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Abstract

In this dissertation, a collaborative method for Multi Rotor Vertical Takeoff and Landing

(MR-VTOL) Unmanned Aerial Vehicle (UAV)s’ autonomous landing is presented. The

majority of common UAV autonomous landing systems adopt an approach in which the

UAV scans the landing zone for a predetermined pattern, establishes relative positions,

and uses those positions to execute the landing. These techniques have some shortcom-

ings, such as extensive processing being carried out by the UAV itself and requires a lot

of computational power. The fact that most of these techniques only work while the UAV

is already flying at a low altitude, since the pattern’s elements must be plainly visible to

the UAV’s camera, creates an additional issue. An RGB camera that is positioned in the

landing zone and pointed up at the sky is the foundation of the methodology described

throughout this dissertation. Convolutional Neural Networks and Inverse Kinematics

approaches can be used to isolate and analyse the distinctive motion patterns the UAV

presents because the sky is a very static and homogeneous environment. Following real-

time visual analysis, a terrestrial or maritime robotic system can transmit orders to the

UAV.

The ultimate result is a model-free technique, or one that is not based on established

patterns, that can help the UAV perform its landing manoeuvre. The method is trustwor-

thy enough to be used independently or in conjunction with more established techniques

to create a system that is more robust. The object detection neural network approach was

able to detect the UAV in 91,57% of the assessed frames with a tracking error under 8%,

according to experimental simulation findings derived from a dataset comprising three

different films. Also created was a high-level position relative control system that makes

use of the idea of an approach zone to the helipad. Every potential three-dimensional

point within the zone corresponds to a UAV velocity command with a certain orienta-

tion and magnitude. The control system worked flawlessly to conduct the UAV’s landing

within 6 cm of the target during testing in a simulated setting.

Keywords: UAV Autonomous Landing Systems, Robotic Cooperation, Convolutional

Neural Networks, Object Detection, Inverse Kinematics, High-Level Con-

trol.
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Resumo

Nesta dissertação, é apresentado um método de colaboração para a aterragem autónoma

de Unmanned Aerial Vehicle (UAV) Multi Rotor Vertical Takeoff and Landing (MR-VTOL).

A maioria dos sistemas de aterragem autónoma de UAV comuns adopta uma abordagem

em que o UAV varre a zona de aterragem em busca de um padrão pré-determinado, esta-

belece posições relativas, e utiliza essas posições para executar a aterragem. Estas técnicas

têm algumas deficiências, tais como o processamento extensivo a ser efectuado pelo pró-

prio UAV e requer muita potência computacional. O facto de a maioria destas técnicas só

funcionar enquanto o UAV já está a voar a baixa altitude, uma vez que os elementos do

padrão devem ser claramente visíveis para a câmara do UAV, cria um problema adicional.

Uma câmara RGB posicionada na zona de aterragem e apontada para o céu é a base da

metodologia descrita ao longo desta dissertação. As Redes Neurais Convolucionais e as

abordagens da Cinemática Inversa podem ser utilizadas para isolar e analisar os padrões

de movimento distintos que o UAV apresenta, porque o céu é um ambiente muito está-

tico e homogéneo. Após análise visual em tempo real, um sistema robótico terrestre ou

marítimo pode transmitir ordens para o UAV.

O resultado final é uma técnica sem modelo, ou que não se baseia em padrões esta-

belecidos, que pode ajudar o UAV a realizar a sua manobra de aterragem. O método é

suficientemente fiável para ser utilizado independentemente ou em conjunto com técni-

cas mais estabelecidas para criar um sistema que seja mais robusto. A abordagem da rede

neural de detecção de objectos foi capaz de detectar o UAV em 91,57% dos fotogramas

avaliados com um erro de rastreio inferior a 8%, de acordo com resultados de simulação

experimental derivados de um conjunto de dados composto por três filmes diferentes.

Também foi criado um sistema de controlo relativo de posição de alto nível que faz uso

da ideia de uma zona de aproximação ao heliporto. Cada ponto tridimensional potencial

dentro da zona corresponde a um comando de velocidade do UAV com uma certa orienta-

ção e magnitude. O sistema de controlo funcionou sem falhas para conduzir a aterragem

do UAV dentro de 6 cm do alvo durante os testes num cenário simulado.

Traduzido com a versão gratuita do tradutor - www.DeepL.com/Translator

Palavras-chave: Sistemas Autónomos de Aterragem de UAV, Cooperação Robótica, Re-

des Neurais Convolucionais, Detecção de Objectos, Cinemática Inversa,

Controlo de Alto Nível.
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1
Introduction

Technological improvements in robotic research have resulted in low-cost hardware with

sophisticated sensors and adaptable motor capabilities. Robots are already capable of

executing sophisticated procedures, although it appears that their primary restrictions

are due to software. Unmanned Aerial Vehicle (UAV), like most technical developments

and inventions in human history, were initially designed for military purposes. UAVs

can relay real-time intelligence, surveillance, and reconnaissance data from hostile re-

gions to the combat commander. All of this can be conducted without ever putting a

human aircrew’s life in jeopardy. That is the beauty of unmanned aircraft. For all of these

reasons, they quickly became a valuable tool in the hands of armed forces all over the

world. UAVs have been a key technology in recent years, not just for the military but also

for robotics and the general public. Multi-rotor vehicles, in particular those capable of

Multi Rotor Vertical Takeoff and Landing (MR-VTOL), are more versatile, have a lower

production cost, and are easier to teleoperate than fixed-wing equivalents. They have

become a desirable asset in a wide range of scientific, civic, and recreational uses. UAVs

are being utilised in a wide range of applications, including search and rescue in natural

disaster scenarios, deliveries, agricultural and agribusiness applications, and monitoring.

These are only a few examples of UAV uses. Accurate landings on a moving vehicle are be-

coming increasingly important in today’s environment. Improved landing performance

would assist applications like as package delivery, docking and recharging, and surveil-

lance. Accurate relative estimate is required for high-accuracy landings, which is not

possible with the Global Positioning System (GPS) alone. The purpose of this research is

to create a solution that is especially suitable for the sea. With the ongoing advancement

of technology and the growing processing capability of our computers, the possibilities

for UAV applications become nearly unlimited. It may not be too far-fetched to imagine

that in the future, our skies will be filled with UAVs built to do the most diverse jobs in
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our daily lives. The automatic UAV detection module that will correctly detect and de-

termine the position of the drone, as well as compute the landing path for a safe landing,

will be the main topic of this dissertation. It will receive data from the nearby UAVs and

the stationary helipad in real time.

1.1 Dissertation Outline

This dissertation will be structured as follows:

• Chapter 1 - Introduction: Provides an introduction to the document, its inspiration,

the challenge of UAV object detection and categorization, and a description of the

suggested solution and its integration into the situation at hand.

• Chapter 2 - State of the Art: Displays the various systems that have already been

implemented to solve this and similar problems and explains the various technolo-

gies that will be used to implement the proposed solution, primarily in the areas

of high-precision autonomous landing, multirotor UAV control theory, and gazebo

simulation environment.

• Chapter 3 - Proposed Model: Explains the broad model under consideration and

the considerations that went into the decisions that were adopted.

• Chapter 4 - Implementation: Contains a full overview of the tools used to imple-

ment the suggested model and how they operated.

• Chapter 5 - Experimental Results: Examines the experimental outcomes obtained

using the suggested approach.

• Chapter 6 - Conclusions: Offers a summary of the work done in this scope of this

dissertation, as well as the possible further research topics, and will present the

conclusions findings of this document.

1.2 The problem

The goal of this document is to create an autonomous detection and landing system using

data from a Ground Control Station (GCS) and an airborne UAV to detect appropriate

landing trajectories, classify them, and extract position controller parameters from the

previously collected data. The UAV is equipped with remote vision-based sensing capabil-

ities that ensure the detection of the landing pad and the classification is to be done based

2
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on their relative Position and Orientation (POSE). UAVs have piqued the interest of the

scientific community in recent years, particularly those capable of Vertical Takeoff and

Landing (VTOL). One of the most serious difficulties for UAVs is autonomous landing.

Landing UAVs on boats in choppy waves or in unfamiliar situations requires autonomous

landing on an inclined surface. The capacity to land independently, particularly on a

ship’s deck, is still not solved. For example, a ship may have a level landing platform, yet

its orientation shifts with time. Also, given the maritime circumstances, which include

adverse wind and sea currents, normally paired with adverse wind gusts that affect the

UAV, the calculation of ship movements might be influenced to the point where landing

is not always feasible.

The system to be constructed should be able to monitor the UAV by calculating its

Position and Orientation in relation to the landing-pad ship, as well as compute the rel-

evant landing parameters that must be sent into the control loop in order to assess the

likelihood of a successful landing. Despite their widespread use in the past, and despite

their benefits, Inertial Navigation Systems (INS) and Global Navigation Satellite Systems

(GNSS) are not appropriate for a system where the aim is to achieve high-precision land-

ing on not just a moving platform, but a marine heaving platform. Vision-based solutions

are becoming more popular since they are passive and require no additional equipment

other than a camera and a processing unit. So, in order to effectively identify the problem

and develop a structured solution, it must be broken down into its major components:

1. Focusing on the autonomous detection of the landing pad, it is important to de-

velop a model and correspondent sensor array capable of receiving in real time

images from the UAV and the autonomous ship.

2. Since the data has been acquired, the autonomous tracking of the UAV is now

possible, therefore this module is tasked with analysing it to calculate the pose

measurements of the UAV and the GCS, or more specifically the ship landing pad,

as well as the metrics of their location with relation to each other.

3. Now that the all the modules have the necessary information about one another,

the UAV can start it’s autonomous descent over target. It’s here that the proposed

model needs to be able to, with the pose data collected, first compute the necessary

adjustments to the longitudinal position control to align with the landing pad (lat-

eral distance), and second to perform altitude position control (vertical distance).

This data needs to be delivered in a near real-time seamless communication manner

between the UAV and the GCS.

4. Assuming that the atmospheric and maritime circumstances are moderate enough

for the control loop to determine that a positive landing is feasible, the final issue is

landing confirmation. In addition, the deployment of a UAV securing system may

be required to guarantee that the UAV has safely landed, has been disarmed, and
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is securely attached to the platform. This guarantees that any operation the UAV

requires at home base may be satisfied.

1.3 Proposed Solution

Figure 1.1: Proposed solution based on vision-based GCS method for landing MR-VTOL
UAVs autonomously (adapted from [1]). The green cone represented depicts the cam-
era Field of View (FOV) of the proposed robotic landing platform stationed on the au-
tonomous boat.

This dissertation offers a cooperative vision-based landing system for MR-VTOL UAVs,

with the goal of addressing some of the challenges that typical pattern-based systems

confront. Rather of landing on its own, the UAV receives and relies on information

provided by the helipad. The helipad is effectively transformed into a smart element

capable of sensory data collecting and information processing, which may or may not be

linked to a mobile platform. A camera is installed in the centre of the helipad, facing

upwards towards the sky, with the goal of identifying the UAV during the landing, as

depicted in Figure 1.1. As a result, a large portion of the calculation is transferred away

from the UAV and to the helipad landing system, allowing the UAV to preserve computing

resources and battery power. The detecting method makes use of the the research work

done by Prates et al. (2018) [1] in the scope of his dissertation.

A high-level control technique will be designed that takes into account the relative

position and orientation between the UAV and the helipad. The most difficult aspect of

computing the pose will be solved by utilising a 1 camera running on a Convolutional

Neural Network (CNN) capable of detecting the UAV position in the frame for later

computing the pose vector appropriately. It is possible them to create pose estimates

for the picture by using focal matching techniques in conjunction with the camera’s
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known intrinsic and extrinsic characteristics. When compared to other depth-camera-

sensors, these often utilise less power. With the data from this sensor, the control module

creates an approach zone above the helipad airspace, with each divergence from the centre

position representing a different velocity instruction. The position controller node has

the benefit of having the intended goal position as the centre of the reference, or in other

words the coordinates point (0,0,0) if we use XYZ nomenclature. A velocity command

with a fixed orientation and magnitude is given for each relative position of the UAV

regarding the landing pad vessel inside the zone. It is worth noting that there is potential

of making alterations to the landing platform in order to ease the process of landing

stabilisation that unfortunately was not addressed. Not just to make things easier, but

also to allow for considerably harsher marine and atmospheric unfavourable situations.

The proposed platform solutions are dependent on the trial findings, nonetheless it is

reasonable to say that some type of servo actuators can be put beside the landing pad to

guarantee an added level of stability. It is also helpful for security reasons to consider the

existence of a security net that encircles the landing pad to guarantee that the UAV does

not damage the autonomous vessel.

The provided solution is general and modular, meant to act as a stand-alone system,

conduct the landing on its own, or be part of a larger system. For example, the system

and a traditional technique can work together to overcome or minimise each other’s faults

by combining numerous cues to conduct a more reliable and robust autonomous landing

algorithm. It is assumed that our solution will not operate in every environment, whether

atmospheric or other, but thorough testing will be done to verify that the capabilities of

the intended solution are not under or overestimated.
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2
State of the Art

2.1 Model and Control of a multi-rotor UAV

2.1.1 UAV Physics and Model Theory

2.1.1.1 General Remarks on multi-rotor UAVs

Unmanned Aerial Vehicle (UAV) [2] are aircraft that can fly without the presence of a

pilot on board, this feature has been increasingly popular in recent years due to the

capacity of UAVs to do complicated jobs including surveillance, catastrophe monitoring,

wildfire management, and tracking. The UAV, the Ground Control Station (GCS), and the

communication links are all part of the UAV system, a simple diagram is provided in 2.1.

Recent research in the technology of sensors, microprocessors, and aerodynamics have

allowed multi-rotor UAVs such as quadcopters to flourish. Quadcopters are aircraft that

have four independently controllable rotors installed at the extremities of a rigid planar-

shaped cross structure. Each rotor shaft is attached to a propeller. This arrangement

has the principal benefit of enabling vertical take-off and allowing the aircraft to hover

without effort. Because the UAV is intrinsically unstable, multiple sensors, as well as a

rapid and reliable control system, are required for a steady flight.

The multi-rotor UAV, unlike traditional helicopters, lacks a tail rotor for direct yaw

control, demanding a more sophisticated manoeuvre involving torque generated by the

engines. The general principle behind this says that when two motors revolve clockwise

(cw) and two revolve counterclockwise (ccw) the total torque is zero as long as each pair

of motors revolves at the same speed, this enables the UAV to achieve a stable hovering

state. All these features make multi-rotor, especially quadrotors, extremely popular for

applications in commercial aircraft activities once they are suitable for the case study.

This entails the use of precise dynamic models, high-performance and precise controllers,
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low-latency status estimators, obstacle avoidance and route planning, as well as the ability

to land on mobile platforms and pick up payloads [3]. Li et al. (2020) [4] and Moon et

al. (2019) [5] applied this to the more complex and less commercial task of autonomous

drone racing.

Figure 2.1: Concept of UAV system architecture.

The following constitute the most critical components of a multi-rotor UAV [6], for

simplicity’s sake the example will be about a quadrotor UAV. For better understanding

of the architecture of a quadrotor UAV a diagram is also provided below in 2.2.

• The frame is the bearing structure of a UAV. To withstand collisions and stress, it

must be light and strong. It’s usually composed of plastic or carbon fibre, and it’s

shaped like an ⊗ or a ⊕.

• The brushless motors power the propellers, supporting and maintaining the drone

in the air.

• The propellers might be built of plastic or carbon fibre and must be as light and

strong as the frame.

• The Electronic Speed Controls (ESC) regulate the rotation speed of the electric

motor and command its rotation direction by varying the supply voltage supplied

by the battery. Each engine is equipped with a separate Electronic Speed Controls

(ESC).

• The Lithium Polymer (LiPo) battery is the main energy source, the only one in most

UAVs, and its capacity dictates flying autonomy and the maximum power generated

by the engines.

• The microcontroller collects sensor data and, after processing it with a specialised

CPU, regulates the rotational speed of motors through ESCs. The paramount sen-

sors on a drone are the Inertial Measurement Unit (IMU), which measures angular

acceleration and speed, but also the gyroscope, GPS and altimeter.
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Figure 2.2: Simple diagram of a quadrotor UAV architecture (adapted from [3]).

2.1.1.2 Quadrotor UAV Mathematical Model

The quadcopter’s location and orientation may be controlled by adjusting the speed of its

four motors. These are separated into two groups based on the direction of rotation, with

Motor 1 and 3 rotating ccw and Motor 2 and 4 rotating cw, according to 2.3. Whenever a

quadrotor is in a hovering state, we assume that all of its propellers revolve at the same

speed to counteract gravity’s acceleration. As a result, the quadrotor conducts stationary

flight, with no forces or torques causing it to move from its position [7].

Figure 2.3: Structural model of a quadrotor UAV.

In the model in 2.3, it is also possible to see that the quadrotor has 6 Degrees of Free-

dom (DoF) despite the fact that it only has four propellers, therefore it is not feasible to

attain the desired set-point for all of the DoF, but only for a maximum of four. Never-

theless, because of its structure, it is reasonably straightforward to select the four best

controllable variables, as the quadrotor objectives are thus tied to the four primary move-

ments that allow the helicopter to attain a specific height and attitude. A brief description

of those motions is provided to the reader below [6]. Note that the description follows

the same logic of propeller identification depicted in 2.3.
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• Throttle U1

This operation is implemented by increasing (or reducing) the speeds of all pro-

pellers by the same amount. It generates a vertical force (Z-axis) concerning the

body-fixed frame, which raises or lowers the quadrotor. When the helicopter is

horizontal, the vertical direction of the inertial frame and one of the body-fixed

frames coincide. Otherwise, the given thrust causes inertial accelerations in both

the vertical and horizontal directions.

• Roll U2

This operation is implemented by increasing (or reducing) the speed of propellers

1 and 4 and decreasing (or increasing) the speed of propellers 2 and 3. It produces

torque concerning the X-axis, which causes the quadrotor to revolve. Because the

overall vertical thrust is the same as when hovering, this operation simply results

in a roll angle acceleration.

• Pitch U3

This operation is analogous to the roll and is implemented by increasing (or re-

ducing) the speed of propellers 3 and 4 and decreasing (or increasing) the speed

of propellers 1 and 2. It produces torque concerning the Y-axis, which causes the

quadrotor to revolve. Because the overall vertical thrust is the same as when hover-

ing, this instruction only results in a pitch angle acceleration.

• Yaw U4

This operation is implemented by increasing (or reducing) the speed of propellers

1 and 2 and decreasing (or increasing) the speed of propellers 2 and 4. It produces

a torque concerning the Z-axis, which causes the quadrotor to turn. The yaw move-

ment is caused by the fact that propellers 2 and 4 revolve cw while propellers 1 and

3 revolve ccw. As a result, if the entire torque is uneven, the helicopter will flip on

itself around the Z-axis. So because the overall vertical thrust is the same as when

hovering, this operation only results in a yaw angle displacement.

2.1.1.2.1 Coordinate System and General Assumptions

In order to create the equations that characterise the motion of a quadcopter, the refer-

ence coordinates in which the orientation and position of the drone are defined must

be specified. In our scenario, two reference systems are used: one fixed, E-frame, also

known as earth inertial frame, which represents the ground, and one mobile, B-frame,

also known as body-fixed frame, which is attached to the drone. The next section focuses

on the actual characterization of the frames as well as their formal mathematical defini-

tion (2.1.1.2.2). The earth inertial frame was utilised to describe the linear position and
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velocity of the quadrocopter’s centre of mass, while the body-fixed frame tethered to the

drone was used to describe the position and angular velocity.

Many assumptions have been taken in developing the model in order for the equations

of motion, described in sections 2.1.1.2.2 and 2.1.1.2.3, to be more clearly expressed in

the body-fixed frame [8]:

• The structure is regarded as perfectly rigid, which ensures symmetrical qualities to

facilitate the computation of the diagonal inertial matrix.

• The E-frame is considered time-invariant.

• The propellers are assumed to be equivalent and rigid, not allowing for deformation.

• On-board measurements are readily translated to body-fixed frame, B-frame, mea-

surements.

• To generalise the electric modelling, motors are almost identical.

• Virtually all control forces are delivered in the B-frame.

• Thrust and drag are maintained in ideal gas conditions with laminar stream velocity.

2.1.1.2.2 Newton-Euler Formalism

In order to identify the basic equations of a 6 DoF rigid body the Newton-Euler formu-

lation has been adopted, a more in depth description and formulation is provided by

Miguel and Martins (2019) [3]. Kinematics and dynamics are used to assess the quadrotor

UAV model.

• Kinematics

For body kinematics, without taking into account any forces or torques imparted to the

quadrotor, two frames were defined in section 2.1.1.2.1:

• E-frame - earth inertial related reference frame

E (OE ,xE , yE , zE)

ξ =
[
Γ E ΘE

]T
=

[
X Y Z φ θ ψ

]
T

(2.1)

• B-frame - body-rigid related reference frame
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B (OB,xB, yB, zB)

V =
[
V B W B

]T
=

[
u v w p q r

]
T

(2.2)

Euler angles are used to describe a rigid body’s orientation in space. These angles, in

particular, represent the location of a reference system (XYZ) linked to a rigid body via

a sequence of rotations beginning with a fixed reference system (ZYX). The origins of

the two reference systems are the same and resorting to Euler angles were employed to

characterise the quadcopter’s orientation in space. Combining the aforementioned simple

rotations and the frames in Equations 2.1 and 2.2 yields the rotation matrix translating

from B-frame coordinates to E-frame coordinates:

R(φ,θ,ψ) = RotTz (ψ) ·RotTy (θ) ·RotTx (φ)

=


cψ · cθ −sψ · cφ + cψ · sθ · sφ sψ · sφ + cψ · sθ · cφ
sψ · cθ cψ · cφ + sψ · sθ · sφ −cψ · sφ + sψ · sθ · cφ
−sθ cθ · sφ cθ · cφ


(2.3)

According to equation 2.3, the rotation matrix RΘ is involved in the relation between the

linear velocity in the B-frame V B and that in the E-frame Γ̇ E :

V E = Γ̇ E = RΘ ·V B

with RΘ = R(φ,θ,ψ)
(2.4)

Using the same approach, we can calculate the angular velocity in the E-frame using the

following relation:

Θ̇E = TΘ ·W E

with TΘ =


1 sφ + tθ cφ · tθ
0 cθ sφ

0
sθ
sφ

cφ · cθ


(2.5)

Equations 2.1 and 2.2 may be described in a single equivalence, in equation 2.6, that

relates the derivative of the generalised position in the E-frame ξ̇ to the generalised

velocity in the B-frame ν. The transformation is made feasible by the generalised matrix

JΘ , which converts the velocity of the B-frame to the velocity of the E-frame [3]. The

symbol 03×3 in this matrix denotes a sub-matrix of dimension 3× 3 filled with zeros.
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ξ̇E = JΘ · ν

with JΘ =

 RΘ 03×3

03×3 TΘ

 (2.6)

• Dynamics

The dynamics of the quadrotor is derived from the Newton-Euler equation described

by Martinez (2007) [9]. The influence of forces and torques on movements should be

examined in the B-frame from a dynamics standpoint, but recalling the assumptions in

section 2.1.1.2.1, due to the invariance of the inertial matrix in time and by exploiting

the symmetry of the body, despite the explicit nature of applied forces. To ease the

computation of the inertial moment’s matrix, the origin of the B-frame OB was carefully

chosen as the centre of mass. The linear components of the body motion are derived from

Euler’s first axiom of Newton’s second law, according to equation 2.7.

m · Γ̈ E
= F E

m ·�RΘ V B = RΘ · FB

m ·
(
V̇ B + ω B ×V B

)
= FB

(2.7)

where m [kg] is the body’s mass, Γ̈
E [
m s2

]
is the quadrotor’s vector of linear acceleration

in the E-frame, F E [N ] is generalised forces in the E-frame, and V̇ B [
m s2

]
is the vector of

linear acceleration in the body frame. Similarly, the angular component of movements of

the Euler axiom of Newton’s second law is deduced [3].

I · Θ̈E = τ E

I · ω̇ B + ω B ×
(
I ·ω B

)
= T Θ · τ B

(2.8)

where I
[
N m s2

]
represents the body inertia matrix (in the B-frame), Θ̈E

[
rad s−2

]
rep-

resents the quadrotor angular acceleration vector with respect to E-frame, ω̇ B
[
rad s−2

]
represents the quadrotor torque vector with respect to B-frame, and τ E [N m] represents

the quadrotor torques vector with respect to E-frame. It is now possible to describe the

motion of a 6 DoF rigid body by combining equations 2.7 and 2.8.

 m · I3×3 03×3

03×3 I

 V̇ B

ω̇ B

+

 ω B ×
(
m ·V B

)
ω B ×

(
I ·ω B

)  =

 FB

τ B

 (2.9)
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The symbol I3×3 denotes an identity matrix of size 3 × 3. This equation is completely

general and applies to any rigid body that adheres to the assumptions stated in section

2.1.1.2.1.

A generalised force vector Λ is defined as follows in equation 2.10. To accomplish this,

two assumptions must be made in order to simplify the dynamics of the body model:

• The first asserts that the origin of the body-fixed frame coincides with the body’s

centre of mass.

• The second stipulates that the B-axes frame corresponds with the body’s primary

axis of inertia. In this example, the inertia matrix I is diagonal, making the body

equations easy to solve.

Λ =
[
F B τ B

] T
=
[
Fx Fy Fz τz τy τz

] T
(2.10)

As a result, equation 2.9 may be rewritten in matrix form [3].

M B · ν̇ +CB(ν) · ν = Λ (2.11)

Where ν̇ is the generalised acceleration vector with respect to the B-frame. For the B-

frame, M B is the system inertia matrix and CB(ν) is the Coriolis-centripetal matrix. The

system inertia matrix M B is defined in equation 2.12:

MB =

 m · I3×3 03×3

03×3 I

 (2.12)

Because of the assumptions mentioned above, it’s easy to demonstrate thatM B is diagonal

and constant. The Coriolis-centripetal matrix is seen in equation 2.13.

CB(ν) =

 03×3 − m · S ·
(
V B

)
03×3 − S ·

(
I ·ω B

)  (2.13)

Equation 2.11 is general, and it is true for any rigid body motion given previously dis-

cussed assumptions. Nevertheless, because it was used to mimic the quadrotor helicopter

in this work, the last vector contains information on its dynamics. Depending on the

nature of the quadrotor contributions, Λ can be broken down into three components.

The first contribution is the gravitational vector GB (ξ) derived from the gravitational

acceleration g [m s − 2]. Since it is a force rather than a torque, it is obvious that it only

impacts linear equations and not angular equations. The adjustments used to get GB (ξ)

are shown in equation 2.14.
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GB (ξ) =

 F B
G

0 3×1

 =

 R Θ
−1 · F E

G

0 3×1

 (2.14)

Where F B
G [N ] is the gravitational force vector in the B-frame and F E

G [N ] is the same in

the E-frame. 0 3×1 is a vertical vector having three zeros in it. In addition, because R Θ is

an orthogonal normalised matrix, its inverted R Θ
−1 equals its transposed R Θ

T .

The second component addresses the gyroscopic effects caused by the propeller rota-

tion. When the algebraic total of the rotor speeds is not equal to zero, there is an overall

imbalance because two of them rotate cw and the other two ccw. If the roll or pitch

rates are also greater than zero, the quadrotor suffers gyroscopic torque, as calculated by

equation 2.15.

OB(ν) ·Ω = J T P



0 0 0 0

0 0 0 0

0 0 0 0

q −q q −q
−p p −p p

0 0 0 0


·Ω (2.15)

The gyroscopic propeller matrix is OB(ν), and the total rotational moment of inertia

around the propeller axis is J T P
[
N m s2

]
. The overall’s propeller speed Ω

[
rad s−1

]
is

defined by equation 2.16. Each propeller speed Ωi follows the same logic as Figure 2.3.

Ω = −Ω1 +Ω2 −Ω3 +Ω4 (2.16)

The third contribution considers the forces and torques produced directly by the

primary movement inputs. According to aerodynamics, both are proportional to the

squared speed of the propellers. As a result, the movement vector U B is obtained. Martins

(2019) [3] discusses in depth the derivation of the aerodynamic contributions (thrust

b
[
N s2

]
and drag d

[
N m s2

]
components). We can define the vector U B in

equation 2.17 based on our understanding of the nature of quadcopter movements.

U B(Ω) = EB ·Ω2 =



0

0

U1

U2

U3

U4


(2.17)
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Where U1, U2, U3 and U4 are the movement vector components described in equation

2.16. The correlation between their speeds and the speeds of the propellers is derived

from aerodynamic calculus.

2.1.1.2.3 Dynamic Model and Notes on Linearization

Six-second order differential equations derived from balancing forces and momenta op-

erating on the drone comprise the simplified dynamic model. The previous sections

illustrated the formulation of the kinematics and dynamic equations that define a 6 DoF

rigid body, or a quadrotor UAV, and are used to formulate the model. From the last sec-

tion equation 2.17 is used to explain the quadrotor dynamics when these contributions,

mentioned above, are taken into account. These contributions can be defined according

to equation 2.18 and it is possible to isolate the acceleration vector ν̇ of the B-frame by

rearranging them, as in equation 2.19.

MB · ν̇ +CB(ν) · ν = GB(ξ) +OB(ν) ·Ω+EB ·Ω2 (2.18)

ν̇ = M−1
B ·

(
−CB(ν) · ν +GB(ξ) +OB(ν) ·Ω+EB ·Ω2

)
(2.19)

Representing equation 2.19 now in a system of equations [7]:



u̇ = (v · r −w · q) + g · sθ
v̇ = (w · p −u · r)− g · cθ · sφ

ẇ = (u · q − v · p)− g · cθ · sφ +
U1

m

ṗ =
IYY − IZZ
IXX

· q · r − JT P
IXX
· q ·Ω+

U2

IXX

q̇ =
IZZ − IXX
IYY

· p · r +
JT P
IYY
· p ·Ω+

U3

IYY

ṙ =
IXX − IYY
IZZ

· p · q+
U4

IZZ

(2.20)

Where the speed inputs for the propellers are:



U1 = b ·
(
Ω 2

1 +Ω 2
2 +Ω 2

3 +Ω 2
4

)
U2 = l · b ·

(
−Ω 2

2 +Ω 2
4

)
U3 = l · b ·

(
−Ω 2

1 +Ω 2
3

)
U4 = d ·

(
Ω 2

1 +Ω 2
2 Ω 2

3 +Ω 2
4

)
Ω = Ω1 +Ω2Ω3 +Ω4

(2.21)
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The quadrotor dynamic system is stated in the B-frame. It is preferable to be able to

manage the quadrotor’s location in relation to the E-frame as well as its orientation in

relation to the B-frame. As a result, in this new reference, a hybrid frame with its position

in the Earth’s frame and its orientation in the B-frame is developed to make it simpler to

depict the dynamics in combination with the control (especially for the vertical position

in the E-frame). A new set of equations is needed to define the system in the new H-frame,

analogously in the previous section, the same operations are performed and depicted in

the equations below [7]. The quadrotor generalised velocity vector ζ with respect to the

H-frame:

ζ =
[
Γ̇
E

ω B
] T

=
[
Ẋ Ẏ Ż p q r

] T
(2.22)

According to equation 2.23, the dynamics of the system in the H-frame may be recast in

matrix form.

MH · ζ̇ +CH (ζ) · ζ = GH +OH (ζ) ·Ω+EH (ξ) ·Ω 2 (2.23)

The same can be done to the definitions of all the matrices and vectors used in equation

2.23.

MH = MB =

 m · I3×3 03×3

03×3 I

 (2.24)

CH (ξ) =

 03×3 03×3

03×3 − S ·
(
I ·ω B

)  (2.25)

GH (ξ) =

 F E
G

0 3×1

 =


0

0

− m · g
0 3×1

 (2.26)

OH (ξ) = OB(ν) ·Ω = J T P



0 0 0 0

0 0 0 0

0 0 0 0

q −q q −q
−p p −p p

0 0 0 0


·Ω (2.27)
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It is possible to isolate the acceleration vector ξ̇ with respect to H-frame by rearranging

equation 2.23.

ξ̇ = M−1
H ·

(
−CH (ξ) ·ξ +GH +OH (ξ) ·Ω+EH (ξ) ·Ω2

)
(2.28)

Representing equation (28) now in a system of equations:



Ẍ = (sinψ · sinφ+ cosψ · sinθ · cosφ) · U1

m

Ÿ = (−cosψ · sinφ+ sinψ · sinθ · cosφ) · U1

m

Z̈ = −g + (cosθ · cosφ) · U1

m

ṗ =
IYY − IZZ
IXX

· q · r − JT P
IXX
· q ·Ω+

U2

IXX

q̇ =
IZZ − IXX
IYY

· p · r +
JT P
IYY
· p ·Ω+

U3

IYY

ṙ =
IXX − IYY
IZZ

· p · q+
U4

IZZ

(2.29)

Where the propeller speed inputs are the same as in the system with regard to B-frame

and are provided in equation 2.21.

While the nonlinear model described above may successfully represent the dynamic

behaviour of a quadrotor aircraft in generic configuration and during generic flights, it is

well known that a linearized model is reasonably accurate during semi-hovering. A linear

dynamic system is one whose evolution is guided by a linear equation and so adheres

to the concept of superimposing effects. The work in [10] has recently reinforced the

relevance and accuracy of employing linearized models in quadrotors. The process of

converting a non-linear dynamic model to a linear one is also known as linearization, and

it is based on the analysis of the non-linear model around an equilibrium point while

taking only minor deviations into account.

2.1.2 Control Theory

Controlling the UAV is a critical component in the development of an autonomous land-

ing system. The aim is to place the UAV on top of the landing platform as safely as

possible, for the purpose of simplicity, it is assumed that the helipad is parallel to the

ground and that there are no obstacles above it. The UAV takes off and is led to the helipad

by navigation technologies, for e.g GPS-based ones. After spotting the features, patterns,

or landmarks, it attempts to align itself with the centre of the helipad, gently beginning

its descent while attempting to maintain the required alignment until it securely lands.

Control of a multirotor UAV can be divided into low-level, which states how the motors

are to be actuated to perform a certain movement in a certain direction, and high-level,

which determines what movement to perform in a given scenario [1].
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2.1.2.1 Low-level Control

Now that the dynamical model of the multirotor UAV system has been developed, it is

possible to consider a control loop into which it may be integrated. Because of their

simplicity and ease of use, a Proportional Integrative Derivative (PID)controller is a tradi-

tional option. PID controllers are one of the most prevalent methods for performing UAV

control, yet effective tuning of a PID controller may be a difficult task. Because each PID

controller has three main characteristics that must be tweaked, tuning numerous PIDs

can take a long time, and in most cases, a large number of test flights are required to attain

the desired performance. Typically, multirotor UAV PID controllers are set to work under

specified conditions. However, if these conditions change, extra tuning may be required,

such as if the payload carried by the UAV changes, because various weights might affect

the UAV’s flight dynamics in different ways, if the payload of a specific UAV has to be

changed, the PID parameters may need to be re-tuned. A great deal of study has gone into

implementing a PID controller to multirotor UAVs, ranging from simple textbook control

systems to more complicated self-tuning. Li and Li (2011) [11] is an example of a simple

PID control scheme that concludes that a quadrotor can achieve attitude stabilisation if

the PID parameters are appropriate for the task at hand. Babu et al. (2017) [12], on the

other hand, proposes a self-tuning PID controller based on gradient descent to perform

waypoint navigation and leader-follower formation control. Giernacki (2019) [13] pro-

poses a new real-time auto-tuning approach for fixed-parameter controllers based on a

modified golden-search (zero-order) optimization algorithm and bootstrapping method-

ology. Feng et al. (2018) [14], on the other hand, proposes a different approach to the

task of landing a quadrotor UAV, using a non-linear Model Predictive Control (MPC)

and a Kalman filter for landing platform position estimation. Another alternative for the

control loop is to use a Neural Network (NN), which has learning capabilities that are

suitable for quick reactions and flexibility in unknown situations. Maturana and Scherer

(2015) [15] created a system that uses 3D Convolution Neural Networks to analyse data

from the onboard sensors, the LiDAR, and determine the best landing zone for a UAV

allow with estimation for controller parameters for the high-level behaviour of landing.

2.1.2.2 High-level Control

The majority of high-level controls consist of a set of behaviours whose nature is deter-

mined by the job at hand. Only two behaviours are required in a landing manoeuvre, first

the altitude control to conduct the descent and secondly positioning control to perform

the alignment with the helipad. Once over the helipad, the UAV should attempt to align

itself with the helipad’s centre while maintaining height. It should begin its controlled

“fall” when the relative positions have been precisely determined while making modifi-

cations to the horizontal position in real-time whenever possible. Feng et al. (2018) [14]

proposes that during the landing manoeuvre, the position controller attempts to main-

tain alignment with the helipad by making necessary modifications, while the altitude
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controller progressively descends. Cabrera-Ponce and Martinez-Carranza (2017) [16] of-

fer a similar design but implement two proportional control to separate the positioning

controller into yaw and altitude controllers, allowing for more granular control of the

UAV .

2.1.3 Parrot Bebop 2 Overview

From among different commercial UAVs that can be effectively used in conditions of safe

educational practice (while adhering to minimum safety rules) and research (e.g., in the

field of methods of autonomous control, techniques of estimation and fusion of sensory

data, machine learning, optimization algorithms, or path planning methods), three very

popular and cost-effective constructions deserve special attention: AR.Drone 2.0 [17],

Crazyflie 2.0, and Bebop 2 [18]. The focus of this section is on the latter one, the Parrot

Bebop 2 drone, which in contrast to the others, provides significantly longer flying periods

and a medium-quality camera. Many proofs of the versatility of the Bebop have become

available over recent years, for e.g autonomous drone racing [4], 3D modelling and image

analysis [19]. The Parrot company’s Bebop 2 is a low-cost, small-scale unmanned aerial

vehicle. It is the next generation of ready-to-use, stable, and safe micro aerial class UAVs,

which has piqued the curiosity of the UAV community following AR. Drone 2.0. All of

this research work done on this drone is feasible because of its unique features and robust

open-source software. Bebop 2 is a relatively small drone with just 0.328 × 0.382 m of

diameter. The UAV weighs 0.5 kg during takeoff and has four motor units (4 KV BLDC

Motor, 7500 − 12000 rpm), 6” propellers, and a 2700 mAh LiPo battery, allowing it to

fly for up to 25 minutes without cargo. Offers a maximum horizontal speed of 60 km/h

and a maximum vertical speed of 21 km/h. Bebop 2 can withstand roughly 63 km/h

kilometres of headwind. The BusyBox Linux operating system is installed on the UAV,

which has a P7 dual-core CPU Cortex 9 processor, 1 GB of RAM, and 8 GB of flash memory.

An Extended Kalman Filter (EKF) is used to estimate the state of the Bebop 2 based on

current data from the 9-DoF IMU and onboard sensors. 2.1 summarises, below, some of

the dynamical parameters of the Parrot Bebop 2 drone, as well as their corresponding

values, as discussed in 2.1.1.2.3. Controlling the drone can be done with the Parrot

SkyController 2 device that can be used in autonomous flights using a GCS equipped

with Wi-Fi. The most common options at the moment are based on the open-source

driver bebop_autonomy, which was created natively for Linux Ubuntu 16.04 LTS and

Robot Operating System (ROS) in the Kinetic Kame version, by Monajjemi et al. (2015)

[21]. The package allows for communication and programming control commands for the

Bebop 2 from the GCS. Some of these commands, illustrated in Table 2.2, are provided

in ROS syntax.
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Symbol Value Unit

Total quadrotor mass m 0.5 kg
Body inertia along x-axis Ix 0.00389 kg m2

Body inertia along y-axis Iy 0.00389 kg m2

Body inertia along z-axis Iz 0.0078 kg m2

Time motor constant Tm 0.0125 s
Thrust motor constant bf 8.549× 10−6 k g m
Motor moment constant bm 0.016 m
Distance of propellers l 0.129 m
Maximum propellers speed Ωmax 1475 rads−1

Table 2.1: Dynamical Parameters for Parrot Bebop 2 drone (adapted from [20]).

Action Command

Takeoff rostopic pub –once /bebop/takeoff std_msgs/Empty
Landing rostopic pub –once /bebop/land std_msgs/Empty
Emergency rostopic pub –once /bebop/reset std_msgs/Empty
Piloting rostopic pub –once /bebop/cmd_vel geometry_msgs/Twist

Table 2.2: Principal control commands of bebop_autonomy for Parrot Bebop 2 drone.

2.2 High-Precision multi-rotor UAV Landing Systems

2.2.1 Landing Routine of multi-rotor UAVs

As civilization progresses towards the intelligent era, multirotor UAVs have a growing

number of application possibilities. The UAV must be able to take off, manoeuvre, and

land without the direct direction of a human operator in order to achieve the acceptable

amount of autonomy needed by mission scenarios. While autonomous waypoint navi-

gation works well when Global Positioning System (GPS) is available, and autonomous

takeoff is not difficult, autonomous landing remains a tricky operation for all types of

UAVs. Fully autonomous takeoff and landing would even allow for massive fleets of UAVs

by making deployment and recovery more efficient without the need for human inter-

vention. Positioning and navigation are two critical components of UAV landing, and

usually the majority of current precision landing research focuses on landing in a known

organised environment, such as a helipad or runway. Another consideration is the UAV

limited payload, which affects the number of batteries it can carry, therefore the window

of flight to perform the mission at hand. As a result, the vehicle must land frequently

during brief periods of operation for battery replacement or recharging. Further to that,

landing is one of the key goals of the quadcopter in applications such as delivery services,

environmental research, and surveillance. These insights underscore the importance of

the researcher’s work in UAV autonomous landing, despite its extraordinary complexities.
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2.2.1.1 High-Level Routine Overview

From a high-level perspective, a variety of elements must be addressed for a smooth

landing, including the kind of landing, visibility, terrain type, wind disturbances. A con-

ventional landing system incorporates a Global Positioning System (GPS) and an Inertial

Navigation Systems (INS). Because GPS height measurement is incorrect, a close range

sensor such as a radar altimeter or barometric pressure sensor is employed. There are

two elements to landing that form it’s core, namely sensing and control. Camera vision

seems to be the prominent sensing technology used by, specifically designed, landing

controllers to determine the Position and Orientation (POSE) of the UAV. This type of

controllers can be of various types, ranging from simple linear control to complicated

approaches including intelligent and hybrid control systems. In order to complete the

landing routine in a safe and exact way, a landing planner is added to the landing control

loop and once the landing job is initiated, the planner ensures that the vehicle follows a

landing process that typically consists of the following phases [22]:

Phase Description

1. Landing Area approach The vehicle is driven horizontally to the landing place
while maintaining its height.

2. Landing Target approach Once the target has been identified, the planner will
direct the UAV to approach it horizontally until the
horizontal distance between the vehicle and the target
meets a predefined criteria.

3. Descent over Target When the UAV gets near enough to the target hori-
zontally, it begins descending while maintaining its
horizontal distance from the target.

4. Touchdown approach When the UAV is vertically near to the target, it will
initiate by lowering the vehicle throttle to allow for
a rapid touchdown on the landing platform and dis-
abling stabilised control.

5. Landing complete The UAV will be disarmed once it is motionless on
the landing platform, and the landing task will be
finished.

Table 2.3: Typical phases of the landing process in a multirotor UAV.

For simplicity’s sake, the figure 2.4 below illustrates a block schematic of a general basic

linear landing control system. The system is divided into four components: sensors &

navigation system, guidance controller, flight controller, and UAV. The POSE of the UAV

is mostly determined by the sensors & navigation system. This data is combined for the

flight and guidance controllers. To follow a desired trajectory, the guidance controller

generates guiding orders such as changes in velocity, acceleration, and rotation. The guid-

ing command is used by the flight controller to create the proper actuation instructions
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based on the type of UAV, such as multirotor or fixed wing [23].

Figure 2.4: General basic linear landing control system (adapted from [24]).

2.2.1.2 The Problem with UAV Landing

The process of flying a UAV consists of several phases, including takeoff, ascent, cruise,

descent, and landing. Due to significant hazards and dependability difficulties, most

UAV autopilots feature autonomous take-off, for e.g catapult and manually launched, and

cruise capabilities but limited autonomous landing capabilities. Accurate measurements,

or optimal approximations, of the positions of the landing platform and the UAV, as

well as robust trajectory tracking in the face of disturbances and uncertainty, are the key

hurdles in autonomous landing [25]. As a result, landing precision is critical; otherwise,

the UAV may crash. Aside from that, the manoeuvre must be completed in a restricted

amount of time and space, demanding precision sensing and control approaches. The

majority of UAVs rely on GPS-based state estimates for landing, however drift accumu-

lates over time, rendering these systems useless in GPS-denied environments. As a result,

a drone cannot consistently land at the same position and may seek to land in an unfor-

giving location, such as a neighbouring tree [26]. Nowadays, GPS-based positioning and

navigation technologies clearly do not function effectively, since GPS precision is only

approximately 10 metres. The GPS signal can also be interfered with and hindered for

certain high structures in cities, causing inaccuracy rise and even signal loss, and it is

incredibly easy to crash, which plainly cannot fulfil the demands of exact landing. The

majority of the work conducted by peers and researched for this dissertation are vision-

based techniques that also limit their application at night and/or in low-light conditions.
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2.2.1.3 The Challenge of UAV Landing on Mobile Platforms

When the platforms are placed in motion, the landing algorithms for stationary platforms

are unable to meet the landing performance criteria. Autonomous landing on a moveable

and/or inclined surface is required for landing UAVs on boats in open waters or in unfa-

miliar situations, where an uninclined and/ or stationary landing platform may not be

accessible. In addition, quadrotors are load bearing, therefore landings must be as gentle

as possible to ensure the safety of the load. When compared to other mobile landing

platforms, a ship deck setting makes landing much more difficult. A ship’s landing deck

may be flat, but its orientation shifts with time. A multirotor UAV should be able to mea-

sure the inclination as it varies over time and securely lands. Scorpion [27] is a remotely

controlled UAV with Extreme Short Take-Off and Landing (ESTOL) capabilities in use

by the US Navy, with the ability to tilt the thrust vector without affecting the attitude

of the aerodynamic surfaces. This design provides increased flexibility and resistance to

turbulence and stall, which is especially useful for ship launch and recovery in severe

seas. Das et al. (2012) [28] using four PING sensors, placed under each rotor, detects the

orientation of the landing surface. Assuming the surface is inclined along the roll axis,

in this scenario the average distance of the two sensors on the left side of the rotor will

differ from the average distance on the right. To align the quadrotor with the landing

surface, the algorithm alters the roll in incremental stages until the distances on both

sides of the quadrotor are the same, indicating that the quadrotor is aligned. The simulta-

neous operation of the PING sensor and throttle reduction guarantees that the quadrotor

lands on the landing surface while changing orientation. Rodriguez-Ramos et al. (2018)

[29] focussed is research in Deep Deterministic Policy Gradients (DDPG) algorithm and

created a flexible Gazebo-based reinforcement learning framework.

2.2.2 Detection Methods for Autonomous Landing

In this section it will be provided documentation regarding the researched autonomous

landing control systems for this dissertation. The methods studied will be divided into

two main groups, vision-based and sensor-based systems. A brief description of a tra-

ditional detection method, more easily illustrated in the case of vision-based systems.

The UAV flies to the landing zone using a GPS-based navigation system, for example. It

begins looking for the pre-determined pattern, in the example depicted in Figure 2.5, a

"H"written in a circle, using its camera, the field of view of which is indicated by the red

cone. The landing operation can begin after the respective locations are determined. On

the other hand, the operation can be solemnly done by the use of sensor-based technolo-

gies. The usage of different sensors is always a decision that the researcher needs to make

in order to complete the mission in the given scenario. Usually vision-based is paired

with sensor-based, or vice-versa, in order to have a more robust and complete landing

control system, but also have fail safe systems to ensure redundancy for UAV security.
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Figure 2.5: Vision-based most common method for landing MR-VTOL UAVs au-
tonomously (adapted from [1]). The red cone represented depicts the camera mounted
on the quadrotor Field of View (FOV)

2.2.2.1 Related’s Work Methodology

Possible solutions to the problem highlighted in the previous section are presented from

the perspective of a sensor-based autonomous landing system solution. Some researchers

used altitude sensors [30] to assess the distance between the landing pad and the aerial

vehicle. Ultrasonic sensors, used by Das et al. (2012) [28], are sensitive to the composition

of the targeted surface and can, especially, provide incorrect readings for sound-absorbing

materials. Infrared sensors are also commonly employed for range finding, however they

can be incorrect when used outside or in areas with direct sunlight. Furthermore, as the

relative angle of the targeted surface gets significant, the accuracy of these sorts of sensors

tends to diminish.

Rydalch et al. (2021) [31] developed two methods for precise maritime landing of

an autonomous multirotor aircraft based on Real-Time Kinematic (RTK) Global Naviga-

tion Satellite Systems (GNSS). The purpose of his study was to create a solution that is

particularly suitable for the sea and does not require computer vision or sophisticated

control and estimation systems. The first approach, known as the RTK-Localized Method

(RLM), use RTK GNSS data to locate a maritime vessel and carry out the landing. RLM

was demonstrated in hardware outside and landed on a physically recreated boat known

as a mock-boat with an average landing inaccuracy of 9.7 cm. The landing-boat was

triggered to move like a boat and have a forward velocity of 2 m/s. This approach demon-

strated that precise landings are achievable when RTKGNSS is used as the primary way

of locating a marine vessel. The localization was performed without the assistance of non-

RTK sensors or an estimator, but lacked complete attitude estimation and measurement
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smoothing. The second technique, known as the RTK-Estimation Method (REM), gives a

more thorough and resilient solution, especially at sea. It has a landing pad estimator that

combines readings with a dynamic model of a marine vessel. The base estimator is made

up of an EKF and a complementary filter that calculates the relative location, attitude,

and velocity of a moving object. Because the only sensors used to track the marine vessel

were RTK receivers and inertial measurement units, the procedures outlined differ from

standard methods. Most current solutions rely on computer vision, which can fail in bad

lighting, in the presence of ocean spray, and in other situations. Under such situations,

the proposed solutions by Rydalch and Kent [31] do not fail. Using readings from satel-

lites thousands of kilometres away, the two approaches can land on quite small landing

pads at sea, on the scale of 1 m by 1 m.

Possible solutions to the problem highlighted in the previous section are presented

from the perspective of a vision-based autonomous landing system solution. The ve-

hicle must locate the landing platform or landing zone, which is generally identifiable

from the rest of the ground, that’s why cameras in this context stand out. A variety of

vision-based control algorithms are available for helipad detection, tracking, and landing,

both indoor and outdoor. Cameras are sensors with the ability to perceive the surround-

ings and are often lightweight, so autonomous flight of a UAV can be accomplished by

employing computational methods based on visual analysis of video footage collected

from the onboard camera [16]. In the feedback control loop of an autonomous landing

system, computer vision is employed. The use of vision in the control loop is particu-

larly appropriate for circumstances when the landing pad is in an uncertain position or

is non-stationary. Traditional vision-based target tracking and landing approaches are

based on object recognition using edge detection algorithms. Although vision is a natural

sense for object recognition and landing, it can only detect changes caused by applied

forces rather than the forces themselves. Visual processing is really highly effective for

solving autonomous navigation and landing systems at a predefined place, but it must be

paired with sensors to measure height above ground. As a result, vision-based approaches

are combined with traditional control techniques to provide a good and strong landing

design [32].

In [23] and [33], for example, the authors suggest an autonomous landing system

based on a mix of visual data processing and GPS. The GPS gives location, velocity, and

a compass to determine direction, while the vision system uses the camera to locate the

landing zone. This combination achieves automated landing with great precision. When

just a monocular camera is utilised, visual tracking cannot be used directly to retrieve

the 3D location of a marker. However, if the size of the marker is known, depth may be

estimated and used inside a controller for autonomous landing [32]. Pluckter and Scherer

(2020) [25] proposed technique eliminates these issues by following the established take-

off route back to its starting point with a monocular fisheye camera, allowing them to

land the drone properly. When compared to outdoor landing, indoor landing implies

landing in a controlled setting with less external disturbances. For Indoor landing using
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visual infrared tracking, Xuan-Mung et al. (2020) [22] employ a fixed infrared camera,

with the control algorithm running on an inbuilt microprocessor, to stare downwards

and track a pattern of infrared dots. At a high frequency, the integrated circuit supplies

the pixel position of each spot and the calculated posture is utilised to control the vehicle

motion in various integrated PID control loops.

2.3 Gazebo Simulation Environment for multi-rotors UAV

2.3.1 Gazebo Overview

2.3.1.1 Description

Gazebo [34] began to be developed in 2002 at the University of Southern California as part

of Nate Koenig’s Ph.D.under the wing of professor Dr Andrew Howard under the Apache

2.0 licence. Curiously, most Gazebo’ users use it to simulate indoor environments in a

reliable and resource-friendly way, despite the intended goal of answering the need for

a high-fidelity simulator for robots in an outdoor environment. Development continued

and in 2009, John Hsu, integrated Robot Operating System (ROS) and the PR2 (robot

designed by Willow Garage) into Gazebo, branding it to become one of the primary tools

in the ROS community user’s arsenal. In 2012, the Open Source Robotics Foundation

(OSRF) made the last move and transformed Gazebo into an independent project that

continues to develop with support from the community. One of the reasons for its great

success is the open-source core, enabling the source code to be available to all users and

be developed in a collaborative public form.

2.3.1.2 Architecture and ROS Integration

Gazebo uses a distributed architecture with separate libraries for physics simulation,

rendering, user interface, communication, and sensor generation. The package includes

two main executables that allow the user to run the simulator: GzServer, the core, and

GzClient, the user interface and simulation controls, depicted in Figure 2.6.

From the start, Gazebo’s major feature was the ability to easily create new elements in

the simulation, so they maintain a simple Application Programming Interface (API) that

resides on third-party libraries that handles the simulation physics and rendering at a

low-level (Figure 2.7). The World depicts the set of all models and simulation factors,

from gravity and friction to lighting and wind. The Model, in this case, the quadrotor

UAV, is composed of body and joints, as for all robots, paired with all sensors, flight

controllers and simulated virtual camera feeds, packed together with visual meshes for

graphical purposes. This makes Gazebo perfect for integration withROS.

Robotic Operating System, more commonly known as ROS, is a licensed robotics sys-

tem designed to control and design robotic components from a Linux-running machine.

The basic architecture relies on the publish/subscribe messaging paradigm, used widely
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Figure 2.6: Illustration of the main processes of Gazebo (adapted from [35]).

Figure 2.7: General environment structure in integration with ROS (simplified from [34]).
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in our modern world, that forms the communicating interface between the independent

nodes that assemble ROS. Those messages are then delivered to a special inbox, a topic,

that can be opened by all and any number of other nodes. This way the ROS nodes

don’t need to be running on the same machine or even written/designed with the same

architecture, this feature is what makes it the go-to Operating System (OS) for robotics

applications.

Looking at a simple example, in Figure 2.8, of a quadrotor UAV with a camera facing

downwards, composed of two nodes and one topic.

Figure 2.8: Schematic of a simple Drone + Camera communication over ROS.

Segmenting the drone we have:

• Master, the core of ROS, allows for all other ROS Nodes to find and talk to each

other.

• Camera Node, that handles all the communication with the camera sensor.

• Image Processing Node, which handles image data processing.

Turning the system on, makes all Nodes register with Master as if Master is a yellow-pages

book where all Nodes come to search for where to and what messages to send. While reg-

istering with Master, the Camera Node states that it will publish to the Topic, in our drone

/image_data, some message of type, in our case image_data. On the other hand, the Image

Processing Node states that it will subscribe to the Topic /image_data, and messages of

type image_data. This way every time the Camera Node receives some information from

the Camera Sensor, it sends a message to /image_data, making the information available

to the Image Processing Node that receives the message, this communication is made

essentially over TCP/IP. Note that it is also possible for the Image Processing Node to re-

quest information at any time from Camera Node, that’s why ROS implemented Services.

These services are registered at startup by the Node when registering the messages and

Topics it will publish/subscribe to [35].
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2.3.1.3 Context of simulation in multi-rotors UAV experiments

Conducting multi-rotors UAV outdoor experiments in the context of this dissertation

requires ideal weather conditions and compliance with local aviation regulations, the

autonomous vessel needs to be ready and deployed at sea in a safe controlled area, this

uses a significant amount of resources, not to mention the risk of testing with equipment

and platforms in the physical world [36]. It is, therefore, preferable to evaluate scenarios

in simulation prior to experimentation whenever possible.

“In the relatively short life span of Gazebo, we have seen adaptation and contributions

from other universities and creative uses of Gazebo as not just a simulator but also a

safety device.” [34]

In order to do so, the quadrotor simulator needs to be able to provide realistic models

for dynamics, wind, and sensor noise, and to balance accuracy with speed, enabling (near)

real-time performance. Not only this but It needs to verify component integration and

evaluate their performance under lots of different scenarios. The value of simulation

UAVs in a 3D environment to test algorithms stands out as an indispensable stage in

designing multirotor applications. The array of quadrotor simulators available today are

huge and Gazebo may not include as many features as other engines available, but it

fits the requirements that make it a top-level robotic simulator, that in conjunction with

the right libraries and plug-in’s, courtesy of ROS integration, becomes a high-fidelity

multi-rotor UAV simulator.

2.3.2 Software-in-the-loop (SIL) Simulation

2.3.2.1 Fundamental Concepts and Major Features

Software-in-the-Loop (SIL) testing methodology is part of the verification phase of the

Model-Based Design approach [37]. Comes opposing Hardware-in-the-Loop (HIL) and

consists of the technique of testing a component of a system, or even the complete system

itself, relying only on software. The need to have a real piece of hardware in your control

and feedback loop is removed by adding software simulating physical hardware parts in

the loop. SIL gives engineers the utmost control of their system by enabling detection of

system-level defects or bugs before other testing methodologies, significantly reducing

the costs of later stage troubleshooting. As an example, SIL provides the freedom to add

a gust of wind, or in an extreme case rotor malfunction, to the precise moment where the

drone is just centimetres away from the ground, allowing it to monitor the outputs and

behaviour of the system given those input signals.

2.3.2.2 RotorS - SIL Simulation ROS packages for multi-rotor UAVs

ROS, relying on the integration with Gazebo, provides a modular Micro Aerial Vehicle

(MAV) simulation framework, the RotorS. This allows developers to design and test
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applications that can then be run on the real platform without any changes. A simple

architecture of the RotorS simulator and package structure is shown in Figure 2.9 and

Figure 2.10, respectively. Gazebo handles the simulation of UAVs components through

Figure 2.9: Simple Architecture of RotorS Simulator (adapted from [38]).

Gazebo plugins and physics engine, but to be able to simulate a UAV it is necessary to put

together a modular way of depicting it with accuracy. So according to RotorS developers,

a MAV consists of a body equipped with a fixed number of rotors in specific locations, and

sensors attached to it. All rotors have their individual motor dynamics and aerodynamic

effects. Sensors that form the core of almost all robots are attached to the body and

simulated by Gazebo, either it be for e.g an IMU, an odometry sensor or a camera sensor.

Noise models for the sensors were implemented to ensure near real-world approximation.

Regarding the control strategies, a simple implementation of a geometric controller is

provided, allowing several degrees of control, e.g angular rates, altitude, or position. Keep

in mind that the implementation of more advanced and case-specific control strategies is

encouraged by the team [38]. In order to get stable and robust multi-rotor UAV flights,

the key element is knowing the UAV state. To tackle this a state estimation block was

added to the loop to ensure that information about the state of the UAV is delivered

at a high rate. Another advantage of using SIL is that we replace the crucial process

of state estimation in real UAVs, with a generic (idyllic) odometry sensor. This is done

by fusing IMU measurements with generic 6 DoF pose measurements, obtained from,

for e.g visual-odometry, visual SLAM systems (Intel RealSense Camera Sensor) or laser

rangefinder techniques. By combining both types of measurements, the RotorS team

developed an almost drift-free, high-rate and low delay estimation of state of a UAV, or

MAV. All of this can be accomplished because position, orientation, linear and angular
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velocities are provided by a Gazebo plugin. From a filesystem point-of-view (Figure

Figure 2.10: Package Structure of RotorS Simulator. (adapted from [38]).

2.10), the RotorS simulator is divided into six packages, all with a specific purpose for

the overall simulation environment. Two packages for UAV control, rotors_control the

actual simulated multi-rotor controller, and rotor_joy_interface an interface that enables

user-control based on a joystick. Two packages for Gazebo simulation integration, the

rotors_gazebo and rotors_gazebo_plugin. And finally, rotors_description package for

UAV model description, including body and rotor dynamics and sensor configuration,

and rotors_evaluation a simple package with validation files.

2.3.3 BebopS - Parrot Bebop 2 + RotorS

BebopS [20] is an extension of the ROS package that we discussed in the section 2.3.2.2,

RotorS. It was developed by Giuseppe Silano, Pasquale Oppido, and Luigi Iannelli from

the University of Sannio in Benevento, Italy, under the Apache 2.0 licence. The objective

is to model, develop and integrate the existing ROS package with the Parrot Bebop 2 [18]

and the Gazebo simulation environment. The repository [39] was developed with the aim

of designing complex control systems for the Bebop 2 drone, although the author states

that it can be used as a template for any other multi-rotor UAV controller implementa-

tion. Regarding the flight control system, depicted in Figure 2.11, a common cascaded

control architecture was chosen with standard Proportional Integrative Derivative (PID)

controllers, the literature standard solution for quadrotor UAVs controller designs [40].

The position controller computes thrust and attitude needed to go from the measured

UAV position to the desired position, with the desired heading orientation. Since the

program is designed following the SIL methodology the platform allows us to detect and

manage instabilities of the drone that otherwise might not arise when following a HIL

methodology (Matlab/Simulink simulation).
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“In the relatively short life span of Gazebo, we have seen adaptation and contributions

from other universities and creative uses of Gazebo as not just a simulator but also a

safety device.” [34]

Figure 2.11: BebopS Control Scheme (obtained from [20]).

The outer loop controller, or the position controller, uses the UAV measured position

to compute the desired thrust and the attitude, η =
(
ϕ θ ψ

)⊤
(Euler angles roll, pitch,

and yaw) used to describe the drone’s body orientation using the ZYX convention [41].

On the other hand, the inner loop controller, or the attitude controller, uses the UAV

measured attitude to compute the model inputs that should be actuated to achieve the

desired attitude. Finally, the control mixer obtains the commanded motor velocities by

inverting the controller outputs, which will be later used as inputs for the UAV dynamical

model, discussed in section 2.1.1.2.3.

2.3.4 Parrot’s Sphinx Simulation

Sphinx [42] is a simulation tool designed to meet the demands of Parrot engineers as an

internal tool for the development and automatic testing of working drones. It offers SIL

simulation in which the drone and its surroundings are fully virtualized. The drone’s

physical and virtual surroundings are simulated using the open-source Gazebo multi-

robot simulator. The firmware for the Parrot drones is executed in a separate environment

from the host system. The simulator is built on a Gazebo version 7 completely modified

by the team at Parrot to run exclusively for Parrot drones that’s why it supports various

commercial products, e.g Bebop, Bebop 2, Disco and ANAFI series. Sphinx is capable of

multiple drones in the same simulation and can be used to fine-tune control algorithms

and perform manual validation tests.

The simulator relies on a simple three-part architecture, represented in Figure 2.12.

The Gazebo 7 custom-build, with plugins designed exclusively for Parrot drones. GzServer,

previously discussed in section 2.3.1.2, simulates a world packed with models and their

physical interactions, system’s world, model and GUI plugins, and an optional GzClient

for real-time OpenGL visualisation. The drone firmware is Parrot’s firmware that is

loaded on the go with no need for previously installed packages, this feature permits to

lower the resources needed in the host system to simulate while bringing the need for a

stable internet connection each time the simulator is run [42]. Parrot made it possible
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to download their drone firmware for Sphinx from a PLF server to the host machine, to

run the simulator without internet access but it’s resource-consuming for the host system.

Using the drone’s internal firmware permits a seamless connection to the Parrot’s Sky-

Controller via the Software Development Kit (SDK) provided. And finally, the firmwared

service, a Daemon responsible for spawning multirotor UAV firmware instances, in con-

tainers, with target root-privileges and multiple instances from a single firmware. Sphinx

also provides a script, the web dashboard, allowing for a more user-friendly view of

telemetry data and offers some world configuration and control. Parrot-Sphinx allows

you to monitor flight data in three ways: during the flight via a web Human Machine

Interface (HMI) (sphinx-web-dashboard), during the flight via a command-line tool (tlm-
data-logger), and after the flight using recorded data files (.tlmb files). Because bebop

autonomy and Parrot-Sphinx share ROS architecture, it is possible to record and play

rosbag files containing data from chosen sensors after the flights.

Figure 2.12: Architecture of Sphinx’s Gazebo Simulator.

2.3.5 Comparison between Simulators

Simulation is a valuable scientific technique that may be used in conjunction with more

traditional experimental methods. It’s crucial to pick the right simulator since different

simulation environments have varying performance, model detail, and built-in features,

all of which might impact the effectiveness and value of simulation-based research. Sev-

eral studies have presented a formal comparison between robotics simulators, such as

V-REP [43], ARGoS [43], Gazebo [43–45], ANVEL [45], Player/Stage [44], SARGE [44],

USARSim [44]. The majority of the above-mentioned simulators are intended to simulate

mobile robotic applications, but not specially designed to tackle a multi-rotor UAV/MAV

33



CHAPTER 2. STATE OF THE ART

simulation. Several studies have described examples of this kind of simulator, such as

AirSim [46], Morse [47], jMAVSim [48], X-Plane [49]. Regarding these kinds of software, a

formal comparison between them is presented in a few noteworthy and relevant studies.

Pitonakova et al. (2018) [43] provides a ranked evaluation of V-REP, Gazebo, and

ARGoS, on the simulator characteristics and performance on a vast array of comparison

criteria. The authors compare the characteristics of the simulator in regards to their built-

in capabilities, robot and model availability, programming methods, and User Interface

(UI), while the performance metrics stay simple and the evaluated criteria are the real-

time factor, the amount of CPU usage, and the amount of memory usage. However, this

study does not provide a formal comparison between the multi-rotor UAV simulators

presented in sections 2.3.3 and 2.3.4, nevertheless providing useful insight on Gazebo’s

characteristics and performance metrics, the base of BebopS simulator. In conclusion,

the research states that Gazebo has many of the features of a more complex simulation,

for e.g multiple physics engines, the ability to interact with the world during simula-

tion, and, most crucially, visual modification and optimization, but at the same time

UI and default robot models are substantially more straightforward making it a lower

resource-consuming option. However, the trials revealed that Gazebo’s usability is lack-

ing. Another concern is the interface, which has a lot of flaws and does not adhere to

standard practices. Finally, problems with installing dependencies for Gazebo and sev-

eral of its third-party models have been reported. In conclusion, the findings suggest that

while these difficulties are not necessarily serious on their own, when combined, they

might have a detrimental influence on a study effort.

Ebeid et al. (2018) [48] presents a survey on open-source flight controllers designed

for UAVs based on a web-based survey of 20+ flight controllers. The authors evaluate

and contrast the features, specs, licencing kinds, and other characteristics of each flight

controller and open-source simulation system, including Gazebo.

Hentati et al. (2018) [50] presents a formal comparison of specifically designed multi-

rotor UAV simulators, including Gazebo on criteria relevant to this dissertation case study.

Besides that, the authors also provide an extensive comparison of ground control station

software applications that run on a ground-based computer. The team concludes that for

their case study, which consists of exchanging MAVLink messages, FlightGear [51] and

QGroundCrontrol [52] prove to be the focus of future research. It is important to note

that ROS Integration is valued as a lower requirement criterion.

To the extent of my knowledge, there has never been a systematic and meaningful com-

parative assessment of BebopS and Parrot-Sphinx multi-rotor UAV simulators. Nonethe-

less, the Table 2.4 below provides an informal comparison of the simulators. Remember

that this is the culmination of the study conducted as part of this dissertation.
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Criterion Collection Advantage Explanation References

ROS Integration BebopS Based on RotorS, plus Sphinx of-
fers zero integration. [20]

World Modelling BebopS + Sphinx Both rely upon Gazebo system
and world engines (plugins). [20, 42]

Robot Model BebopS Based on a more generic and
open-source engine. No custom
builds to create incompatibility,
unilke Sphinx.

Based on
Previous Work

Customization BebopS Both offer customization, but
because BebopS is built into
OS+Gazebo the possible range of
tweaks becomes endless.

No reference

Multi-UAV Support BebopS Both offer support, but BebopS
multi-UAV simulation is much
more complete.

[20]

CPU Use Sphinx In this case, only the simulation
is run on the host machine be-
cause the firmware service takes
care of the rest.

No reference;
Testing

conducted in
Previous Work

Real-world proximity Sphinx Uses framework that comes from
the real drone framework. [42]

Ease of Development BebopS + Sphinx Both have strong points for differ-
ent scenario missions. Based on

Previous Work

Table 2.4: Comparison between BebopS and Sphinx Simulator.
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Proposed Model

This dissertation offers a cooperative vision-based landing system for MR-VTOL UAVs,

with the goal of addressing some of the challenges that typical pattern-based systems

confront. Rather than landing on its own, the UAV receives and relies on information

provided by the helipad. The approach and algorithms created were developed with the

aim of constructing an autonomous detection and landing system using machine learning

algorithms. Section 3.1 presents a basic overview of the developed software architecture

as well as the physical system that was used as the foundation. Section 3.2 explores all

the techniques and general procedures used to find and identify the UAV in imagery

captured by the helipad’s ground-to-sky camera. The tracking algorithm used to enhance

the real-time UAV position computations together with the calculations in relation to the

desired target position are described in Section 3.3. To conclude this chapter, section 3.4

offers a potential high-level strategy for directing the UAV to its goal while ensuring a

steady descent and successful landing.

3.1 General Overview

Two essential components of the system are an MR-VTOL UAV and a helipad. The helipad

may be a stationary platform or it may be put on top of a moving robot that serves

as a mobile base for the UAV. For the purposes of this dissertation, the system was

created to accommodate a marine heaving platform. Both the helipad and the UAV are

active elements that may gather and analyse sensory data. The UAV has GPS and an on-

board Inertial Measurement Unit (IMU) for estimating outdoor pose. An upward-looking

camera with its optical axis perpendicular to the ground is located in the middle of the

helipad, as depicted in Figure 3.1. Thanks to the camera sensor array, the helipad also

features an IMU that effectively transforms it into a smart element capable of sensory
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data collecting and information processing. As a result, a large portion of the calculation

is transferred away from the UAV and to the helipad landing system, allowing the UAV

to preserve computing resources and battery power. Both modules have a high degree of

reliability in their capacity to connect and interact with each other.

Figure 3.1: Proposed technique physical system, based on vision-based GCS method for
landing MR-VTOL UAVs autonomously (adapted from [1]).

The overall proposed model structure is depicted in 3.2 is organised into three primary

processes that run entirely on their own: UAV detection, Middleware Communication

Interface, and Position Control actuator. When detecting UAV instances, the Detection

element of the UAV Detection module uses a single-stream RGB image and a weights

file as input and returns the corresponding bounding boxes for each instance. This in-

formation and the input image from the model are both given to the Overlap section,

which overlaps the data and outputs a single-stream RGB image with the starting image

already filled with coloured boxes surrounding the detected UAV. In the Middleware

Communication Interface, the Landing Target Computation section computes the rela-

tive distance from the UAV to the target landing site (the center of the image) using the

detected UAV bounding box position, in pixels relative to the image, and estimates the

UAV centre of mass and size to compute the pixel to meter ratio. This data, together with

the annotated input image, are sent to the Overlap section, which overlaps the current

bounding boxes with the UAV’s centre of mass, the target’s location, and other crucial

data for administration and control of the UAV, like the battery and rotor states.
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Figure 3.2: The proposed model structure is organised into three primary processes: UAV
detection, Middleware Communication Interface, and Position Control actuator. The
Detection element of the UAV Detection module uses a single-stream RGB image and
a weights file as input and returns the corresponding bounding boxes for each instance.
In the Middleware Interface, the Landing Target Computation section computes the
relative distance from the UAV to the target landing site using the pixel to meter ratio.
Then the Overlap section, overlaps the data and outputs a single-stream RGB image with
the detected UAV and useful data. In the UAV Position Controller actuator commands
are sent to the UAV depending on the nav landing waypoint assessment to perform the
landing.
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For user visualisation, the final image is published in a single-stream RGB topic. The

Precision Landing Manager component in the UAV Position Controller gets the real-

time robot (drone) pose and the UAV distance to landing target to ensure that the desired

behaviour is obtained. To evaluate all the data and generate a conclusive and more

accurate estimate of the UAV’s pose, the data from these sources are combined and a

Nav landing waypoint is then returned after validating the altitude and ensuring that the

target’s distance in 2D coordinates is within the precision landing criteria. In order to

conduct the landing, the Position Controller section then receives this information along

with robot (drone) odometry and sends actuator commands for the UAV depending on

the nav landing waypoint. In order to guarantee that the calculated desired behaviour

and the actual behaviour are identical, the Precision Landing Manager monitors the

actuator commands and responses.

A file holding the weights for the network trained using the Darknet framework and

YOLO, a real-time object detection system, must also be provided as input to the model.

This weights file is crucial to these operations because it gives the network the values for

the connections between neurons, effectively dictating how the network will behave. For

instance, the weights file created by using the Parrot Drone to train the network is only

suitable for detecting the Parrot Drone. It would be essential to use a different weights

file to categorise an image using a different UAV. Section 4.3 goes into further detail

about the procedure used to collect these input files. The duration of the process should

be considered because the suggested system is meant to assist in an autonomous landing.

Therefore, the proposed algorithms should be frugal to avoid adding detection delays

that could affect the system’s overall robustness.

3.2 UAV Detection

The UAV Detection module utilises a single image as its input along with a single file

containing the weights of the relevant network. The Detection part and the Overlapping

Data section are two additional sections that can be used to structure this process. The

detection section is in charge of locating potential UAV occurrences in the input image

that was received. On the other hand, the overlapping section is in charge of rearranging

all the components that were delivered to the preceding section with the image and

outputs it. The detection of possible Parrot Bebop 2 drones in the sky, is performed using

an open source neural network framework and a real-time classification network.

In the Darknet detection phase, the YOLO neural network model runs over the input

image in inference mode using the specified weights to identify all pixels that belong to

the UAV instance and create bounding boxes around the area of interest.
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3.2.1 Detection

Darknet [53] is an open source Convolutional Neural Network (CNN) framework written

in C and CUDA that acts as a backbone for the You Only Look Once (YOLO) [54], a state-of-

the-art, real-time object detection approach used in this dissertation. Humans can quickly

identify the objects in an image, their locations, and their relationships just by looking

at it. Human vision is quick and precise, enabling us to carry out difficult activities

like driving with little conscious effort. Fast, precise object detection algorithms would

open the door to general-purpose, responsive robotic systems, and the ability for assistive

devices to transmit real-time scene information to human users. The complexity of

current detection systems necessitates the training of each component separately, making

them slow and difficult to optimise.

Figure 3.3: YOLO detection system (taken from [55]).

YOLOv3 is a real-time object detection algorithm based on neural networks, illus-

trated in 3.3. YOLO stands for "You Look Once"because object detection only needs to

happen after one forward cycle over the network. Using YOLO to process pictures is easy

and uncomplicated. The system first reduces the size of the input image to 448x448, then

employs a single convolutional network on the image, followed by a thresholding step

based on the model’s confidence. The following chapter’s section 4.2 will demonstrate

how YOLOv3 CNN uses Darknet-53 as a backbone network for feature extraction. Along

with class predictions, it also uses a bounding box to pinpoint where an object is located

within an image. The term "class"in this context refers to the object’s label in the output,

for as the label "car"for an object that was identified. The object in the image is enclosed

by a rectangular shape known as the bounding box. It is faster and more accurate be-

cause it only uses one deep CNN, making it a better choice for real-time object detection.

YOLOv3 is also a generalizable model, which means that it functions well with new types

of images inside a class.

Darknet is a convolutional neural network with 53 convolutional layers. A CNN

is a type of deep neural network that is mostly utilised for tasks like object detection

and picture categorization. CNN has a focus on finding patterns in data. In particular,

Darknet-53 is beneficial for studying image data. Convolutional layers exist in CNN. Each
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convolutional layer filters the image differently. These filters take the image’s features and

extract them. The filters in the first layer identify edges, curves, and other geometric ele-

ments in the image. The deeper layers and convolutional layers recognise features specific

to an object and whole objects, respectively. Darknet-53 is a combination of Residual Net-

work (ResNet) and deep Darknet-19 (19 levels). Residual Network (ResNet) introduced

skip connections, where the output of one layer is provided as an input to the following

layers by bypassing some layers, to improve the training of a deeper neural network. The

architecture of Darknet-53 is further explained in section 4.2.1. Darknet-53 serves as the

backbone network for YOLOv3 CNN. There are 106 completely convolutional layers in

the YOLOv3 CNN, 53 of which are stacked over the Darknet-53’s 53 layers. This block

outputs four arrays:

• Class Name with class string label identifiers;

• Class IDs with class integer identifiers;

• Confidence Scores with float probability percentage of detected instance belonging

to certain class;

• Bounding Boxes regarding data that give information on the position and size of

the bounding box in pixel coordinates surrounding the detected UAVs.

The confidence score’s value ranges from 0—which indicates the absence of an object—to

1—which indicates the presence of an object with absolute certainty. As seen in 3.4,

YOLOv3 divides the input image into S × S grid cells for object detection. It functions by

predicting the class and bounding box for items that are present in each grid cell. The

algorithm determines the bounding box coordinates and class probability for each cell.

The confidence score for each estimated bounding box is then determined. Two step

filtering is used once the confidence score has been computed. It starts by eliminating

bounding-boxes whose confidence score is below the threshold. Then, predictions with

lower-class probabilities are removed using non-max suppression. Five predictions make

up each bounding box: x, y, w, h, and confidence. The centroid of the box in relation

to the boundaries of the grid cell is represented by the (x,y) coordinates. Relative to the

entire image, the width and height are predicted. In the developed system, detection is

modelled as a regression issue, depicted in 3.4. It creates a S × S grid out of the image

and forecasts B bounding boxes, confidence in those boxes, and C class probabilities for

each grid cell. These forecasts are represented by the tensor S × S × (B ∗ 5 +C).

3.2.2 Image + Detection Data Overlap

The Image + Detection Data Overlapping module is in charge of overlaying the image and

the bounding boxes to arrange them in a way that the user can understand after receiving

them. It is feasible to convert the pixel sizes to metres and determine the regions of

the identified occurrences by using the UAV’s altitude and the helipad’s camera focus
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Figure 3.4: The Detection Model.

length. This section uses the input image and overlaps the computed bounding boxes

with it. Every box in the image is marked, and inside each one, every pixel identified as a

UAV object is given a different random colour. Additionally, the class name uav and the

percentage of detection confidence are printed next to each occurrence.

Figure 3.5: The Overlapping processes. The bounding boxes, classes, and scores arrays
are sent along with the input image that has been modified for visualisation. The output
of the model shows these arrays over the image.

3.3 Middleware Communication Interface

The developed algorithm to determine and track the UAV’s actual position based on

the location of the retrieved bounding box and calculate the distance from the target is

42



3.3. MIDDLEWARE COMMUNICATION INTERFACE

described in this section.

3.3.1 Landing Target Computation

The following guidelines served as a foundation for the computation of landing target

system’s development:

1. The UAV’s size remains a constant while it’s position and size in the image may vary

noticeably between consecutive frames;

2. The UAV can only begin to appear and disappear in the image from its borders or

by descending/ascending from/to very high altitudes

3. The size of the UAV in the image of an undistorted camera is directly related to its

altitude;

4. The Detection module’s fast refresh rate enables this method to continuously update

the UAV’s size and position. The target position is recalculated as a result of the

Detected UAV box’s changing dimensions.

These presumptions serve as backing for the creation of a heuristic that will be incor-

porated into the relative landing target estimation algorithm. In order to maximise the

system’s portability and adaptability, calculations made to get the necessary result were

done with the idea of using the most generalised and straightforward algorithm possi-

ble. Allowing for simple hardware swaps between UAVs and helipad’s cameras, such as

switching to a larger UAV with a payload or a different camera for landing. The Mid-

dleware module is intended to serve as the communication component for the other two

modules, allowing them to be switched out as more sophisticated or superior detection or

control modules are required and developed. Another benefit is that by using this module

in the system the UAV requires less processing power. Battery economy and conservation

are important because the UAV will land on a maritime autonomous vehicle. By making

the algorithm simpler and requiring less processing power, the battery consumption can

be reduced. Allowing for the module’s resource-friendly design. The proposed method

does not rely on any mark or pattern established in the UAV to detect its centre. Frame-

by-frame analysis based on the object size can become unreliable but even with this the

computation is based on a ratio between the bounding box size and the actual UAV size.

Given that the camera is positioned in the middle of the helipad and calculations are

conducted from the point of view of the camera, the target landing point is simplified as

the center of the image.

img_landing_targetpixel =
(
himg × 0.5 wimg × 0.5

)
(3.1)
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where himg and wimg are the height and width, of the image received from the camera in

pixels.

A message with the determined bounding box dimensions — xmin, xmax, ymin, and

ymax — is received from the preceding model. All the data received by this module are

relative to dimensions of the image in pixels. The assumption is that the upper right

corner of the image corresponds to the starting point, or in other words pixel (0,0). A

diagram is presented in 3.6 to illustrate the behaviour. In figure 3.6, the chosen image

Figure 3.6: Bounding Box coordinates in relation with the frame.

size is 640 × 480. The message from the Detection module outputs the coordinates for

the bounding box containing the detected UAV, X and Y are assigned red and green,

respectively. Additional information about the center of the UAV is presented in yellow.

These values, which reflect the UAV with the highest confidence score and are updated

every millisecond, are the basis of this module. Then the UAV Detected Box size in pixels

relative to the full image size is obtained.

uav_box_sizepixel =
(
xmax − xmin ymax − ymin

)
(3.2)

After some measurement and observation of the actual drone, it is determined that its

centre of mass is in the centre of the square with the dimensions of the UAV. The final

calculations are the centre of the detected box. An approximation is then obtained,

further illustrated in 3.6.
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uav_center_positionpixel =
(
(xmax + xmin)× 0.5 (ymax + ymin)× 0.5

)
(3.3)

Frame-by-frame analysis based on object size can become error prone because the pro-

posed method does not rely on any mark or pattern established in the UAV to determine

its centre. The propellers’ uneven shape and detection abnormalities causes mistakes

in the calculation of the UAV’s size and position from frame to frame. Additionally, the

position of the UAV cannot change significantly between frames. Consequently, a Kalman

Filter (KF) was used to enhance the results, with the displayed state matrix:

Xkf =
[
x y vx vy w h

]
(3.4)

The UAV’s pixel coordinates are represented by x and y, its speed components are repre-

sented by vx and vy , and its width and height in the frame are represented by h and w,

which, given that the UAV is assumed to have a square shape, are equal to luav .

Estimation is done solemnly in 2D coordinates, as later on the z-axis coordinate will

be addressed. Some computations are necessary because the UAV actuators require the

relative distance from the UAV to the Landing Target in meters to operate. The number of

pixels between the drone and the landing destination, either on the x and y coordinates,

is determined using a straightforward decomposed Euclidean distance.

uav_landing_targetpixel = img_landing_targetpixel −uav_center_pospixel (3.5)

Next we compute the pixel to meter ratio that allows for the conversion to a value to feed

the following module.

pixel_meter_ratio =
lengthuav
img_size

(3.6)

This is the most error-prone statistic in this module, although thanks to the detection

module’s refresh rate, this effect is minimised. As the UAV path tends to the centre of the

image, where there is less distortion from the camera, the position values are updated

and the length is corrected in each iteration. The distance from the UAV to the landing

target can then be output when a conversion between pixels and metres has taken place.

uav_target_waypoint = uav_landing_targetpixel × pixel_meter_ratio (3.7)
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Knowing the UAV’s 2D position in the image makes it possible to estimate its position

with respect to the camera and, in turn, the helipad in a 3D axis system [56]. Additionally,

the camera parameters are used to confirm the 3D coordinate estimation. Being aware

of the ideal focal length of the camera without taking into account any distortion-related

errors.

zuav =
Luav ∗ f
luav

(3.8)

where zuav is the object’s distance from the camera in metres, f is the lens’s focal length

in metres, Luav is the object’s actual dimensions in metres, and luav is the object’s size in

the image (pixels). The UAV will be projected in the image plane from 3.7 parallel to

the camera optical axis since the camera is pointing up, and the distance to the camera

equals how high the UAV is above the landing pad. As in figure 3.7, it becomes possible

Figure 3.7: Calculating an object’s 3D location from a camera image (adapted from [1]).

to calculate an approximated Z by computing their ratio given the camera’s intrinsic f ,

at least the distance between two locations q, in pixels, and the actual distance between

their correspondent projections Q.

This allows one to calculate the relative coordinates of X and Y from Z.

xuav = dx ∗
zuav
f (3.9)

where dx is the object’s distance from the picture centre in pixels and xuav is the object’s

estimated position in the X axis in meters. The computation of yuav can be done using

the same procedure. This makes it possible to calculate the final UAV position, Puav =

(xuav ;yuav ;zuav).
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3.3.2 Image + Target Data Overlap

The image and the variables calculated in this module must be overlaid in order for

the user to understand them after receiving them, and this is the responsibility of the

Image + Detection Data Overlapping module. The computed UAV centre point and the

target landing location (the image’s centre) are overlaid on the input image in this part.

Additionally the more information about the UAV state, such as battery state, is overlaid.

To make the process simpler, the user is also given a rough estimate of the movement

vector. In figure 3.8 the centre, target, and battery arrays are sent along with the input

Figure 3.8: The Overlapping processes.

image that has been modified for visualisation. The output of the model shows these

arrays over the image. Images A through D show several overlapping module outputs

obtained under various atmospheric conditions.
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3.4 UAV Position Controller

3.4.1 Precision Landing Manager

The high-level control mechanism for the autonomous landing is described in this section.

The system’s objective is to safely guide the UAV from its flying position to the landing

pad’s surface. An estimate of the UAV’s 3D position with respect to the helipad is supplied

from the previous module in order to assess the landing properly. It makes use of a

three-dimensional Cartesian coordinate system as reference. The centre of the helipad

is positioned at the origin of the referential, with the z axis parallel to its surface and

aligned with the optical axis of the camera. From the perspective of this module, we are

just interested in the high-level control, or the direction that the UAV should move in

when it is at a specific 3D Puav coordinate in relation to the helipad.

Figure 3.9: UAV location and control orders are given using a 3D coordinate system
(adapted from [1]).

In figure 3.9 the red, green, and blue lines of the referential frame on the image are,

respectively, the X, Y , and Z axes. Its origin, which corresponds to the coordinate, lies in

the helipad’s centre (0,0,0).

The direction and strength of the commands should change depending on where the

UAV is in relation to the helipad, with smoother commands being issued the lower the

UAV is and the closer it is to the helipad’s centre. On top of the helipad’s surface, an

approach zone is created. This zone designates the region where the UAV can safely

manoeuvre without threatening the nearby sensor array of the vessel, all the while main-

taining the necessary alignment with the helipad. It was also anticipated that there are no

obstructions in the airspace above the helipad. The UAV begins or resumes the landing

when it enters the approach zone, with guidance commands directing it to descend and

get closer to the target. However, if the UAV is outside the zone, the objective is to enter

it so that the landing manoeuvre can begin. A multiplicative inverse function is used
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to model the approach zone [1]. If the UAV is above the curve, it is regarded as being

inside the zone, represented in 3.10. This function was selected because to its remarkable

resemblance to a funnel which directs the UAV from a broad area at a high altitude to the

centre of the helipad in a relatively smooth and progressive method. In order to better

meet our demands, the approach zone is approximated using a multiplicative inverse

function, adding a factor of scale aaz and an offset baz we get the approach zone az(x):

az(x) = −aaz
x
− baz (3.10)

Figure 3.10: 3D view of the approach zone.

The UAV is deemed to be "within"the zone when it is above the surface and "outside"when

it is below. The colours depict the velocity command’s intensity. Cooler colours like blue

have a smaller magnitude than warmer ones like yellow.

3.4.2 Position Controller

In this dissertation, a controller was created for the Parrot Bebop II drone so that it could

fly to the target selected locations on its own. Due to the creation of the ROS + Parrot

integration module, the controller process was adapted from the controller process was

modified from [57]. A PID controller was low-level control, or how much effort should

be put into each of the motors attached to the propellers, is outside the purview of this

dissertation. Since the procedure in this part assumes a low-level controller is already in

place, it will be presumed that it is. In this case study, a PID controller is used to ensure

that the UAV complies with the high-level orders that are given to it. The controller

calculates the discrepancy between the required location and the odometry, and a PID

controller is used to fix the discrepancy. The Parrot Bebop’s Bebop-Autonomy driver

activates the drone to move in the chosen direction. For each Puav , a velocity command

is supplied. A vector with the following parameters can be used to represent the velocity

command, vc:
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vc = (x,y,z)(φvc ,θvc ,ψvc ,mvc ) (3.11)

where (x,y,z) denotes its origin point, mvc denotes its magnitude, and φvc , θvc , ψvc stand

for roll, pitch, and yaw in regard to the 3D coordinates frame, respectively. The origin of

the vector will always match to the present position of the UAV because we are controlling

it. Additionally, roll is always set to a fixed position because it has no effect whatsoever

on the direction of the velocity vector. By fixing the UAV yaw to a constant value it is

possible to land the UAV always in line with the vessel.

The distance that the UAV needs travel in order to get at the target landing location,

or the target pose, is read from the distance waypoint that the preceding model reported

and which is a distance measurement in 2D coordinates. The bebop autonomy driver’s

on-board sensory data is used to compute the drone’s current Pose. The desired target for

navigation is then represented by a point in 2D coordinates that is created by adding the

target pose to the current UAV pose. The difference between the desired position and the

present position is then used to calculate the error vector. In order to decrease the error,

a PID controller constructs the correction vector using the input error as a starting point,

further illustrated in 3.11. Finally, using bebop autonomy, the correction vector is given

to the drone by publishing a new rotor velocity command.

This approach of performing the controller process on the distance to target message

yields the velocity commands. Implementing the modular methodology suggested by

the proposed system requires having the inputs and outputs of each module properly

defined. This condition needs to be taken care of either in the development stage or the

implementation stage, both of which are thoroughly covered in chapter 4, in order to

comply with the model requirements.
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Figure 3.11: Estimation of position controller error. An example of velocity commands
mentioned in 3.11 from the target posture, shown in blue, and the current posture of the
UAV, shown in grey. These commands are then subjected to error calculations in order to
determine the offset of the drone in relation to the target, in each coordinate.

51



C
h
a
p
t
e
r

4
Implementation

The implementation of the model described in the preceding section will be covered

in this chapter, along with an evaluation. The Darknet-53 + YOLOv3 framework, and

Training Procedures are the primary components. The process of setting up the hardware

and software simulations and the work done to integrate the system so that it complies

with ROS are the key themes of the experimental setup section. The section on the

Darknet-53 + YOLOv3 framework covers the structure of this framework, which was

chosen to be a key component of the suggested model. The training processes section,

which concludes the chapter, describes the preliminary work required to create the ideal

environment for training as well as the training itself.

4.1 Experimental Setup

The suggested approach was fully developed in Python and made fully compatible with

the Robot Operating System (ROS). Different OS configurations were used, one for system

deployment and the other for simulation, further described in 5.2.2.0.1. For testing and

development convenience, simulation was carried out on a different system inside a

Virtual Machine (VM) environment. When configuring with more recent versions of

Ubuntu and ROS, integration issues with the Parrot Sphinx simulation environment

and Gazebo surfaced. The implementation workflow required to be viewed as a ROS

ecosystem in order to completely comply with ROS, hence all suggested methods had to

be modified to fit this methodology.
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4.2 Darknet-53 + YOLOv3 CNN Framework

The Darknet-53 + YOLOv3 framework is integrated into the model to carry out the needed

object identification, as specified in the proposed model chapter. Despite its complexity,

this framework is essential to the performance of the implemented model, therefore its

fundamentals must be grasped. The YOLOv3 has an open source implementation and

is accessible on this GitHub repository [58]. It was created and released in 2018 by

Joseph Redmon [59]. It is a framework built on Python 3 and Darknet, with all of its

code documented for quick access. Darknet is an open source neural network framework

written in C and CUDA. It enables GPU computing and is quick and simple to setup. Its

extensive and adaptable toolkit makes it simpler to design and deploy apps based on deep

learning algorithms. It uses Python and has discrete modules that can be included into

users’ projects making it very user-friendly. This section will concentrate on describing

its general practise, its organisation, and its key components.

4.2.1 Architecture

This architecture method extracts features from the input image using the backbone and

the Multi Scale Feature Pyramid Network (MSFPN), predicts bounding boxes based on the

learned features, and then utilises Non-Maximun Suppression (NMS) to obtain the results.

Figure 4.1 illustrates it in full. Three modules make up the MSFPN: the Concat module,

in charge of linking each backbone network feature, the Encoder-Decoder module, in

charge of producing multi-scale features, and the Feature Fusion module, in charge of

combining features. The various network modules will be described in more depth below.

The Multi Scale Feature Pyramid Network (MSFPN) and the lightweight backbone are

Figure 4.1: An overview of the YOLOv3 [60].

used by YOLOv3 to extract features from the input image. To create the basic feature in

MSFPN, the Concat model merges three feature maps of the backbone. Encoder-Decoder

creates a collection of multi-scale features, and the Feature Fusion model combines the

collection of multi-scale features with three feature maps of the backbone to create a

feature pyramid, as in figure 4.1.
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4.2.1.1 Backbone Architecture

On Darknet-53, the backbone network is built. Figure 4.2 displays the network unit. A

backbone is a CNN whose main objective is to extract characteristics from unprocessed

images. The early layers identify the simpler elements, such as forms and edges, whereas

the last layers identify the more intricate ones. Darknet-53 employs 1×1 and 3×3 convolu-

tional layers in succession but is now much larger and includes some shortcut connections.

As the name implies, there are 53 convolutional layers in it. In the network, standard

convolutions are factorised into two layers using depthwise separable convolutions, a

type of factorised convolution. A single filter is applied to each input channel in the first

layer’s depthwise convolution. The depthwise convolution’s outputs are combined with

an 1× 1 convolution in the second layer, referred as as the pointwise convolution. This

is divided into two layers by the depthwise separable convolution: a layer for combining

and a layer for filtering. This indicates that the network structure makes better use of

the GPU, which results in faster evaluation. When complete, this method outputs the

obtained feature maps.

Figure 4.2: Network unit for backbone network base on Darknet-53.

4.2.1.2 Multi-Scale Feature Pyramid Network

The Multi-Scale Feature Pyramid Network [61] is designed to enhance the backbone net-

work’s features and provide a more effective multi-scale feature pyramid. An illustration

is depicted in Figure 4.3. To create the basis feature, the concatenation model merges

three feature maps of the backbone. Encoder-Decoder creates a collection of multi-scale

features, and the Feature Fusion model combines the collection of multi-scale features
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with three feature maps of the backbone to create a feature pyramid. We go into great

detail on the three modules below.

1. Concat Module

Backbone features from three separate levels are combined by the Concat model,

which is essential for building the final feature pyramid. The three feature maps

from the backbone network are the input to the Concat module, and before concate-

nating, we up sample them to re scale the depth features to the same scale.

2. Encoder-Decoder Module

The Encoder-responsibility Decoder’s is to produce feature maps with three scales.

The input feature map is down sampled using a series of 33 convolutional layers

in the encoder to create a reference-set of feature maps. A set of 33 convolutional

layers make up the decoder. Of course, there are element wise sum operations

and up sampling. Finally, to improve feature representation and maintain feature

smoothness, we add an 11 convolutional layer at the branch.

3. Feature Fusion Module

The goal of the feature fusion module is to create a feature pyramid out of the multi

scale features produced by the encoder-decoder and the features from the three

backbone levels. The multi scale features produced by the encoder-decoder and

features with equivalent scales throughout the channel dimension are concatenated

in the first stage of the feature fusion module. All of the boxes, including small,

medium, and big, became more accurate after a Feature Fusion module is included.

Figure 4.3: Building a feature pyramid using an image pyramid (adapted from [61]).

It takes time to compute features separately for each of the image scales. In order

to speed up detection, recent detection systems have chosen to simply use single scale

55



CHAPTER 4. IMPLEMENTATION

features. An alternative is to utilise the ConvNet-generated pyramidal feature hierarchy

as though it were a feature-rich image pyramid. The feature maps in picture 4.3 are shown

as blue outlines, and thicker outlines signify semantically more significant features.

4.2.1.3 YOLOv3

You Only Look Once: version 3 (YOLOv3) [54] is an object detector proposed by Joseph

et al., and it treats detection as a regression job. This technique accelerates detection and

takes input images of various sizes. Table 4.1 displays the network structure. Because

Table 4.1: Network structure for the convolutional layer in backbone.

YOLOv3 employs multi-scale prediction, it can be found on feature maps of many scales.

Target detection becomes more precise as a result. On a high performance computer,

YOLOv3 can achieve real-time detection thanks to the GPU’s potent computing capac-

ity. Real-time applications are frequently not practicable due to the embedded devices’

performance, which is significantly lower than that of high performance computers. Be-

cause it enables the model to view the entire image during testing, its predictions are

influenced by the image’s overall context. Convolutional neural network methods like

YOLO "rank"regions according to how closely they resemble predetermined classes. Re-

gions that score highly are reported as positive detections of the class that they most

closely match. Applying detection kernels to feature maps of three different sizes at three

different locations throughout the network is how YOLOv3 detects objects.
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4.2.2 Framework Files

The three primary folders of the YOLOv3 architecture are called logs, databases, and

data. The network maintains the files containing its output darknet weights in the logs

folder while it is still in training. The database folder is divided into various folders, each

containing training data for various detection outcomes. In this instance, a folder called

uav was made to hold all the data needed to train the uav detection network. The crucial

Python files for package training and inference, as well as the required libraries for ROS

integration, are located in the data folder. Brief descriptions of the remaining relevant

Python files are provided below:

1. model.py

The primary YOLOv3 model implementation for both training and detection is con-

tained in this file. It is organised according to network layers and includes methods

for determining loss values, generating data, and formatting data. Additionally,

it contains the darknet class, which unifies the train, detect, and ROS ecosystem

aspects of the YOLO model.

2. config.py

The base configurations class and all significant parameters that define the train-

ing and inference behaviours of the network are contained in the config.py file.

The default values for these parameters are set, and they are typically changed by

modifying a distinct Python file.

3. visualise.py

The display and visualisation routines are contained in the visualize.py file, as its

name suggests. It is a very significant file since it contains the tools used to apply

the acquired mask and display the resultant images. It has tools for masking and

painting bounding areas and regions of interest in arbitrary colours. Additionally,

it has tools for assisting with network performance visualisation, such as precision

plots and statistics for weights obtained. The suggested model relies heavily on the

overlapping section, and this file lacks some tools that can be utilised directly in

the model. The only original framework file that was directly altered as a result was

visualize.py.

4.3 Training Procedures

A well-written problem statement, data collection and preparation, model training and

improvement, and inference are the common steps in solving any given machine learning

problem. The method used in the context of this dissertation is not strictly linear. For

instance, we might discover that our model performs terribly on a particular type of

image label, in which case we should go back and collect further information.
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Figure 4.4: Workflow for general machine learning that was employed for this disserta-
tion.

4.3.1 Data Gathering

A solid data set is essential for training a network that can recognise objects with an ac-

curacy and precision appropriate for use in real-world scenarios. In order to accurately

depict the range of conceivable scenarios that could be met on the field, this data set must

be made up of numerous photos with a wide diversity of examples. The ideal data set

would include depth-cloud information as well as ground-to-sky images of the Parrot

Bebop 2 taken by a multi band sensor with a channel for each each wavelength. However,

it is quite difficult to find this type of particular data online because it is typically utilised

sky-to-ground, or aerial imagery for study. As a result, the first data set used in this dis-

sertation was made up entirely of information gathered from a simulation that employed

the Unreal Engine software to automatically create and categorise images. Although the

photos were accurate, preliminary findings showed that the network model trained with

these images was unable to identify the real drone while it was in flight, necessitating the

use of a different strategy to finish the assignment.

The same Parrot® Bebop 2 UAV was captured a number of different batches of frames.

While some of these batches of UAV occurrences were recorded on the same day under

similar cloud and lighting conditions, others were recorded under quite distinct meteoro-

logical circumstances. The photographs with the UAV instances were taken looking up

at the sky from the ground, with the UAVs hovering between the ground and a height

of 40 metres. Since the UAV is very modest in size, it loses visibility at heights of about

45 metres. The conditions needed for the images collected were defined under some

restrictions:

1. Since the UAV would be flying above the ocean, no man-made items, including

background elements like buildings or even people, would be visible;

2. Lighting effects are affected by many atmospheric circumstances, such as clear and

overcast weather;

3. Due to the very slow moving nature of these elements, cloud formations and solar

flares would generate the most background object interference;

4. Moving objects that could interfere in the UAV detection because of it’s resemblance,

i.e birds, planes, helicopters.

The recording sessions were set up to account for these limits, some examples of the

many scenarios that were recorded are shown in Figure. 4.5. To achieve the most realistic
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representation of the potential UAV attitude and attitude during flight, various phases of

the landing procedure were also captured. Images captured in various air circumstances

included drone images that were landed on top of the camera at the ideal target position.

From this point until the camera’s maximum detection height, the landing and takeoff
procedures were also captured on camera. Figure 4.6 shows examples of photographs

taken under these circumstances and during these manoeuvres.

Figure 4.5: Examples of images taken under various atmospheric conditions. Both sunny
and extremely cloudy weather could be recorded. Different cloud shapes, sizes, and
formations. Images 1, 2, and 5 (from right to left) also show the effects of a solar lens
flare.

All of the data sets cited in this dissertation’s references were compiled using multi-

spectral images taken with an Intel® RealSense™ L515 LiDAR camera mounted on a

sheet of metal. LiDAR readings are only possible in a 9 top meters range. Each image that

is taken has the potential to be split into three channels, producing three separate files,
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each of which contains information on the RGB, near-IR, and depth spectrum. Only the

RGB channel was processed in order to create this dataset, which is used with the YOLO

framework. Changes to use the depth frames were largely completed, but additional

work is still required. Each RGB image file is a 640 × 480 pixel 0.31MP jpg file, it was

necessary to scale down from the 1024×768 allowed by the camera because of processing

problems that arose while gathering the frames.
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Figure 4.6: Representative frames from the constructed data set. Each image depicts a
separate scenario that was captured after the limitations for the data collection step. To
make viewing easier, the UAV was marked in several photos.
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4.3.2 Image Annotation

Every data set must have the relevant details, including the pixel-wise area where objects

are situated within each image, while training an image classification network. Depend-

ing on the framework, this information can be delivered in a variety of ways, and in order

to acquire it, an annotation procedure must be carried out. Each image must be tagged

with the location of UAV instances after the data sets are organised by their classes. On

YOLO Darknet, each collection of images’ annotations must be represented by a single

text file with a text object for each image. Example of a image text annotation of a single

UAV detected instance:

Darknet labelmap file for the model in this dissertation as a single label system:

This format includes a labelmap that converts the numeric IDs to human readable strings

and one text file per image that contains the annotations and a numerical representation of

the label. The annotations are easier to deal with even after resizing or stretching photos

because they are normalised to lie within the range [0,1]. It has grown in popularity as a

result of adopting different YOLO model implementations from the Darknet framework.

Given this, RoboFlow [62], a programme that allows for the extraction of annotations

as a file in any framework format, was selected to assist in the process of picture annota-

tion for this framework. It makes available all the resources required to turn raw photos

into a specially trained computer vision model and apply it in apps using their training

and deploying API. You may quickly convert YOLO Darknet files to or from any other

object detection annotation format because Roboflow can read and write YOLO Darknet

files. The process of transitioning from raw photos to a trained and deployed computer vi-

sion model is substantially streamlined by the self-serve annotation tool called Roboflow

Annotate. The AI-assisted labelling for bounding boxes, polygons, and instance segmenta-

tion, is the feature that considerably aided in the tiresome effort of categorising thousands

of photos. Using an existing neural pre-trained model to automatically annotate images

by identifying objects in the images and applying labels in a quick labelling workflow. To

detect frequent items in your dataset, such as dogs and humans, there are models that

have already been trained on the COCO database. However, because there is no link be-

tween any uav class and the COCO database, these models were unable to detect the UAV.

In order to combat this, a small batch of 300 photographs was manually annotated in

order to train a model with the Roboflow API to assist with the labelling of the remaining

images.

4.3.3 Data Augmentation

By modifying the training data already available, image augmentation allows you to ex-

pand your dataset. Fundamentally, it is the creation of phoney data that looks authentic.
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A model can generalise to a wider range of scenarios more effectively using image aug-

mentation. To ensure that learning and inference happen on the same picture attributes,

preprocessing should be applied to your training, validation, and testing set. In order

to display images the same way they are saved on disc, auto-orient strips your images

of their EXIF data. The orientation of a given image is determined by EXIF information.

The images are also downsized to 416 × 416 pixels since we need smaller images than

the 640 × 480 dimensions that were originally taken for speedier training and because

the YOLOv3 architecture performs best with multiples of 32. By extending the variety of

learning examples for your model, data augmentation can improve the generalizability

of its performance. In order to add additional variations and more images to your dataset,

augmentation conducts transformations on your current photographs. In the end, this im-

proves model accuracy across a wider range of use situations. A couple major advantages

come from doing your augmentations through Roboflow as opposed to during training:

1. Reproducibility of the model is improved. Each augmented image has a duplicate

of how it was stored. For instance, you might discover that your model works better

with bright photographs than with dark images, in which case you should gather

more low-light training data.

2. Less time is spent training. Augmentations are limited by the CPU. Your GPU

frequently waits for your CPU to supply enhanced data at each epoch when you are

training on your GPU and doing augmentations on-the-fly.

3. Costs for training are reduced. GPUs frequently wait to be fed images for training

since augmentations are CPU-constrained processes, wasting processing power.

The data augmentation steps selected for this case study were defined by the previously

stated limitations and deployed on the Roboflow platform. Some experiments were done

with other augmentation strategies to make sure these steps were the best. In order to

evaluate the effects, examples of the various stages applied are shown in Figure 4.7 beside

an original frame.

The first was Hue augmentation, a method that randomly modifies an input image’s

colour channels to prompt a model to evaluate other colour schemes for objects and set-

tings. This method can help prevent a model from memorising the colours of an object

or scene. Hue augmentation enables a model to take into account both the edges and

geometry of objects as well as their colours, even though output image colours may ap-

pear strange or even abnormal to human perception. Hue is measured radially since

it has colour circle origins, which means input images are changed relative to a certain

number of degrees plus or minus their starting point. The number of degrees for the hue

augmentation chosen was 60°. The platform randomly selects the number of degrees

between 0°and 60°and whether to apply the hue shift positively or negatively. The second

technique was Saturation augmentation, which is comparable to hue but modifies how

bright the image appears. A picture that is completely desaturated turns monochrome,
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one that is partially desaturated has subdued colours, and one that is positively saturated

moves colors closer to the main colours. When colours in the real world are different

(for instance, when a different white-balance is established, when different lighting is

present from sun flares, or even when it’s misty outdoors), changing the saturation of an

image helps the model perform better. The next step was Exposure augmentation, which

increases image brightness variability to make the model more tolerant to variations in

lighting and camera settings. The camera is stationary, but the objects it is detecting are

frequently in motion, therefore a small amount of Blur has been injected into the image.

By just changing the Bounding Box (BB) of a source image, bounding box level augmen-

tations create fresh training data. Systematic improvements are produced by bounding

box changes, particularly for models with small data sets. BB Rotate improves rotational

diversity to make the model more resistant to camera roll. BB Shear changes the model’s

angle of view to make the model more resilient to camera and subject pitch and yaw. BB

Flip contains horizontal or vertical flips to help the model become insensitive to sub-

ject orientation. BB Noise incorporates noise into the model to increase its resistance to

camera artefacts.
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(a) Original frame. No augmentation steps. (b) Blur up to 20px.

(c) Hue, -60°. (d) Hue, +60°.

(e) Saturation, -70%. (f) Saturation, +70%.
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(g) Exposure, -30%. (h) Exposure, +30%.

(i) Bounding Box Rotate augmentation. (j) Bounding Box Rotate augmentation.

(k) Bounding Box Shear augmentation, ±15%
Horizontal.

(l) Bounding Box Shear augmentation, ±15%
Vertical.
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(m) Bounding Box Flip augmentation, Horizon-
tal + Vertical.

(n) Bounding Box Noise augmentation, up to
20% px.

(o) Bounding Box Noise augmentation, up to
20% px.

Figure 4.7: Examples of how the Data Augmentation techniques applied to the dataset.
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4.3.4 Parameters

The data sets and annotation files were imported into Google CoLab, where the training

was carried out. The user can run Python code in the web using CoLab, a hosted Jupyter

notebook. It is excellent for machine learning since it offers access to GPU processing.

Users of CoLab Pro have access to an NVIDIA Tesla T4 GPU. Additionally, it has a direct

connection to Google Drive, where all of the data sets were kept. The network can never

be trained for more than 12 hours straight on the CoLab GPU Virtual Machine because

to its 12-hour maximum run time. But it can restart from the most recent finished period

without losing any of the earlier work. Based on existing training files already present

in the framework, the python Jupyter file uav_detection.py was developed to train the

network. This file replaced the majority of the framework’s adjusted parameters rather

than replacing their default values directly. Below is a list of the network’s trained values

as well as the tweaked parameters. The majority of these parameters were changed

numerous times, however the values shown were the best ones that produced the best

results. All of these values are shown in table 4.2 below.

• num_classes: The number of classes the network can identify. The value of this

parameter is always 1 for the uav class, which corresponds to the number of trained

classes.

• batch: The quantity of image samples to be processed in a single batch.

• subdivisions: the quantity of mini-batches in a batch. The weights will be adjusted

for batch samples as the number subdivision samples are processed simultaneously

by the GPU.

• max_batch: This many iterations of processing will be applied to the training

(batches).

• steps: The learning rate will be multiplied by the scaling factor during these itera-

tions.

• width: During Training and Detection, every image will be downsized to the net-

work size (width).

• height: During Training and Detection, every image will be downsized to the net-

work size (height).

• channels: Every image will be translated to this amount of channels during Training

and Detection due to the network size (channels).

• decay: It removes dataset dysbalance by optimising for a weaker updating of the

weights for typical features.
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• momentum: Optimises for the accumulation of movement and the degree to which

the history will influence future weight changes.

The Darknet YOLOv3 framework is designed to save training time by requesting a

file with weights that have already been trained, like those from the COCO data set. In

order to prevent conflict between the weights created and the channel input images, the

first layer, conv_1, is removed from the weight loading process.

Parameters Value
num_classes 1
batch 64
subdivisions 16
max_batch 4000
steps 3200, 3600
width 416
height 416
channels 3
decay 0.0005
momentum 0.9

Table 4.2: Values for the parameters used to train the network.

4.3.5 Training

With the path to the training and validation data sets, the function train inside of uav_detection.py
was called to begin training. With the following input parameters: the data sets, the ran-

dom image augmentations effects, the learning rate value, the number of batches, and

the layers to train, this function executed the train method from model.py. Every batch,

the YOLOv3 model covers the full training set before proceeding to the validation phases.

The Darknet network calculates and returns the training loss values after each step as

well as the validation mAP values after each batch while the model is training, making it

possible to track its development.

The network train shown in Figure 4.8, which would eventually integrate the pro-

posed model system, was composed of four smaller training stages with distinct aims. In

the Preliminary Train phase, the COCO dataset is used to compare pre-trained convo-

lutional weights with computed comparison metrics that helped develop the YOLOv3

network and Darknet framework. Although not done against a UAV illustrative object,

this provides crucial information about the network’s behaviour. The next phase is called

Parameter Pre-Train, and it uses a hyperparameter flag to employ an integrated evolution

optimizer to fine-tune the input parameters. A Genetic Algorithm (GA) approach for opti-

mization is used in the Hyperparameter Evolution method of optimization. Because they

control a wide range of training components, hyperparameters in machine learning can

be challenging to optimise. Grid searches and other traditional approaches can quickly

become ineffective due to the high-dimensional search space, unclear linkages among the
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dimensions, and expensive nature of evaluating the fitness at each location, making GA

the best candidate for hyperparameter searches in YOLO networks.

The full Train will be started after the best start parameters have been determined,

which will take 4000 batches and the entire train time. The goal of this stage is to train

the network weights entirely from scratch against the entire dataset, with random aug-

mentation made using the techniques described in section 4.3.3. The End-Spectrum

Train phase marks the end of the network’s training process. Using the same dataset and

another randomised seed for the augmentation steps, the weights generated from the full

train are then evolved. Since the batches in the Darknet framework serve as a timetable,

the train is run for 6000 batches in this phase, an additional 2000 batches.

Figure 4.8: Training phases implemented for the proposed model.

Figure 4.9 represents the train loss graph for the Preliminary Train phase illustrating

how the training process evolved for later iterations. Total validation loss is shown in blue

and mAP (%) is shown in red. Because the pre-trained network uses pre-trained weights,

the training is only visible after a few iterations. This process was obtained by training the

network on top of the pre-trained convulutional weights. The total of the mask training

loss and bounding box training loss is reflected by both of the loss values. Each of these

loss metrics is also the total of all the individual loss values that were calculated for each

region of interest.

The weights file from the train with the lowest learning rate was retrieved and after-

wards added in the detection phase since it had the overall most satisfactory loss values.

Once the best and most effective strategy for training the network had been determined,

the entire data set was subjected to this training method once more, this time in full spec-

trum, and the results were also assessed using validation loss graphs and the best weights

files that had been downloaded. The process is described in more detail in 5.2.1.2.
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Figure 4.9: Example of the Helipad camera’s Preliminary Training behaviour utilising
the YOLOv3 Tiny and Darknet framework.
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5
Experimental Results

The developed techniques for gathering data are presented in detail in this chapter, en-

abling a thorough assessment of the model’s performance. A description of the hardware

and software utilised as the experimental setup for the implementation and testing of

the suggested model is provided in the first section. There is also a description of the

procedures followed to integrate the software and hardware with the tests created for the

modules, either independently or in conjunction with one another. In the second section,

it begins with the UAV detection by outlining the findings that back up the decision to use

the Darknet + YOLOv3 framework for this model. This chapter’s last section primarily

focuses on the training done using various data sets, while the third section gives the

model’s inference results. The quality and influence of the training and inference find-

ings on the model’s final output are analysed, compared, and debated. The Controller

simulation findings will be covered in the following section.

5.1 Experimental Setup

The suggested approach was fully developed in Python and made fully compatible with

the Robot Operating System (ROS). A Jetson Nano with an ARM quad-core running at

1.43GHz, 4GB of LPDDR4 RAM, and the Nvidia CUDA toolkit + cuDNN library was

used to deploy the system. A Maxwell 128-core graphic processing unit is used for

image inference. Different OS configurations were used, one for system deployment and

the other for simulation, further described in 5.2.2.0.1. For testing and development

convenience, simulation was carried out on a different system inside a Virtual Machine

(VM) environment. For the virtual simulation environment Gazebo 9, the 64-bit Linux

distribution running Ubuntu 18.04 (Bionic Beaver) with ROS Melodic Morelia was chosen

as the operating system. The OS selected for system deployment was the 64-bit Linux
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distribution running Ubuntu 20.04 (Focal Fossa) and ROS Noetic Ninjemys. All low-level

computer vision operations were performed using Open Computer Vision (OpenCV) 3.2.

The setup for the experimental tests in the real world consists of 3 components. The

Drone, a Parrot Bebop 2 equipped with a front camera to perform visual odometry. The

drone approaches a 32 cm square. The camera, an Intel RealSense L515 to capture

640x480 size images at 30 fps. This camera is installed in the centre of the helipad so that

it faces the platform. The GCS, my computer, which has an AMD Ryzen 7, as a processing

unit, and an NVIDIA RTX 3060, as a graphics unit. An illustration in figure 5.2 of the

experimental setup for testing.

Figure 5.1: Helipad.

Figure 5.2: Real world flight tests setup.

5.1.1 ROS Integration

The experimental setup workflow required to be completely compliant with ROS, hence

all suggested methods had to be modified to fit this methodology. Each component, or
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node, in the system functions independently and exchanges data asynchronously using

the ROS framework. In the ROS system, data is shared in the form of "messages"by pub-

lishing and subscribing via asynchronous network connection. Four distinct nodes make

up our entire system, these are detection, communication interface, position controller

and bebop_autonomy. The Legged Robotics [63] team created darknet_ros [64], a ROS pack-

age for object identification in camera pictures that relies on the YOLO framework and

the darknet backbone, used in the Darknet detection module. The configuration of the

darknet inference process to rely on the GPU and CUDA + cuDNN, as well as the package

integration, went off without a hitch. Because the Middleware communication interface,

in section 3.3 was built from the ground up to function as a node, no extra integration was

required. The position controller node required a number of modifications to function

with ROS’s publisher-subscriber technique. It was necessary to first adapt the module to

subscribe to the detection output messages and then to publish the right message to the

velocity commands for the Parrot Bebop 2 drivers once all the node had been configured

to comply with the library’s requirements and the node workflow had been designed.

5.2 Preliminary Results

The results of the preliminary tests conducted on the dissertation’s suggested model are

presented in this part. Since it was not feasible to test the entire system in operation

simultaneously with more force, the modules were tested separately. Military vacations

prevented any workers from entering the facility, and construction work made the use

of the Alfeite laboratory exceedingly precarious. As a result, the tests could only be

performed the previous recorded data in simulated environments. The implemented

techniques for gathering the initial data are presented in detail, allowing for a thorough

assessment of the model’s performance. The preliminary results that support the UAV

detection are presented at the beginning of the first part. This chapter’s second section

focuses mostly on the Position Controller Module’s initial findings.

5.2.1 UAV Detection

The UAV detection vision system aims to accurately recognise and identify the UAV in

every frame while also computing its three-dimensional position in relation to the camera

by analysing the data collected from the helipad’s camera.

5.2.1.1 YOLOv3 vs Other Frameworks Benchmark

An object detection framework must be integrated into the model, as was previously

discussed in chapter 3, in order to construct a UAV detection model. There are, however,

a number other frameworks with related goals. The crucial traits that make a detection

framework applicable to this model are discussed in this part, along with the reasons the

YOLOv3 was chosen among the other candidates.
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In theory, framework comparison studies might be used to determine which frame-

work is most suitable in terms of accuracy and speed. Unfortunately, the majority of

studies that have been found use a variety of frameworks and are frequently carried out

in various settings using unique test devices and test sets. In order to determine the best

frameworks, a number of studies had to be taken into account and compared. YOLOv3

and Faster R-CNN are two examples of the most recent and sophisticated object identifi-

cation frameworks, and the table 5.3 is an example taken from [55] and shows the average

precision from both frameworks. The RetinaNet offers the most accurate results, but it

also performs at the slowest speeds, incapable of real-time detection. Despite showing

precision values that are comparable to those from YOLOv3, the SSD variations are also

shown in [55] to be 3 times slower. The best Average Precison (AP) results are presented

by faster R-CNN and YOLOv3. On the other hand, Mask R-CNN adds the mask to the

output image while showing results with almost the same speed and accuracy as Faster

R-CNN with Feature Pyramid Network. For the purposes of this dissertation, object seg-

mentation is crucial since it can pinpoint the exact location of the UAV region, rather than

just its general shape. This is crucial, especially when the UAV is visible in the acquired

images towards the edge where there is the maximum lens distortion, rendering the large

created bounding box useless. The fastest speed rates, nearly twice as fast as those of

Mask R-CNN, are provided by YOLOv3 [54], which, along with its great accuracy, may be

the deciding factor.

Figure 5.3: Various frameworks accuracy, adapted from [55].

These were the frameworks that were originally examined to incorporate the imple-

mented model, since YOLOv3 and Mask R-CNN produced the two frameworks with the

best overall results for the COCO data set. To determine whether model network is better

suited, both were trained on the particular topic from this dissertation. Both utilised the

same data set (explored in 4.3.1) and Google CoLab notebooks for training. The entire

data set needs to be transformed to either PNG or JPG before being used with the YOLOv3

darknet architecture. For this paradigm, each image’s annotation format is essentially

a text file, with each file’s structure consisting of one integer and four float values per

object. The float values denote the region in the image where the object is located, and the

integer designates the class to which the object belongs (the text file contains all classes

75



CHAPTER 5. EXPERIMENTAL RESULTS

Framework mAP
Mask R-CNN 63.2
YOLOv3 89.1

Table 5.1: Mean Average Precison for both frameworks with IoU=0.5.

to be taught).

RoboFlow Annotate, a graphical picture annotation tool, was utilised to make it easier

to extract the right float values for each instance of an object [62]. With the help of this

web-based application, you can graphically place a box around each region where an item

is inserted and give it a class that has already been defined. Utilizing a network that has

already been taught is another option. This entire process was completed in a fair amount

of time thanks to the ability to save the annotation file afterwards in the YOLO format.

Following training, the inference procedure was carried out by both networks on a test

set; this process is covered in more detail in section 5.2.1.3. The Mean Average Precison

(mAP) (section 5.2.1.3) of a trained model can be calculated using the YOLO framework,

just like with Mask R-CNN. The results of computing both networks’ mAP are shown in

table 5.1.

The Mask R-CNN framework, even with a lower level of complexity and no segmen-

tation process, delivers inferior detection results, as shown by a comparison of the two

values. The YOLOv3 inference times are more than enough for a real-time UAV detection

model that requires faster than 1 ms answers. As a result, despite its faster detection

and subpar precision, the Mask R-CNN network does not exhibit a significant benefit.

These facts suggest that the suggested model is not as well suited for integration into this

framework, which is unable to outweigh the benefits of YOLOv3 instance segmentation.

In order to integrate the paradigm suggested in this dissertation, the YOLOv3 framework

was adopted.

5.2.1.2 Training Evaluation

All loss values were calculated and plotted during the training procedure, as was pre-

viously indicated in 4.3.5. To guarantee the appropriate augmentation steps were used,

the network was trained numerous times using the parameter values provided in section

4.3.4 against the same data set.

The behaviour depicted in each of the graphs in the following subsections is in respect

to the training methods that produced the best results, not to those that produced the

most typical behaviour. Every training resulted in a reduction in learning rate, and

subsequent training sessions included several repetitions of this value. Most of the time,

this drop was practised during and after the over fitting behaviour of the training. None

of the training procedures that were visible took place for more than 4000 batches.
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5.2.1.2.1 Training Results

The Training Loss for the general training behaviour, which is comprised of the training

losses for the Masks and Bounding Box, is depicted in figure 5.4. Figure 5.4a, the first

training phase, Parameter Pre-Train, revealed a previously unrecorded insight into the

appropriate start parameters. The hyper-parameterization flag that acts as an optimizer

throughout the training phase produced noticeably worse results from an inference stand-

point, but it allowed the network to recalculate the parameters in accordance with its

requirements using our new data set. The second training phase, Full Train, figure 5.4b,

highlighted the significance of the parameters from the first training method. The model

received the proper micro-parameter modifications from the hyper-parameterization flag,

greatly improving, training wise, this phase results. With the exception of a 0.01 loss

decrease, the final training phase, End-Spectrum Train, figure 5.4c, demonstrated no

discernible impact on the metrics used to record the train results. However, it had re-

markable performance in the validation area.

The Bounding Box surrounding the region of interest and the masks overlapping the

objects are the main emphasis of the presented model, so even if there are additional loss

measures, these two were chosen to be the determining ones. For ease of analysis, the met-

rics are merged into the total training loss. Reaffirming the reason the Darknet + YOLOv3

architecture was chosen for this dissertation is because the Loss values reduce early in

the training, around the 800 iterations. Any of the graphs can be used to determine that

the over fitting behaviour started about batch 2000, which is also the point at which the

training loss ceased to decrease. Both Mask and Bounding Box would offer comparable

courses where the slower learning rate was advantageous. Even though it could not totally

stop the over fitting behaviour, it was still able to obtain lesser loss values on average.

Each RGB Darknet YOLOv3 network training takes an average of 7 hours to complete,

with iterations lasting between 2 and 7 seconds each.
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(a) Training with the entire data set. In comparison to the initial start parameters calculated in
the previous chapter, the training from this network provided improved start parameters at the
conclusion.
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(b) Training with the entire data set. The start parameters established by the prior training of
the network were used to train this one, providing improvement differences in the recorded
behaviour.
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(c) Training with the entire data set. Evolution of the weights derived from the entire train to
enhance the validation procedure.

Figure 5.4: RGB channel training behaviour of the Helipad’s camera using YOLOv3 Tiny
with Darknet framework. With Validation mAP (%) in red and total Training loss in blue.
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5.2.1.2.2 Training Results Analysis

The table 5.2 below gives a clear overview of these results by succinctly listing the train

loss values, for each train phase.

Table 5.2: Training Loss metrics for each training phase. The Preliminary Train is cov-
ered in the previous chapter’s section 4.3.5, while this chapter’s prior section 5.2.1.2.1
describes the three final phases.

Preliminary Train Parameter Pre-Train Train End-Spectrum Train
Training Loss 0.179341 0.099600 0.070867 0.206791

The initial findings showed that the network was a great fit for this object detection

application, with better than average loss results. Since the goal of the parameter pre-

train phase is to effect validation, it was not surprising that the train loss metric was

unaffected. Acceptable results in terms of loss values were shown during the Train phase.

The table shows that the values of the end-spectrum train loss are those with the least

influence. Its train was constructed over a previous one, therefore this behaviour was

planned.

The table makes it evident that, despite the fact that the results from the parameter

pre-train were significantly better than those from the preliminary train, the results from

the simple train were by far the best, with the lowest values in every loss metric. The

great outcomes of the Parameter Pre-Train phase are validated by the total validation loss,

which represents a 10% drop from the preliminary train.

5.2.1.3 Inference Evaluation

A more practical method is necessary to gauge the effectiveness of the implemented

model in real-world circumstances, even if it is crucial to examine the training process

and compare loss values between the three employed channels. As a result, the Mean

Average Precison (mAP) with Intersection over Union (IoU) of 0.5 was computed in order

to assess the accuracy, effectiveness, and robustness of this model.

The average of all images’ Average Precison values, which are directly influenced by

precision and recall measures, produces the mAP method. Precision is a metric that

expresses how many predictions out of all predictions are accurate, and can be calculated

with:

P recision =
T P

T P +FP
(5.1)

On the other hand, recall counts the number of instances that were accurately identi-

fied and is determined by:

Recall =
T P

T P +FN
(5.2)
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The ideal Mean Average Precison for an image is 1, with all recall values matching solely

to precision values of 1. The AP for an image corresponds to the area under the accuracy-

recall curve.

The Intersection over Union (IoU) assessment metric is important because object detec-

tion is not a binary problem and its success cannot be determined by merely determining

if the predicted detection agrees with the actual detection. The IoU is designed to reduce

the evaluation’s rigour, allowing for the acceptance of detections with minor discrepan-

cies. This metric is determined using:

Figure 5.5: IoU calculation, adapted from [65]

A True Positives is deemed a success if the value obtained is higher than the specified

threshold; on the other hand, a False Positives is deemed a failure. The threshold value

was set to 0.5 for the purposes of evaluating the findings because this is the default value

in the majority of apps and is sufficient for object detection in photographs shot from a

distance of between 10 and 120 metres.

5.2.1.3.1 Test set Structuring

A test set was chosen that had a collection of 123 photographs that were all taken using

the same camera in order to apply the mAP measure. Unfortunately, it was not possible

to collect more data to create a fresh data set to be used as a test set because to the end

limits of the Covid-19 epidemic and the time these experiments were completed. As a

result, a collection of photographs from the validation set was chosen to make up the

test set. Two subsets were taken from this testing group, just as the training set, to test

the implemented model for various bands under the same circumstances. In order to

create the most diverse and representative test set possible, the photographs were chosen

based on their backgrounds, distinctive qualities, and differences from one another. By

including the widest range of available examples, the data sets can be arranged according

to environment types and the binary presence of items to clearly illustrate their diversity

and streamline the results evaluation process. The Images are further categorised as

having an uav or Null label. Table 5.3 shows their inclusion in the data set as well.

Depicts the regions of the train set image frame where UAV class objects are most

likely to be detected, or, to put it another way, the image pixels where the drone object
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Table 5.3: Number of images in the data set from each category.

Categories (%)
Null 25.2 Cloudy 37.7
uav 74.8 Sunny 68.3

is displayed more often. The outcomes are overlapped, and the areas with more drone-

related objects in the photos appear lighter. The 640×480 pixel image frame and the areas

where the UAV is most active are shown in the figure below. The test set was designed to

duplicate the same heatmap distribution behaviour of the train data because the heatmap

of the train set is indicative of the complete dataset.

Figure 5.6: A heatmap showing the distribution of the UAV class object in the image
frame. The yellow diamond shape in the figure represents the area where the UAV is
most likely to be found in the dataset.

5.2.1.3.2 Inference Results

The detection confidence criterion for the inference tests that follow was set to 0.8 in a

Google CoLab notebook. All of the various photos were fed into the model for each subset,

and the number of True Positives (TP), False Positives (FP), and False Negatives (FN) was

recorded. The table 5.4 below gives a clear overview of these results by succinctly listing

the validation mAP, for each train phase.

It is evident from the table that the mAP computed values agree with the inferences

made in the preceding section. Since there was no uav class defined in the COCO dataset

and no inference time because this network train was never deployed, the Preliminary
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Table 5.4: Validation Mean Average Precison (mAP) values for each train phase with
IoU=0.5 and Inference Times in frames per second. The Preliminary Train is covered in
the previous chapter’s section 4.3.5, while this chapter’s prior section 5.2.1.2.1 presents
the three final train phases results.

Preliminary Train Parameter Pre-Train Train End-Spectrum Train
Validation mAP (%) 45.32 74.31 86.91 91.57
Inference Time (fps) - - 17 55

Train produced subpar results. The Parameter Pre-train, as expected, has a very low value

of 74.31%, and its difference from the others confirms that the computed parameters

were not suitable for use in the final system in the real world on their own. Similar to the

previous phase, no inference time measure was calculated in this one.

The Train phase proved to be more precise than other systems’ approaches and to be

suitable in the field of uav detection. However, it clearly demonstrated fragility with a

mAP value that was still below the intended level in several of the output instances given

in the previous article. This is because the mildly specialised training set was smaller and

less varied than expected, and the image’s background lacked sufficiently various items.

End-Spectrum Train, the last step, boosted the validation mAP significantly since it

fed the network the whole spectrum of either augmentation or training method optimiza-

tion in order to get the best, and final, results that would be used in the real-life model.

Because a more potent GPU was used in this stage than in the previous ones, inference

performed significantly more quickly.

When presented with higher altitude images, both Train and End-Spectrum results

demonstrated an overall greater detection ability. Most of the time, these images were

given with more confident confidence values and more assertive uav localization. Lower

altitudes make the contrast observed surrounding most uav occurrences less noticeable,

and both train phases performed worse with this kind of data. This demonstrates that

the model works better with photographs taken at higher altitudes, and it would be ideal

for the UAV to be flying at those heights when it is being utilised in a real-world scenario.

Additional changes must be made to the visual data detection, mostly to less-than-

ideal detection conditions. The network needs more thorough training using bigger data

sets with information from as many different situations as feasible. The data should

be collected at lower altitudes and should contain many examples of items that may be

present in marine settings frequently, such as cranes and ship equipment, as well as under

bridges and aeroplanes, in order to provide the best improvement.

5.2.1.3.3 Inference Results Analysis

It is feasible to make a substantial inference about the model’s inference outcomes by

taking into consideration the computed precision values, the analysed output instances,

and the training results.

84



5.2. PRELIMINARY RESULTS

FP situations typically happen when there are abrupt brightness fluctuations in the

image, which are brought on by changes in the camera’s exposure because of the sun’s

motions. The network requires a specific number of frames to adjust to the new lumi-

nosity values because the majority of the image experiences a change in the intensity

of its colours. The algorithm demonstrated its ability to recover and resume working

appropriately after being given enough frames to adjust.

Other FPs are brought on by rapidly moving clouds. The Middleware Interface mod-

ule should be able to counteract the negative effects of the blobs caused by clouds, so in

general, this effect is timely and only produces a few sparse lone blobs in the bounding

box.

Most FN occurrences are caused by the UAV loitering, with little translation move-

ment, at extremely high altitudes, which lessens the visibility of the propeller movement.

Poor luminosity conditions occasionally did not appear to be an issue; on the contrary,

the best outcomes were demonstrated. The movement of the propeller can become ex-

tremely shaky, which causes the UAV bonding boxes to be included into the background

model and become deformed. This could result in an increase in false positive cases,

especially in overcast situations, although there will typically be a cost. Since the issue

only arises in a very specific circumstance (such as when the UAV is hovering motionless

at great heights), the module is able to track the UAV’s location until its movements are

once again discernible. The UAV should be deemed to have departed the frame when a

predetermined length of time has passed.

When the sun is high in the sky and close to the centre of the picture, that presents

yet another challenge. The saturation effect, or almost entirely white pixels in that area,

caused by the sun and its glares on the camera lens can make it difficult or impossible to

spot the UAV when it is flying over that area of the image. Although there isn’t much that

can be done in terms of picture processing to fix this issue, changes to the hardware can

help to reduce it. For instance, changing the camera’s aperture and other settings can be

utilised to lessen the effect. Another intriguing option is to employ a luminosity sensor

to make the modifications automatically. Similar to how solar glares cause areas of the

image to have poor colour saturation and ultimately be perceived as clouds in the cloud

mask, affecting the quality of the image as a whole. For these reasons, in order to reduce

this issue, the cloud mask’s parametrization must be fairly pessimistic.

5.2.2 Position Controller

The high-level control system in this part is designed to safely guide the UAV from an

aerial position to the surface of the landing pad. Within the constraints of the data

recording, the preliminary results of this module are reported in this section. The Alfeite

laboratory underwent extensive construction work, making use of the area extremely

precarious, and military vacations prevented any staff from entering the facilities, thus

the experiments could only be carried out in a simulation.

85



CHAPTER 5. EXPERIMENTAL RESULTS

5.2.2.0.1 Simulation Environment

Using a simulated environment, the Controller module was tested. It was decided upon

the scenario that follows: The world’s centre is occupied by a static, fictitious helipad

with a fictitious camera pointed skyward at its centre. Due to issues integrating Intel

RealSense libraries with the Sphinx modelling environment, the helipad is not an active

component. Because of this, data interchange and communication between the UAV and

the helipad are not possible. The UAV, on the other hand, is outfitted with a GPS in

addition to a Parrot-provided IMU for pose estimation.

When configuring the simulator with more recent versions of Ubuntu and ROS, in-

tegration issues with the Parrot Sphinx simulator environment and Gazebo surfaced as

well. To address this, it was necessary to downgrade Sphinx’s version in order to ensure

a stable and consistent environment, which compelled the system to do the same. This

issue caused a tear in the information flow from the modules to the UAV simulation,

which needed to be addressed. Setting up a Virtual Machine (VM) environment system

that was totally isolated and tailored just for simulation was the answer. But because the

VM couldn’t handle real-time data transfer quickly enough for a UAV simulation to work,

the information flow between the other modules wasn’t fully resolved. Following the pro-

cess for the model suggested in section 3, figure 3.2, the system was tested as individual

modules, capturing the inputs and outputs of each model and feeding the desired ones to

the following model. Utilizing a tool from the ROS ecosystem, these values are recorded

in order to produce a bag file containing all of the released data for the topics.

As a result, we were able to record the real inputs/outputs, the module’s code, as well

as the data provided, in a more effective and secure manner than before utilising this test

methodology.
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Figure 5.7: Parrot Sphinx + Gazebo 9 Simulation Environment. Ground plane and coordi-
nate axis in a simple universe The global file was simplified to conserve processing power.
The UAV may be seen flying in images B and C. A close-up of the Parrot Bebop 2 model
is seen in Image D. Rotor interference and movement are modulated in the surrounding
area.
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5.2.2.0.2 Simulation Results

A graphic illustration of the controller error deviation applied at various points through-

out the landing manoeuvre is shown in Figure 5.8. This section describes the simulated

environment and tests that were conducted in order to obtain the three different captured

findings.

The 2D Position Alignment phase is being tested in the first scenario, depicted in

figure 5.8a. The module receives an input stating that the target location is 4 metres

away along the Y axis. When this is accomplished, the module receives another input

indicating that the target point has returned to the initial start location, or, in terms

of distance, negative 4 metres along the Y axis. The metrics that are recorded are the

deviation errors of the three PID controllers for coordinates X, Y, and Z, each of which

affects a different coordinate. Only one coordinate was impacted in order to make the

experiments easier to post-evaluate and less demanding on computational resources. The

X and Y coordinates are given the same cloned PID and tweaked gain parameters.

The second and final test scenarios are inside on the last precision descent of the

Landing phase. This stage occurs after the UAV has been correctly positioned above

the helipad’s centre and descent along the Z axis can begin; as a result, there is very

little inaccuracy recorded on the X and Y coordinates in the results of this test. In order

to verify the approach function in the suggested model, Figure 5.8b illustrates the first

through last stages of fall with the UAV starting 5 metres above ground. By looking at

the figure, one can see the times when the approach constraints kick in and cause the

deviation error to soar, indicating that a stage has been successfully finished. Another test

was created to capture every aspect of the final and most significant step in the landing

sequence—the last metre above the earth. During the scenario’s creation, preliminary

tests revealed that it was required to include an offset to the ground, which meant that

the ground would appear to the UAV to be at a lower altitude.

5.2.2.0.3 Simulation Results Analysis

The simulated UAV was safely landed by the control module in a respectable amount of

time, with an average final distance of minus 6 cm from the helipad’s centre. Although

this modules results on precision deviation are astounding, it is crucial to fine-tune these

parameters prior to the deployment of the model since too much precision can harm the

PID controller’s functionality.

As anticipated, the simulation experienced the same issue as the real-world footage

and flight experience. It was determined via real-world pilot operating flights tests of

the drone that the Parrot Bebop 2’s on-board firmware contains built-in mechanisms to

prevent it from colliding with the ground. This method has no effect whatsoever on

the drone’s 2D position because it only becomes apparent at lower altitudes. The conse-

quences appear as the descent sequence begins and the UAV identified centre of mass
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(a) Controller 2D Position Alignment of the Landing Phase simulation tests.

(b) Controller Final Landing Phase simulation tests. Stage immediately after the 2D Position
Alignment done 5 meters above ground.

is aligned with the helipad. This translates to jitter in the controller velocity command

received since the drone approximate pauses at a height that is unsuitable for landing.

Nevertheless, some experiments demonstrated that the module was capable of revers-

ing this. However, more studies are need to determine the exact nature of this erratic

behaviour.

The PID controller as a stand-alone module performed the task successfully but wasn’t

exceptionally effective at it. The reaction took a very long time to get at the target and

there was a significant amount of windup. Without responding to restrict or counteract
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(c) Controller Final Landing Phase simulation tests. Detailed results on the last 1 meter descent
above target.

Figure 5.8: Results of simulation tests performed on the Position Controller module to
evaluate its functionality and suitability for use in the real world.

the effect, the PID continually overshoots the response. The results improved but were

still not perfect after incorporating a threshold to the PID logic and tweaking the values.

It’s important to keep in mind that the controller’s precision level at this point was on the

millimetre scale, which meant that the controller would not tolerate any deviation from

the calculated to target position. With these adjustments, a small-scale simulated test was

run to accurately reproduce the overlapping impact of the control input module. This

implies that the controller was continuously supplied new calculated position signals

while the controller’s reaction action was being monitored. The suggested technique,

when used in this second case, dramatically improved the outcomes by allowing for a

more precise and controlled response, greatly minimising overshoot, and allowing the

UAV to land more steadily and closely to the centre of the helipad.

5.3 Real World Experimental Results

Here in figure 5.9 we can see the 3D trajectory graphs of the UAV during the test. Two

position estimations are represented. The estimation performed by the drone itself is

represented on the left while the estimation derived from the KAB detection is repre-

sented on the right. It is possible to make a corelation with the key moments. Although

the flight was short, the error in the Bebop position estimation is evident. Since the test

was performed in such a way that the UAV returns to the initial position to be easier to

measure the error. We can verify that there is a deviation of approximately 1 metre on the

X axis. In contrast, in the estimation performed from the detection we can see that there
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was practically no error. Larger flights were performed to test the effect of the duration

and also the drone’s travel speed during the flight, on the Bebop Odometry error. It is

concluded that the error increases a lot in larger flights, reaching an error of more than

7 meters. If the drone moves too fast, it leads to failures in the capture of video frames

from the drone’s own internal System, which produce odometry errors.

Figure 5.9: 3D Trajectory of real world flight tests.

Let’s now analyze, in figure 5.10 in more detail and accuracy the landing precision

and the controller behavior in this same flight.

Once again we have the same key moments identified in figure 5.10 for ease of reading.

This graph shows in detail the difference between Bebop’s Visual Odometry and the

Estimation performed by Detection, separated by coordinates. X on top; Y in the middle;

Z at the end. At the moment that the KAB is initialized the drone is in the position ( X:

1.57 ; Y: 0.05; Z: 5.2 ), we can see that only 20 seconds after the flight starts already being

visible error in the odometry of the Bebop. It is also possible to see the moment that

the landing platform is moved. When the landing is complete we can see very different

values. In relation to the X we have a deviation of about 1 meter. At the Y we have a

deviation of 60 centimetres. The Z is done by reading the ultrasound sensor present in

the UAV, a metric that is transmitted to GCS by default.
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Figure 5.10: Flight coordinates detail.

Figure 5.11: Flight coordinates detail X and Y coordinates.
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We will now focus on the X and Y coordinates to analyse the Position Controller

adapted for this dissertation in more detail in figure 5.11.

The controller is not perfect, since the parameters used for the PIDs that control the

speed commands were not parameterized in detail for the situation. The parameterisa-

tion of a PID for a case with many degrees of freedom, such as drones, is an arduous and

very difficult task, without using complex mathematical methods. We can see an over-

shoot around instant 30, of about half a meter, after the initial command is of a higher

magnitude since the drone is further away from the target. To reduce the effect, the

speed at which the UAV moves was limited to ensure greater stability of the System. The

proposed solution was designed with mitigation of both odometry error and controller

overshoot in mind. This is achieved by taking advantage of the high frequency in message

transmission in ROS ecosystems. That is, the navigation waypoint sent to the controller

is updated many times per second, and this causes the controller not to run on top of its

own calculation. Instead a new control action is calculated completely free of cumulative

error.

A video of the flight test analysed in this section is provided using the link in KAB

Real World Flight Test with Platform Moving.
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6
Conclusions and Future Work

This chapter includes a summary of the findings from the dissertation as well as recom-

mendations for further study and potential system upgrades.

6.1 Conclusions

In this dissertation, a collaborative strategy is suggested for Multi Rotor Vertical Takeoff
and Landing (MR-VTOL) Unmanned Aerial Vehicle (UAV)s to land on their own for

the challenge at hand, which was a system meant to create a high-precision landing

manoeuvre on a autonomous ship. A "smart"helipad, which is an active element capable

of communication and data collection, is introduced as another robotic element into

the scenario. The helipad uses a camera at its centre, with the optical axis pointing up

towards the sky, to provide more details on the UAV’s position in relation to it. The

system is intended to either function independently as the main means of guiding the

UAV during its descent or as a component of a more complicated system with additional

queues offering redundancy and enhancing overall robustness.

A State of the Art review was required to gain a better knowledge of the many tech-

nologies required for the proper execution of the solution suggested and to gain additional

information on the work that has already been done in the area in issue. Initially, it con-

centrated on model, dynamics and kinematics, and control theory for multi-rotor UAVs,

with a particular emphasis on quadrotor applications. To further suit the demands of

this case study, the research subjects were broadened to cover high-level landing pro-

cedures, detection methods for autonomous landing and computer vision, simulation

environments for multi rotor UAVs, and other more advanced control theories. Especially

since the model must be developed concurrently with the experimental setting to pre-

vent having to rework or recreate the model from start because the experimental testing
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arrangement is too complex.

After that, a model to address the issue was suggested and thoroughly explained. The

use of this paradigm is fully described in Chapter 3. The model was put into practise

to receive a single image frame, identify the precise pixels where UAV instances were

situated, overlap those pixels with coloured masks, and then record the resultant image

and bounding box file. The detection portion of this model was carried out using the

Darknet + YOLOv3 object detection framework. With its fine-tuned parameters, it was

trained for various atmospheric and lighting conditions, and in Chapter 5 their inference

outcomes were closely compared. This dissertation also includes a method for a position

controller system, with the successful velocity commands provided.

The detection system’s biggest drawback is when the sun is high in the sky because

it causes saturated zones in the image that make it hard to extract any information. As

a result, it may be virtually impossible to discern the UAV in the image. Adapting the

camera lens to function in these circumstances is one technique to reduce the issue.

Another issue can be that during the final centimetres of the fall, the UAV would not fit

in the helipad camera’s field of view.

It was suggested to use a high-level control system to direct the UAV to land on the

landing pad. The control system issues sharper commands the farther the UAV is from

the target and softer commands the closer it gets. It takes into account the relative loca-

tion of the UAV and the helipad, their height differences, and their horizontal distances.

The controller makes use of the multiplicative inverse curve-based idea of landing zone.

The landing zone serves as a location where the UAV must be in order to make a secure

landing. The movement’s magnitude has a negative function, increasing at higher alti-

tudes, decreasing gradually at lower altitudes, and eventually approaching zero in the

final few centimetres of the drop. The simulation to test the results of the controller logic

proved to be extremely useful to prepare the developed system to an application onto the

real-world.

Unfortunately, outside forces intervened to abbreviate the experimental testing period,

effectively nullifying it. The experimental laboratory facility chosen to test the UAV was

located inside a military naval base, therefore their standards applied to how the space

might be used. In addition, for about a month, the facility was closed due to military

holidays, prohibiting access by non-military people. Simultaneously renovation work

started on the upper floor of the laboratory producing greats amount of dust and debris,

typical of active construction sites, that made the use of the Alfeite laboratory exceedingly

precarious. The designated flight test zone was the available location for storage when

the RICS crew needed to transfer equipment to make room for the workers. As a result,

there was less room available for the designed system to undergo controlled and safe

flight tests. The dust produced settled to the ground, and when the drone would take

flight the wind from the propellers would lift tremendous amounts of it, causing extreme

discomfort on the human operators and bystanders. This adverse conditions proved

harmful not only to the crew but also extremely deteriorating to the hardware equipment.
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Despite the circumstances, attempts were made to test the system, but a straightforward

tele-operated flight demonstrated that the system would be subjected to stress levels that

would taint the outcomes.

The suggested approach further advances the study of autonomous landing systems,

which are necessary for fully autonomous UAV operations. This dissertation aims to

provide a fresh viewpoint on the overall issue by proposing an alternative strategy to con-

ventional approaches. The proposed methodology can be used in conjunction with other

established systems to overcome some of their shortcomings and provide a more depend-

able system that can manage a wider range of environmental conditions. A promising

conclusion for future implementations was shown by the UAV Autonomous Landing sys-

tem model using the Darknet + YOLOv3 framework. Even though the obtained findings

might not be the ideal solution, they do demonstrate the model’s promise in the area of

autonomous drone landing, highlighting the want for additional study and improvement.

6.2 Future Work

There are some potential areas where the model could be improved. The first step is obvi-

ously testing the control system on a real UAV to confirm the outcomes of the simulation.

The presence of wind, which can significantly affect the operation of the control system,

is one of the additional issues that real-life settings bring. Using Light Dectection and

Ranging (LiDAR) devices is yet another potential solution to the problem of accurately

calculating the UAV’s centre while it is close to the camera. The Intel RealSense camera

already has a pointcloud-capable LiDAR solution that is accurate to 9 metres. Another

option is to place several LiDARs on the surface of the helipad and sweep the region

directly above it. The data from the UAV can be cross-referenced when it is near the

helipad, creating a point cloud that can be utilised to more accurately calculate the UAV’s

position during the final centimetres of the landing.

The data for the training procedure was gathered from two distinct groups of ground

to sky photos, some of which had backgrounds that were comparable. With access to a

larger collection of photographs collected from the most varied surroundings conceivable,

this model would greatly benefit. More UAV flights would need to be scheduled in order

to get this additional data, but that won’t be possible given the constraints in place and

the current weather. Additionally, it would be crucial to collect a sizable volume of data

solely for testing. The inference tests conducted for this dissertation were satisfactory,

however a new test set that the model has never encountered is required to ensure entirely

impartial test results. More End-Spectrum training rounds were found to significantly

improve the model during the network’s training. According to calculations and network

tests, an additional 4000 batches of end-spectrum training should improve the mAP

outcomes by around 5%.

To further optimise the system, the controller module of the produced system can

also be improved. First, a better inverse approximation function that fully utilises the
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area around the landing space can be implemented. If the helipad is located on the bow

of the ship, for example, modelling the ship to cross-reference the mutual space with

the landing zone will ensure that the UAV performs the approximation from the bow of

the ship, or the stern, if it is located on the stern. This allows the landing procedure to

begin far from the central control tower, which houses the computer and sensor arrays.

This guarantees that the UAV won’t run into the ship’s sensor arrays and cause damage.

Modern control algorithms can also be utilised in place of the Proportional Integrative

Derivative (PID) logic found in the controller module. According to the research con-

ducted for this dissertation, applying Fuzzy Logic to the controller proved to be quite

effective in UAV applications [66].

It would also be intriguing to construct a "smart helipad"that can direct UAVs during

their landings. The helipad is entirely in charge of the landing because the suggested

method is model-free and may function without requiring the UAV to carry out any

special processing. The helipad might be a deployable component that can communicate

with UAVs using a common protocol, making it the only asset required for the self-landing

of any MR-VTOL UAV type.
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