incorporated, 2015. Chap. 10, p. 328. isbn: 3319141414 (cit. on p. 13).

[2] C. C. Aggarwal. Neural Networks and Deep Learning. Springer, 2018 (cit. on pp. 16,

17).

[3] C. Albon. Machine Learning with Python Cookbook: Practical Solutions from Prepro-
cessing to Deep Learning. O’Reilly Media, Inc., 2018. isbn: 1491989386 (cit. on

pp. 7, 8).

[4] T. API. tf.keras.callbacks.EarlyStopping. Available online at https://www.tensorflow.

org/api_docs/python/tf/keras/callbacks/EarlyStopping. Accessed: 2021-

08-25 (cit. on p. 55).

[5] A. Azzouni and G. Pujolle. “A Long Short-Term Memory Recurrent Neural Net-

work Framework for Network Traffic Matrix Prediction”. In: CoRR abs/1705.05690

(2017). arXiv: 1705.05690. url: http://arxiv.org/abs/1705.05690 (cit. on

p. 20).

[6] N. Barls. Overfitting vs Underfitting in Machine Learning – Everything You Need
to Know. Available online at https://neptune.ai/blog/overfitting- vs-

underfitting-in-machine-learning. Accessed: 2021-08-26 (cit. on p. 55).

[7] J. Brownlee. Bagging and Random Forest Ensemble Algorithms for Machine Learning.

Available online at https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.MinMaxScaler.html. Accessed: 2021-09-15 (cit. on

p. 52).

[8] J. Brownlee. Difference Between Classification and Regression in Machine Learning.

Available online at https://machinelearningmastery.com/classification-

versus-regression-in-machine-learning/. Accessed: 2021-10-31 (cit. on p. 5).

[9] J. Brownlee. How to use Learning Curves to Diagnose Machine Learning Model Per-
formance. Blog post available online at https://machinelearningmastery.com/

learning-curves-for-diagnosing-machine-learning-model-performance/.

Accessed: 2021-08-23 (cit. on pp. 54, 57).

80

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://arxiv.org/abs/1705.05690
http://arxiv.org/abs/1705.05690
https://neptune.ai/blog/overfitting-vs-underfitting-in-machine-learning
https://neptune.ai/blog/overfitting-vs-underfitting-in-machine-learning
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

BIBLIOGRAPHY

[10] F. O. Catak and A. Mustacoglu. “Distributed denial of service attack detection

using autoencoder and deep neural networks”. In: Journal of Intelligent & Fuzzy
Systems 37 (July 2019), pp. 1–11. doi: 10.3233/JIFS-190159 (cit. on pp. 18, 19,

79).

[11] B. J. Cavalcanti et al. “A hybrid path loss prediction model based on artificial

neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600

MHz”. In: Journal of Microwaves, Optoelectronics and Electromagnetic Applications
16.3 (2017), pp. 708–722. issn: 21791074. doi: 10.1590/2179-10742017v16i392

5 (cit. on pp. 23, 24).

[12] E. Charniak. “Introduction to Deep Learning”. In: The MIT Press, 2018. Chap. World

Embeddings and Recurrent NNs, pp. 89–92 (cit. on p. 20).

[13] Y. Dai and G. Wang. “Analyzing Tongue Images Using a Conceptual Alignment

Deep Autoencoder”. In: IEEE Access 6 (2018), pp. 5962–5972. doi: 10.1109

/ACCESS.2017.2788849 (cit. on p. 17).

[14] A. Dertat. Applied Deep Learning - Part 3: Autoencoders. Available Online: https:

//towardsdatascience.com/applied-deep-learning-part-3-autoencoders-

1c083af4d798. Accessed: 2020-10-24. 2017 (cit. on p. 18).

[15] scikit-learn developers. sklearn.svm.SVC. Available Online at https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html. Accessed:

2020-01-18. Jan. 2021 (cit. on p. 50).

[16] scikit-learn developers. sklearn.ensemble.RandomForestClassifier. Available Online

at https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html. Accessed: 2021-01-17 (cit. on p. 52).

[17] V. Dutta et al. “Hybrid model for improving the classification effectiveness of

network intrusion detection”. In: Advances in Intelligent Systems and Computing
1267 AISC (2021), pp. 405–414. issn: 21945365 (cit. on p. 22).

[18] I. C. Education. Recurrent Neural Networks. Available online at https://www.ibm.

com/cloud/learn/recurrent-neural-networks. Accessed: 2021-10-31 (cit. on

p. 20).

[19] N. Farnaaz and J. Akhil. “Random Forest Modeling for Network Intrusion Detec-

tion System”. In: Procedia Computer Science 89 (Dec. 2016), pp. 213–217. doi:

10.1016/j.procs.2016.06.047 (cit. on p. 10).

[20] M. B. Fraj. In Depth: Parameter tuning for Random Forest. Available online at https:

//medium.com/all-things-ai/in-depth-parameter-tuning-for-random-

forest-d67bb7e920d. Accessed: 2021-01-18. Dec. 2017 (cit. on p. 52).

[21] M. B. Fraj. In Depth: Parameter tuning for SVC. Available online at https://medium.

com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769.

Accessed: 2021-01-18. Jan. 2018 (cit. on p. 51).

81

https://doi.org/10.3233/JIFS-190159
https://doi.org/10.1590/2179-10742017v16i3925
https://doi.org/10.1590/2179-10742017v16i3925
https://doi.org/10.1109/ACCESS.2017.2788849
https://doi.org/10.1109/ACCESS.2017.2788849
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://doi.org/10.1016/j.procs.2016.06.047
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-random-forest-d67bb7e920d
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-random-forest-d67bb7e920d
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-random-forest-d67bb7e920d
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769

BIBLIOGRAPHY

[22] H. He and Y. Ma. “Imbalanced Learning: Foundations, Algorithms, and Applica-

tions”. In: 1st ed. Wiley-IEEE Press, July 2013. Chap. 3 (cit. on p. 42).

[23] B. Holländer. Autoencoders: Overview of Research and Applications. Available Online

at https://towardsdatascience.com/autoencoders-overview-of-research-

and- applications- 86135f7c0d35. Accessed: 2020-11-04. Oct. 2020 (cit. on

pp. 17, 18).

[24] M. Iqbal and Z. Yan. “SUPERVISED MACHINE LEARNING APPROACHES: A

SURVEY”. In: International Journal of Soft Computing 5 (Apr. 2015), pp. 946–952.

doi: 10.21917/ijsc.2015.0133 (cit. on p. 6).

[25] Javapoint. Introduction to Semi-Supervised Learning. Available online at https:

//www.javatpoint.com/semi- supervised- learning. Accessed: 2021-10-31

(cit. on p. 6).

[26] M. K. Jiawei Han and J. Pei. “Data Mining:Concepts and Techniques”. In: ed. by

M. Kaufmann. Third edition. Elsevier, 2012. Chap. 9, pp. 408–415. doi: https:

//doi.org/10.1016/C2009-0-61819-5 (cit. on pp. 11, 12).

[27] J. Jordan. Introduction to autoencoders. Available Online at https://www.jeremyjordan.

me/autoencoders. Accessed: 2020-10-24. Mar. 2018 (cit. on pp. 16–18).

[28] W. Koehrsen. Hyperparameter Tuning the Random Forest in Python. Available online

at https://towardsdatascience.com/hyperparameter-tuning-the-random-

forest-in-python-using-scikit-learn-28d2aa77dd74. Accessed: 2021-01-18.

2018 (cit. on p. 52).

[29] M. Kuhn and K. Johnson. “Applied Predictive Modeling with Applications in R”.

In: vol. 26. Springer, 2013. Chap. 4, pp. 72–73. isbn: 9781461468486 (cit. on

p. 52).

[30] A. M. Kumar. C and Gamma in SVM. Available online at https://medium.com/

@myselfaman12345/c-and-gamma-in-svm-e6cee48626be. Accessed: 2021-11-02.

Dec. 2018 (cit. on p. 50).

[31] T. Le et al. “Machine Learning Methods for Reliable Resource Provisioning in

Edge-Cloud Computing: A Survey”. In: ACM Computing Surveys 52 (Sept. 2019),

pp. 1–39. doi: 10.1145/3341145 (cit. on p. 5).

[32] C. Liu. SVM-Hyper-parameter-Tuning-using-GridSearchCV. Available online at

https : / / github . com / clareyan / SVM - Hyper - parameter - Tuning - using -

GridSearchCV. Accessed: 2021-11-03 (cit. on p. 51).

[33] J. Lv, M. Wei, and Y. Yu. “A Container Scheduling Strategy Based on Machine

Learning in Microservice Architecture”. In: 2019 IEEE International Conference on
Services Computing(SCC). 2019, pp. 65–71. doi: 10.1109/SCC.2019.00023 (cit. on

p. 10).

82

https://towardsdatascience.com/autoencoders-overview-of-research-and-applications-86135f7c0d35
https://towardsdatascience.com/autoencoders-overview-of-research-and-applications-86135f7c0d35
https://doi.org/10.21917/ijsc.2015.0133
https://www.javatpoint.com/semi-supervised-learning
https://www.javatpoint.com/semi-supervised-learning
https://doi.org/https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/https://doi.org/10.1016/C2009-0-61819-5
https://www.jeremyjordan.me/autoencoders
https://www.jeremyjordan.me/autoencoders
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://medium.com/@myselfaman12345/c-and-gamma-in-svm-e6cee48626be
https://medium.com/@myselfaman12345/c-and-gamma-in-svm-e6cee48626be
https://doi.org/10.1145/3341145
https://github.com/clareyan/SVM-Hyper-parameter-Tuning-using-GridSearchCV
https://github.com/clareyan/SVM-Hyper-parameter-Tuning-using-GridSearchCV
https://doi.org/10.1109/SCC.2019.00023

BIBLIOGRAPHY

[34] Microsoft. CORREL function. Available online at https://support.microsoft.

com/en-us/office/correl-function-995dcef7-0c0a-4bed-a3fb-239d7b68

ca92. Accessed: 2021-08-14 (cit. on p. 46).

[35] B. Mohammed et al. “Failure prediction using machine learning in a virtualized

HPC system and application”. In: Cluster Computing 22 (June 2019). doi: 10.1007

/s10586-019-02917-1 (cit. on p. 12).

[36] A. Mustafa and Y. Swamy. “Web Service classification using Multi-Layer Perceptron

optimized with Tabu search”. In: Souvenir of the 2015 IEEE International Advance
Computing Conference, IACC 2015 (July 2015), pp. 290–294. doi: 10.1109/IADCC.2

015.7154716 (cit. on p. 16).

[37] S. Narkhede. Understanding Confusion Matrix. Available online at https : / /

towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62.

Accessed: 2021-11-01. May 2018 (cit. on pp. 26, 28).

[38] H. Nguyen et al. “ESNemble: an Echo State Network-based ensemble for workload

prediction and resource allocation of Web applications in the cloud”. In: The
Journal of Supercomputing 75 (Apr. 2019). doi: 10.1007/s11227-019-02851-4

(cit. on p. 8).

[39] Z. Noshad et al. “Fault Detection in Wireless Sensor Networks through the Random

Forest Classifier”. In: Sensors 19 (Apr. 2019), p. 1568. doi: 10.3390/s19071568

(cit. on p. 12).

[40] C. Nwankpa et al. “Activation Functions: Comparison of trends in Practice and

Research for Deep Learning”. In: (2018), pp. 1–20. arXiv: 1811.03378. url:

http://arxiv.org/abs/1811.03378 (cit. on p. 13).

[41] J. Patterson and A. Gibson. “Deep Learning: A Practitioner’s Approach”. In: 1st.

O’Reilly Media, Inc., 2017. Chap. 2, pp. 65–71. isbn: 1491914254 (cit. on p. 13).

[42] PyQT. PyQt5 Reference Guide. Available online at https://www.riverbankcomputing.

com/static/Docs/PyQt5/index.html. Accessed: 2021-10-04 (cit. on p. 74).

[43] PyQT. Widgets Classes. Available online at https://doc.qt.io/qt-5/widget-

classes.html. Accessed: 2021-10-04 (cit. on p. 74).

[44] Python. pickle — Python object serialization. Available online at https://docs.

python.org/3.8/library/pickle.html. Accessed: 2021-10-04 (cit. on p. 75).

[45] G.-J. Qi and J. Luo. “Small Data Challenges in Big Data Era: A Survey of Recent

Progress on Unsupervised and Semi-Supervised Methods”. In: IEEE transactions
on pattern analysis and machine intelligence (2020) (cit. on p. 6).

[46] J. Rahman and P. Lama. “Predicting the End-to-End Tail Latency of Containerized

Microservices in the Cloud”. In: 2019 IEEE International Conference on Cloud En-
gineering (IC2E). 2019, pp. 200–210. doi: 10.1109/IC2E.2019.00034 (cit. on

p. 15).

83

https://support.microsoft.com/en-us/office/correl-function-995dcef7-0c0a-4bed-a3fb-239d7b68ca92
https://support.microsoft.com/en-us/office/correl-function-995dcef7-0c0a-4bed-a3fb-239d7b68ca92
https://support.microsoft.com/en-us/office/correl-function-995dcef7-0c0a-4bed-a3fb-239d7b68ca92
https://doi.org/10.1007/s10586-019-02917-1
https://doi.org/10.1007/s10586-019-02917-1
https://doi.org/10.1109/IADCC.2015.7154716
https://doi.org/10.1109/IADCC.2015.7154716
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://doi.org/10.1007/s11227-019-02851-4
https://doi.org/10.3390/s19071568
https://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
https://www.riverbankcomputing.com/static/Docs/PyQt5/index.html
https://www.riverbankcomputing.com/static/Docs/PyQt5/index.html
https://doc.qt.io/qt-5/widget-classes.html
https://doc.qt.io/qt-5/widget-classes.html
https://docs.python.org/3.8/library/pickle.html
https://docs.python.org/3.8/library/pickle.html
https://doi.org/10.1109/IC2E.2019.00034

BIBLIOGRAPHY

[47] M. Russinovich. CpuStres v2.0. Blog post available at https://docs.microsoft.

com/en-us/sysinternals/downloads/testlimit. Accessed: 2021-07-17. 2018

(cit. on p. 35).

[48] M. Said Elsayed et al. “Network Anomaly Detection Using LSTM Based Autoen-

coder”. In: New York, NY, USA: Association for Computing Machinery, 2020,

pp. 37–45. isbn: 9781450381208. url: https://doi.org/10.1145/3416013.34

26457 (cit. on p. 21).

[49] M. Sakurada and T. Yairi. “Anomaly Detection Using Autoencoders with Nonlinear

Dimensionality Reduction”. In: New York, NY, USA: Association for Computing

Machinery, 2014, pp. 4–11. isbn: 9781450331593. doi: 10.1145/2689746.26897

47. url: https://doi.org/10.1145/2689746.2689747 (cit. on p. 19).

[50] Sklearn. sklearn.linear_model.LinearRegression. Available online at https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.

html. Accessed: 2021-09-22 (cit. on p. 64).

[51] Sklearn. sklearn.model_selection.KFold. Available online at https://scikit-learn.

org/stable/modules/generated/sklearn.model_selection.KFold.html. Ac-

cessed: 2021-08-20 (cit. on p. 25).

[52] Sklearn. sklearn.preprocessing.MinMaxScaler. Available online at https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html. Accessed: 2021-08-29 (cit. on p. 59).

[53] Sklearn. sklearn.preprocessing.StandardScaler. Available online at https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.

html. Accessed: 2021-08-18 (cit. on p. 50).

[54] sklearn.manifold.TSNE. Available online at https://scikit-learn.org/stable/

modules/generated/sklearn.manifold.TSNE.html. Accessed: 2021-01-22. Jan.

2021 (cit. on p. 43).

[55] sklearn.model_selection.train_test_split. Available online at https://scikit-learn.

org/stable/modules/generated/sklearn.model_selection.train_test_

split.html. Accessed: 2021-02-02. Feb. 2021 (cit. on pp. 49, 60).

[56] sklearn.modelselection.RandomizedSearchCV. Available online at https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.

html. Accessed: 2021-01-18. Jan. 2021 (cit. on pp. 25, 51, 52).

[57] C. Tao. clumsy v0.2. Available online at https://jagt.github.io/clumsy/index.

html. Accessed: 2021-07-18 (cit. on p. 35).

[58] K. Team. ModelCheckpoint. Available online at https://keras.io/api/callbacks/

model_checkpoint/. Accessed: 2021-10-04 (cit. on p. 75).

[59] P. D. Team. PyInstaller. Github repository: https://github.com/pyinstaller/

pyinstaller. Accessed: 2021-10-06 (cit. on p. 74).

84

https://docs.microsoft.com/en-us/sysinternals/downloads/testlimit
https://docs.microsoft.com/en-us/sysinternals/downloads/testlimit
https://doi.org/10.1145/3416013.3426457
https://doi.org/10.1145/3416013.3426457
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://jagt.github.io/clumsy/index.html
https://jagt.github.io/clumsy/index.html
https://keras.io/api/callbacks/model_checkpoint/
https://keras.io/api/callbacks/model_checkpoint/
https://github.com/pyinstaller/pyinstaller
https://github.com/pyinstaller/pyinstaller

BIBLIOGRAPHY

[60] S. Thaseen. “Improving Accuracy of Intrusion Detection Model Using PCA and

optimized SVM”. In: Journal of Computing and Information Technology 24 (June

2016), pp. 133–148. doi: 10.20532/cit.2016.1002701 (cit. on pp. 8, 79).

[61] A. J. Thomas et al. “Two hidden layers are usually better than one”. In: Communica-
tions in Computer and Information Science 744 (2017), pp. 279–290. issn: 18650929.

doi: 10.1007/978-3-319-65172-9_24 (cit. on p. 15).

[62] K. Vijayshinva. Tools To Simulate CPU / Memory / Disk Load. Blog post available

at https://docs.microsoft.com/pt-pt/archive/blogs/vijaysk/tools-to-

simulate-cpu-memory-disk-load. Accessed: 2021-07-17. 2012 (cit. on p. 35).

[63] S. Weiran. Hyper Parameter Tuning with Randomised Grid Search. Available on-

line at https://towardsdatascience.com/hyper- parameter- tuning- with-

randomised-grid-search-54f865d27926. Accessed: 2021-11-03. Sept. 2019

(cit. on p. 51).

[64] A. Ye. Supervised Learning, But A Lot Better: Semi-Supervised Learning. Available

online at https://towardsdatascience.com/supervised-learning-but-a-

lot-better-semi-supervised-learning-a42dff534781. Accessed: 2021-10-31

(cit. on p. 6).

[65] X. Ying. “An Overview of Overfitting and its Solutions”. In: Journal of Physics:
Conference Series 1168.2 (2019). issn: 17426596. doi: 10.1088/1742-6596/1168

/2/022022 (cit. on p. 55).

[66] T. Yiu. Understanding Random Forest. How the Algorithm Works and Why it Is So Ef-
fective. Online. Available at https://towardsdatascience.com/understanding-

random- forest- 58381e0602d2. Accessed: 2021-02-11. June 12, 2019 (cit. on

pp. 8–10).

[67] S. Yıldırım. Hyperparameter Tuning for Support Vector Machines — C and Gamma Pa-
rameters. Available online at https://towardsdatascience.com/hyperparameter-

tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416

167. Accessed: 2021-11-03. May 2020 (cit. on p. 50).

[68] P. Yosifovich. CpuStres v2.0. Blog post available at https://docs.microsoft.com/

en-us/sysinternals/downloads/cpustres. Accessed: 2021-07-17. 2018 (cit. on

p. 34).

[69] Q. Zhang et al. “Prediction of Sea Surface Temperature using Long Short-Term

Memory”. In: CoRR abs/1705.06861 (2017). arXiv: 1705.06861. url: http:

//arxiv.org/abs/1705.06861 (cit. on p. 21).

[70] A. Zheng and A. Casari. Feature engineering for machine learning. September. 2018,

p. 218. isbn: 978-1491953242 (cit. on p. 7).

Este documento foi gerado utilizando o processador (pdf/Xe/Lua)LATEX, com base no template NOVAthesis, desenvolvido no Dep. Informática da FCT–NOVA por João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 85).

85

https://doi.org/10.20532/cit.2016.1002701
https://doi.org/10.1007/978-3-319-65172-9_24
https://docs.microsoft.com/pt-pt/archive/blogs/vijaysk/tools-to-simulate-cpu-memory-disk-load
https://docs.microsoft.com/pt-pt/archive/blogs/vijaysk/tools-to-simulate-cpu-memory-disk-load
https://towardsdatascience.com/hyper-parameter-tuning-with-randomised-grid-search-54f865d27926
https://towardsdatascience.com/hyper-parameter-tuning-with-randomised-grid-search-54f865d27926
https://towardsdatascience.com/supervised-learning-but-a-lot-better-semi-supervised-learning-a42dff534781
https://towardsdatascience.com/supervised-learning-but-a-lot-better-semi-supervised-learning-a42dff534781
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/hyperparameter-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167
https://towardsdatascience.com/hyperparameter-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167
https://towardsdatascience.com/hyperparameter-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167
https://docs.microsoft.com/en-us/sysinternals/downloads/cpustres
https://docs.microsoft.com/en-us/sysinternals/downloads/cpustres
https://arxiv.org/abs/1705.06861
http://arxiv.org/abs/1705.06861
http://arxiv.org/abs/1705.06861
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Primeiras Páginas
	Capa
	Folha de Rosto
	Copyright
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	2 State of Art
	2.1 Introduction
	2.2 Classification and Regression Problems
	2.2.1 Classification
	2.2.2 Regression

	2.3 Machine Learning Taxonomy
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Semi-supervised Learning

	2.4 Principal Components Analysis (PCA)
	2.4.1 Implementation Examples

	2.5 Random forest (RF)
	2.5.1 Implementation Examples

	2.6 Support Vector Machine (SVM)
	2.6.1 Implementation Examples

	2.7 Multilayer Perceptron (MLP)
	2.7.1 Implementation Examples

	2.8 Autoencoders (AE)
	2.8.1 Autoencoder Variants
	2.8.2 Implementation Examples

	2.9 Long Short Term Memory (LSTM)
	2.9.1 Implementation Examples

	2.10 Hybrid ML models
	2.10.1 Implementation Examples

	2.11 ML Methods Evaluation
	2.11.1 Cross-Validation
	2.11.2 Confusion Matrix
	2.11.3 Evaluation Metrics: Classification
	2.11.4 Evaluation Metrics: Regression

	3 Dataset Acquisition
	3.1 Dataset Description
	3.2 Data Collection Process
	3.2.1 Booking & Cluster State Information
	3.2.2 Setups Definition
	3.2.3 Dataset Setups

	3.3 Data Aggregation

	4 Data Analysis
	4.1 Cumulative Density Function (CDF)
	4.2 t-SNE: t-distributed Stochastic Neighbor Embedding
	4.3 Correlation Matrix

	5 Classification Approach: Implementation
	5.1 Data Pre-Processing
	5.2 SVM Implementation
	5.3 RF Implementation
	5.4 MLP Implementation

	6 Regression Approach: Implementation
	6.1 Data Pre-processing
	6.2 MLP Regressor Implementation
	6.2.1 Initial Test
	6.2.2 2 Hidden Layers Test

	6.3 Hybrid Regressor Implementation

	7 Discussion of Results & Developed Software
	7.1 Classification Approach
	7.2 Regression Approach
	7.3 Classification vs. Regression Approaches
	7.4 Developed Software

	8 Conclusion & Future Work
	8.1 Conclusion
	8.2 Future Work

	Bibliography
	Contra Capa
	Contra Capa

