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Abstract

The Go programming language is acquiring momentum in the development of concurrent
software. Even though Go supports the shared-memory model, the message-passing
alternative is the favoured idiomatic approach. Naturally, this practice is not exempt of
the usual difficulties: programs may deadlock and the language run-time has only very
basic support for deadlock detection. Previous research on deadlock detection mainly
focused on shared-memory concurrency models. For mainstream languages, tools and
approaches specific to the message-passing paradigm are scarce and incipient. There is
however a large body of work on models of concurrency that only recently started to be
applied to languages like Go. Since the Go run-time lets many deadlocks pass unnoticed,
and the existing solutions provided by third party tools detect many deadlocks but only
try to fix a limited set of specific patterns, imposing severe conditions to do so, there is a
clear need for more general deadlock resolution strategies, going beyond prevention and
avoidance. To gain insight on real-world deadlock bugs, we first built and categorized a
collection of bugs sourced from high-profile open-source Go projects. Next, we extended
and implemented an algorithm that takes an abstraction of the communication behaviour
of the program and, when all the communication operations on channels necessary for
progress are present, but a deadlock is possible, presents the problem and offers a possible
resolution for the error. The extensions allows our approach to analyse a much wider
range of real world programs. We conclude with an evaluation, comparing with two other
state-of-the-art solutions.

Keywords: Deadlock detection, Deadlock resolution, Static analysis, Go programming
language, Message-passing
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Resumo

A linguagem de programação Go tem ganhado tração no desenvolvimento de software
concorrente. Apesar de o Go suportar o modelo de partilha de memória, o modelo
alternativo de partilha de mensagens é a abordagem idiomática. Naturalmente, esta
prática não está isenta das dificuldades usuais: os programas podem bloquear e o run-
time da linguagem só possui um suporte muito básico para a deteção destes bloqueios.
Investigação anterior na deteção de bloqueios focou principalmente no modelo de partilha
de memória. Para linguagens convencionais, ferramentas e abordagens dedicadas ao
paradigma de passagem de mensagens são escassas e incipientes. No entanto, existe
um grande conjunto de trabalhos sobre modelos de concorrência que só recentemente
começou a ser aplicado em linguagens como o Go. Visto que o run-time do Go deixa
muitos bloqueios passar despercebidos e as soluções existentes detetam muitos bloqueios,
mas só tentam resolver um conjunto muito pequeno de padrões. De modo a ganhar
conhecimento sobre erros de bloqueio reais, nós começámos por construir e categorizar
uma coleção de erros obtidos a partir de projetos Go open-source de alto perfil. De
seguida, nós estendemos e implementámos um algoritmo que recebe uma abstração
do comportamento da comunicação de um programa e quando todas as operações de
comunicação nos canais necessários para o progresso estão presentes, mas um bloqueio
é possível, apresenta o erro e oferece uma possível resolução do erro. A nossa extensão
permite analisar um conjunto muito maior de programas reais. Concluímos com uma
avaliação, comparando com duas outras soluções do estado da arte.

Palavras-chave: Deteção de bloqueios, Resolução de bloqueios, Análise estática, Lingua-
gem de programação Go, Passagem de mensagens
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1

Introduction

In this chapter we will provide context for the need for concurrent programming and
expose some inherent challenges with the use of it. Next we present a detailed description
of the problem that address, followed by an overview of the objectives of the thesis and
our contributions.

1.1 Context

In the last couple of decades the development of new processors has suffered a major
shift. Initially the improvements to the performance of processor architectures focused
on adding new instructions, speeding up existing ones, and increasing the overall clock
frequency. More recently, the progress has been aimed at increasing the parallelism of the
processor [7]. This can be seen with the advent of processors that feature Simultaneous
Multithreading1 and multi-core designs. The latter becoming the most prevalent and
successful with modern processors containing up to 128 cores [9].

On the software side, this shift means that, in order to take full advantage of the
resources of a modern computer, it is necessary to make use of concurrent programming.
By writing concurrent programs that are able to utilize the hardware parallelism of modern
processors, it is possible to increase considerably their performance.

It is also of note that certain problem domains can be better suited to an implementation
that uses concurrent programming, such as programs that are primarily event-driven.

Unfortunately, concurrent programming brings many downsides. The first of which
is that writing concurrent programs that are bug-free can very challenging. Programmers
naturally think sequentially and as such, can have a difficult time reasoning about all the
potential interactions and behaviours a concurrent program can have, specially in large
codebases.

To make matters worse, concurrent programming often causes non-deterministic
behaviour. The non-deterministic scheduling of the threads can lead to different results

1Simultaneous Multithreading is a technique that allows multiple instructions to execute in parallel while
sharing some execution resources.
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CHAPTER 1. INTRODUCTION

for two executions of the same program. In the worst cases, this behaviour leads to
Heisenbugs, bugs that are very uncommon and difficult to reproduce. Due to the difficulty
in reproducing and analysing these bugs, they can be introduced and remain hidden and
silent for a long time before being caught and fixed [29].

In a survey conducted on 684 employees at Microsoft [10], Godefroid and Nagappan
measured that not only a majority of staff dealt with concurrency bugs at least monthly, but
also that over 70% of the bugs take more than one day to debug and fix, concluding that
debugging and fixing concurrency bugs take up a significant portion of the developer’s
time.

Concurrency bugs can be categorized into various types, such as data races, atomicity
violations, order violations, and deadlocks. In this work we will tackle deadlock bugs. A
deadlock can be defined as a permanent inter-blocking of a set of processes that either
compete for system resources or communicate with each other. In the context of a computer
program, a deadlock leads to one or more threads becoming blocked and in most cases
preventing further progress of the program.

Although deadlock bugs are generally the easiest to notice when they occur, often
times leading to a complete halt of the program’s progress, they can still be difficult to
reproduce, analyse, and fix. In a study of concurrency bugs in large scale software projects
written in C/C++, almost 30% of the concurrency bugs were deadlock bugs [18]. More
concretely, for a deadlock to occur all of the following conditions must hold (Coffman
conditions [3]):

• Mutual exclusion. The shared resource must be accessed by a single process at a
time.

• Hold and Wait. A process must already be holding a resource and is waiting for
access to additional resources.

• No pre-emption. A process must only give up the resource voluntarily.

• Circular wait. A circular wait must form where each process is waiting for access to
a resource that is held by the next process in the chain.

Several strategies exist for dealing with deadlocks [12]:

• Ignoring deadlocks. The simplest and perhaps most employed strategy is to dis-
regard the problem. The deadlock might just not occur frequently enough to be
bothersome, or the software can just be restarted without significant data loss. It
has the advantage of not imposing extra overhead that other solutions might impose
and the disadvantage that it isn’t a “proper” solution.

• Deadlock prevention. Since all the Coffman conditions must be met for a deadlock to
occur, a deadlock can be prevented by ensuring that at least one of those conditions
cannot be met. For example, the Hold and Wait condition can be removed if the

2



1.1. CONTEXT

processes acquire all the resources needed at once before proceeding. This strategy,
however, implies the advance knowledge of the resources the process will require,
something that is frequently not possible or very impractical to implement.

• Deadlock avoidance. A deadlock can be avoided by ensuring that the system never
enters a state where a deadlock is possible. With the knowledge of the currently
acquired resources and the maximum number of resources each process can allocate,
it is possible to determine if a new acquisition will evolve the system into a state
where a deadlock is possible. However, this strategy not only imposes additional
overhead with the need to track resource allocations, but also requires the a priori
knowledge of the maximum number of resources each process can allocate. With
the latter being specially impractical or impossible to implement.

• Deadlock detection. With this strategy deadlocks can and will occur. But after
detecting a deadlock, a procedure can be employed to resolve the deadlock and
resume execution. One possible procedure is to release the offending resources and
roll back the changes made to a point where no conflicting resources were held. This
will clear the deadlock and the rolled back process can restart. Since this strategy
does not prevent the process from reaching a deadlock, the same deadlock can occur
indefinitely, possibly leading to starvation.

Overall these strategies either impose overhead in the execution of the program,
require advance knowledge of what resources a process will need, or require the ability
to rollback a process to a previous state. Each of these requirements are often times not
practical, frequently demanding a complete refactoring of the program’s behaviour, or
a considerable increase in the program’s complexity. This has lead to the emergence
of new programming languages and tools with features and programming models that
help the programmer develop programs with fewer deadlocks. These tools can either
statically or dynamically analyse the program’s code or execution to evaluate if a program
can deadlock. With the context of where the deadlock occurs in the program’s code,
developers can analyse the codebase and determine the changes needed to prevent the
deadlock from happening.

Significant research has been conducted to develop tools and algorithms that detect
deadlocks on languages that feature a shared-memory concurrency model, such as C/C++
and Java. However, in the recent years, new programming languages that have message-
passing concurrency models have risen significantly in popularity. Go and Rust are two of
the most prominent, reaching 12th and 26th place, respectively, in the TIOBE programming
language popularity index [28].

The message-passing concurrency model brings new problems that are not fully
addressed by the research targeting languages that feature concurrency models based on
shared-memory.

3
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In the 2019 Go developer survey [14], developers said that Go’s concurrency, was
not only important, but were also satisfied with it’s implementation (Figure 1.1). This,
once again, echoes the need for concurrency in today’s computing environment. It also
shows that overall, developers are satisfied with the primitives Go provides. On the other
hand, debugging concurrency while only slightly lower in the importance metric, it is the
aspect that scored lowest in the satisfaction metric. Indicating that most developers are
not content with the current environment of concurrency debugging tools, even though it
is an aspect of Go’s development that the majority feel it is important.

Figure 1.1: Importance vs. Satisfaction of various aspects of Go development [14].

1.2 Problem

How to automatically detect and avoid common deadlock patterns in Go code, proposing
fixes to the faulty part of the code?

As we have seen, deadlock bugs not only are difficult to debug and fix, but also
can cause severe failures. In the recent years there has been a considerable effort and
research published on tools and methods to detect deadlock bugs in Go, ranging from
simple built-in dynamic analysis to static analysis on inferred behaviour types or even
the compiled Go binary. Typically, once a deadlock is detected, the tool provides some
debugging information to the user such as where and how the deadlock occurs. With
this information the developer is then tasked with resolving the deadlock. As it is done
manually, this process can be error-prone and slow. This second step of the process can
be improved. If the deadlock resolution step is automated, the process can be even more
streamlined, not only saving countless hours of development time but also providing
more reliable results.
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Program analysis however, it’s not without its limitations. Rice’s theorem states
that all non-trivial properties of the behaviour of programs (written in Turing-complete
programming languages) are undecidable. However, it is still possible to over-approximate
and obtain useful answers for realistic programs [21]. In practice, this means that false
positives are possible, resulting from the approximated decidable problem not matching
in behaviour with the original undecidable problem. Hereby, program analysis tools must
be developed to provide results as accurate as possible, reporting little to no false positives.
Otherwise, the value of the tool to the user will be greatly diminished.

1.3 Objectives

The work has two main objectives:

Bug collection. The first objective is to build a collection of common Go code patterns that
induce deadlocks when executed. Together with a taxonomy on the type of bugs, the
dataset helps determine the efficacy of deadlock detection solutions. Moreover, with
this collection of deadlock code patterns, we performed an evaluation of existing
solutions.

Deadlock detection and resolution. The second objective is to build and implement a
solution that statically analyses a Go codebase to determine potential deadlock bugs
and give hints of possible solutions to the programmer. The resulting tool could
then be integrated into a programmer’s development environment and, in real-time,
provide feedback. It would also allow the programmer to find and fix the bugs even
before the buggy code is deployed and executed.

1.4 Contributions

The main contributions of our work are:

Overview of the state of the art (§3) We provide an overview and critique of the state
of the art in relation to the detection of deadlocks in Go programs, including one
approach that provides a resolution to some types of deadlocks.

Bug collection (§4) We have built a collection of deadlocks bugs, gathered from real-
world Go projects. The collection of contains snippets of code that retain just the
bug inducing part of the code, and a taxonomy where we categorized the deadlocks
and associated fixes. With this data we gathered some insights into the structure of
the deadlocks and fixes.

Deadlock detection and resolution (§5) Following the work by Francalanza, Giunti, and
Ravara [8] and Almeida [1], we developed a solution capable of statically analysing
Go code in a fully automated manner, with the objective of detecting deadlock bugs

5



CHAPTER 1. INTRODUCTION

caused by the misuse of the message passing concurrency model, and providing
resolutions to the deadlocks found. In addition to a considerable refactoring and
optimization of the existing tool, we added support for two prominent features of
the Go language: the select statement, and recursive processes. These changes
greatly improve the applicability of the tool when analysing real world code. For
each deadlock found, our tool then uses one of two strategies to resolve the deadlock.

Evaluation (§6) The final contribution is an evaluation of our approach, as compared
with two others, using the bug collection as a benchmark suite of deadlock bugs.

The GoDDaR Tool. A primary contribution of our work is the Go Deadlock Detection
and Resolution tool, where we implemented the approach described in this document.
GoDDaR provides an end-to-end solution, capable of analysing source code in Go and
outputting deadlocks found in the code along with possible resolutions for each deadlock.
The tool operates in a fully automated manner, requiring no input from the programmer
and no changes to the original source code.

Our solution is implemented in OCaml and can be accessed at https://github.com/
JorgeGCoelho/GoDDaR, along with usage instructions and examples.

6
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2

Background

This chapter will start by highlight two modern programming languages that were devel-
oped with safe concurrent programming in mind, with each taking a different approach,
next we will describe some common approaches for program analysis, and we will finish
by providing a comprehensive description of the CCS process calculus, as it will play an
important role in our approach.

2.1 Modern Concurrent Programming Languages

2.1.1 Rust Language

Rust is a new programming language [26] that focuses on performance and safety, par-
ticularly with regards to safe concurrency. It is a compiled language that checks most of
the safety guaranties at compile time. In order to be performant, Rust doesn’t feature a
runtime library or automatic garbage collection, instead it relies on techniques such as
Resource Acquisition Is Initialization (RAII) to provide its features during compilation.

While many languages trade-off high-level safety guarantees with low-level control
of the resources, Rust sets out to achieve both. With mechanisms for low-level memory
management, Rust can be good choice for projects that would otherwise be implemented
in C/C++.

In order to provide memory safety, Rust features an ownership and borrowing system
where access to aliases of references are restricted. If a reference is not aliased, then it only
has one owner and the reference is mutable, meaning the contents of the reference can be
modified. On the other hand, if the reference is aliased, then the contents of the reference
are immutable.

Together with other strategies like forced initialization of variables, the absence of null
pointers, and bounds-checking, Rust provides strong memory safety guarantees, capable
of preventing bugs such as null pointer dereferences, use-after-free, double-free, dangling
pointers, and buffer overreads/overwrites.

The ownership system does not allow multiple threads to have mutable references to
the same data at the same time. With only immutable access to shareddata, communication

7



CHAPTER 2. BACKGROUND

between threads would not be possible, and as such concurrent programming would not
be practical.

In order to allow threads to share and modify memory safely the Rust standard
library features types that implement interior mutability. Interior mutability allows the
mutation of data even when there are immutable references to that data. One type that
implements interior mutability is the std::sync::Mutex<T>. The Mutex<T>, as the name
suggests, implements a mutual exclusion primitive that protects shared data. It allows
access/mutation of the enclosed data by a single thread at a time.

Another concurrency primitive that Rust provides are channels. Channels allow
message-based communication, much like the channels featured in Go. When a reference
is sent via a channel, the sender loses the ownership of the reference, while the receiver
acquires it. By transferring the ownership, the ownership system will prevent the sender
from accessing the sent reference again, ensuring memory safety.

Unfortunately, while all these strategies are effective at preventing data-races [4],
they do not prevent deadlocks. It is still possible to create situations where a circular
dependency is formed between threads that prevents them from progressing.

2.1.2 Go Language

Go is a compiled, concurrent, garbage collected, and statically typed programming lan-
guage [25] initially designed and developed at Google in 2007. It was designed to improve
programming productivity in the modern era of multicore machines, networked systems,
and massive codebases.

As part of the Go’s design goals to improve productivity with regards to concurrent
programming, Go features a set built-in concurrency primitives: lightweight processes
(Goroutines), channels, and the select statement.

2.1.2.1 Goroutines

Goroutines are Go’s implementation of lightweight-processes. The goroutines are sched-
uled by the Go runtime to be executed on a kernel level thread, allowing for more efficient
context switches. Together with a independent call stack that grows dynamically, gorou-
tines offer a much cheaper thread management strategy and as such Go programs can
efficiently have thousands of goroutines running concurrently.

Goroutines are very easy to create. Go introduces the go statement that, when placed
before a function call, executes the function in a newly created goroutine. The go statement
returns immediately, allowing both goroutines to continue executing concurrently.

The Listing 1 shows an simple Hello World program that makes use of goroutines.
In the Listing we can also observe two more characteristics of the Go language. The first

is that Go features anonymous functions. These functions can be assigned to a variable or
invoked directly. Together with the go statement, this provides a very simple and effortless
way of introducing concurrency. The second is that when the main goroutine returns the

8



2.1. MODERN CONCURRENT PROGRAMMING LANGUAGES

1 package main
2

3 import (
4 "fmt"
5 "time"
6 )
7

8 func main() {
9 fmt.Println("Hello ")

10 go func() {
11 fmt.Println("World!")
12 }()
13 time.Sleep(1 * time.Second)
14 }

Listing 1: Example of the creation of a goroutine.

Go runtime terminates the program without waiting for other goroutines to complete. In
order to work around that behaviour we suspend the execution of the main goroutine
before returning in order to allow the second goroutine to execute its print statement.
While Go features better methods that provide synchronization such as waitgroups and
channels, in this example a simple sleep works well enough.

2.1.2.2 Channels

With channels, Go implements a CSP-style concurrency model. Channels work similarly
to UNIX pipes, allowing goroutines to send and receive data between each other.

To create channels, Go’s has the built-in functions make(channel_type) and make( ⌋
channel_type, capacity). Without the capacity specified, Go assumes a capacity of 0.
The capacity of the channel will define its behaviour. The behaviour of channels can be
classified into two types: asynchronous (buffered) or synchronous (unbuffered).

With a non-0 buffer capacity, channels will act as a FIFO queue, and operations of the
channel will be asynchronous if buffer is not empty (receives) or not full (sends). When
the channel’s buffer is full, send operations will block until an entry in the queue is free.
Receive operations will block if the channel’s buffer is empty, and will only unblock when
it’s able to retrieve a value from the channel’s queue.

With a buffer capacity of 0, a channel is unbuffered and the operations on the channel
act synchronously. Each send/receive operation on the channel will block until another
goroutine executes the opposite operation. This behaviour provides a simple yet effective
way of ensuring synchronization between goroutines.

In the Listing 2 we provide an example of a Hello World program that makes use of
channels.

9
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1 package main
2

3 import "fmt"
4

5 func main() {
6 fmt.Print("Hello ")
7 c := make(chan string)
8 c <- "World!" // Block
9 fmt.Println(<- c)

10 }

Listing 2: Example of the use of channels, with a blocking bug.

The program starts off by printing "Hello ". In line 7 a channel that sends/receives
values of type string is created and assigned to variable c. On the next line we send the
string "World!" through the channel. Finally, the string is received from the channel and
printed.

Unfortunately the example will never print the full "Hello World!". In the current
implementation of the program, the channel created is synchronous and as such the
send operation will block indefinitely because there will never be another goroutine to
handshake and receive the value.

There are two simple ways of fixing the program.

The first is to change the capacity of the channel. With a non-0 capacity, it would allow
the send operation to place the value in the channel’s buffer and not block the execution.
At line 9, the receive would then fetch the string from the channel’s buffer and print the
string.

1 package main
2

3 import "fmt"
4

5 func main() {
6 fmt.Print("Hello ")
7 c := make(chan string)
8 go func() {
9 fmt.Println(<- c)

10 c <- ""
11 }()
12 c <- "World!"
13 <- c
14 }

Listing 3: Example of the use of channels, fixed by introducing an extra goroutine.

10
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The second way is to move the receive operation to a separate goroutine, see Listing 3,
line 9. With the send and receive operations in two goroutines, they are able to handshake
and transfer the value from the main goroutine to the child goroutine. The use of a
synchronous channel also enforces synchronization, ensuring that both goroutines reach
a certain point before progressing. In this case, it ensures that the "World!" string is
printed after "Hello ".

In the fixed example, we also added an extra pair of send/receive operations (lines 10
and 13) to make sure that the child goroutine prints the string before the main goroutine
returns.

Another important characteristic of the Go channels is that channels are first-class
objects. Allowing them to be stored in variables, passed as arguments to functions, stored
in record types, and even be sent across channels. This allows for great flexibility in the
communication structure of Go programs.

Go’s runtime implementation of channels block when an operation is performed over
a nil channel. Channels can also be closed. Send operations over closed channels cause
the Go program to panic and receive operations immediately return the zero value of the
channel’s type.

2.1.2.3 Select Statement

The final concurrency construct that Go provides is the select statement. The select
statement features syntax is similar to the switch statement found in many programming
languages, such as C and Java.

For each case statement, the runtime checks if the send/receive operation is able to
be performed. If so the operation is executed and the code for that case is also executed.
If more than one case statement can proceed, a single case is chosen at random. If no
case statement can proceed, the select statement blocks until one of the communication
operations can proceed.

In Listing 4 we provide an example of the use of the select statement. In this example
the select statement is used to implement a timeout for an operation. We make use of the
time.After() function from the Go’s standard library. This function returns a channel that,
after the given duration has elapsed, sends the current time through the channel. The select
statement will block until one case statements can proceed, the one that will be available
first will be executed. With this behaviour, either the timeConsumingOperation() sends
its data to the output channel within 10 seconds or after the 10 seconds elapses, the
time.After() function sends a value through the channel.

The select statement also allows the addition of a default case. If a select statement
has a default case, the default case will be chosen if no other cases can proceed. This
effectively makes the select statement non-blocking.

Together, these three constructs allow for a very powerful yet simple method of writing
concurrent programs.
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1 package main
2

3 import (
4 "fmt"
5 "time"
6 )
7

8 func timeConsumingOperation(output chan string) {
9 ...

10 }
11

12 func main() {
13 output := make(chan string, 1)
14 go timeConsumingOperation(output)
15 timeout := time.After(10*time.Second)
16 select {
17 case data := <- output:
18 fmt.Println(data)
19 case <- timeout:
20 fmt.Println("Timed out")
21 }
22 }

Listing 4: Example of the use of the select statement.

The language still allows concurrency models basedon sharing memory. All goroutines
share a single memory address space, and in the standard library Go provides basic
synchronization primitives such as mutexes and conditional variables.

Compared to Rust, Go provides a more lenient approach to safe concurrent program-
ming. Instead of imposing a complex set of restrictions in the code, that can be checked
at compiled time, Go relies more on conventions based on message-passing, that are less
likely to introduce concurrency bugs. In order to reinforce this, Go promotes the following
motto:

Don’t communicate by sharing memory;
share memory by communicating.

2.2 Approaches for Program Analysis

There are three general approaches to analyse the behaviour of a program. The program
analysis can be performed during execution of the program (dynamic analysis), without
executing the program (static analysis), or an hybrid of both. Generally, dynamic analysis
incurs an overhead during execution and can only evaluate the code paths that are
executed, requiring a exhaustive testing harness to analyse the whole program. Without
the requirement of executing the program, static analysis can be more versatile and
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practical. Not only can it analyse the program as a whole, but also frequently requires
less or no input from the user, allowing it to be fully automated and incorporated to the
development life cycle.

The dynamic analysis approach involves applying some kind of code instrumentation,
collecting the events or traces necessary to evaluate the state of the program. Either during
execution or in a subsequent offline analysis, the traces are collected to build a model of
the current state of the program. With a resource-allocation graph, it can be determined
if a cycle has formed between the threads, indicating the occurrence of a deadlock.

For static analysis various techniques have been created. One of which is abstract
interpretation, where every statement of the program is modelled in an abstract machine.
Through this process, the analysis can obtain an approximation to the possible behaviour
of the program. The goal it to obtain a computable semantic interpretation. One simple
example is the analysis of the sign of a series of integer manipulations, keeping only their
state (+, -, ±). In the case of a multiplication the sign of the result can be derived with no
loss of precision, while with the sum the sign of the result depends on the values of the
operands, and as so the abstraction may lose precision.

Another method for analysing programs is through the use of a constraint solver. The
strategy is divided into two steps. The constraint generation back-end, and a constraint
solver front-end. The back-end generates a collection of constraints modelling the pos-
sible behaviour of the program and the properties to be evaluated. With the generated
constraints, the front-end is used to find a solution. If a solution is found the property is
satisfied.

Model checking is a technique where a finite-state model is checked if it meets a given
specification. First, a model is obtained that abstracts a system or program, describing the
possible behaviour of the system in a precise and unambiguous manner. This step can be
performed either manually or automatically, in which case the model can be obtained from
an existing program specification. The models are then accompanied with algorithms that
systematically explore all the states in the system. In this way it can be shown if a model
satisfies a given property. These properties can specify liveness or safety requirements.

Finally, it is possible to use a mix of both static and dynamic analysis. Each type of
analysis has their trade-offs. Static analysis provides a more sound approach, although
more conservative due to abstraction, and dynamic analysis generally is more precise due
to no approximation but otherwise unsound. With a hybrid approach it can be possible
to take advantage of each approach’s strengths, resulting in a more correct and complete
analysis.
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2.3 Calculus of Communicating Systems

2.3.1 Reactive Systems

The classic way of abstracting computing systems is generally that of a black box that
takes inputs and returns outputs. In this view, these systems can be described by how
they transform an initial state to a final state. This model, however, does not allow to
adequately express some important aspects of other types of computing systems, namely
reactive systems. Reactive systems differ in two major ways, non-termination and the
notion of interaction.

For many of the algorithms and systems we build, termination is an expected and
desirable behaviour, often necessary to obtain the results of the computation. However, for
some computing systems the execution is inherently non-terminating. As an example, it is
reasonable to expect a control program that monitors a nuclear reactor to never terminate.

With the potential for uninterrupted execution, reactive systems instead rely on inter-
actions to communicate with their environment and in doing so, receive inputs and return
outputs. These interactions play a key role in the behaviour of the system, triggering po-
tential changes in the system’s state and, in turn, influencing the environment by sending
some signals back.

2.3.1.1 Modelling Reactive Systems

1start 2

3

4

coin

tea

coffee

pick

pick

(a)

1 2

3

4

5

coin

teapick

coin

coffee pick

(b)

Figure 2.1: Two possible automata representing a vending machine.

A vending machine can be seen as a reactive system [11]. The machine is (usually)
always available to serve the next drink and offers a means of interaction via a frontend
consisting of physical buttons, slots for the insertion of coins, and a tray from which the
user can pick up their drink.

In Figure 2.1, we present two possible automata that describe the behaviour of the
vending machine. This vending machine accepts the following user interaction: upon the
insertion of a coin, the user can choose either tea or coffee, after which the user can pick
up the chosen drink.

coin.(coffee.pick + tea.pick) (2.1)
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coin.(coffee + tea).pick (2.2)

The program (automaton) is correct if it implements (accepts) exactly the intended
behaviour, i.e. the same language. If the expressions 2.1 and 2.2 are the regular expres-
sions of the program simulating the vending machine and of the intended behaviour,
respectively, then we can assert that the program is correct, since both regular expressions
accept or denote the same language.

However, this method of comparing the behaviour reactive systems via automata-based
models falls apart if we look at the automata in Figure 2.1b. Converting the automaton,
yields the following regular expression:

coin.coffee.pick + coin.tea.pick (2.3)

We can again see that the regular expression 2.3 denotes the same language as the previous
two expressions 2.1 and 2.2. This would imply that the regular expression 2.3 implements
the same intended behaviour. However, this is not the case. When a user inserts the coin,
the automaton non-deterministically chooses to proceed to the state 2 or 4. This removes
the choice from the user, preventing them from picking between coffee and tea.

With this example, we can see another language is necessary to model reactive systems.
In particular, this language should:

• Allow the representation of non-terminating behaviour.

• Distinguish between input and output action.

• Support parallelism and communication.

• Have a finer notion of equivalence.

Calculus of Communicating Systems[19] (CCS) is a process calculus created by Robin
Milner that models the concurrent behaviour of processes. These processes are able to
communicate with their environment and between each other when executed in parallel.

Processes can be seen as a black box containing the name that identifies it and the
channels over which it can interact with. The drawing in Figure 2.2 pictures the interface
of a process that represents a Coffee and Tea Machine (CTM). The drawing shows that the
CTM process can communicate via three different channels, named ‘tea’, ‘coin’, ‘coffee’,
and ‘take’. The communication is modelled via operations that conceptually that send or
receive a value or message through the channel. From the Figure 2.2 we can say that the
CTM process uses the channel ‘coin’ for input and the channels ‘tea’, ‘coffee’, and ‘take’
for output. These input and output operations are referred to as actions. In general 𝑎
represents an input action and 𝑎 an output action.

While this static information about the process can be useful, what is really necessary
is to model the behaviour of the process being specified. To this end, CCS introduces a
compact, but still very expressive process algebra to precisely define the behaviour of a
reactive system.
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CTM

take

coffee

coin

tea

Figure 2.2: Interface of the CTM process.

2.3.2 Syntax

Assume a countable set𝒩 of action names; then CCS actions are defined as follows:

𝛼 ::= Actions

𝑎 Input action

| 𝑎 Output action

| 𝜏 Silent (internal) action

𝑎 and 𝑎 are observable actions, while 𝜏 is an unobservable action.
We will now go over the operators of the CCS language, while giving an informal

description of each of one.

Inaction The most basic process of all is the one that performs no action whatsoever. This
process is expressed as 0.

Action prefixing The first construction, and the most basic is the action prefixing. In-
tuitively, for the process coin.coffee.pick.0, after the action 𝑐𝑜𝑖𝑛 is performed the
process proceeds behaving like process coffee.pick.0. Repeating this procedure, we
can see that the process will perform the actions in sequence until it reaches 0.

coin.coffee.pick.0
coin−→ coffee.pick.0

coffee−→ pick.0
pick
−→ 0

Process definition As previously mentioned, processes can be given names. This means
that we can introduce names for (complex) processes and use these names in the
definition of other process descriptions. An example can be:

User def
= coin.coffee.pick.User
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The introduction of names for processes allows us to give define recursive definitions
of process behaviours and to model the non-terminating behaviour of reactive
systems. The User process is one such example. By repeatedly replacing User with
its definition, we obtain

User def
= coin.coffee.pick.User

=coin.coffee.pick.coin.coffee.pick.User

=coin.coffee.pick.coin.coffee.pick.coin.coffee.pick.User

= coin.coffee.pick . . . coin.coffee.pick︸                                         ︷︷                                         ︸
𝑛 times

.User

for each positive integer 𝑛.

Choice With the previous constructs, it is not possible to represent the behaviour of
the vending machine shown earlier. To allow the description of processes whose
behaviour may follow different patterns of interaction, CCS offers the choice operator,
written with ‘+’. The vending machine can be represented as the following CCS
process:

CTM def
= coin.(coffee.pick.CTM + tea.pick.CTM)

Intuitively, the CTM process after receiving a coin as input, may behave as either
coffee.pick.CTM or tea.pick.CTM depending on the user’s choice.

Parallel composition The parallel composition operation, written with ‘|’, allows the
description of systems consisting of multiple processes running in parallel.

For example, the CCS expression CTM |User describes a system composed of two pro-
cesses, that run in parallel. They may communicate via the communication channels
that they share and use in complementary fashion. In the interface representation
of a CCS process, this expression can be illustrated as shown in Figure 2.3.

CTM

coin

coffee
tea

take

User
coffee

coin

take

Figure 2.3: Interface of the CTM | User system.

In general, given two CCS expressions 𝑃 and 𝑄, the process 𝑃 |𝑄 describes a system
in which 𝑃 and 𝑄 may proceed independently, or communicate via complementary
channels
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Action hiding The action hiding operator blocks the access of certain communication
ports outside the scope of the process. This functions in a similar way as variables
that have a delimited scope in block-based programming languages.

Previously we have composed a system with two parallel processes, CTM and User.
If we append another parallel User to the system, we obtain the interface shown in
Figure 2.4.

CTM

coin

coffee
tea

take

User
coffee

coin

take

User’
coffee

coin

take

Figure 2.4: Interface of the (CTM | User) | User’ system.

However, the first user might want the vending machine only for themselves. To
achieve this we can delimit the scope of the channels to within the process (CTM |
User):

SelfishUser def
= (new coin, coffee, tea, take)(CTM | User)

As illustrated in Figure 2.5, the second user no longer can communicate with the
vending machine.

Action substitution The final operation of CCS allows the renaming of actions in a process.
For example, if we want to change the vending machine from selling coffee and tea to
water and cola we can do so by introducing two action substitution operations:

{water← coffee}{cola← tea}(tea.pick.CTM + coffee.pick.CTM)
{cola← tea}(tea.pick.CTM +water.pick.CTM)

(cola.pick.CTM +water.pick.CTM)

More formally, considering foreachprocess variable𝐴 a defining equation𝐴(𝑥1 , . . . , 𝑥𝑛) =
𝑃 where the name variables 𝑥1 , . . . , 𝑥𝑛 occur (bound) in 𝑃, the syntax of CCS process can
be defined as:
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CTM

coin

coffee
tea

take

User
coffee

coin

take

User’
coffee

coin

take

Figure 2.5: Interface of the (SelfishUser | User’) system.

𝑃, 𝑄, 𝑅 ::= Processes

0 Empty process

| 𝐴⟨𝑎1 , . . . , 𝑎𝑛⟩ process definition

| 𝛼.𝑃 action prefix

| (new 𝑎)𝑃 action hiding

| 𝑃 | 𝑄 parallel composition

| 𝑃 +𝑄 (non-deterministic) choice

2.3.3 Labelled Transition Systems

One way to visualize and reason about the possible behaviour of a CCS process is through
the representation in a Labelled Transition System (LTS). In this model, the processes are
represented by the vertices of an edge-labelled graph and the transition relation. When an
action is performed, the change in state is represented as moving along an edge, labelled
by the action name, that goes out of that state.

Given a set of CCS defining equations 𝒫 specifying a system, the transition relation of
the system is defined by a set of triples:

{ 𝑎−→ ∈ 𝒫 × 𝒫 | 𝑎 ∈ Act}

Continuing with the previous example of a vending machine, we can define a CCS
process model of the machine:

CTM def
= coin.(coffee.pick.CTM + tea.pick.CTM)

The LTS of the vending machine is shown in the Figure 2.6. The LTS provides a great
view into how the system can behave. In other words, it shows the potential behaviour
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of the machine. This is because, for the system to evolve, other processes are required
in order to have communication with the vending machine. Without interaction from
another process, the vending machine cannot have progress.

coin.(coffee.pick.CTM + tea.pick.CTM)

coffee.pick.CTM + tea.pick.CTM pick.CTM

coin

coffee

tea

pick

Figure 2.6: LTS of the CTM process.

In order to model the concrete behaviour that the system will exbibit it is necessary to
introduce another process to the system, a process representing a user. For this example
we will introduce a user that repeatedly orders coffee from the machine. The user is
modelled as the following CCS process.

User def
= coin.coffee.take.User

coin.(coffee.pick.CTM + tea.pick.CTM) | coin.coffee.pick.User

coffee.pick.CTM + tea.pick.CTM | coffee.pick.User

pick.CTM | pick.User

𝜏

𝜏
𝜏

Figure 2.7: LTS of the CTM | User process.

In Figure 2.7 we can see the evolution of the system. The transitions with label 𝜏
represent the evolution of the system via an internal communication. This communication
is a handshake between two processes and leads to a state transition that is not observable
from the perspective of the environment. For example, in the first state transition, the
CTM and User process perform an input and output action, respectively, over the channel
coin. This represents the user placing a coin in the coin slot of the machine. While for each
of the two processes this communication directly changes their state, for other possible
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parallel processes in the system the communication is irrelevant and transparent w.r.t.
their behaviour.

2.3.4 Actions of a Process

The actions of a process Act(𝑃) ⊆ Act is a set inductively defined by the following rules:

Act(𝐴⟨𝑎1 , . . . , 𝑎𝑛⟩) = {𝑎1 , . . . , 𝑎𝑛}
Act(𝛼.𝑃) = {𝑎} ∪ Act(𝑃), if 𝛼 = 𝑎 or 𝛼 = 𝑎

Act((new 𝑎)𝑃) = {𝑎} ∪ Act(𝑃)
Act(𝑃 | 𝑄) = Act(𝑃) ∪ Act(𝑄)

Act(𝑃 +𝑄) = Act(𝑃) ∪ Act(𝑄)

2.3.5 Free and Bound Actions

The set of free actions of a process (i.e., the actions that are visible to all processes), is the
set

fn(𝑃) = Act(𝑃)\ bn(𝑃)

The set of bound actions of a process (i.e., only visible to itself, within the scope of the
action hiding), is the set bn(𝑃) ⊆ Act, inductively defined by the rules:

bn(𝐴⟨𝑎1 , . . . , 𝑎𝑛⟩) = ∅
bn(𝛼.𝑃) = bn(𝑃)

bn((new 𝑎)𝑃) = {𝑎} ∪ bn(𝑃)
bn(𝑃 | 𝑄) = bn(𝑃) ∪ bn(𝑄)

bn(𝑃 +𝑄) = bn(𝑃) ∪ bn(𝑄)

2.3.6 Structural Operational Semantics

Figure 2.8 presents the structural operational semantics of CCS. This set of rules rigorously
define the behaviour of a program in terms of the behaviour of its parts. For example, the
rule [Pre], has it has no premises (no transition above the horizontal line), the process
can always afford the transition 𝛼.𝑃

𝛼−→ 𝑃. The rule [L-Par], on the other hand, contains
a premise. In this case, the rule indicates that the left side of the parallel composition can
evolve form 𝑃 into 𝑃′ only if we can prove that 𝑃 can afford the transition 𝑃

𝛼−→ 𝑃′. Rule
[L-Par] models the symmetric case. Rule [Alpha] deals with syntactically equal process
with alpha conversion. Rules [Def] and [Res] model process definition and action hiding,
respectively. Finally, [L-Sync] and [R-Sync] allows for processes to synchronize on dual
actions, namely, a receive with send, or send with receive, respectively.

To illustrate the use of the SOS rules, In Figure 2.9 we present the proofs for every 𝜏

transition the process CTM | User can afford.
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𝑃𝐴{®𝑎←®𝑏}
𝛼−→ 𝑃′

𝐴⟨®𝑏⟩ 𝛼−→ 𝑃′
𝐴(®𝑎) def

= 𝑃𝐴 [Def]
𝛼.𝑃

𝛼−→ 𝑃
[Pre]

𝑃
𝛼−→ 𝑃′

(new 𝑎)𝑃 𝛼−→ (new 𝑎)𝑃′
𝛼 ∉ {𝑎, 𝑎} [Res] 𝑃

𝛼−→ 𝑃′

𝑄
𝛼−→ 𝑃′

𝑃 =𝛼𝑄 [Alpha]

𝑃
𝛼−→ 𝑃′

(𝑃 | 𝑄) 𝛼−→ (𝑃′ | 𝑄)
[L-Par] 𝑄

𝛼−→ 𝑄′

(𝑃 | 𝑄) 𝛼−→ (𝑃 | 𝑄′)
[R-Par]

𝑃
𝛼−→ 𝑃′

𝑃 +𝑄
𝛼−→ 𝑃′

[L-Sum] 𝑄
𝛼−→ 𝑄′

𝑃 +𝑄
𝛼−→ 𝑄′

[R-Sum]

𝑃
𝑎−→ 𝑃′ 𝑄

𝑎−→ 𝑄′

(𝑃 | 𝑄) 𝜏−→ (𝑃′ | 𝑄′)
[L-Sync] 𝑃

𝑎−→ 𝑃′ 𝑄
𝑎−→ 𝑄′

(𝑃 | 𝑄) 𝜏−→ (𝑃′ | 𝑄′)
[R-Sync]

Figure 2.8: Structural Operational Semantics of CCS.

coin.(coffee.pick.CTM + tea.pick.CTM)
coin−→

coffee.pick.CTM + tea.pick.CTM

[Pre]

coin.coffee.pick.User
coin−→ coffee.pick.User

[Pre]

coin.(coffee.pick.CTM + tea.pick.CTM) | coin.coffee.pick.User
𝜏−→

coffee.pick.CTM + tea.pick.CTM | coffee.pick.User

[L-Sync]

(a)

coffee.pick.CTM
coffee−→ pick.CTM

[Pre]

coffee.pick.CTM + tea.pick.CTM
coffee−→ pick.CTM

[L-Sum]
coffee.pick.User

coffee−→ pick.User
[Pre]

coffee.pick.CTM + tea.pick.CTM | coffee.pick.User
𝜏−→ pick.CTM | pick.User

[L-Sync]

(b)

pick.coin.(coffee.pick.CTM + tea.pick.CTM)
pick
−→

coin.(coffee.pick.CTM + tea.pick.CTM)

pick.CTM
pick
−→ coin.(coffee.pick.CTM + tea.pick.CTM)

[Def]

pick.coin.coffee.pick.User
pick
−→

coin.coffee.pick.User

pick.User
pick
−→ coin.coffee.pick.User

[Def]

pick.CTM | pick.User
𝜏−→ coin.(coffee.pick.CTM + tea.pick.CTM) | coin.coffee.pick.User

[R-Sync]

(c)

Figure 2.9: Example proofs of transitions in Figure 2.6.
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Related Work

In this chapter, we start by providing an overview of previous studies of concurrency bugs
and the usage of concurrency primitives. The first analysed bugs in C codebases, while
the other three focused on Go projects. From these studies we can glean some important
metrics in how concurrency is used in Go projects, and the characteristics of concurrency
bugs that projects have. Two of the studies of Go concurrency bugs also provide the bug
dataset, from which we will reference in order to build our collection of common Go code
patterns with deadlock bugs.

Subsequently, we will explore some existing solutions for deadlock detection in Go
programs.

3.1 Studies of Concurrency Bugs

Lu et al. [18] performed a comprehensive study where they analysed and categorized
concurrency bugs and their respective fixes of 4 large-scale open-source applications. Of
the 105 concurrency bugs analysed, 31 (30%) were deadlock bugs. The authors found
that almost all (96%) of the concurrency bugs are guaranteed to manifest if the partial
order between two threads is enforced, indicating that pairwise testing of concurrent
threads can expose the vast majority of concurrency bugs. Of the 31 deadlock bugs
the authors measured, 19 were fixed by removing the acquisition of the resource. This
strategy however can lead to other non-blocking concurrency bugs. In some of the bug
reports, programmers even explicitly said that would be the case and applied the patch,
hoping that the probability of the non-deadlock bug to occur would be small enough. The
approach, however, although useful, is clearly not sound.

Dilley and Lange [6] conducted an empirical study of the usage of message-passing
concurrency in Go programs. The authors developed a tool-chain to automatically parse
and collect metrics on the usage of various message-passing concurrency primitives in Go
programs. They applied the tool-chain to 865 top-stared open-source Go projects from
GitHub. The authors showed that 76% of the projects feature channel creation and 82%
contain at least one goroutine creation. With regard to channels, almost all (94%) channel
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creations have a capacity can be determined statically, with synchronous channels being
the most common channel type with 61%. Of the asynchronous channels (33%), 75%
have a capacity of at most 5. The study also discovered that projects generally structure
the concurrent related code in a limited part of the codebase, with only 20% of the files
containing concurrency related features. Overall this study showed that, in practice, Go
projects make frequent use of concurrency primitives and that static analysis may be
performed in a more modular way, analysing only the concurrent code instead of the
program as a whole.

Tu et al. [29] conducted an empirical study on Go concurrency bugs from 6 widely used
Go applications. In total the authors analysed 171 concurrency bugs. They categorized
the bugs across two orthogonal dimensions: whether the bug was caused by misuse of
shared-memory or message-passing, and whether the bug caused any goroutine to block
indefinitely (blocking bugs) or not (non-blocking bugs). Overall they concluded that it is
as easy to make concurrency bugs with shared-memory as with message-passing, with
58% of the blocking bugs being caused by message passing. The authors also evaluated
and compared the execution of two implementations of gRPC, one written in C++ and
the second one in Go. With the same workload, the Go implementation created multiple
times more goroutines than threads in the C++ version. Together with a lower goroutine
average execution time relative to threads, it can be observed that goroutines are shorterbut
executed more frequently. This is in line with the Go’s design goals of making goroutines
lightweight and easy to use, and thus incentivizing their usage in more projects. The study
also found a high correlation between bug causes and the strategies used to fix them, that
together with overall simple fixes suggests promising results for automated tools to fix
blocking bugs in Go.

Yuan et al. [30] developed a benchmark suite of Go concurrency bugs found in 9
real world projects. The authors compiled two test suites of bugs: GoREAL and GoKER.
For each of the 87 bugs in GoREAL the authors created a docker image with the buggy
version of the software and a script to trigger the concurrency bug. GoKER contains a
collection of 103 bug kernels. Each bug kernel is extracted and simplified from a real world
bug, while preserving its bug-inducing properties. As part of the suite, the authors also
introduced a taxonomy of Go concurrency bugs, classifying each bug according to their
root cause. Together these two test suites provide two very different strategies to evaluate
bug detection tools. The much smaller but still real-world based bugs in GoKER can be
most useful in evaluating the coverage and efficacy of bug detection tools. While the
GoREAL test suit is more appropriate to evaluate how the tools scale with large projects.
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3.2 Prior Research and Tools

3.2.1 Built-in in Go runtime

Go’s runtime includes a very basic but sound (i.e. does not give false positives) global
deadlock detector [24]. The detector is implemented as part of the goroutine scheduler
and as such is always enabled. The goroutine scheduler frequently checks if all goroutines
are unable to make progress and if so the Go runtime panics, alerting the user that a
global deadlock as occurred, and terminates the execution of the program. This is the
main limitation of the built-in deadlock detector: it is only able to catch global deadlocks,
where all goroutines are blocked.

As is incentivized by Go’s philosophy, goroutines are very common in Go applications.
Theirvery light overhead and ease of use leads to Go applications creating more Goroutines
than comparable constructs in other programming languages [29]. All it takes is a single
background goroutine that is not blocked to effectively render the deadlock detector
inoperative. Of the 21 blocking bugs tested by Tu et al. [29], only 2 were caught by the
built-in detector. This significantly reduces the effectiveness of the detector in real world
applications. The detector only provides a stack trace of the blocked goroutines, leaving
the resolution part to the developer.

3.2.2 GoAT

GoAT (Go Analysis and Testing), developed by Taheri and Gopalakrishnan [27], is a
tool that exercises a mix of dynamic and static analysis to perform deadlock detection
(Figure 3.1).

Traverse
AST

Conc. Usage
Model M

Yield Handlers
Injection

Deadlock/Leak
Detection

Coverage
Measurement

ECT 

GoAT Runtime

GoAT API

Static

Program P
Source Files

Program P
Instrumented

Coverage
Requirements

Dynamic

Concurrency Tracing
Terminate

Yes

No

Coverage Offline Analysis

Figure 3.1: GoAT overview.

GoAT starts by traversing the abstract syntax tree (AST) of the input program extracting
a concurrency usage model. The concurrency usage model is a table containing the location
of every concurrency operation used in the program. For every different concurrency
operation the authors defined a set of possible behaviours the operation can exhibit. For
example, Go’s channel send operation can be blocked, unblocking or NOP. The operation
can be blocked when there is no corresponding receive operation ready to execute, can be
unblocking if a receive operation is blocked and as such the send operation will unblock
the receiver, or with buffered channels, the send operation can neither be blocked nor
unblocking. With the collection of possible behaviours, the tool generates a set of coverage
requirements for each concurrency operation in the program. In the Listing 5 and Table 3.1
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we can see an example of the coverage requirements generated for a Go program. The
GoAT tool will detect which coverage requirements have been met. These will serve as
indicators to measure the quality and progress of the schedule-space exploration.

1 func main() {
2 container := &Container{stop:

make(chan struct{})}↩→
3 go Monitor(container)
4 go StatusChange(container)
5 }
6 func Monitor(cnt *Container) {
7 for {
8 select {
9 case <- cnt.stop:

10 return
11 default:
12 cnt.Lock()
13 cnt.Unlock()
14 }
15 }
16 }
17 func StatusChange(cnt *Container) {
18 cnt.Lock()
19 defer cnt.Unlock()
20 cnt.stop <- struct{}{}
21 }

Listing 5: Example of Go code with
concurrent operations.

Concurrent
operations Coverage Requirements

Line Kind
3 go covered
4 go covered

8 select c-recv-blocked
c-recv-unblocking

12 lock blocked
blocking

13 unlock unblocking
no_op

18 lock blocked
blocking

19 unlock unblocking
no_op

20 send
blocking
unblocking
no_op

Table 3.1: Coverage requirements of
the Go code in Listing 5.

Since in practice, during execution, programs tend to exercise only a small portion of
the possible interleavings, GoAT inserts code that calls an yield handler before each concur-
rency primitive usage. The yield handler randomly chooses to call the runtime.GoSched( ⌋
) function up to a specified number of times. The runtime.GoSched() function tells the
Go runtime scheduler to yield the execution of the goroutine, pushing the goroutine to
the back of the global runnable goroutine queue, thus forcing other runnable goroutines
to execute.

The Go runtime features an execution tracer that provides dynamic tracing of the
programs execution, logging events during program execution, such as goroutine cre-
ation/blocking/unblocking and system call related-events. The resulting trace can then
be used to analyse offline various aspects of the program’s execution, such as goroutine
latency and blocking behaviour. While the events are compressive enough to analyse
many aspects of a program’s execution like goroutine latency and blocking behaviour, they
still lack many events to allow in-depth analysis of the program’s concurrency model. The
authors extended the Go’s existing execution tracer package with 14 new events. These
new events log the usage and behaviour of Channels, Mutexes, WaitGroups, Conditional
variables, the select statement and scheduler.
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With the execution concurrent trace (ECT), GoAT can analyse the program’s execution
and determine if any deadlocks have occurred. If a deadlock has occurred the tool generates
visualizations of the execution interleaving and the goroutines tree. This information can
then help the user fix the bug. The program can be repeatedly executed and analysed
until a bug found or until the coverage metrics reach a certain threshold.

In the authors’ evaluation it was very effective at detecting deadlock bugs, being able
to detect all deadlock bugs in the GoKER benchmark. However, as it is relying on the
analysis of the program’s execution, it can only find deadlocks that occur in the execution
paths tested. Without an exhaustive testing where every execution path is evaluated, false
negatives can occur. Once again, the tool only focuses on detecting deadlocks and does
not suggest any resolution to the user.

3.2.3 GCatch & GFix

Liu et al. [16] developed, to the best of ourknowledge, the only tool capable of automatically
resolving deadlock bugs in Go.

The work introduces two tools, GCatch and GFix. Both tools perform static analysis
on the Go code, operating over the single static assignment (SSA) form, with the code
transformations of GFix being achieved over the abstract syntax tree (AST).

GCatch execution is composed of two main components:

Disentangling. By disentangling, the authors refer to the process of extracting the code
that interacts with a particular channel. For each channel the disentangling algorithm
returns a scope and a set of related primitives that can be analysed separately. Since
in most cases, the channels are only accessed by a small portion of a codebase, this
process can significantly speed up the analysis. The authors measured that, on
average, disabling disentangling leads to an 115X slowdown in the time necessary
to analyse a codebase.

Constraint system. For each channel in the Go program, after disentanglement, GCatch
gathers all possible execution path combinations within the scope returned by the
disentanglement policy. When generating the path combinations, GCatch includes
a set of heuristics to filter out paths that are infeasible to generate deadlocks. For
example, when a function call is encountered that does not interact with any primitive
in the set of related primitives, then the function call is simply ignored. In the case
of loops, in order to better model the possible interactions between successive
iterations, GCatch unrolls the loop up to two times, if the number of iterations
cannot be determined statically.

For every generated path combination, GCatch calculates suspicious groups, with
each group containing synchronization primitives that together can potentially block
indefinitely.
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GCatch will for each suspicious group, generate constraints modelling various
aspects of the program:

• Constraints denoting the operation order imposed by the execution paths and
goroutine creation,

• Constraints modelling buffered and unbuffered channels and their operations:
send, receive, select statement and close.

• Constraints requiring each group operation to be unable to make progress.

In the end, GCatch invokes the Z3 [22] constraint solver with the conjunction of all
the previous constraints. If Z3 is able to find a solution it means that the program
might have a deadlock.

GCatch also includes 5 other traditional detectors capable of detecting traditional
concurrency bugs such as locks without unlocks, double locks and the acquisition of two
locks in conflicting orders. GCatch also models mutexes by converting them to buffered
channels of buffer size one, with the locking being represented as a send operation and
unlocking as a receive operation.

The second tool, GFix, is designed to generate minimal patches that resolve the
deadlock bugs. GFix takes as input the bug found by the constraint system in GCatch.
The scope of bugs that GFix can fix is as follows (Listing 6):

• Two goroutines, Go-A and Go-B, access a local channel c.

• Go-B is a child goroutine of Go-A.

• When the bug is triggered, Go-A fails to execute operation o1 on channel c, causing
Go-B to be blocked at operation o2.

1 func main() { // Go-A
2 c := make(chan bool)
3 go func() { // Go-B
4 ...
5 c <- true // o2
6 }()
7 select {
8 case <- c: // o1
9 ...

10 case /* other case*/ :
11 return
12 }
13 }

Listing 6: General pattern of bugs that GFix tries to resolve.
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When a bug is found that satisfies the previous requirements, GFix tries to apply the
following 3 strategies:

Strategy I: Increases the channel buffer size, preventing the o2 send operation from
blocking.

For example, in Listing 7 before the patch, if the select (line 8) receives a message
from the channel ctx.Done() before the channel outDone, the Exec function will
return and the child goroutine will block on line 6. In that case, the parent goroutine
will never receive the value from the send operation at line 6 and, since the channel
is synchronous the send operation will block.

By increasing the channel’s buffer from zero to one, the send operation will no longer
block as the buffer will be able to store the value. The select will behave the same.
The channel will be empty and as such the receive operation (line 11) will block until
a message is sent.

1 func Exec(ctx context.Context) error {
2 - outDone := make(chan error)
3 + outDone := make(chan error, 1)
4 go func() {
5 ...
6 outDone <- err // block
7 }()
8 select {
9 case err := <-outDone:

10 return err
11 case <-ctx.Done():
12 }
13 return
14 }

Listing 7: Example of a patch generated by GFix - Strategy I.

Strategy II: Fixes the cases when the goroutine Go-A returns (due to return or panic)
without executing o1 by using the defer keyword to defer the o1 operation. Go’s
runtime automatically executes all deferred statements after the function returns or
panics. With this patch, the Go-A is guaranteed to execute o1 in all cases, and as such
o2 will never block.

In the Listing 8, it is possible for the function TestRWDialer() to exit without
receiving the message from the child goroutine (by panicking at line 12). In this
example, GFix removes the existing receive operation (line 14), and adds a defer
statement after the channel creation, enforcing the execution of the receive operation.

Strategy III: This final strategy is the most invasive of the three. The patch introduces
a new channel stop. This channel is used to notify goroutine Go-B that goroutine
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1 func TestRWDialer() {
2 stop := make(chan struct{})
3 + defer funct() {
4 + stop <- struct{}{}
5 + }()
6 go func(stop struct{}{}) {
7 ...
8 outDone <- err // block
9 }(stop)

10 conn, err := d.Dial(...)
11 if err != nil {
12 panic("dial error")
13 }
14 - stop <- struct{}{}
15 }

Listing 8: Example of a patch generated by GFix - Strategy II.

Go-A has failed. So that if Go-B is blocked and goroutine Go-A fails, Go-B can receive
a message from the stop stop channel and unblock.

Listing 9 shows a function that dispatches a goroutine to read an input, line by line,
sending each line through a channel to the parent goroutine. The fault here is when
the Interactive() function receives an abort, the goroutine will continue to read
lines, but will block trying to send them to the parent goroutine. The fix adds a new
channel that is used to unblock the child goroutine and terminate it.

In an effort to reduce invalid patches that change the code semantics in undesirable
ways, besides the requirements listed earlier, each strategy has it’s considerable set of
requirements that the code must meet in order for the patch to be applied. The most
notable of them is the potential side-effects in the instructions after o2. Since the intent of
GFix is to remove the blockage in o2, any instruction after that operation must not change
the original semantics of the program. To that end, GFix performs an inter-procedural
analysis on the instructions after o2, checking for library function calls, concurrency
operations, or updates to variables defined outside Go-B.

The authors evaluated the solution on 23 Go open-source projects. The GCatch tool
caught 149 true deadlock bugs with 46 false positives. Of the 46 false positives, 20 were
due to infeasible paths, with 11 of these being due to the loop unrolling. Of the remaining,
17 and 14 were due limitations of the alias and call-graph analysis respectively. In order
to evaluate coverage, the authors executed GCatch over a set of 49 deadlock bugs from
[29]. The tool detected 33 bugs, leading to a false negative rate of 33%.

From 147 deadlock bugs, GFix correctly generated 124 patches that fixed the bugs. The
authors assessed the corrects of each patch manually, checking if each patch fixed the bug
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1 func Interactive() {
2 scheduler = make(chan string)
3 + stop = make(chan struct{})
4 + defer close(stop)
5 go func() {
6 for {
7 line, err := Input()
8 if err != nil {
9 close(scheduler)

10 return
11 }
12 - scheduler <- line
13 + select {
14 + case scheduler <- line:
15 + case <- stop: return
16 + }
17 }
18 }()
19 for {
20 select {
21 case <- abort: return
22 case _, ok := scheduler:
23 if !ok {return}
24 }
25 }
26 }

Listing 9: Example of a patch generated by GFix - Strategy III.

via code inspection and injection of random-duration sleeps around channel operations,
and that the patch did not change the original program semantics.

While effective at resolving the bugs detected by GCatch, we find the approach taken
somewhat ad-hoc. In order to reduce invalid patches the strategies taken are very specific
to certain patterns of bugs, providing little generalization to other, more complex, patterns.
The inclusion of more general strategies would likely be very challenging, specially with
the requirement of producing correct patches that can be applied without modification
from the developers. This results in a solution that can still leave many deadlock bugs
unresolved.

3.2.4 MiGo/Gong

Lange et al. present a static verification framework to checks for liveness and channel-
safety [15]. In this work, liveness denotes the ability of communication actions to always
eventually fire, i.e., the absence of deadlocks, while channel-safety regards the misuse
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of closed channels, where closing an already closed channel or sending a message on a
closed channel triggers a run-time panic.

To accomplish the aforementioned analysis, the authors introduce a new process
calculus [2], dubbed MiGo (Mini-Go), a core language allowing to write message-passing
Go (like) programs — the syntax closely mimics Go’s communication-based constructs,
featuring channels, goroutines, and the select statement. The paper presents a collection
of illustrating examples.

The authors follow by introducing a typing system for the calculus that actually
performs a translation of value-passing processes into processes that use channel names
just to synchronize (called types). The translation basically erases message payloads and
turn if statements into non-deterministic choices.

Then, the authors debut the concept of fencing, which imposes a syntactic restriction
on channel usage: when a type is fenced, the program is guaranteed to be made up of
finitely many different communication patterns, that may be repeated infinitely many
times. This restriction is imposed by checking that the type does not contain any parallel
composition, or that any recursive call over the type uses strictly fewer (non newly created)
names. Next, the authors introduce an operational semantics for types, via a symbolic
labelled transition system, which, for the types that are fenced, is finite state. Therefore,
automated analyses (of namely, liveness and channel safety) are decidable. The paper
presents a bounded model checking verification procedure of liveness and of channel
safety.

Finally, the authors discuss liveness in respect to three classes of programs. For
those that have a terminating path, or that do not contain infinitely occurring conditional
branches, if the program is typable by a live type, then the program is itself also live. In
the third class of programs, those that run infinitely and that contain recursive variables
in conditional branches, extra care must be taken to prevent a mismatch between the
program and type behaviours. To this purpose, the authors define a subclass, dubbed
alternating conditional. In this subclass, if the program is well-typed with some live type,
then the program must live.

This solution does not propose any resolution for the deadlocks it finds.

3.3 Francalanza et al.’s Approach

Francalanza et al. devised a compositional algorithm to statically detect deadlocked
processes, and, in turn, unblock them, using one of two proposed strategies that refactor
the original process [8]. This approach operates over a simpler version of CCS, excluding
recursion, choice and channel scoping, that also enforces a linear use of channel names,
meaning that an input or output action over a channel can only occur at most once [13].
Furthermore, the approach focuses only on the types of deadlocks we defined earlier as
incorrect communication ordering.
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The intuition behind the static analysis performed to find deadlocked processes is based
on the construction of layers. Each layer is an environment that provides a partial map
from channel names to permissions. Permissions denote the communication capability
over a channel: whether an input, output, or both operations can be performed. With
the layers of environments, an approximation of the prefixing found in the process is
generated. For example, from the process 𝑎.𝑏.0 ∥ 𝑏.𝑐.0 ∥ 𝑐.�̄�.0 the following list of layered
environments is constructed:

(𝑎 :↓, 𝑏 :↑, 𝑐 :↓)︸            ︷︷            ︸
Γ1

; (𝑎 :↑, 𝑏 :↓, 𝑐 :↑)︸            ︷︷            ︸
Γ2

; 𝜖

While building the layers, if one is found where no synchronization can occur, and
the top environment in the layer is top-complete, a deadlock verdict is emitted. An
environment is top-complete if the inverse of every permission in the top environment is
found in a sub-layer. This indicates that, since the processes are linear, if the co-actions of
the actions found in the top layer are found in sub-layers, and the top environment can
not synchronize, the actions in the top layer will never synchronize, and thus, a deadlock
verdict can be emitted.

In order to unblock deadlocked processes, the resolution strategies refactor the original
process into a form where the deadlock does not take place. The two deadlock resolution
algorithms take as input the CCS expression of the program, and a list of the blocked
actions when a deadlock is detected. Later we will present the formal definition for each
algorithm. The first algorithm, moves the blocked actions into a parallel composition,
allowing the resulting process to circumvent the problematic action. The second algorithm,
takes the same approach when resolving a problematic output. In the case of a blocked
input, the input is not parallelized, instead the corresponding output is placed in a parallel
composition, located at the same level as the input.

Deadlocks of the missing communication type are presently a case where the reso-
lution step cannot be reliably automated. Since these types of deadlocks are inherently
unbalanced, the resolution requires either the addition of the corresponding action, or the
removal of the problematic one. Neither can be performed automatically in a safe manner
without changing the program semantics in potentially undesirable ways.

Unfortunately, this approach’s CCS variant is very limited in terms of expressiveness.
The lack of choice, recursion, and the restriction to linear processes greatly inhibits its
utility in real world programs.

3.4 Almeida’s Approach

Almeida, as part of their master thesis, developed a tool capable of automatically detecting
and resolving deadlocks [1]. This solution is based on the approach by Francalanza et al.,
extending and redesigning the algorithms in order to add support for more feature-full
CCS variant. This is grounded on the objective of analysing programs written in Go.
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Almeida added support for choice and non-linear processes. In order to achieve this, the
deadlock detection algorithm was considerably redesigned. With the original approach,
when a non-linear processes is given, the algorithm is too eager to attribute a verdict,
emitting a deadlock verdict even when synchronization with the deadlocked action is
still possible. To overcome this limitation the revamped solution, implemented in OCaml,
essentially simulates an execution of the Go program, reducing the CCS process as far as
possible. When no reduction step is possible, a deadlock is detected.

Almeida’s solution has some major flaws, both in terms of time complexity and
expressiveness. When reducing the process, the tool checks if synchronization between
two actions is possible, only returning the reduction of the first synchronization it finds.
For example: in the CCS process �̄�.0 ∥ 𝑎.�̄�.0 ∥ 𝑎.0, two possible synchronizations can
take place, either �̄�.0 with 𝑎.�̄�.0 or �̄�.0 with 𝑎.0. During deadlock detection, only the
reduction result of first synchronization is returned, and as such, this approach is not
guaranteed to find all the possible reductions. In order to correctly model this type of
non-determinism behaviour, Almeida’s solution generates all the possible permutations
of the parallel compositions before the first reduction and after every synchronization step.
This technique is very inefficient, as it generates many permutations where the resulting
reduction will be the same. The factorial time complexity of this approach limits its usage
to programs with a small number of parallel compositions.

The second significant limitation of Almeida’s solution regards the semantics of the
choice operator. In his solution, the choice operator always behaves as an internal (non-
deterministic) choice, where the reduction can always evolve to either branch. While this
behaviour can be used to model the common conditional statements, it is not adequate
to model Go’s select statement. In Almeida’s solution, the best representation of the Go
program in Listing 3.2a, is show in Fig. 3.2b, which models the select statement using an
internal choice. With internal choice, the CCS process can always reduce to either branch,
acting as if every case in the select can always proceed. This does not match with the
Go semantics, and, as so, an incorrect verdict will be given, claiming that the process has
a deadlock when the second branch is chosen.
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1 func main() {
2 a := make(chan struct{})
3 b := make(chan struct{})
4

5 go func() {
6 a <- struct{}{}
7 }()
8

9 select {
10 case <-a:
11 return
12 case <-b:
13 b <- struct{}{}
14 }
15 }

(a) The Go code.

�̄�.0 ∥ (𝑎.0 + 𝑏.𝑏.0)

(b) CCS representation with internal
choice.

Figure 3.2: Example of a deadlock-free Go program with a select statement.
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4

Characterization of Some Real-world
Deadlocks

We have analysed and compiled a collection of deadlocks1, from the test suites of two
papers [29, 30]. These two papers studied a large collection of bugs in Go projects,
with the goal of analysing and categorizing all types of concurrency bugs. While these
two papers provide great insight on the landscape of concurrency bugs in Go, for our
purposes, we found them lacking when focusing on deadlock bugs over the message
passing concurrency model. And so, we decided to perform a study focusing on these
types of concurrency bugs.

4.1 Methodology

The deadlock bugs were present in high-profile open source projects, written in the Go
programming language. For 16 deadlocks we categorized and grouped the errors over
three major aspects. In first group we determined which Go constructs and concurrency
features were involved in the deadlock. This group can be of use to determine the most
common features of the language that a solution for deadlock detection and resolution
should support. The second group indicates the cause of the deadlock, while the third
group the types of changes on the code employed by the developers to resolve each
deadlock. This can be useful to understand which changes are more common. For each
deadlock we also extracted a code snippet that retains just the bug inducing part of the
code that can be then used to evaluate existing deadlock detection and resolution tools.

4.2 Results

In Table 4.1 we present the first group, with the features and constructs of the Go language
that the faulty code makes use of and are relevant for the deadlock. Each line corresponds
to a bug from the collection, with the leftmost column indicating the project from where

1https://github.com/JorgeGCoelho/go-deadlock-bug-collection
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the bug was sourced, and the identifier for the GitHub pull-request where the bug was
disclosed and fixed. Column 1 signals the use of the select statement. Usually, a default
branch is missing and thus, if all branches are blocked the select does not progress.
Column 2 indicates that the faulty code makes use of the close operation over a channel.
Not closing a channel after sending on it in an iteration also causes a deadlock (the receiver
must be told no more values will arrive). Column 3 shows if the code features channel
passing, that is, when a channel is passed as a value via another channel. Blocks in this case
happen in the received channel. Finally, Columns 4 and 5 indicate whether synchronous
or asynchronous channels were used. They block when at full capacity.

From Table 4.1 we can make some noteworthy observations: In this sample of errors,
80% of the deadlocks involve at least one synchronous channels, and only in one case the
faulty code made use of channel passing.

Table 4.1: Go constructs involved in the deadlock.

Column 1 2 3 4 5

Bug Id Select Closed
channel

Channel
passing

Synch
channel

Asynch
channel

cockroachdb#13197 X X
cockroachdb#13755 X X
cockroachdb#18101 X X
cockroachdb#24808 X
cockroachdb#25456 X X
etcd#6857 X X X
grpc-go#1275 X
grpc-go#1424 X X
grpc-go#490 X
kubernetes#25331 X
kubernetes#35672 X X
kubernetes#5316 X X
moby#21233 X
moby#33293 X
moby#33781 X X X
moby#4395 X

In Table 4.2 we present the two remaining groups. In the second group we present a
classification of the cause of the deadlock, indicating if the cause of the error is due to a
missing receive, send, or close operation over a channel. In the third group we studied
and classified the changes that the developers applied to the buggy code in order to
resolve the deadlock. In this group we identified 5 deadlock resolution strategies. The
first operates by making asynchronous a previously synchronous channel. The second
proposes the addition of a select statement or a new case in an existing select statement.
This is often done to allow the deadlocked goroutine to unblock when it receives a message
from another channel, or when the channel is closed. The next strategy involves adding
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a communication operation or using the defer statement to introduce a communication
operation in a code path that should perform that communication. Finally, the last strategy
suggests the creation of a new channel.

From Table 4.2 we gather that, regarding the deadlock cause, very few cases were
caused by a missing send. With respect to the fixing strategy, introducing a select statement
or adding a new case to an existing statement are the most used strategies. Adding a new
channel is rarely the action taken to resolve a deadlock. The remaining three strategies
(Make channel asynchronous, Add/Defer missing communication, and Close channel),
see similar amount of use, less than half of the previous two.

Table 4.2: Causes and fixes for the deadlocks in Go programs.

Causes Fix

Bug Id Miss
rcv

Miss
snd

Miss
channel

close

Make
channel
asynch

Add
select
stmt

Add/Defer
miss

commun

Close
channel

New
channel

cockroachdb#13197 X X
cockroachdb#13755 X X
cockroachdb#18101 X X
cockroachdb#24808 X X
cockroachdb#25456 X X
etcd#6857 X X
grpc-go#1275 X X
grpc-go#1424 X X
grpc-go#490 X X X
kubernetes#25331 X X
kubernetes#35672 X X X X X
kubernetes#5316 X X
moby#21233 X
moby#33293 X X
moby#33781 X X X
moby#4395 X X
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5

GoDDaR — CCS-based Deadlock
Detection and Resolution

In this chapter we present our framework for detection and resolution of deadlocks in Go,
named GoDDaR1. Leveraging on the work of Francalanza et al. [8] and Almeida [1], we
developed a solution that, given the source code a Go program, can determine, without
directly executing the program, whether it is possible for the program to deadlock. If a
potential deadlock is found, GoDDaR will then propose how to refactor the program in
an effort to resolve the deadlocks found, so that the refactored program will not deadlock.

5.1 Workflow

The high-level workflow of the tool is shown in Figure 5.1. With this workflow the analysis
can be fully automatic, starting with the program’s Go source code, and ending with the
resolved CCS representation of the Go program2.

5.1.1 Pipeline

Go source 
code

MiGo

GoDDaR

Deadlock 
detection

Deadlock 
resolution

(Resolved)
CCS

resultCCS

gospal

MiGo to CCS 
Translation

Figure 5.1: GoDDaR pipeline.

The Figure 5.1 shows the sequence of tools and intermediate representations that take
part in the pipeline of our tool. In this diagram, the rounded boxes represent tools or a
component of a tool, while the square boxes depict a representation of a program.

1https://github.com/JorgeGCoelho/GoDDaR
2How to use this process to provide feedback on how to patch the original Go code is a matter for future

work.
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Starting off with the source code in Go, the first step is to generate an intermediate
representation in MiGo [15] using the gospal [23] tool. Our tool is then able to translate
the MiGo representation into our CCS variant. Finally, from the CCS representation, our
tool steps through the deadlock detection and one of the deadlock resolution algorithms,
resulting in a CCS representation of the original program where the deadlocks might have
been resolved3.

In the rest of this chapter we provide a comprehensive description of each step and
associated algorithms present in this pipeline.

5.1.2 Intermediate Representations

As shown in the pipeline, our approach, makes use of two intermediate representations:
MiGo and CCS.

MiGo. The MiGo representation is mainly used as a stepping stone to obtain a CCS
representation. Compared to the Go programming language, the MiGo abstraction
provides a much simpler syntax from which we can translate into CCS. With regards to
control flow, the higher level statements, such as for loops, switch, and goto statements,
are simplified into if statements and recursive function calls. The data flow is mostly
omitted, retaining only the assignment of new channels into variables. The communication
operations also omit the values being sent or received.

CCS. Our approach is cast within a CCS variant, adapted from Almeida’s work to
provide a better model on which we can represent the behaviour of Go code. The syntax is
shown in Figure 5.2. Our CCS variant differs in two main ways. First, the choice operator
has been split into two more specialized operators. In this manner we can represent
the two types of non-determinism, internal and external, in a more explicit manner that
provides a better mapping to and from Go code. The second major change is the addition
of recursion via the form of process replication. This addition is essential to deal with
the classes of programs that feature loops and recursion. In sections 5.2.1 and 5.2.2 we
describe these additions in more detail.

5.2 Deadlock Detection

The intuition behind the algorithm to detect deadlocks in CCS processes is that, by
reducing the process as far as possible, we can find the process states where it cannot
reduce any further. In these cases, if the process is not empty (or, in other words, has not
terminated), then there are actions that are blocking the process from progressing further,
and thus, the process is deadlocked.

3
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𝑃, 𝑄 ::= Processes
0 Empty process
| 𝛼.𝑃 Action prefix
| 𝑃 | 𝑄 Parallel composition
| 𝑃 +𝑄 Internal choice
| 𝑃 & 𝑄 External choice
| 𝑎∗.𝑃 Process replication

Figure 5.2: Syntax of our CCS variant.

In our CCS variant we follow a subset of the semantic rules defined in Figure 2.8, rules
[Pre], [Alpha], [L-Par], [R-Par], [L-Sync], and [R-Sync]. With these semantics, we
define a process 𝑃 that is deadlocked as the following predicate:

dlock(𝑃) def
=

(
�𝑄 · 𝑃 −→ 𝑄

)
and 𝑃 ̸≡ 0

where ≡ is a structural equivalence relation.
Following the semantic rules, the algorithm explores all possible program states,

finding those that satisfy dlock(). For each deadlocked state found, the algorithm collects
the problematic actions. The problematic actions are the actions that are blocking the
process from progressing, and thus the cause of deadlock. For example, the process
𝑎 | 𝑎.(𝑏.𝑐 | 𝑐.𝑏) presents the following deadlock 𝑏.𝑐 | 𝑐.𝑏. In this case, the problematic actions
are 𝑏 and 𝑐. The union of the problematic actions found in each deadlock is passed to the
deadlock resolution stage.

5.2.1 Internal/External Choice

Following the approach taken by Almeida, our solution does not make use of 𝜏. As
explored in [5], the interaction between 𝜏 and the choice operator + can be somewhat
unclear. The choice operator can exbibit a mixture of two forms of non-deterministic
behaviour, internal and external non-determinism. For the process 𝑎.𝑃 + 𝑏.𝑄, if it syn-
chronizes on 𝑎 then the process will act as 𝑃, but if it synchronizes over 𝑏, the process
will act as 𝑄. In this case, the choice operator is modelling external non-determinism,
as the behaviour of the process depend on external synchronization. On the other hand,
for the process 𝑎.𝑃 + 𝑎.𝑄, the choice is representing internal non-determinism. When
synchronizing on 𝑎, the process can evolve into either 𝑃 or 𝑄, demonstrating a case of
internal non-determinism, where the resulting behaviour of the choice is not dependent
on external communication.

By omitting 𝜏 and replacing +with two new combinators, representing internal and
external non-determinism, a simpler model can be obtained. In the context of our work,
this CCS variant provides a clearer path for the mapping between CCS and Go code. For

41



CHAPTER 5. GODDAR — CCS-BASED DEADLOCK DETECTION AND
RESOLUTION

example, in Listing 5.3a we have a Go program that makes use of both if and select
statements, and in Figure 5.3b we show the equivalent program in CCS. We can see
that, for the if statement, it was translated to an internal choice. In our analysis of
the if statements, we assume that the program can always proceed into either branch,
non-deterministically. The choice does not depend on any communication operation and
so, an internal choice operator is used to represent this behaviour in CCS. For the select
statement, it can also be easily be modelled in CCS with an external choice. For each case,
the communication operation is prefixed to the contents of the case’s body.

1 a := make(chan struct{})
2 b := make(chan struct{})
3 if (...) {
4 R()
5 } else {
6 select {
7 case <- a:
8 P()
9 case <- b:

10 Q()
11 }
12 }

(a)

𝑅 + (𝑎.𝑃 & 𝑏.𝑄)

(b)

Figure 5.3: Examples of internal/external choice mapping between Go and CCS.

The semantics of the internal and external choice are given in Figure 5.4.

𝑃 +𝑄 −→ 𝑃′
[L-IntSum]

𝑃 +𝑄 −→ 𝑄′
[R-IntSum]

𝑃
𝛼−→ 𝑃′

𝑃 & 𝑄
𝛼−→ 𝑃′

[L-ExSum] 𝑄
𝛼−→ 𝑄′

𝑃 & 𝑄
𝛼−→ 𝑃′

[R-ExSum]

Figure 5.4: Operational semantics of internal and external choice.

5.2.2 Recursion

Another crucial addition to the deadlock detection algorithm was the support for recursive
processes. This greatly improves the expressiveness of our solution, allowing the analysis
of a much larger types of programs. Recursion was added via the introduction of a
guarded process replication construction. Syntactically, we represent the construction
as 𝑎∗.𝑃, where 𝑎 is an input action, and 𝑃 a process. As show in Figure 5.5, whenever a
synchronization occurs with the input action 𝑎, the 𝑎∗.𝑃 is kept and a new 𝑃 is instanced
in parallel.
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𝑄
𝑎−→ 𝑄′

(𝑎∗.𝑃 | 𝑄) −→ ((𝑎∗.𝑃 | 𝑃) | 𝑄′) [Repl]

Figure 5.5: Operational semantics of process replication.

With this construction recursive processes can be represented. Loops can also be
modelled by placing an output action at the end of the process. For example, a simple
clock can be represented as clock∗.tick.tock.clock | clock, evolving as follows:

clock∗.tick.tock.clock | clock

−→ clock∗.tick.tock.clock | tick.tock.clock
tick−→ clock∗.tick.tock.clock | tock.clock
tock−→ clock∗.tick.tock.clock | clock

−→ ...

However, with the current approach for the deadlock detection, the analysis might
never terminate. For example, the program 𝑎∗.𝑎 | 𝑎 will always be able to reduce.

𝑎∗.𝑎 | 𝑎
−→ 𝑎∗.𝑎 | 𝑎

−→ ...

This will result in an analysis that never terminates. To work around this problem, we
store all the process states that have been explored, and whenever a previously explored
state reappears, the repeated part of the process is omitted from the analysis. The repeated
subprocess is effectively a livelock, and so, in our analysis to find deadlocks, these never
terminating subprocess can be ignored.

To illustrate this strategy, we can analyse the program 𝑎∗.𝑎.𝑎 | 𝑎:

𝑎∗.𝑎.𝑎 | 𝑎 (5.1)

−→ 𝑎∗.𝑎.𝑎 | 𝑎.𝑎 (5.2)

−→ 𝑎∗.𝑎.𝑎 | 𝑎.𝑎︸       ︷︷       ︸
(5.2)

|𝑎 (5.3)

We see that the process will reduce indefinitely, with each iteration instancing a new
𝑎.𝑎 in parallel. By the third iteration the process (5.3) will contain a previously explored
state (5.2), and so, it will be omitted and the 𝑎 is analysed instead. The analysis of 𝑎 will
result in a deadlock verdict.

This example shows a case were for every output actions that synchronizes, two more
are instanced. Even though is possible for each individual output action to eventually
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synchronize, it is impossible for every action to synchronize. The process as a whole is
showing progress, but since there will be actions that will never synchronize, we justify
the deadlock verdict for these classes of processes. More formally, for recursive processes,
we say that a deadlock occurs when an action can not synchronize within a finite number
of steps.

Processes featuring only process replication are not considered deadlocks, since, in
the context of analysis of Go programs, process replication is only used to define and
generate new instances of processes.

5.3 Deadlock Resolution

With the problematic actions returned by the deadlock detection step, the deadlock
resolution step uses one of two algorithms to attempt to resolve deadlocks. The intuition
behind the two algorithms is that by parallelizing the problematic actions, the program can
progress further, potentially synchronizing with the problematic action. In this manner
the problematic action will no longer block the process and cause a deadlock.

The strategies are defined functions that recursively iterate through the process, rewrit-
ing it in order to resolve the deadlock. Both strategies attempt to resolve the deadlock by
parallelization, but what sets them apart is the way the parallelization is performed.

The first resolution algorithm, shown in Figure 5.6, goes over the CCS process and,
whenever it encounters a problematic action (as dictated by Γ), it is refactored into a
parallel composition.

dr1(Γ, 0) def
= 0

dr1(Γ, 𝑃 ∥𝑄) def
= (dr1(Γ, 𝑃)) ∥ (dr1(Γ, 𝑄))

dr1(Γ, 𝑃 +𝑄) def
= (dr1(Γ, 𝑃)) + (dr1(Γ, 𝑄))

dr1(Γ, 𝑃 & 𝑄) def
= (dr1(Γ, 𝑃))& (dr1(Γ, 𝑄))

dr1(Γ, 𝑎∗.𝑃) def
= 𝑎∗.(dr1(Γ, 𝑃))

dr1(Γ, 𝑎.𝑃) def
=

{
𝑎.0 ∥𝑃 Γ(𝑎) =↓
𝑎.(dr1(Γ, 𝑃)) otherwise

dr1(Γ, �̄�.𝑃) def
=

{
�̄�.0 ∥𝑃 Γ(𝑎) =↑
�̄�.(dr1(Γ, 𝑃)) otherwise

Figure 5.6: First deadlock resolution algorithm.

The second algorithm (Figure 5.7) works asymmetrically on input and output actions.
For outputs, the strategy from the first algorithm is applied. Whereas for inputs, they are
not parallelized, instead the respective output action is placed at in a parallel composition
located at input level.
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dr2(Γ, 0) def
= 0

dr2(Γ, 𝑃 ∥𝑄) def
= (dr2(Γ, 𝑃)) ∥ (dr2(Γ, 𝑄))

dr2(Γ, 𝑃 +𝑄) def
= (dr2(Γ, 𝑃)) + (dr2(Γ, 𝑄))

dr2(Γ, 𝑃 & 𝑄) def
= (dr2(Γ, 𝑃))& (dr2(Γ, 𝑄))

dr2(Γ, 𝑎∗.𝑃) def
= 𝑎∗.(dr2(Γ, 𝑃))

dr2(Γ, 𝑎.𝑃) def
=

{
𝑎.(dr2(Γ, 𝑃)) ∥ �̄�.0 Γ(𝑎) =↓
𝑎.(dr2(Γ, 𝑃)) otherwise

dr2(Γ, �̄�.𝑃) def
=


�̄�.0 ∥ (dr2(Γ, 𝑃)) Γ(𝑎) =↑
(dr2(Γ, 𝑃)) Γ(𝑎) =↓
�̄�.(dr2(Γ, 𝑃)) otherwise

Figure 5.7: Second deadlock resolution algorithm.

5.4 Implementation

The work by Almeida served as the starting point for the implementation of our solution.
Programming language chosen for the implementation of the tool was Ocaml, a general-
purpose and primarily functional programming language. The language is a great fit
for the implementation of our algorithms due to its recursive algebraic data types, that,
together with recursive functions and pattern matching, allows for very compact and easy
to follow implementation. With a garbage collector, it also greatly facilitates programming
tools like ours, since troubleshooting incorrect allocations and freeing of memory would
have been very troublesome.

In the end, we ended up reimplementing most of the tool, reducing the code line
count by half, but more importantly, significantly simplifying the implementation of the
algorithms. Particularly with the deadlock detection algorithms, our implementation
resulted in a main recursive function that effectively applies the transition relation to
the CCS program, with another recursive function responsible for keeping track of the
explored and to explore program states, while also collecting the program states that
exhibit a deadlock.

The previous implementation required the user to input the CCS process in the form
of an AST, directly in the code. This is not very practical, so, after porting the program to
the dune build system, we implemented a parser for CCS, greatly facilitating the use of
our tool.

In the reimplementation of the deadlock detection algorithm we found and applied an
optimization that resulted in a significant speed-up in the analysis of processes with a high
number of parallel compositions. The previous deadlock detection implementation, when
reducing the process, it would check if synchronization between two actions is possible,
only returning the reduction of the first synchronization it finds. In our implementation,
instead of generating and analysing all the permutations of the parallel compositions, in
each reduction step, returns all the possible synchronizations the process can perform. In
this manner, all the possible reductions resulting from non-deterministic synchronization
are explored without redundant computations.

45



CHAPTER 5. GODDAR — CCS-BASED DEADLOCK DETECTION AND
RESOLUTION

Another improvement we developed was related to the deadlock resolution. After
the deadlock detection step of the analysis, the deadlock resolution algorithms are then
tasked with rewriting the program, receiving as input the program and a set of problematic
actions. If the problematic actions are identified only by their label and type (input or
output), as it was previously implemented, it is possible that the resolution applies the
refactoring to the wrong actions. To illustrate, the following process features a deadlock
𝑎.𝑏.𝑎 | 𝑎.𝑎.𝑏. After synchronization over 𝑎, the process deadlocks in the following state
𝑏.𝑎 | 𝑎.𝑏. The problematic actions are 𝑏 and 𝑎. However, if all it’s given to the resolution
algorithm is the output action over 𝑎, algorithm will not be able to differentiate between
the two instances of 𝑎, resulting in both actions being parallelized, (𝑎 |𝑏.𝑎) | 𝑎.(𝑎 |𝑏). To solve
this problem, after parsing the CCS program, each action is tagged with a unique identifier.
These unique identifiers follow the action during the deadlock detection analysis and are
passed through to the deadlock resolution step. Then, during resolution, the identifiers
are used to find the exact problematic actions involved in the deadlock.
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6

Conclusion

In this chapter we present an evaluation of our approach, comparing with two other
state-of-the-art solutions. Next we discuss the limitations of our approach, along with
future work.

6.1 Evaluation

In order to evaluate our solution, the code snippets we assembled for our deadlock bug
collection (§ 4) were used as a benchmark suit. Each code snippet is a small program, less
than 50 lines of code, containing just the essential logic and code necessary to replicate
the deadlock bug. Besides our solution, we also evaluated Gong [15] and GCatch [16]. For
our solution and Gong we used migoinfer [23] to obtain the MiGo representation of the
original Go program, which was then passed as input to each tool. GCatch takes as input
the original Go program.

In Table 6.1 we summarize the obtained results. The columns contain the deadlock
verdict for each tool, with ✓ indicating a positive deadlock verdict, while ✗ indicates a
negative deadlock verdict. Since every line corresponds to a real deadlock bug, the perfect
tool would report a positive verdict in every line. The cells containing a ‘—’ mark, indicate
that the tool is unable to give a verdict. For bugs with the 1 mark, the migoinfer tool was
unable to generate a valid output, and so, the GoDDaR and Gong tools could not produce
a verdict. In all three cases, it was due to the use of Go’s context package, which the
migoinfer tool seems incapable of representing in MiGo. Bugs with 2 mark make use of
asynchronous channels, which our tool does not support. The bug with 3 employs the use
of channel-passing, where a channel is sent through another channel, a feature that none
of the tools support.

The results depicted in the Table 6.1 show that our tool performs considerable better
than GCatch, while matching the results of Gong.
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Table 6.1: Deadlock detection evaluation over our bug collection.

Bug Id GoDDaR Gong [15] GCatch [16]

cockroachdb#13197 1 — — ✗

cockroachdb#13755 1 — — ✗

cockroachdb#18101 ✓ ✓ ✗

cockroachdb#24808 2 — ✗ ✗

cockroachdb#25456 ✓ ✓ ✗

etcd#6857 3 — — —
grpc-go#1275 ✓ ✓ ✓

grpc-go#1424 ✓ ✓ ✓

grpc-go#490 ✓ ✓ ✗

kubernetes#25331 1, 2 — — ✗

kubernetes#35672 ✓ ✓ ✓

kubernetes#5316 ✓ ✓ ✓

moby#21233 ✓ ✓ ✗

moby#33293 ✓ ✓ ✓

moby#33781 ✗ ✗ ✓

moby#4395 ✓ ✓ ✓

6.2 Limitations and Future Work

With the addition of internal/external choice and process replication, our approach can
analyse a much wider range of Go programs. Nevertheless, there are still several directions
where we can improve our work.

Regarding expressiveness, our solution lacks support for some Go features, namely
channel passing, channel closure, and asynchronous channels. Therefore, some potential
faulty situations in Go code are not analysed. To deal with the first, since CCS does not
support channel passing, a different approach would be required for the abstract model,
almost certainly a form of 𝜋-Calculus [20]. However, as corroborated with our findings,
an empirical study on the use of the message passing concurrency model in Go [6] also
found that a very small number (6%) of projects made use of channels that carry other
channels. On the other hand, channel closure and asynchronous channels exbibit a much
higher degree of use, with channel closure being used in 46% of projects, and 33% of
channels being asynchronous.

In this work we created an automated pipeline to analyse Go code, however, the results
are provided to the user in CCS form. For the typical developer, this can create a high
entry barrier due to, not only the unfamiliar representation, but also to the difficulty in
determining the mapping between the CCS form and the original source code. To facilitate
these tasks, future work could complete the cycle by translating the proposed solution
back to the Go language, and potentially highlight the changes made to the original code,
in a more user-friendly manner.
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6.2. LIMITATIONS AND FUTURE WORK

Deadlock resolution is also a prime target for future work. Taking inspiration on the
deadlock bug collection, new resolution strategies can be developed, targeting common
deadlock patterns, ideally with an emphasis on retaining, as much as possible, the original
program’s behaviour.
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