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Abstract—Residual self-interference (SI) is primarily a key
challenge when designing In-Band Full-duplex (IBFDX) wireless
systems. Channel estimation errors are one of the major causes
of the residual SI. The SI channel is composed by multiple
fading taps which makes the characterization of the residual SI
more challenging as multiple copies of the transmitted signal,
with variable delays and gains, are eventually aggregated at
the receiver. In this paper, we derive an approximation for
the distribution of the residual SI power in multi-tap delay
fading channels. In particular, we show that under specific
conditions the multi-tap fading channel can be represented by
a summation of non-identical independent gamma distributions.
In a further step, we approximate the summation of the gamma
distributions using the Welch-Satterthwaite equation, obtaining
a closed form expression for the distribution of the residual SI
power. The accuracy of the theoretical approach is evaluated
through simulation results. The similarity comparison between
simulated data and the proposed model indicates a high accuracy
of the adopted approximation when considering low fading
uncertainty associated to the taps and low estimation errors.
On the other hand, the accuracy of the approximation slightly
decreases for higher uncertainty fading scenarios and for higher
estimation errors. However, as a final remark, we highlight that
the results computed with the model are close to the simulated
ones and for most of the applications the model’s error can be
negligible.

Keywords: In-Band Full-duplex Wireless Communications,
Residual Self-interference, Stochastic Modeling, Performance
Analysis.

I. INTRODUCTION

In In-Band Full-Duplex (IBFDX) communications, the
nodes can transmit and receive the signals simultaneously on
the same frequency [1]. Compared with half-duplex commu-
nication systems, where the resources are divided between
transmission and reception, the capacity of the communication
link can be doubled [2].

The key challenge when designing the IBFDX system is
to reduce the amount of residual self-interference (SI). The
residual SI is defined as the amount of remaining signal
after the cancellation of the SI signal. Most of times, the
transmitted signal is propagated over multiple paths, so, mul-
tiple copies, with random gains and phases, are combined at
the receiver. The SI can be mitigated by a combination of
passive and active methods [3]. Passive methods use antenna
design, cross-polarization or shielding to achieve a significant
amount of signal suppression [4]. On the other hand, active

methods exploit the knowledge of the SI signal to decode
the signal received from other transmitter [5]. Apart from
hardware impairments, the amount of the residual SI power
is mainly related to the accuracy of the estimated channel
parameters. The SI channel must be estimated to cancel the SI
contributions propagated in non Line-of-Sight, due to multiple
signal reflections. Consequently, inaccurate channel estimates
will result in an increased level of SI and this is the main
reason why active methods are unable to eliminate the SI
signal totally. Therefore, subtracting an inverted copy of the
transmitted signal at the receiver is not sufficient to suppress
the residual SI perfectly.

To minimize the amount of the residual SI, it is important
to characterize its power under the effects of the propaga-
tion channel. This knowledge is particularly useful to design
efficient digital cancellation-domain techniques, where more
appropriate estimation techniques can be used depending on
the distribution of the residual SI power.

A. Related Work

In IBFDX communications, the transmitter’s signal must be
reduced to an acceptable level at the receiver located at the
same node. Any residual SI will increase the received noise
floor, thus reducing the capacity of the receiver. Usually, in
a mobile wireless communication system a device transmits
at approximately 21 dBm and the base station’s noise floor
is approximately -94 dBm [6]. Assuming a typical isolation
of 15 dB due to the physical separation between the receiving
and transmitting antennas, the received signal is approximately
102 dB above the noise floor, which gives the amount of SI
that must be suppressed to achieve the same signal-to-noise
ratio (SNR) of a half-duplex system.

The success of IBFDX communications depends on the
efficiency of SI Cancellation (SIC) techniques. Multiple SIC
techniques have been presented in the last years [7]–[9].
To effectively reduce the amount of SI to negligible levels
more efficient active cancellation techniques are required.
Active cancellation encompasses analog and digital-domain
techniques [10]. Due to the proximity of the transmitting and
receiving antennas, the SI signal is too strong. This causes
a high probability of saturation of the radio-frequency front-
end and analog-to-digital converters, which may invalidate the
digital processing. Thus, the SI signal has to be cancelled in



the analogue domain first. Most of the full-duplex systems
described in the literature perform these cancellation steps
sequentially, but recent works already propose a simultaneous
analog/digital cancellation design [11], [12], where the goal
is to optimize the overall analog/digital canceler to achieve
maximum cancellation. The SI channel must be estimated
to cancel the SI contributions propagated in non-direct path
(i.e. multi-path components due to reflection). This is the
main reason for the adoption of digital cancellation. Inaccurate
channel estimates will result in an increased level of SI. Due
to the channel’s time-varying nature, it is important to capture
different channel’s uncertainty levels and their impact in the
residual SI power, which can be used to improve the adaptive
digital cancellation.

Despite of its importance, the characterization of the
stochastic properties of the residual SI has received limited
attention due to the difficulty of the mathematical modeling
process [13]–[15]. In [13], the amount of cancellation and the
strength of residual SI were computed considering a single-
tap delay channel. The authors adopted a narrow-band signal
model to characterize the residual SI power, i.e., it is assumed
that the signal time is less than the coherence time of the
channel. The similarity of the residual SI distribution with
known distributions was analysed in [14] for a single-tap delay
channel. In [15], the distribution of the residual SI power was
also characterized for a single-tap delay channel. In particular,
the proposed modeling methodology assumes a narrow-band
transmitting signal and a sampling rate of several orders of
magnitude higher. The estimation of the channel with a single
tap delay was studied in [16].

B. Contributions

Motivated by the importance of analysing the residual SI
power in real and practical channel scenarios, this work derives
the distribution of residual SI power in a multi-tap fading
channel for IBFDX systems. To the best of the authors’
knowledge, this is the first work considering the distribution
of the residual SI power in multi-tap fading channel.

First, the residual SI power is mathematically formulated
when considering Rician fading independent multi-taps. Dur-
ing the derivation, the aggregation of independent Rician
fading taps is approximated by a Gamma distribution utilizing
the Welch-Satterthwaite equation. As a result, the distribution
of residual SI power can be computed by solving a classical
product distribution. The final expression is provided and
evaluated through simulation. To examine the accuracy of the
theoretical analysis, the numerical results are compared with
Monte Carlo simulation results. The results demonstrate that
the proposed approximation is precise when the uncertainty of
the taps’ parameters and estimation errors, i.e., phase and gain,
is relatively small. However, the accuracy of the approximation
decreases when the uncertainty level of the taps and estimation
errors is significantly high.

The rest of this paper is organized as follows. In Section
II, we present the architecture and mathematical formulation
of multi-tap delay fading channel in IBDFDX systems. In

Section III, we derive an approximated model for the residual
SI power utilizing Welch-Satterthwaite approximation. We
validate the derivations and approximations through simulation
results presented in Section IV. Finally, Section V concludes
the paper.

II. SYSTEM MODEL

A. In-Band Full Duplex Canceller

In this paper, we consider a full-duplex scheme adopting
an active analog canceler [13] that reduces the SI at the
angular carrier frequency ωc = 2πfc. The system model is
depicted in Fig. 1. Multi-tap delay fading channel with I taps
is considered. Thus, multiple shifted versions of the SI signal
xs(t) with different amplitudes are observed at the receiver
side. Each tap, i.e., ith tap, is characterized by a delay τi and
gain hi. To obtain the residual SI signal yres(t), the estimated
delay τ̂i and estimated gain ĥi, for each tap, have to be injected
in the cancellation process [13].

ℎ1(𝑡 − 𝜏1)

ℎ2(𝑡 − 𝜏2)

ℎ𝐼(𝑡 − 𝜏𝐼)

− ෠ℎ1 𝑡 − Ƹ𝜏1

− ෠ℎ2 𝑡 − Ƹ𝜏2

− ෠ℎ𝐼 𝑡 − Ƹ𝜏𝐼

𝑒−𝑖𝜔𝑐𝑡

𝒳𝑠(𝑡) 𝒴𝑟𝑒𝑠(𝑡)

Fig. 1. Block diagram of multi-tap delay fading channel canceller in IBFDX
system.

B. Residual Self-Interference Power

Generally, for I-taps and according to Fig. 1, the residual
SI, yres(t), can be written as follows

yres(t) =
I∑
i=1

hixs(t− τi)ejωc(t−τi)− ĥixs(t− τ̂i)ejωc(t−τ̂i),

(1)
where channel gains are independent and complex random
variables, i.e., hi = hri + jhji . The estimated gain is
given by ĥi = εihi, where (1 − εi) is the gain estimation
error of the ith tap, i.e., for εi = 1 the channel’s tap is
perfectly estimated and for εi = 0 the estimation is totally
corrupted. We also assume that xs(t) is a circularly-symmetric
complex random signal given by xs(t) = xr(t) + jxj(t).
The circularly-symmetric complex distribution is considered
because it can effectively represent Orthogonal Frequency-
Division Multiplexing systems with high number of carriers.



Considering a narrow band channel, i.e., xs(t− τi) =
xs(t− τ̂i), then (1) can be represented as follows

yres(t) = xs(t)
I∑
i=1

hici, (2)

where ci =
(
ejωc(t−τi) − εi ejωc(t−τ̂i)

)
is a constant. Since

the terms xs(t), hi, and ci are complex, and considering that
the channel gains of the taps are independent, then, the residual
SI power can be expressed as

Pyres =
(
X2
r +X2

j

) I∑
i=1

(
H2
ri +H2

ji

)
Ci, (3)

where Ci =
(
1 + εi

2 − 2εi cos (φi)
)

=
(
(<(ci))

2 + (=(ci))
2
)

is also a constant which represents the power of ci. The phase
estimation error of the ith tap is given by φi = ωc(τi − τ̂i).

According to (3), the residual SI power represents the power
of the SI signal multiplied with the power of the composed
taps. Obviously, the power of the fading taps, and thus the
power of the residual SI, is a function of the gain and phase
estimation errors. Specifically, when φi = 0 and εi = 1, then,
Ci = 0 and therefore the additive power of the ith tap is null.
On the other hand, when φi = π and εi = 1, then, Ci = 4
and therefore the additive power is maximum.

III. CHARACTERIZATION OF RESIDUAL
SELF-INTERFERENCE POWER

This section considers the required steps to derive the
distribution of the residual SI power, denoted by Pyres . In
fact, (3) can be seen as a product of two random variables,
X = X2

r +X2
j and H =

∑I
i=1

(
H2
ri +H2

ji

)
Ci.

A. Characterization of Random Variable X

As mentioned earlier, the signal xs(t) is a circularly-
symmetric complex signal, with Xr ∼ N (0, σ2

x) and
Xj ∼ N (0, σ2

x). Departing from (3), X2
r and X2

j follow
a scaled Chi-squared distribution with k = 1 degrees of
freedom denoted by χ2

1 and may be written as follows

X2
r ∼ σ2

xχ
2
1, X

2
j ∼ σ2

xχ
2
1. (4)

By definition, if Q ∼ χ2
k and v is a positive constant, then

vQ ∼ Gamma(k/2, 2v). Consequently,

X2
r ∼ Gamma(1/2, 2σ2

x), X2
j ∼ Gamma(1/2, 2σ2

x). (5)

Finally, the sum of two gamma random variables,
holding different shape parameters and the same scale
parameter, results another gamma distribution, i.e.,
Gamma(k1, θ) +Gamma(k2, θ) = Gamma(k1 + k2, θ),
thus,

X = X2
r +X2

j ∼ Gamma(1, 2σ2
x). (6)

B. Characterization of Random Variable H

The random variable H represents a composition of I
independent fading taps. In this work, the gain of each tap is
modeled as a Rician fading channel. To find the distribution
of H , we firstly consider the distribution of a single Rician
channel. A Rician fading channel can be described by two
parameters: K and Ω. K is the ratio between the power in
the direct path and the power in the other paths. Ω is the total
power from both paths. Then, the received signal amplitude, of
the ith tap, is Rician distributed with parameters µ2

hi
= KiΩi

1+Ki

and σ2
hi

= Ωi

2(1+Ki)
. KdB = 10 log10 (K) is the decibels

representation of K.
If the ith tap is a Rician, then, Hri ∼ N (µhi

cos (ϑi), σ
2
hi

)
and Hji ∼ N (µhi

sin (ϑi), σ
2
hi

). Consequently, the term
(1/σ2

hi
)(H2

ri +H2
ji

) follows a non-central Chi-squared dis-
tribution with k = 2 degrees of freedom and non-centrality
parameter µ2

hi
/σ2

hi
. Using the method of moments, a gamma

approximation can be provided and the shape and scale
parameters, khi

and θhi
respectively, are found to be

khi =
(µ2
hi

+ 2σ2
hi

)2

4σ2
hi

(µ2
hi

+ σ2
hi

)
,

θhi =
4(µ2

hi
+ σ2

hi
)

(µ2
hi

+ 2σ2
hi

)
.

(7)

Since Ci is a constant, the term
(
H2
ri +H2

ji

)
Ci can be written

as follows(
H2
ri +H2

ji

)
Ci ∼ Gamma(khi

, θhi
σ2
hi
Ci). (8)

Consequently, the distribution of the random variable H
represents a summation of independent gamma distributions
holding different shape and scale parameters.

C. Welch-Satterthwaite Approximation

As seen before, the summation of gamma distributions
holding same scale parameters has a closed form solution.
However, there is no obvious solution when the scale parame-
ters are different. In this work, we use the Welch-Satterthwaite
method to approximate H . The original Welch-Satterthwaite
approximation was for linear combinations of independent
Chi-square random variables. However, their basic idea easily
extends to sums of independent gamma random variables [17],
[18].

Let H1, ...,HI be independent gamma random variables
with Hi ∼ Gamma(ki, θi), and H = H1 + ...+HI be their
sum, then

H ∼ Gamma(keq, θeq), (9)

where keq and θeq are the equivalent shape and scale param-
eters, respectively, and given by

keq =
(k1θ1 + ...+ kIθI)

2

k1θ2
1 + ...+ kIθ2

I

,

θeq =
k1θ

2
1 + ...+ kIθ

2
I

k1θ1 + ...+ kIθI
.

(10)



Substituting (7) in (10) leads to

keq =
(
∑I
i=1 khi

θhi
σ2
hi
Ci)

2∑I
i=1 khi

(θhi
σ2
hi
Ci)2

, ∀i,

θeq =

∑I
i=1 khi

(θhi
σ2
hi
Ci)

2∑I
i=1 khi(θhiσ

2
hi
Ci)

, ∀i.
(11)

D. Characterization of Random Variable Pyres
The random variable X is independent of the random

variable H . Thus, the probability density function of Pyres
is given by the classical product density function between H
and X as follows

fPyres
(z) =

∫ ∞
−∞

fX(x)fH(z/x)
1

| x |
dx. (12)

Both random variables X and H follow a gamma distribution
and (12) can be solved by replacing fX(x) and fH(z/x)
by (6) and (9), respectively, as shown in [15]. After solving
the integral, the probability density function (PDF) and the
cumulative distribution function (CDF) of the residual SI
power are given by (13) and (14), respectively

fPyres
(z) =

2
1−keq

2 σ
−keq−1
x θ

−keq
eq

Γ(keq)

× (θeq/z)
keq−1

2 zkeq−1K(keq−1)

(√
2z

σ2
xθeq

)
,

(13)

FPyres
(z) = 1−

2
1−keq

2 (θeqz)
keq
2 Kkeq

(√
2z

σ2
xθeq

)
(σxθeq)keqΓ(keq)

 ,

(14)

where K(keq)(.) denotes the modified Bessel function of the
second kind. Γ(.) represents the complete Gamma function.

IV. PERFORMANCE ANALYSIS

A. Evaluation Methodology

The evaluation of the model presented in Section III, is
done through the comparison of Monte Carlo simulations with
numerical results. Regarding the simulation, the system design
in Fig. 1 is adopted. The carrier frequency is adjusted to fc = 1
GHz. The values of Xr and Xj are sampled from Normal
distributions with σ2

x = 1
2 . The gains of the taps are assumed to

be time-variant, so, Hri and Hji are sampled from independent
Rician distributions. The total power is set to 10 mW for each
tap, i.e., Ωi = 10 mW,∀i.

The accuracy of the Welch-Satterthwaite approximation is
evaluated by considering two scenarios:
S1 - when the uncertainty of Rician fading taps and channel

estimation errors is relatively small, by adopting the
values in Table I;

S2 - when the uncertainty is significantly high, by adopting
the values in Table II.

TABLE I
VARIATION IN TAPS PARAMETERS AND ESTIMATION ERRORS ADOPTED IN

THE SCENARIO S1 .

I KdB µh σ2
h ϑ◦ ε φ◦ keq θeq

1 9.08 2.98 0.55 45 1.00 60 4.8 2.0
2 9.17 2.98 0.54 60 0.90 30 7.1 1.7
3 9.00 2.98 0.56 70 0.80 20 8.5 1.6
4 9.35 3.00 0.52 50 0.77 40 12.5 1.4
5 9.84 3.01 0.47 30 0.89 35 16.3 1.3
6 10.60 3.03 0.40 40 0.86 45 22.0 1.2

TABLE II
VARIATION IN TAPS PARAMETERS AND ESTIMATION ERRORS ADOPTED IN

THE SCENARIO S2 .

I KdB µh σ2
h ϑ◦ ε φ◦ keq θeq

1 12 3.00 0.3 20 0.9 60 8.5 1.0
2 -17 0.45 5.0 230 1.0 178 1.5 32.7
3 6 2.80 1.0 57 0.6 150 3.0 24.8
4 17 3.10 0.1 32 1.0 53 3.6 22.4
5 9.5 3.00 0.5 146 0.2 146 4.8 19.5
6 -6 1.40 4.0 254 1.0 234 5.7 22.3

B. Accuracy Assessment

First, we evaluate the CDF of the residual SI power consid-
ering the scenario S1, when the dynamics of the taps and the
estimation errors are relatively small (adopting the parameters
in Table I). The theoretical results are compared with the
simulation results in Fig. 2. The ‘simulation’ curves are ob-
tained through Monte Carlo simulation while the ‘theoretical’
curves are obtained with the computation of (14). The results
are obtained for I = {1, 2, 3, 4, 5, 6} taps. As can be seen,
the numerical results computed with (14) are close to the
simulation results. Moreover, the additive effect of the taps
can be observed, as the residual SI power increase with the
number of taps (we highlight that this observation is only valid
for the specific parameters considered in this scenario, since
the addition of a new tap can also originate a null impact when
it is perfectly canceled).
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Fig. 2. CDF of residual SI power for I = {1, 2, 3, 4, 5, 6} independent
fading taps adopting Table I parameters.



Next we evaluate the proposed approach for the scenario
S2. The CDF of the residual SI power is evaluated considering
the parameters in Table II. When the uncertainty associated to
fading and estimation errors is high, the Welch-Satterthwaite
approximation exhibits low accuracy at particular regions of
the domain (low probability values), as depicted in Fig. 3.
This is due to the fact that the higher uncertainty of the taps
and estimation errors leads to a large variation in the scale
parameters computed with (7) to obtain the different gamma
distributions indicated in (8). As a result, the accuracy of the
Welch-Satterthwaite approximation decreases as the resulting
gamma distributions in (8) exhibit a higher dissimilarity of
scale parameters. Anyway, we highlight that the results com-
puted with the model are close to the simulated ones and for
most of the applications the model’s error can be negligible.
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Fig. 3. CDF of residual SI power for I = {1, 2, 3, 4, 5, 6} independent
fading taps adopting Table II parameters.

V. CONCLUSIONS

In this paper, we have derived a closed-form approxima-
tion of PDF and CDF for the residual SI power in multi-
tap delay fading channel. During the derivation, the fading
channel was written as a summation of independent gamma
random variables holding different scale parameters. The
Welch-Satterthwaite equation was utilized to approximate the
summation and the final expression of the residual SI power
was obtained. The accuracy of the proposed approximation
was assessed through Monte Carlo simulations. The reported
results show high accuracy of the derivations when the ran-
domness of the taps’ parameters and estimation errors are
small. However, the accuracy of the Welch-Satterthwaite ap-
proximation decreases, at specific regions of the domain, with
the dissimilarity of the fading observed in the multiple taps.
Although the accuracy of the proposed model is satisfactory
for a large variety of parameters, the results indicate that
better approximations have to be explored when considering
a significant high randomness in the propagation channel,

motivating further research efforts and the adoption of different
approaches in the future.

The derived expressions of the residual SI power presented
in this paper can be used to provide technical criteria for
alleviating the residual SI in practical IBFDX communication
systems. One of the practical applications is the compen-
sation of the cancelation errors, i.e., the gain cancelation
error (1− ε) and the phase cancellation error (φ). Moreover,
the obtained results may also be helpful for the academic
community in general, to determine different aspects related
to the performance analysis of IBFDX communications. For
example, by using the residual SI power to derive the outage
probability of a specific full-duplex system, the capacity of
IBFDX communication systems can be achieved.
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