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On Bending of Multi-Equi-Cell Plate
Sumio G. Nomachi*

Abstract

Bending of a orthotropic plate which is built up in multi-equi-cell profile by many long rect-
angular strips, is considered here. Making use of Displacement-Shear Equations concerning folded
plate theory, we can write equilibrium of forces at a longitudinal joint, in four finite difference
equations with respect to three components of displacement and rotation, and an analitical method
for solving those finite difference equations by means of finite Fourier transforms based on finite
integration, is discussed. As numerical examples, the case when four sides are simply supported
and the case when two edges of multi-cell profile are free and remaining two sides are simple

supported, are presented.

1. Introduction

A few studies on multi-cell bridge structure can so far be found“®®, they
might, however, be far from so to speak “Multi-Cell Plate”, because number of
the cell is too short to be called so. While the recent studies on multiple folded
plate structures have made remarkable progress relating to the computor technique
either in elasticity theory? or ordinary folded plate theory®®. A. C. Scordelis and
his colleague members settled the elasticity theory program, written for the IBM~
7094, which was capable of analyzing simple span structures with up to 150 plates
and 100 longitudinal joints, and the program used a harmonic analisis in which
as many as 100 nonzero terms of the appropriate Fourier series might be selected
to represent each load on the structure. As for the ordinary folded plate theory,
quite a few programs have already been fixed and many valuable numerical examples
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370 Sumio G. Nomachi

have been presented. It may therefore be true that there is no new on the view
point of numerical calculation about the multi-cell plate with simple pan, but it
may still be important to seek an analitical way for the solution, because we may
not only check the differential equation which is supposed to approximately express
the bending of multi-equi-cell plate, but also be able to simplify the program for
the computor by taking the analitical result into account.

The presenting paper deals with the simple span n-cell plate as shown in Fig.
1, the upper and lower longitudinal joints of which are numbered by 7 and R,
and the three components of displacement %, v, w with subscription 7 denote the
components at the »-th joint in the x, y, 2 directions.

2. Displacement-Shear Equation of Long
Rectangular Strip #, »#+1

Co-ordinates s and x are located on the rectangular strip », r+1 as shown
in Fig. 2, p, and p, denote the normal fo

Speer! rces in the s and x directions, and let ¢
0 ~ v be the shearing force, then we have the
f Side following equations :
a
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qg= Gt ou + v
0s
where FE, G: elastic modulus, shear modulus,

t: thickness,

and

, ou , v
u == ="
oy

371

The variation of « is assumed to be linear about s like in the folded plate theory,
and let us introduce the normal strain in the s direction as the linear variation
of s which may be appropriate for the long strip, in order to take the effect of

Poisson’s ratio on the stresses into account.

Thus
w=1u,(1—5/b)+u, s/b

D0 e (1 sfB) st
Js

which together with (4) yield

PS)S:—'O = Sr-r—i-l = Et 9 (er‘{"uu;)
1—y

Ps)s:b =S8, i1 = Ltz (e, s1+ Vit 1)
1—y

and integration of (8) from 0 to & with respect to s is found that

24v,=ble,+e,.1)

Since the strip is long, it can be assumed that

0 b
S vdr = (0,.+,)

0

and the above defnite integration is also carried out from (8):

/) bZ
S vdx = s (2e,+e, 1)+ bv,,
0

which and (12) finally give

%Avr = % (2e,.+e,i1) .

(7)

(13)

(14)

The assumption we take in (12) is that the quantity of e,,;—e,. is small enough
to neglect in comparsion with e, ,+e.. Writing p, in (2) by (7) and (8), and

integrating it with respect to s, we get

(27)
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t I2s ! 2 7 ! 2
q = T’r-r+1 - “1%7 {(ur +er><s - ZSb >+ (Z£7'+1 +e7‘+l>%} (15)
from which
Lt
Tvir+ T, =— (U, +tp 1 t+e.+e,.. 16
1 1 21— (,+ 21 1) (16)
because ¢=T,.,.1, g= —T,,,., for s=0,b.

After substituting (15) into (1) and integrating it again from 0 to & with respect
to s, the displacement shear equation takes the following form;

7= 2 )+ %<2e;'+e;;l> (S =S, (A7)

which and (16) lead to

= %—(2u;:1+ W) + %<2e;;l+ez> F (Spr— S, (18)

The 2nd terms on the right sides of (17) and (18) can be replaced by v with the
consideration of (14), and they are rewritten as

L= @l w4 Y ol ) (S =S )b, (19)
6 2b
- %@uﬂl )+ 2 L= 0) (Srr— b (20

where N=Ebt/(1—%)

3. Displacement v and Bending Moment at
the Longitudinal Joint

Differentiating (5) with respect to x and then integrating with respect to s
from 0 to b, we finally come to the result by negleting those smaller terms, as
follows :

Gbt

('U,,+1+‘U7.>: _GtAur+Sr.T+1_Sr+1.r (21)

and for the diaphragm member r R,

Gat (o tww,) = Gelu, —tup)+ S, n—Sp, - (22)

Besides those formulas, the bending moments which take place at the joint
to prevent the cells from the deformation and the shearing forces following them,
must be formulated. For this purpose the slope deflection equation is to be used.

M, = 2K(20,+0,,,— 3o, [b) (23)

(28)



On Bending of Multi-Equi-Cell Plate 373

M,..., = 2K (20, ., +0,—3w,/b) (24)
M, .= 2K; {20, +0,—3(v,—vz)/a} (25)
bX,.pir = —6K (0, +0,.,— 24w, ) (26)
aX, z= —6K, {0, +0,—2(v,~vy)/a} (27)

Xr-r+1 = Xr-}—l-r

where M,.,..: bending moment about the joint r in the upper member 7, 741,
X, .1 : shearing force at the joint » caused by both edge moments of
the member 7, »+1
dw, = w, . —w, .

4. Equilibrium of Forces at the Joint #

It is easily seen from Fig. 4 that the four equilibrium equations should be
written as follows:

Pr
Tr—%' Trrer Xr=1t
Mr -ir,
Sp-iF Srr+1,
Mrr+7
Xrr+1
Tre
Xvp =—t—
Mr.f'\;/
Srr’

Fig. 4. Forces around Joint 7.
Spri1 =S 1 — X,z =0 (
S,nt+tP+X,pi—X,01=0 (30
Trwir*+ Ty +T,=0 (
M., a+M,., +M,. =0 (

into which the substitution of R for » and r for R, yields equilibrium of forces
at the lower joint R.
Let .S, be the mean value of S,.,., and S,.,_,, then

Sr-r+1 = Sr+ —;“XTR 5 Sr-rfl :Sr_ % r R <33>

which will make the forthcoming expressions simple.

For an instance,

Sr~r+1_Sr+1-r +S1'-r—1—Sr—1-r: —Azsr—l + -é—“Z’Xr-R (34)

(29)
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S S S S, = S, A4S, — %ZIXR., (35)

Where ZX,.R = Xr—i—lJ-E—}—l_Xr—-l-}?.—l .
We find from (30), that

S,.z= %(Zﬂ,.*ZAZw,_l/b) —P,. (36)

The substitution of the displacement shear equations into (31) yields

At bu)+ B )+ 2 ol
+<Sr‘r+1_Sv~+1-r +Sr-rA1_Sr—1~r)/b +(S9"~R-*SR-7«> = O

which by the aid of (21), is rewritten in the followign form

N v uy+ N+ o)+ 2N Gy,
6 2%
+ —gt_zm + —GbiAQur_l (Son—Sp)a=0. (37)

Similary the slope deflection equations transform (32) into
2K(40,_,+60,)—6K dw,[b

6K,
a

+2K,(26, + 05 —

(v, ~vg)=0. (38)

Replacing the left side of (34) by (21), we get
Gbtdv, +2GtLu, . = =245, _+ 41X, 5, (39)
and putting (9), (10) into the left side of (35), we find

ON Jo, + Nb (4!, + 4l = ABES, + B LS, | — %bZZXT.R (40)

where
4X,. = —6K,(40,+ 40, —2dv,[a+24v]a) .

The diaphragm  member may play a part like the web in the I-beam, so that
the effect of the bending on the deflection w is more major than that of the
shearing. The equation (22) can, therefore, be rewritten as

w, = (u,—ug)la, (41)

which is observed that the difference of w between r and R is neglected.

Substitutions of 7, R for R, » in (37), (38) excluding the last term (v, —vy), (39)
and (40) with the consideration of X, .+ X,.,=0, lead to another set of equations
for the longitudinal joint R. So doing, we have nine finite difference equations
for nine unkown values u,, uz, v,, Uz, w,, S,., Sg, 0,, 0.

(30)
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5. Boundary Conditions

Three component strips meet with one another at the joints » and R, but
Two component strips make the edge joint where =0, R=0, or r=n, R=n, so
that the equilibriums of shearing forces and end moments are expressed by

T0.1+T0.R:O, M0A1+M0.R:0,
which yield

MR gy g By 2o —of)

+ Lo o)) + - )+ (Sun—Sno]a =0, (42)
2K (20 + 6:) + 2K (20, +0,) — 6 K (10, —70) | b
”61\70(”0"“‘012)/@ = M,, (43>
and
SO.l - Yo = XO-R (44)
Po
Mo ‘

Tor
/ Yo { %‘Sa/
Too
/ Xoo” .—T—.
MOO'\/

Soo*

Fig. 5. Forces around Joint 0.

where Y, denotes a horizontal force acting at the upper joint zero, M, an external
moment at the same joint,
K, denotes the flexural rigidity of the diaphragm for »=0,
R shows the joint zero at the bottom flange,

Ny = Ebt[(1—v),
X,= — % fg 10,200 —va)/a) | (45)

From (33) as well as (27), we find for =0
3K

L
a

Sp1—So= {8+ 00— 2(vs—22)] a}

which together with (44) and (45) leads, if K, is K,/2, to the relation
0= Yo . (46)

(31)
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Substitution of z for the subscription 0 in the above expressions furnishes,

by letting the subscription R denote the bottom joint 7, the boundary conditions

for the top joint #. For the bottom joint 0, the boundary conditions are written
in the forms

NTAN) g ]X w i+ Jg w) + ”ZJZ (V51— V%)
+ Ge (Vp1+v )+—Gb~t-(um1 up)—(So.r—Sro)/a=0, (47)

2K'(205+65. 1)+ 2K(20,+6)—6K (wgp 1 —wz)/b
—6K,(vo—vg)fa=0, (48)
a(Sr—Yz)—3(K,—Ky) {00 +0r—2(vs— U}e)/a} =—M,, (49)
where N’ = Et'b/(1—1%), K' denotes the flexural regidity of the bottom flange, #

is thickness of the bottom flange, R denotes the bottom joint zero, Y
stands for the horizontal force at the bottom joint zero.

When the subscriptions 0, R+1 are substituted by »#, R—1 in the equations (47),
(48), and (49), these equations become by letting R represent the bottom joint 7,
the boundary conditions which may be satisfied at the prescribed joint.

6. Case when the Profile is Symmetrical with Respect
to Center Lines Parallel to & and y Axes

A. Egquations and Boundary Conditions.

In this case, it is readily seen that

u,+u,=0, v.+tveg=0, 8.—0,=0,
S, +S8,=0, w,=2ula,

and the equations (37)~(40) may be written

EEI—(A " +6w////) LZM ! 4 ND + Gt ZU;’
2 2 b
+ 9G4 %(A 0. — 2470, \b)ja—Pja—0,  (50)
2% b
K(40,+60,)+ 2K:0, —6K Zo, /b— 12K, Ja = 0 , (51)
%thﬂv;’—6KIZv,,/a+3K121{)7. 4 Gat G"t — S, (52)

(2NJb* + 6Ky Ja) Zv, -+ Nav(dw!! + 4w'') | 26— 3K, 26,
=S, ,+A48S,, (53)

which are the fundamental finite difference and differential equations for the case
of same flange thickness.

(32)
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i

The bondary conditions corresponding to the above, may be written from (42),
(43), and (46), as follows

+ %@1 +ol)+ Glalw!' —wl) |26 = 2Xy.Ja+ Pa, (54)
2K<200 + 01) -+ 6K000 - 6K(w1 _w())/b - 12K07)0/a = _MO (55)
S, = Y,

and another set of boundary conditions for =, are as follows

a<N+ ];]0> w6 +aNw,” /12 +vN(v) —v; )] 2b

+ %Gt(‘v;’ + U+ Glalw, —w,) )| 2b=(2X, 1., +P,)[a, (56)

2K (20, +0, )+ 6K, —6K (w,—w, 1) b—12Kw, Ja= —M,.  (57)
S, =Y,.

B. Finite Fourier Transforms of v, w, 6, and S concerning Fourier Integral
and Finite Integration with Respect to x and r respectively.

As stated before the structure is simply supported in the x direction, and if

the both ends are closed by the rigid diaphragms in the y direction, the following
expressions hold :

v, =0,=w,=w,=.5,=0, for x=0,1,

which shows that v,, 8,, w,, and S, may be conveniently described by the finite
sine transform with respect to x, while the finite difference part in the equations
(50), (53) may be analitically solved by means of finite Fourier transforms con-
cerning the finite integration”. It accordingly follows that

v, = A i 3V, sin ZEE cos P
nl m=1i=0 l n
g, = 4 i Zn]@m sin ZPTL_ oog 2T
nl m=1i=0 ) n
w, == _4_ i i W max Sin_m_r <58)
nl m=1i=0 L n
S, = A i Zn:H sin L gin AT
nl m=1i=1 n

where i, m are integers,
in which

(33)
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z n—1
Vor = %S sin X dx{‘v0+vn+22 u}
¢ r=1
z n—1
V. %S sin 0L dx{vo+(—l)’lvn+2 5 m-w} (60)
0 r=1
z n—1 ;
Vim = vl«g sin 7 dxlv,+(— 10, +2 3 v, cos 2
2 ), ! =, .
1(° T not
By = IS sin dx{6‘0+0n+2 ZIHT}
0 r=
z n-1
6,, — %S sin 77 dx{00+(~1)"6’n+2 b3 a,.(—l)r} (60)
0 r=1
z n—1 ;
O = -\ sin 7% gzlo,+ (176,425 6, cos ﬂ}
2 Jo / e n
z n—1 ;
Wim= S sin L dx Y, w, sin . (61)
0 [ r=1 )
Z n—1 e
H,, — S sin T 3237 S, sin 2T (62)
0 Z r=1 7l

Multiplying (50), (52), (53) by sinmzz/l-sin izr{n and integrating from 0 to 1 with
respect to & as well as carrying on the finite integration between 1 and n—1 with
respect to 7, we find that

W[ (mr]lf {Na(6— D,)+ Nia} [12+ D,(1 —v)(Na/b?)(m=|L}/4 + 24(K]a) (DJ2)]
+ Vi sin izfn - Nima /L)1 +v)/(26)— 8, sin iz/n - 24K /(ab)
= Py, Ja-+sin in/n{W,.(— 1) — Wy} {(mz/1) Naj12 — 24K [(ab)
—(m/lf(1—v) Naf(25)} (63)

Vi sin infn{(maflpGbt+ 24K, Ja*} — 12K g
a

i SN 70/ 72

+ WimDi%’i‘?_@” )Z—HZ.,,,LDZ- = = i e (W (— 1) = Wi

(maflp + sin infn{H,(— 1} — ), (64)

Nabs (4 D yoma/1y

AV, (N+ 6K ) sin izjn+ Wi,
—12K0,,(t¥a) sin ixjn— 64— D) H,,
- Ngb” Sin i1 { W (— 1) W) mae/ 1 sin i {HL o — 1Y — H )
(65)

where
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D, = 2(1—cosinfn),

Z Z
. mrx
W = g 70, sin 7 dx Wom S

0

. max
W, sin ; dx

0

z
H,. =S S, sin m;rx dx H,, = SZSO sin m;:x dx
0

0

And multiplying (51) by sin mzx/[ - cos ix/n and doing the same procedure as above,
we obtain

[2K(6— D)+ 6K} 61— 12K, Vifa — 125

Wim - sin in/n

Mnm ( - 1>7/ _MOm - 3 <2K0 ﬁ Kl) {07zm ( - ]>Z + 60771 - Z‘Unm ( - 1>’L/a

—200,Ja}+ 2K (4= DY W (= 1= W), (66)

where

Z
M, = S M, sin m}rx dzx, M, = SZMO sin m}rx dx
0 0

0

Z z
Opn = S 4, sin m?x dx, Oom, = S 4, sin m;rx dx

¢ 7
ip RTT . MTI
Upm, = S V,, Sl — / dx s Vom = S vy SIn —- dr
0

0

Solving the equation (63), (66), we can determine V,,,, W,,, and H,, and readily
obtain w,, S, by virtue of the inversion formulas (58), but in order to get v,, 6,
we need four more expressions standing for V., V.., &, and 8,,,.

We let, for this purpose, i be zero in (64) and (66), then
Vou{Gt(ma|lf + 24K, [a*| —12K,6y,,/a
= LW — Wan)+ Ho— H (67)
20, (6K + 3K,)— 12K, Vo /a

= — M~ Mo — 32K = K) {0t — 2(0, + w0, )
F12K(W,,,— W) /b,

which may furnish Vi, and @,,: and let { be n, we have

Vi {GbL(ma|lf + 24K, [a*} —12K,6,..[a
Gta
2

D W (= 1) = Wi} + Hom(— 1" —Hy - (69)

(35)
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26,,,2K+3K,)— 12K, V,,.Ja = —M,,,,(— 1" — M,,,
— 32K =K [0 =17 + 00— 2{ Vs (— 17"+ Vi) Jar], (70)

from which V,, and 6,,, may be found. The unknown values W,, and W,
can be determined by the boundary conditions (54) and (56), while H,,, and H,,,
by (55) and (57). As for ..., Oom, Unm and v,,, we must settle them as to satisfy

n . l 7
Tvmnzgomm(_l)z) %‘v()m:izzlovima

(71)

ﬂﬁnm = i @zm( __l)z > Zi00m = ﬁ; @z'm .
4 =0 4 =0

If the multicell plate is so made as K,= K/2, and the loads only vertically act on
the longitudinal joints in other words;
YOZYn:M(J:Mn:O,
the right sides of (68) and (70) become 12K(W,,,,— W,,) and zero, respectively;
and S, and S, also, zero.
C. Numerical Examples

Let the flexural rigidity of the edge diaphragms K, be a hall of K, that is
of the other diaphragms, then the term of ..., 0105 Vsm» Tom, should be cancelled
out in (66), (68), and (70). In so assuming, we are going to take two cases of
the boundary conditions into account: the one is simply supported for r=0, 7,
and the other is free from any constraint for =0, 7.

(a) In case of simple span subjected a single concentrated load,
P =P for z=f, r=c,
P =0 for z=f, r=c,
an = W)m = O >

from which

. mzf . inc
P@-m———PsmTfsm——.

n
The coefficients are as follows
n=10, a=5b=10.0cm, = 100.0cm,
JS=1l2, c=nl2,

of which ¢,, and deflection w are shown in Fig. 6, 7, and 8; and they are cor-
responding with

t=t¢t,=0.5cm, E=21%x10kg/cm?, v=0.3,
t=10cm, £=20cm, E=21x10kg/cm*, v=0.15,
t=1t,=25cm, E=21%x10kg/cm?, v=0.15,

(36)
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W-Dia

LOx70-6Cn

'

20x/076
20x/0~6

| £0x0-5
50%/06

[—

! g2 4 6 9 puiothsgn

’ 7o G

Fig. 6. W and o, Diagrams (/=100 cm, ¢a=56=10 cm,
t=£=05cm, E=21x108kg/cm, v=0.3).

W= Dia. ! 20x075m

e
/ S0
O

[/
W////’

Ox—~Dia.

X.
G 12 3 4 5x/0Rge
S T T S |

l fér 0%

Fig. 7. W and o» Diagrams (/=100 cm, a=b=10cm, £=1.0 cm,
tp=20cm, E=21x105kg/cm, v=0.3).
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w-Did J0x 1966 -
_ T

207032,
00 Bim

Cex
0 5 xR n
fov Ox

Fig. 8. W and ¢, Diagram (/=100 cm, a=56=10 cm,
t=ty=2.5cm, £=21X10°kg/cm?, v=0.15).

112345 cpongun

|
—
\ \ (t=25(m)
&\ | (to250n)

L ' &\ ¥ (to=206m)

05 0 Pewrigan

|
T \w \W T i (C=£0Cm)

B
i D (E=05Cm)
- \\i (Er05tm)
™~

Fig. 9. Variation of Bending Moment in Midst profile.

(38)
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repectively.

Fig. 9 illustrares the variation of the bending moments in the profile where
x=1/2.

(b) In case of both free edge longitudinal joints subjected by equal concentrated
loads,

P=P,=P for z=f,
P():Pn:O for -r:f}
P.=0,

from which

P,,=P,,. = Psin ﬂlﬂJi .

7

!
— 5,02 0*1015
- &

ipxm’o
Z»oxw'

b
\T’/ IOMD

W-Dia

WAt
R

|
1l
|
|
l 1 5 1051072k
| SN S |
1
3

Fig. 10. w and ¢, Diagram (/=100 cm, a=5b=10 cm,
t=t,=05cm, E=21x10°kg/cm, »=0.3).

(39)
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T
SN

0 7 2 3 4 5
fov: Ox.

Fig. 11. w and ¢z Diagram (/=100 cm), a=b=10cm, ¢=1.0 cm,
ty=20 cm, E=2.1x105kg/cm v=0.15).

g

Wi
U

\_/1 0 5 ipxirt
I fov Jx
!

Fig. 12. w rnd ¢z Diagram (/=100 cm, a=b=10cm,
t=t=2.cm, E=21x105kg/cm, v=0.15).

(40)
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0127494 2 /g:ln)

-
7 I | (#=250n).

]
/ // ,J w2

l

[

| (t=100n)
J | Cto=20Cn)

/F/

!
]z/ Z’ Z, : (t=050m)
|

(to=05Cm)

Variation of Bending Moment
in Midst Profil.

Fig. 13.

The diagrams of ¢, and w are shown in
Fig. 10, 11, and 12 of which the coefficients
are those of Fig. 6, 7, and 8, respectively. The
variations of the bending moments in the midst
profiles are as shown in Fig. 13. The compu-
tation was carryed on by FACOM 231 which
is a midium size electric digital computor with
32000 bits. As for the calculation of infinite
sine series, m was taken up to twenty; while
the computation of ¢, and the joint bending
moment at ten equidistant positions on every
longitudinal joint, needed two hours and a half
through the flow chart as follows:

(41)

FLOW CHART

READ DATA

CALCULATF
Vim, Wim, O im, Wim, Sim

PUT
Vim Win, Oim, Wim, Sim
70 MT.

[

Vim, Win,. Gim, Wim, Sim
FROM MT.

CALCULATF
Ve, Wr, Gr, Wr, Sr

CALCULATE
Mrir-1 Mrrer
PRINT

385
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7. Closing Remark

The stiffness matrix for the prescribed numerical computation may be up to
30x30 one by means of the usual folded plate theory, whereas the method
mentioned above needs only 3x3 matrix. Generally speaking, though there are
some limitation for the layout of the component strips, the former method must
treat m times calculations of 30 x 30 matrix and the later one has to deal with
mx(n—1) 3x3 matrix. If we want to have the result for the structure of a
similar shape with P, I/, E', in stead of P, I, E; the corresponding result may
be written in

, __ PEIl Y < &
=W L= 0.
PE'l pPl?
in which the normal stress in the z direction at the 7 joint is as follows
P,

O, = 72Eﬂ,+uSr/t=Eiz},+uSr/t.
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