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On  Bending of Multi..Equi..Cell Plate 

Sumio G. Nomachi* 

Abstract 

Bending of a orthotropic plate which is built up in multi-巴qui-cell pro五leby many long rect司

angular strips， is considered here. Making use of Displacement-Shear Equations concerning folded 
plate theory， we can write equilibrium of forces at a longitudinal joint， in four五nitedi在erence

equations with respect to three components of displacement and rotation， and an analitical method 
for solving those五nitedi妊erenceequations by means of五niteFourier transforms based on五nite
integration， is discussed. As numerical examples， the case when four sides are simply supported 
and the case when two edges of multi-cell pro五leare free and remaining two sides are simple 
supported， are presented. 

1. Introduction 

A few studies on multi-cell bridge structure can so far be found1
)2)3)， they 

might， however， be far from so to speak “Multi-Cell Plate"， because number of 
the cell is too short to be called so・ Whilethe recent studies on multiple folded 

plate structures have made remarkable progress relating to the computor technique 

either in elasticity theory4) or ordinary folded plate theory5)6). A. C. Scordelis and 

his colleague members settled the elasticity theory program， written for the IBM-
7094， which was capable of analyzing simple span structures with up to 150 plates 
and 100 longitudinal joints， and the program used a harmonic analisis in which 

as many as 100 nonzero terms of the appropriate Fourier series might be selected 
to represent each load on the structure. As for the ordinary folded plate theory， 
quite a few programs have already been五xedand many valuable numerical examples 
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have been presented. 1t may therefore be true that there is no new on the view 

point of numerical calculation about the multi-cell plate with simple pan， but it 

may still be important to seek an analitical way for the solution， because we may 

not only check the di旺erentialequation which is supposed to approximately express 

the bending of multi-equi-cell plate， but also be able to simplify the program for 

the computor by taking the analitical result into account. 

The presenting paper deals with the simple span n-cell plate as shown in Fig. 

1， the upper and lower longitudinal joints of which are numbered by r and R， 

and the three components of displacement u， v，ωwith subscription r・ denotethe 

components at the r-th joint in the x， y， z directions. 

2. Displacement-Shear Equation of Long 

Rectangular Strip 円 γ+1

Co-ordinates s and x are located on the rectangular strip r， r十 1as shown 
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in Fig. 2， Jうsand jうお denote the normal fo 

rces in the s and x directions， and let q 

be the shearing force， then we have the 

following equations: 
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q = Gt(竺+川
¥ rJS / 

where E， G: elastic modulus， shear modulus， 

t : thickness， 

and 
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(5 ) 

The variation of u is assumed to be linear about S like in the folded plate theory， 
and let us introduce the normal strain in the S direction as the linear variation 

of S which may be appropriate for the long strip， in order to take the effect of 

Poisson's ratio on the stresses into account. 

Thus 

α= u，.(1-sfb)十 U.，.十ぷ片

手 =ι(1-sfb)十九Isfb
dS 

which together with (4) yield 

Et 
P8)8~O = Sr・ 叶1 τ.LJv t) (er 十 ])U~) 

iνー

Et 
P8).'ニ b= S'}'+l・T ニっ (er+l + l.IU;'+I) 

.l-ν 

and integration of (8) from 0 to b with respect to S is found that 

2L1v，. = b(e，.十er+1)

Since the strip is long， it can be assumed that 

~:仙 =;(Urdu)

and the above defnite integration is also carried out from (8): 

vdxニ (2er十ム→ 1)十 bvr，j;:2 
which and (12)五nallygive 

÷ムニf(22MTJ

(7 ) 

(8 ) 

( 9 ) 

(10) 

(11) 

(12) 

(13) 

(14) 

The assumption we take in (12) is that the quantity of er-el-er is small enough 

to neglect in comparsion with e叶 1十ん Writing 九 in(2) by (7) and (8)， and 
integrating it with respect to s， we get 

(27) 
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日十1 た{(U~十件

from which 

T伊 ι1 十 T伊~，... = Etー(zム+仏斗，+ム十 e~~ ，) 
. . .晶'‘ 2(1-1i)、 ".，

because q = T，γ.r十1，q=-Tr+1・ァ for s=O， b. 

(16) 

After substituting (15) into (1) and integrating it again from 0 to b with respect 

to s， the displacement shear equation takes the following form; 

T;.r+1 = ~ (2u;'叫 1)十ずM 叫 1)十(S…l-S，山)仇 間

which and (16) lead to 

九γ=子2U~':1 十 U~') +ず札叫)+ (Sr+1.r -Sr.r+1)/b ， (18) 

The 2nd terms on the right sides of (17) and (18) can be replaced by v with the 

consideration of (14)， and they are rewritten as 

T;・，/，+1=主(2u;'+ぷ 1)+_l::'主 (V;~l -v~') + (Sr.r+1-Sr+1・r)/b， • (19) 
2b 

T;十1γ=JY(2dl 十 u~')+ _l::'主(むら-d)十 (Sr+1・r-Sγ叶 l)/b. (20) 
2b 

where N=Ebt/(l-. .}) 

3. Displacement v and Bending Moment at 

the Longitudinal Joint 

Differentiati暗 (5)with respect to x and then integrating with respect to s 

from 0 to b， we finally come to the result by negleting those smaller terms， as 

follows: 

Gbt 
-E-(U?十1十 v，.)= - GtJ Ur + Sr.r十l-S，十1・T (21) 

and for the diaphragm member r R， 

Gat 
-玄一(ωγ+切 R)=Gt(Ur-UR)+ぶ.R-SR.r. (22) 

Besides those formulas， the bending moments which take place at the joint 

to prevent the cells from the deformation and the shearing forces following them， 
must be formulated. For this purpose the slope def!ection equation is to be used. 

Mげ十1= 2K(2{}r+{}r十1-3JWr/b)

(28) 

(23) 
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(25) 
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(27) 

X，.・r+l=X，ト1・γ

where M r •d1 : bending moment about the joint r in the upper member r， r十 1，
Xγ?十1: shearing force at the joint r caused by both edge moments of 

the member r， r+ 1 

A切 γ=Wr+l-Wr. 

4. Equi1ibrium of Forces at the Joint γ 

It is easily seen from Fig. 4 that the four equilibrium equations should be 

written as follows: 

一

U
T

亡

広
中

Fig. 4. Forces around Joint r. 

Sr.r十I-Sr.r-l-Xr'R= 0 (29) 

Sr'R+Pr+X，.・r+l-Xrサ 1= 0 

Tr'r+1 + Tr'r-1 + Tr'R = 0 

Mr叩十1+ Mr'r-1 + M，・R=O

(30) 

(31) 

(32) 

into which the substitution of R for r and r for R， yields equilibrium of forces 

at the lower joint R. 

Let S，. be the mean value of S門十1 and S，..r-l' then 

Sr.，十 1=ふ寸えR， Sr.r-l =S，一士又R (33) 

which will make the forthcoming expressions simple. 

For an instance， 

S…-S"+I.r+S，"rーペ-1'r=-LJ2Sr-1寸iJXr.I/ (34) 

(29) 
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1 
S，づ十I+S，.十 1・r十S，..，・1+S，.-1・r= ，，:J2Srー1十4ふ -=-L1XR・r (35) 

2 

where LJx，占 =XrトI.Rトl-Xト I.R-l・

We find from (30)， that 

6K/， 
S，"R = V~'" (L18r-2L12

日トdb)-P，・

The substitution of the displacement shear equations into (31) yields 

1Y(dUl+6f)+主 (2u;円以十三里ん;F
り 6" "" 2b 

+ (S，..， ト1-8，十1・v 十S，γーI-Sr-l・r)/b + (S"'R-SR.r) = 0 

which by the aid of (21)， is rewritten in the followign form 

1苧手(伺L12u~ど空1+刈6伽似M叫u叫dU川;fケηr円つfうい)
h ' h ""  ， 2b 

Gt -;， Gt 
+一五-h+-zd弘 1+ (S，・R-SR.，.)/α=0.

Similary the slope deflection equations transform (32) into 

2K(LJ2θ'f'-1十68，.)-6KL1ωr/b

にr
+2K1(28r十九) -i(U7 h)=O 

α 

Replacing the left side of (34) by (21)， we get 

GbtLJv，十2GtLJ弘一1= -2LJ2S，'_1 + LlXr.R ， 

and putting (9)， (10) into the left side of (35)， we五nd

(36) 

(37) 

(38) 

(39) 

2 ，12 c' 1 
2NLlv，.十Nb(LJ2U~_1 十 4u~) = 4b2S，.十b2LJ2S"_1-~b2LJX，..J2 (40) 

2 

where 

LJXγ・R= -6K1(Ll8，十JθR-2LJv，.ja+ 2LJvR/α) . 

The diaphragm member may play a part like the web in the I-beam， so that 

the effect of the bending on the deflectionωis more major than that of the 

shearing. The equation (22) can， therefore， be rewritten as 

ω;. = (Ur-UR)/ (41) 

which is observed that the di旺erenceof ωbetween r and R is neglected. 

Substitutions of r， R for R， r in (37)， (38) excludi時 thelast term (vr-vR)， (39) 

and (40) with the consideration of X，..R十XJ2.，.= 0， lead to another set of equations 

for the longitudinal joint R. So doing， we have nine finite difference equations 

for nine unkown values Ur)  UR， Vr) 
VR， W 円 SnSR' 8r， 8R・

(30) 
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5. Boundary Conditions 

Three component strips meet with one another at the joints r and R， but 
Two component strips make the edge joint where rニ 0，R=O， or rニ n，R=n， so 
that the equilibriums of shearing forces and end moments are expressed by 

TO-1十 To・R= 0 ， MO-1 + Mo・R=0， 

which yield 

(N+No) 川 N 1// 九NO 1// νN 
μ叫0 十 α向1 十 一 土UR匂R+ (卯V1-v吋0fF

3 6.  6 
，. 

2b 

Gt 
十三子(u;F+uJF)+1

「
(u;-ui)十(SO-R-S R-O) /α= 0， (42) 

2K(200+01)十 2Ko(200十OR)-6K(w1 印。)/b 

-6Ko(vO-VR)/ a = Mo， (43) 

and 

SO_l -YO = XO・R (44) 

To.1 

7;;午
300' 

Fig. 5. Forces around Joint 0_ 

where YO denotes a horizontal force acting at the upper joint zero， Mo an external 

moment at the same joint， 

Ko denotes the flexural rigidity of the diaphragm for r= 0， 

R shows the joint zero at the bottom flange， 

No = Ebt/(l-，j)， 

氏Kn (~ ~ ~ I ¥， ) 

XO = 一一~~θ。十九一2(vo - VR)/ af ， 
α 、，

From (33) as well as (27)， we find for r= 0 

3K， (~ ~ ~ I ¥， ) 
SO-1-S0 = 一一l_ ~θ。十九 2(vO-vR)/α} 

G
、，

which together with (44) and (45) leads， if Ko is K1/2， to the relation 

So = Yo. 

(31) 

(45) 

(46) 
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Substitution of n for the subscription 0 in the above expressions furnishes， 
by letting the subscription R denote the bottom joint n， the boundary conditions 

for the top joint n. For the bottom joint 0、theboundary conditions are written 

in the forms 

(N' + No) .，1"， N' .，1" No .，1" νN 
UR十 UR41+uo+(UR+1-zyZ)

3 "" 6"". 6 2b 

Gt' I " 11¥ Gt' +干uZ+1+UZ)十 F(uL1-zG)一(品Rーん山 (47) 

2K'(2九十九十1)+2Ko(2九十(}o)-6K'(ωゎ 1一切R)/b

-6Ko(vO-vR)/α= 0， (48) 

α(SR-YR)-3(ι一副作。+九一2(町 -vR)/α}=-Mn， (49) 

where N'ニ Et'b/(l-J})，K' denotes the flexural regidity of the bottom flange， t' 

is thickness of the bottom flange， R denotes the bottom joint zero， Y R 

stands for the horizontal force at the bottom joint zero. 

When the subscriptions 0， R + 1 are substituted by n， R -1 in the equations (47)， 

(48)， and (49)， these equations become by letting R represent the bottom joint n， 

the boundary conditions which may be satisfied at the prescribed joint. 

6. Case when the Profile is Symmetrical with Respect 

to Center Lines Paral1el to x and y Axes 

A. Equations and Boundary Conditions. 

In this case， it is readily seen that 

U，十 URニ 0， vγ+vR= 0，仇 -(}Il= 0 ， 

Sr+SR= 0，印γ=2ur/a， 

and the equations (37)" ， ，(40) may be written 

α九1， I!I! 1 I九ア ¥ 

立竺(.:12叩 ;F1十6ω;."')+ ~.L ~1ω;FfF 十 トと+GtlJv;: 
12' 

.. 
"12  2 ¥ b J 

12K fAEl n.2 +一~V-ifw~/~l +一一一(11(} r -2112wト db)/α Fr/α= 0， (50) 
2b 

2K(112(}r + 6(}r)十 2Kl(}r-6KJw，.jb-12K1Vr/a= 0， (51) 

土GbtZ1v;:-6K1Jv，.ja+ 3K1J(}r十立竺112w;"_1= -112Sr (52) 
2 

(2NW+6Kdα1 Jv，.十Naν(112切に
1+4叩;.')/2b -3K1J(}r 

= 112Sr_1 + 4Sr ， (53) 

which are the fundamental五nitedifference and di旺erentialequations for the case 

of same flange thickness. 

(32) 
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The bondary conditions corresponding to the above， may be written from (42)， 

(43)， and (46)， as follows 

小+J封切~'''/6+ N.ω;"'/12+ vN(v;' -v~'川

Gt !__" I __f/¥ I í".L~_/~ _"  十三7-(Ul+りわ+Cta(τVl一切の/2b= 2Xo.μ十九/a， (54) 

2K(2θ。+θ1)十 6KoOo-6K(Wl一切。)/ b -12Kovo/α= -Mo (55) 

So=れ

and another set of boundary conditions for r= n， are as follows 

小+J子引子引)ト叩叫叫U川川;rfη川:ffパr円γ判Fソ河/畑/6+a

+;Cα巾M(作U;叫一斗1川 ωM一ω叫叫叫ι州;ιムυ:ιふ一→イ1)/2訪bニ叫 1匁引仇 但

2K(ρ20.仇匁+θ仇η 1)汁十6Kolι7九η 一6K(w却 π 印肌?ηn-l)一寸_1)/b-12K(凡oV叫丸?匁乙/μα 土 一Mn. (57) 

Sη = Yn 

B. Finite Fourier Transforms of v， w， 0， and S concerning Fourier Integral 
and Finite Integration with Respect to x and r respectively. 

As stated before the structure is simply supported in the x direction， and if 
the both ends are closed by the rigid diaphragms in the νdirection， the following 

expressions hold: 

tん=Or=ωTニ Wr=Sァ =0， for x = 0， 1， 

which shows that Vn仇，W 門 andSr may be conveniently described by the五nite

sine transform with respect to x， while the五nitedi旺erencepart in the equations 

(50)， (53) may be analitically solved by means of 五回teFourier transforms con-

cerning the五niteintegration7)8). It accordingly follows that 

A ∞ n ηzπX 1πf 
Vr = ~ L; L; Vim sinーっ-cos

nl 叫 ~1 ち ~o 1 n 

A ∞~/\ mπX 1πf 
仇=三:-L; L;θ肘 nSln ァー cosー←

nl 恥~IÞO 1 n 

切 72422wmsin竺苧sinf竺 (58) 

nl 明 ~1 包 ~o 1 n 

S?=422HJin竺苧sinf竺
nl nドli~1 1 n 

where i， m are integers， 

in which 

(33) 
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九=士~>in 今主命(日η十 2~:V，.} 

Vnm = 十~~sin今主命{vo十(-l)nv，吟:り(一川 (60) 

九 =tbin今主命{vo十(-h+2Xucos引
θ伽=十tsin今主命(θo叫 dz:θr}

θ叫土日;m今主命{Oo十(一川+劫r(-lY}
ハ
リ

《

h
リ

θ伽 tfj;sin今芝山{Oo十(内十叫，.cos i:r} 

肌-)>in勺互kz:ωsin17 (61) 

民地=): sin勺主K2:ssiI11子 (62) 

Multiplying (50)， (52)， (53) by sin mnx/l. sin iπr/n and integrating from 0 to 1 with 

respect to x as well as carrying on the finite integration between 1 and n -1 with 

respect to r， we find that 

Wi"，[抑制{Na(6-Di)+N1a}/12十以(1一ν)(Na/b2)(mπ/lfj4十24(K/α)(叫がl]

十 Vi明 sln1π/n.N(mπ/l)(l十ν)/(2b)一θimsin iπ/n. 24K/(ab) 

=九/肘slnzπ/n{Wnm( -1)i-Wom}{(mπ/l)Na/12 -24K/(ab
2) 

一(川町(1ν)Na/(2b2)} ， (臼)

(/ 17\?~7. ...~ T T  I?i  ]つY¥l:;m sin iπ/n~(mπ/l)ZGbt十 24K1/a2~
_ 

__.J.."-，.u..1θ
州

slnzπ/n 
、， α

十叫眠町nDi乎(苧引引y一4民札泊以ト=一一三乎子山机拙バ山(トH一→1トW肌川伽~m} X 

(仰mπ州/μ川fめ肝)

丸ア"ab4Vム(N+ 6K1b
2/a2

) sin iπ/n+ -W;何-E1(4-A)(mπ/l)2

-12K，θ伽 W/α)sin iπ/nーが(4-Di)H，問

=ザEsMz(れ (-1トれ}(mπ/l)Zー州市叫(-1ト札)

(65) 

where 

(34) 



， On Bending of Multi-Equi-Cell Plate 379 

Di士 2(1一 COS1π/n) ， 

k
 

wh 

τyァ (Z ηzπ'x 7 

w伽 =lozuoSIn-7-az

ι = ~:Sn 由竺子k z
 

d
 

w
一Jn

 

z
c内

0
4
 

And multiplying (51) by sin m7τx/l. cos iπ/n and doing the same procedure as above， 

we obtain 

1ロ2K(作2K釘(6ト一D以乞)+十6伍K料叫一-12広瓦九/μα一 孟F一W問 Slnz][州7π可rげ/

= 一M此?削削山z日山山?η明Pおる(-1げ)i-A1t凡伽伽る 3(2Ko-ι){ι(-1)包+九 2vnnJ -1)i/a 

) 3K /，. T'..¥ (TTT "1¥d_ TTT i 
-2vom/a J + V~~_(4一以)~吹川-W- TV;伽， (66) 

where 

Mo>_“山 =tM制“ Slll一一f dzr 『 Mo 

{}nm 孔 m-7dz， 。O明 =θo sin 1ft，':，̂" dx 

りη叫 =t Vn Sln --'-lン ':'.dx， りOm ニ Vo sin _~/l-~~vL- dx 

Solving the equation (63)， (66)， we can determine ~m ， l九日 andH伽 andreadily 

obtain印門 Srby virtue of the inversion formulas (58)， but in order to get V門 θT

we need four more expressions standing for V;伽 ，Vnm，θ。叫 andθnm'

We let， for this purpose， i be zero in (64) and (66)， then 

冗九明{伊Cbt州(凶m可d州刊Jめ斤f+2μ4ι/μμ刈a2什2}ト一1ロ2ι印θμ

Ct 
=-f(mπ/lJ2(Wn明 -Wom)十Hnm-Hふる，

2θ。明(6K+ 3K1) -12K1 VOm/α 

-Mnm-M(伽 -3(2凡 ι){θnm+θ伽 2(vnm+VOm)/α) 
+12K(耳ぐる明 日Y伽)/b， 

(67) 

(68) 

which may furnish Vo洞 andθC叫:and let i be n， we have 

V;，m{Cbt(mπ/lJ2十24ι/a2
}-12ιθnm/a 

=乎川2{れ (-1)n一肌}+ι(-1)π一 札 ， 側

(35) 
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2θnm(2K十3K1)-12K1 Vnm/α=-Mm(-lr-M伽

-3(2凡-ι)[ι(-l)n+o伽 2{九 (-1)π十叫/α]， (げ7初O別) 

from which 11: 
can b除edetermined by the b加ou叩nd也ar可yc∞on凶1吐凶di凶t“ions(但5比叫4引)and (但5閃6叫)， while Hnm and H… 
by (55) and (57). As for Onm， 0伽 ，Vn1ll" and Voηけ wemust settle them as to satisfy 

主i_o叩=乞@伽(-W，
LJ_ 乞二O

V

M

Q

川

n
Z日

n
Z
M

一
一
一
一

U

A

内

d
一4

d
一4

(71) 

f互4立μU叩仰mn戸=:6九川(トH同一-1)引1幻げy
4 i--O 

If the multicell plate is so made as Ko士 K/2，and the loads only vertically act on 

the longitudinal joints in other words; 

yo=y勾 =Mo=.i¥ι=0， 

the right sides of (68) and (70) become 12K(Viζ哨 W伽)and zero， respectively; 

and SO and Sπalso， zero. 

C. Numerical Examples 

Let the f1exural rigidity of the edge diaphragms Ko be a half of K1 that is 

of the other diaphragms， then the term of Onm，九0，V}問 ，VOm， should be cancelled 

out in (66)， (68)， and (70). In so assumi昭， we are going to take two cases of 

the boundary conditions into account: the one is simply supported for r= 0， n， 

and the other is free from any constraint for r= 0， n. 

(a) In case of simple span subjected a single concentrated load， 

Pr=P for z=f，f=c， 

Pr = 0 for x = f， r二 c，

Wnm= Wom=O， 

from which 

町一

n
n
 

w
一J

P
 

P
一日

The coe伍cientsare as follows 

n = 10， a = b = 10.0 cm ， = 100.0 cm， 

f = l/2， c = n/2 ， 

of which σ泡ヲ and def1ection ω are shown in Fig. 6， 7， and 8; and they are cor圃

responding with 

t = to = 0.5 cm， E =2.1 x 10 kg/cm:ヘν=0.3， 

t= 1.0 cm，ん=2.0 cm， E = 2.1 x 10 kg/cm2，ν= 0.15， 

t=九二 2.5cm， E = 2.1 x 10 kg/cm:ヘν=0.15， 

(36) 
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Fig.6. 日Tand σx Diagrams (l=100 cm， a=b=lO cm， 

t=to=0.5 cm， Eニ 2.1X 106 kg/cm，ν=0.3). 

Fig. 7. Wand (Jx Diagrams (lニ 100cm， a=bニ 10cm， t = 1.0 cm， 

内ニ2.0cm， E=2.1X 105 kg/c肌 ν=0.3).
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(37) 
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l--x  {/ .， l(lxIO-Jk9/cm. 
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Fig. 8. W and (]x Diagram (1 = 100 cm， aニ b二lOcm，

tニ to=2.5cm， E=2.1X105 kg/cm2，ν=0.15)ー
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repectively. 

Fig. 9 illustrares the variation of the bending moments in the profile where 
x=l/2. 

(b) In case of both free edge longitudinal joints subjected by equal concentrated 
loads， 

Po=p.ιニ P

Po=P，犯ニ O

Pr=O， 

from which 

for x= f， 

for xニ f，

九=んニPsin苧

Fig. 10.ωandσx Diagram (l = 100 c叫 dニ b=10cm，

tニ九二0.5cm， E=2.1 x 106 kgjcm，νニO斗

(39) 
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Fig. 11. w and (Jx Diagram (l = 100 cm)， a = b = 10 cm， t = 1.0 cm， 
toニ 2.0cm，Eニ 2.1X 105 kg/cmν=0.15). 

Fig. 12.ωrndσx Diagram (l = 100 cm， a = b = 10 cm， 
t=to=2. cm， Eニ 2.1X 105 kg/cm，ν=0.15). 

(伯)
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Fig. 13. Variation of Bending Moment 

m 乱1idstPro五l

The diagrams of (Jx andωare shown in 

Fig. 10， 11， and 12 of which the coeffIcients 

are those of Fig. 6， 7， and 8， respectively. The 

variations of the bending moments in the midst 

pro五lesare as shown in Fig. 13. The compu-

tation was carryed on by F ACO民1[ 231 which 

is a midium size electric digital computor with 

32000 bits. As for the calculation of infInite 

sine series， m was taken up to twenty; while 

the computョtionofσx and the joint bending 

moment at ten equidistant positions on every 

longitudinal joint， needed two hours and a half 

through the flow chart as follows: 

(41) 

FLOW CHAR1、

385 
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7. Closing Remark 

The stiffness matrix for the prescribed numerical computation may be up to 

30 x 30 one by means of the usual folded plate theory， whereas the method 

mentioned above needs only 3 x 3 matrix. Generally speaking， though there are 

some limitation for the layout of the component strips， the former method must 

treat m times calculations of 30 x 30 matrix and the later one has to deal with 

m x (n -1) 3 x 3 matrix. If we want to have the result for the structure of a 

similar shape with P'， l'， E'， in stead of P， l， E; the corresponding result may 

be written in 

I P'El P'l2 
W' = W ‘ σふ=σ小

PE'l'ノ向山 Pl12

in which the normal stress in the x direction at the r joint is as follows 

民=?ニEu十vSr/t=EWr十 νSr/t
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