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Abstract

A Conversational Agent aims to converse with users, with a focus on natural behaviour

and responses. They can be extremely complex as there are several parts which constitute

it, several courses of action and infinite possible inputs. As so, behaviour checking is

essential, especially if used in a production context, as wrong behaviour can have big

consequences. Nevertheless, developing a robust and correctly behaving Task Bot, should

not hinder research and must allow for continuous improvement of vanguard solutions.

Hence, manual testing of such a complex system is bound to encounter several limits,

either on the extension of the testing or on the time consumption of developers’ work.

As so, we propose the development of a tool to automatically test, with a much broader

test surface, these highly sophisticated systems. We introduce a solution, which leverages

past conversation replay and mimicking to generate synthetic conversations. This allows

for time-savings on quality assurance and better change handling.

A key part of a Conversational Agent is the retrieval component. This is responsible

for the correct retrieval of information, that is useful to the user. In task-guiding assistants,

the retrieval element should not narrow the user’s behaviour, by omitting tasks that

could be relevant. However, achieving perfect information matching to a user’s query is

arduous, since there could be a plethora of words the user could say in order to attempt

to accomplish an objective. To tackle this, we make use of a semantic retrieval algorithm

adapting it to this domain by generating a synthetic dataset.

Keywords: Conversational Agents, Semantic Retrieval, Continuous Development, Infor-

mation Retrieval, Task Bots, Synthetic Conversation Generation, Dialogue Systems Test-

ing
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Resumo

Um Agente Conversacional visa ter conversas com utilizadores, focando-se no comporta-

mento e nas respostas naturais. Estes podem ser, no entanto, extremamente complexos.

São várias as partes que os constituem, os fluxos possíveis e os pedidos que o utilizador

pode fazer. Assim, a verificação de comportamento é essencial, especialmente se usada em

um contexto de produção, pois o comportamento errado pode ter grandes consequências.

No entanto, o desenvolvimento de um Task Bot robusto e de comportamento correto não

deve prejudicar a pesquisa e deve permitir a melhoria contínua das soluções. Portanto,

testagem manual de um sistema tão complexo depara-se com vários limites, seja na ex-

tensão do teste ou no consumo de tempo do trabalho dos developers. Assim, propomos

também o desenvolvimento de uma ferramenta para testes automáticos, com uma frente

de teste muito mais ampla, para estes sistemas sofisticados. Apresentamos uma solução

que aproveita a repetição e a simulação de conversas anteriores para gerar conversas sin-

téticas. Isso permite reduzir o tempo gasto na verificação de qualidade e permite melhor

adaptação a mudanças.

Uma parte fundamental de um agente conversacional é o retriever. Esta é a compo-

nente responsável pela obtenção de informação relevante. Nos assistentes que têm como

objetivo a orientação de tarefas, o retriever não deve restringir o comportamento do utiliza-

dor, ao omitir tarefas que possam ser relevantes. No entanto, obter uma correspondência

perfeita de informações com o pedido do utilizador é árduo, pois pode haver uma infi-

nidade de formas que o utilizador pode formular o seu pedido pretendendo o mesmo

objetivo. Para ultrupassar este problema, utilizamos um algoritmo de retrieval semân-

tico, adaptando-o ao domínio em questão através da geração de um conjunto de dados

sintético.

Palavras-chave: Agentes Conversacionais, Pesquisa Semântica , Desenvolvimento Contí-

nuo, Pesquisa Conversacional, Geração Sintética de Conversas , Teste de Agentes Conver-

sacionais
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1

Introduction

1.1 Context and Motivation

Conversational Agents are computational systems that interact with a user in a conver-

sational manner as a human would. These systems can be traced back to the 1960s and

are now closer to us than ever. With more than 6.1 billion active smartphone users in

the world, it is fair to say that most people in developed countries have access to a Con-

versation Agent, such as Google Assistant, Siri or Alexa. These systems are getting better

regularly and with the rise of IoT and Deep learning, it’s not a delusion to imagine that

one day, we might fully interact with them, as we do with each other.

Amazon, the company behind one of the most known Conversational Agents Alexa,

has resorted to academic challenges, with the aim to explore the current research bound-

aries of these assistants. This is the origin of the Alexa Prize Challenge. This challenge

has started in 2017, with the SocialBot Grand Challenge 1 [5]. In this competition, 15

University teams competed against each other to develop the best SocialBot, a chatbot, to

converse with humans on popular social topics, such as sports or entertainment.

This thesis was written and developed alongside TWIZ (Task WIZard), a task guiding

assistant, on behalf of NOVA School of Science and Technology, to compete in the first

edition of TaskBot Challenge [1]. In this Challenge, 10 University teams compete for the

development of the best Task Oriented Bot. This bot’s purpose is to help Alexa customers

complete tasks, such as Wikihow tutorials or WholeFoodsMarket recipes, and will engage

in a multi-turn fashion with the user, as in figure 1.1. Besides being multi-turn, this bot

is also multi-modal as it uses both voice and vision (with the help of Alexa’s microphones,

speakers, and screen on the available models).

An important part of the TaskBots participating in the competition is related to task

choosing, or task retrieval. When the users interact with these TaskBots with the intention

to perform a certain task, we must be able to search for such a task in either Wikihow or

WholeFoodsMarket’s recipes. If the task searching component has very limited perfor-

mance, it will immediately cap the help the task assistance is able to provide. Hence, it is

essential to have a good task retriever that shows tutorials or recipes that match what the

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Sample conversation provided by Amazon on the TaskBot 2021 roadshow

user wants to accomplish.

On another note, these TaskBots are currently launched as an Alexa Skill, on behalf

of Amazon, so we must perform according to a high standard. Ensuring that our bot does

not under-perform and follows the guidelines of the challenge, means there must be a

heavy emphasis on quality assurance and testing. Conversational Agents are very hard to

test since in the attempt of following a human’s conduct, they become very complex. As

such, teams that provide a higher development focus in efficiently testing the TaskBots,

can most effectively focus on actually developing a good-performing assistant.

1.2 Problem Definition

The Task Retriever is a very important component of the TaskBot, as not showing all

related articles with respect to a user’s query, will limit the user’s actions and therefore

their satisfaction. This is a limitation we cannot tolerate and improving this component

is essential, as the initial solution provided to us by Amazon and its partners, is heavily

based on lexical retrieving. This means, that a request with terms that do not match

the article, would result in an unsatisfactory list of presented articles. This is especially

probable if the user makes the request in an informal fashion (i.e. not being explicit). The

request-article mismatch may even occur due to speech recognition errors.

TWIZ, our TaskBot is comprised of several components, which work almost as a state

machine. During the interactions with the user, the used component will change ac-

cording to the users’ actions and TWIZ’s interpretation. Here we will first describe the

components that make TWIZ and their purpose. Subsequently, we will explain how

TWIZ’s complexity is the cause of many possible points of failure.

The core list of components that constitute TWIZ are below, along with a brief de-

scription of their duty:

• Automatic Speech Recognition or ASR, is the component responsible for under-

standing the user’s voice and converting it into text, to be used by the rest of the

2



1.2. PROBLEM DEFINITION

components. When the user says something to our skill, it is converted into text,

before proceeding to other components;

• Visual Interface is the other form of input to TWIZ. If on a supported device, the

user can use the touch screen on Alexa, instead of using their voice;

• Intent Identifier is the component responsible for identifying the user’s wish. This

component is responsible for interpreting the user’s text input (the utterance) and

mapping it into a user intention (intent);

• Selection Strategy is assigned to control how TWIZ proceeds. As mentioned, when

the user says something, it is converted into an intent. The selection strategy will

activate other modules according to which intent was identified;

• Response Generators are the modules chosen by the selection strategy, to respond

to an intent. There is a response generator for each existing intent. These models

have several behaviors, but basically, they will have an internal logic, which changes

the dialog’s state, according to the current state;

• Response Sentence is the module responsible for formulating the response to be

presented to the user. A Response Generator will call this module and according

to the current state, the Response Sentence will form a sentence that can either be

a pre-formatted string or a sentence generated by a Natural Language Generator,

depending on the module and state;

• Identify Process is called upon a request for a new task by the user. The intent will

match to IdentifyProcessIntent and this module is responsible for both understand-

ing which type of task it is (Wikihow tutorial of WholeFoodsMarket recipe) and

calling the respective Task Retriever module, in order to present the user tasks;

• Task Retriever is the component that supervises the correct tasks retrieved upon a

user’s request. When a user shows the intention of wanting to perform a task, the

respective task retriever is called and it will look at the available articles a match

the user’s request.

During the development of TWIZ during the competition, we found that most of these

components followed a very similar methodology regarding its continuous development

and model refinement with data from user interactions. The overview of this methodology

can be found in figure 1.2 and its stages are:

1. Data - The process of gathering and cleaning the data related to the problem;

2. Model - The training of a model with the gathered data;

3. Test - Testing both the new model and TWIZ as a whole for quality assurance;

3
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Data

Model

Test

Deploy

Figure 1.2: Process of developing a component for TWIZ

4. Deploy - Deploying the new version of TWIZ, producing new data from user inter-

actions.

While the components share many of the steps that are required to introduce the

new changes, only two of these are equal for all of them: Test and Deploy. Although the

components mostly all have a model, they are different in the way they are trained and

tested (individually), and the data they need to consume is different. However, testing

TWIZ as a whole and deploying the new versions is similar regardless of the component.

Since the deployment of the new versions of TWIZ are automated and supported by

Amazon, we needed to focus on the other most transversal part of the process - Test.

Assuring TWIZ’s correct behavior is complex. There are many possible actions, which

have different effects on the dialog flow. Furthermore, these actions’ availability is de-

pendent on the current state of the dialog. In order to comply with Amazon’s guidelines,

restrictions must be applied and some functionality must be supported. The process to

make sure these guidelines are followed is time-intensive and tiresome, involving several

manual interactions with TWIZ, for every change of the production bot. With the help

of automation, it is possible to perform tests to minimize these errors. Unfortunately, the

complete testing of TWIZ is implausible. This is due to the countless ways a user can

try to accomplish a goal. These should all be supported, however, it’s not possible to test

all of them (reproduce them), as their gathering would take more time than the lifetime

of the TWIZ. Additionally, even if those (countless) pre-determined sets of interactions

could be formed, any intended change to our Bot could affect their validity and could

require others.

1.3 Challenges and Objectives

The objectives of this thesis are as follows:

1. Develop a task retriever, which surpasses the limitations of the provided lexical

4
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retrievers. This retriever should be less dependent on the terms given, by under-

standing the semantic meaning of the user’s request. This way, we can retrieve more

appropriate tasks for the user, elevating the range of capabilities a user can achieve.

However, these semantic retrievers need data for training. We must deal with the

lack of data to fine-tune to our documents.

2. Minimize a complex TaskBot’s possible errors, by deeply testing it and its several

iterations automatically. Manual testing is not feasible, so we intend to develop a

tool for test development and execution. The complexity of TWIZ makes it very

intricate to test as there are countless ways to achieve the same goal. As so we will

leverage semantic understanding once again, for asserting correct behavior. This

includes mimicking the existing data (past conversations), to generate synthetic

conversations, given that repeating essentially the same input, should generate

essentially the same output. In this way, we can test the system on a broader front.

We will leverage several resources provided to us by Amazon, in order to maximize

the potency of this project, for example, the several computing machines provided to us,

for use of Deep Leaning model training. In summary, we intend to improve the task

fetching component by using a semantic-based retrieval algorithm and improve the

quality assurance of our TaskBot, by automating the testing process.

1.4 Document Structure

This document is divided into the following chapters:

• Introduction - This chapter presents the context of this thesis, along with its moti-

vation. Furthermore, the problem is also introduced, coupled with the challenges it

presents and the objective of the components to be developed.

• Related Work - Introduces key concepts which are related to retrieval techniques,

dialogue systems quality assurance, semantic text comparison, and deployment to

cloud platforms.

• Task Retrieval - Presents the work done, regarding the task retrieving process, from

data generation to fine-tuning of the model.

• Testing - Chapter regarding the developed TaskBot test suite.

• Evaluation - The evaluation of the developments in this thesis, regarding both the

Task Retrieval component as well as the testing functionality.

• Conclusion and Future Work - The conclusions regarding the dissertation’s contri-

butions and future work are to be considered.

5



2

Related Work

In this chapter, we introduce the foundations and other essential concepts of conversa-

tional agents, more specifically, retrieval methods, as well as Deep learning methods for

conversation agent testing. In the first section, we present the principles of Dialogue

Systems and their components, with special attention to Task Bots. In section two, we

demonstrate the core of Information Retrieval, along with several approaches to this mat-

ter. The third section mentions tools and services which were used for cloud deployment

of the project. The following section regards quality assurance dialogue systems and

lastly, we refer to some similarity comparison techniques, useful for output comparison,

or understanding how similar two texts are.

2.1 Conversational Agents

Conversational Agents are computational systems that exploit natural language tech-

nologies to converse with users in human language [56] or shorter artificial entities that

communicate conversationally [32]. These systems are not new, in fact, they have been

around for many decades before this thesis was proposed, for example, ELIZA [58], which

tried to have a natural language conversation between humans and computers. Nowa-

days, with rising computer performance, we find that ELIZA’s author’s wish for an agent

that had real-world knowledge and learned upon each user conversation, is closer than

ever, with Conversational Agents such as Siri [2], Google Assistant [3], or Alexa [6].

There are no standard terms, which clearly separate conversational agents or dialogue

systems regarding their objective. However, for further specification, some separation

can be made, depending on which task they are designed to tackle [32]:

2.1.1 Non-task Oriented systems

These are dialogue systems designed to engage in conversations with users, that mimic the

conversations characteristic of casual, social interactions between humans, or “chitchat”

[42]. As an example, we highlight Amazon’s Alexa Prize competition, named Socialbot

[1]. In this competition, sixteen university teams were challenged to build conversational

6
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agents. These aimed to converse coherently and engagingly with humans on several

topics, such as Sports, Politics, among other social affairs.

2.1.2 Task Oriented systems

These systems depart from the previous type of dialogue system, in that they are intended

to help a user complete a certain task, such as airplane reservation or buying a product

[32] In regards to these Task Oriented dialogues systems, there are several already imple-

mented in many websites, as is the case with Enterprise Bot, which powers the Virtual

Assistant in the Portuguese train company, Comboios de Portugal’s website [48].

2.1.3 Question Answering

In this category, the agents have as a goal, to return a particular piece of information to

the user in response to a factoid question, meaning opinion-based questions do not enter

this realm [33]. In this category, there is the famous QA bot developed by IBM, Watson.

This conversational agent was designed from the ground up with the intention of being a

QA system, which could compete at the human champion level in real-time, in the known

TV contest, Jeopardy [25].

Nowadays, there are Conversational Agents, such as the previously mentioned (Siri,

Google Assistant, and Alexa, among others), which aim to be multi-purpose and tackle

multiple of the above categories. This means these agents aim to answer questions about

multiple domains, while also being able to help the user accomplish a certain task and

engage in casual conversations.

2.2 Retriever Systems

While the total composition of a Conversational Agent, regarding the several components

that form a task guidance Bot, is out of the scope of this thesis, there is an important unit

that must be presented, responsible for Information Retrieval (IR). IR is concerned with

the storage and retrieval of all manner of media. Its objective is to, given a query by the

user, return relevant documents that match said query [33]. These retriever systems, use

specialized index structures, to search the document space, thus finding the query’s most

relevant match(es). The relevance assigned to a given document is dependent on the rank-

ing strategy and on the features that a document ranking model takes into consideration

[33][43].

2.2.1 Evaluation metrics

In order to measure the performance of retriever systems and enable retriever comparison,

there must be standardized metrics. In this section are described several metrics used to
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evaluate information retrieval systems. For simplification, we will assume the relevance

of a document is binary.

Recall is the ratio of the retrieved relevant documents, in respect to all the relevant

documents in the document collection. It can be represented by the function 2.1. If the

recall is 1, then the retrieved documents contained all of the relevant documents.

recall =
| { relevant docs } ∩ { retrieved docs } |

| { relevant docs } |
. (2.1)

Precision is similar to recall, but it is the ratio of relevant retrieved documents, with

respect to all the retrieved documents. This way, if the precision is 1, then all of the

retrieved documents were relevant. This function can be calculated by equation 2.2. Also,

P@K precision is used, which calculates the precision of the documents retrieved up until

document number K

precision =
| { relevant docs } ∩ { retrieved docs } |

| { retrieved docs } |
. (2.2)

Discounted Cumulative Gain (DCG) is useful when graded relevance document judg-

ments are available for a query. The idea is to penalize if a highly relevant document is

placed on lower ranks. For each query, the DCG can be calculated as in 2.3. Rq are the

retrieved documents, while i is the position of a document in the generated ranking. reli
is the relevance of the document relative to the query, this can be calculated in several

ways, but should be a function that attributes 1 to the most relevant document and should

tend to 0 as the document becomes less relevant.

DCGq =
∑
〈i,d〉∈Rq

2reli − 1
log2(i + 1)

. (2.3)

Normalized Discounted Cumulative Gain (NDCG) is useful to normalize the DCG

score, on classification over different document collection lengths. There should be an

ideal Discounted Cumulative Gain (IDCG), which is to be calculated as DCG but assuming

an ideal rank order for the documents. NDCG can be computed as in equation 2.4

NDCGq =
DCGq

IDCGq
. (2.4)

Mean Average Precision or MAP 2.5 is, for a set of queries with size Q, the mean of

the average precision (AP) scores for each query, where the average precision is the P@K

for each document retrieved by a query, divided by the number of relevant documents in

the retrieved ones. More on AP in equation 2.6

MAP =

∑Q
q=1AveP (q)

Q
(2.5)

AvePq =

∑
〈i,d〉∈Rq

Precisionq,i ×relq(d)∑
d∈D relq(d)

(2.6)
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Mean Reciprocal Rank (MRR) is computed as the mean of the Reciprocal Rank (RR),

or the rank of the first retrieved relevant document. If the first retrieved document for a

query is relevant, then the RR is 1. The MRR can be computed as in equation 2.7.

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

(2.7)

Although not used specifically for Information Retrieval evaluation, it is also impor-

tant to refer BLEURT [55]. The authors created a learned evaluation metric, based on

BERT, which hopes to model human judgment. Intended for natural language generation

problems, it is used to compare the inherent meanings of two sentences, in the same way,

a human would.

2.2.2 Lexical IR approach

This is the classic approach to information retrieval, which emphasizes the relevance of

the documents as a product of the terms they contain. Documents are deemed relevant if

the terms (words) present in them, match with terms in the probing query. In this way,

documents that frequently contain a term in the query will be ranked higher than other

documents which do not.

TF-IDF is a popular family of statistical functions in IR that considers the number

of occurrences of query terms in the documents (term-frequency [TF]) as well as the

rarity of such terms in the scope of document collection (inverse document frequency

[IDF]). Following this idea, a document’s rank is increased if it contains, increasingly

with frequency, a term on the query (term frequency), more so if the other documents in

the collection do not contain it (term rarity).

2.2.2.1 BM25

BM25 is a popular instance of such a family of information retrieval functions BM25’s

scoring functions are represented by equation 2.8 [43]

BM25(q,d) =
∑
tq∈q

idf
(
tq
)
·

tf
(
tq,d

)
· (k1 + 1)

tf
(
tq,d

)
+ k1 ·

(
1− b+ b · |d|avgdl

) (2.8)

The score (BM25) for a query q, for a document d, is dependent on the term frequency tf,
of each term of the query as well as both the document’s length and the average length

of the documents in the collection avgdl. Both k1 and b are parameters to tune the

performance to a certain dataset but usually have default values. Finally the inverse

document frequency ifd, is computed as,

idf (t) = log
|D | − df (t) + 0.5

df (t) + 0.5
, (2.9)

being reliant on the number of documents D, in addition to the document frequency of a

term df(t) BM25 has several implementations, as well as other similar versions, belonging
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still to the TF-IDF family, namely BM25F, which separates a document into several fields,

with different weights of importance to each one (such as title is more important than

related work).

2.2.2.2 Expansion techniques

Lexical IR approaches, due to their simplistic nature, tend to have low latency perfor-

mance. However, they often suffer from term mismatch, where the user does not use the

same words or terms, as present in the searching documents [33]. In order to reduce this

drawback, there have been adopted several expansion techniques. These can be divided

into query expansion, or document expansion, regarding the method of expansion.

Query document techniques intend to enrich a given query, by adding additional

related information to the query at hand, this way increasing the potential of a match.

An example of the application of this type of technique can be the addition of synonym

words of the ones present in the query [14].

On the other hand, document expansion techniques, aim to enrich the documents in

the collection themselves. This can be done as in [45],[15], where potential questions are

generated for a certain document and appended to it.

2.2.3 Multi-stage IR

Due to the heavy computational requirements of neural information retrieval systems,

a single-stage system, where the Neural retriever worked solo, was not viable due to its

high latency. This caused these models to perform as a candidate re-ranker, in which they

rank how relevant candidates are with respect to the query, but these candidates have

already been filtered through another lexical retriever [43],[27].

Works as [44],[46], use this formula to great success. The first stage of retrieval is

performed by the BM25 lexical retrievers, which from the whole document collection,

generate a top candidate list of relevant documents. This is later followed, in the men-

tioned works, by a BERT model, intended to further classify how relevant the documents

are, relative to the initial query, without using term overlapping methods. This way, a

more semantic relevance judgment with representation learning, can be used to minimize

the drawbacks of lexical IR. There are works with more than two stages and also different

ways of combining Lexical IR and neural IR [46],[40]

Although these approaches make the use of advanced neural IR possible, it is clear

that they are not fully feasible for systems that have latency concerns. In [28] it is noted

that if the first stage using BM25, gives a list of 1000 top candidates, the latency for

re-ranking is of almost three seconds. This same work employs different strategies to

minimize the re-ranking time successfully up to nine times. In [57], it’s also shown

that even if the initial lexical IR (BM25) returns a smaller list of 100 top candidates,

this model’s performance is still one of the worst, compared to other popular IR models.
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Furthermore, the performance of the neural retriever is impacted by the results of the

lexical retriever in the first stage.

2.2.4 Fully semantic IR

For a deeper semantic retrieval and to avoid some of the mentioned issues of re-ranking

strategies, Dense passage retriever (DPR) [34] uses a dual encoder architecture for re-

trieval. One of those encoders is responsible for generating a dense representation of

the document to be searched, while the other is responsible for the generation of the

representation of the query. On training time, DPR uses a loss function that minimizes

the difference (dot product) between a query and its positive sample document (a rele-

vant document) and maximizes the difference between the same query and a negative

sample document. Offline, the document encoder generates the representations of the

collection of documents and builds an index. On query time, the query encoder generates

a representation for the query and the similarity of the documents to the query is com-

puted on the index, retrieving the most similar documents. [57], points out that DPR fails

on datasets that diverge from the domain it has been previously trained on. DPR uses

FAISS, which is an indexer capable of similarity search on billions of vectors (document

representations), using GPUs to improve the performance of the search [31].

Following the works of DPR, [29] proposes a Gradient caching technique, which

doesn’t force an entire batch of examples to fit into GPU memory. This allows for training

of the DPR in a single GPU feasible and in a timely manner.

2.2.5 Retriever frameworks

Elastic Search [21] is an open-source search engine, which currently ranks as the most

popular amongst its competitors [23]. It is based on another popular framework Lucene

[8]. It leverages several indexing and searching techniques and algorithms (one of which

is BM25), to provide fast search over several types of fields and in several languages.

2.2.6 Data augmentation for Retriever training

Due to data scarcity, it might be hard to use the Dense retrievers to their full potential.

These models leverage large amounts of labeled data in training to be able to perform

semantic information retrieval. [38] is able to circumvent these issues by generating

a synthetic dataset, which is used to train Dense retrievers. The authors fine-tune a

BART model on pairs of question-answer (passage) from MS Marco, where the input to

the model is the passage and the target output is the respective question. The authors

then proceed to apply this model to Wikipedia articles and generate a dataset of 110M

questions to 22M passages of these articles. The models trained with this generated

dataset, show significant performance gains when compared to the same models trained
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only on MS MARCO. The authors also show that applying this concept to domain-specific

datasets provides improved results over the standard datasets.

Following a different approach, [50] proposes the use of another retriever, a cross-

encoder to perform data augmentation automatically. While this model is more expensive

to run and unfeasible in an online fashion, it also has better performance than a dual

encoder architecture. The authors using popular datasets such as MS MARCO and NQ,

first use a dual encoder to retrieve passages given a query and then use the cross encoder

to understand which of these passages are relevant and irrelevant. By using only passages

which had a high degree of confidence, the authors are able to expand the provided

datasets, adding these top-performing documents as pairs of question-answer, be it with

positive samples, or negative.

2.3 Cloud deployment

Cloud deployment, which this work will rely on, has been rising in popularity. This

section will present the used tools and services related to cloud and web deployment,

with a slight description of their advantages.

2.3.1 Amazon Web Services

We use several of Amazon’s Web Services, in order to host our bot and all of its function-

ality. We will list the used services in this project here.

Lambda is a serverless, event-driven compute service, which allows the running of

applications without provisioning or managing services [35]. It is especially useful for

providing an execution environment without having to manage its constant provision, as

it is only run upon a request.

Elastic Kubernetes Service (EKS) is a managed container service to run and scale

Kubernetes applications [19]. This service allows for the deployment of Kubernetes apps

both in the cloud and on-premises, but it integrates fully with other services such as

AWS Lambda. On-cloud deployment is compatible with both EC2 deployment and AWS

Fargate deployment (which is a serverless compute engine, allowing for automatic provi-

sioning of executing environment for deployment of containerized apps).

Elastic Cloud Computing (EC2) is a service that offers computing platforms as an

IaaS [20]. According to their needs, the user can choose the computing power, storage,

and network, among multiple possible instances of EC2 machines. This is the basic

computing unit Amazon uses, so most other computing services, such as Lambda and

EKS run on top of it.

Elastic Container Registry (ECR) is a managed container service where you can store

container images and integrate them with the other services that Amazon provides, which

rely on containerized applications, such as EKS [18].

12



2.4. QUALITY ASSURANCE IN DIALOGUE SYSTEMS

Simple Storage System (S3) is an object storage service [54]. As so it allows for the

storage of object files, of large size and integrates deeply with other Amazon services for

quick storage and retrieval of said files. Besides offering redundancy in storage, it also

provides useful features, like file-versioning, where previous versions of the same file are

kept, for later retrieval.

2.3.2 Tools/Systems

There are several tools that serve as the basis for web app development and deployment.

In this section, we refer to the ones used or planned to be used.

Kubernetes is open-source system, for container orchestration [49]. This system

works on the basis of pods, which are the atomic unit of Kubernetes, that run on nodes,

managed by a worker node. A pod is comprised of containerized applications (usually

one, but more can be deployed together) and Kubernetes manages several services related

to their deployments, such as inter-pod/node communication and self-healing of failed

containers. By setting up the configuration on how to deploy the services, such as how

many instances of each container and in what nodes, or how many of them are the mini-

mum for operation, Kubernetes will perform changes in the deployment of a collection

of pods on nodes, in order to converge to the desired state. Lastly, another great feature

of Kubernetes is the automated rollouts and rollbacks, which allow the updating of the

current application, without disturbing its correct operation.

Docker is a software containerization platform, which allows building, testing, and

deploying containerized apps [22]. A containerized app has all of the app’s dependencies

and required software to run, without the need for an operating system. A container

runs on top of Docker Engine, which runs directly on the system kernel, and therefore

it achieves an almost native performance while being a standalone executable package.

Its biggest strength is its standardization, as the same Docker container will operate the

same, regardless of the infrastructure they run on (some limitations exist, for example,

ARM vs x86).

Flask is a lightweight Web Service Gateway Interface web application framework,

designed to make getting started and running a web server in a quick fashion [26]. With

just a file, a developer can have a web server running, which is very valuable when

the server is just a way to make ends meet and development time related to the server

configuration is to take little time.

2.4 Quality Assurance in Dialogue Systems

As Dialogue systems become more popular, with their use becoming more widespread,

the need to test these systems has also increased [37]. Furthermore, as these systems

evolved from a simple rule-based approach to complex Deep learning supported agents,

these testing methods also needed to evolve to support and correctly test the agent to
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its full ability and as much as possible. Testing software systems means examining the

behavior of a system, in order to discover potential faults. A test oracle is a mechanism

responsible to determine whether a test has passed, meaning it’s responsible for analyzing

the output of a system and understanding if the behavior is desired or incorrect [9]. This

is an essential part of quality assurance, as it asserts the system behaves as intended.

In this section, we will present how this problem of Quality Assurance in Dialogue

Systems has been tackled in other works.

2.4.1 Manual testing

Manual testing involves the human as a testing oracle. Against test cases, a person will

be responsible for verifying if the output of the system is desired or if it’s misbehaving,

or not performing as intended. Additionally, volunteers are often recruited to not only

test the behavior of the Dialogue System but also consider its usability. [37] While this

procedure is highly correlated with the expected use of the Conversation Agent under

testing, it is a mundane time-consuming process that is also prone to errors.

These approaches assume there is some data available for the simulated user, regard-

ing for example the utterances the simulated user prompts or even the rules this user

must follow.

2.4.2 Simulated user testing

In this sort of testing, the system under test is interacting with a simulated user. This

user is either a rule-based user or a data-corpus-based user. A rule-based automaton

as in [39], follows actions based on previously gathered utterances, grouped by their

intent. When the system prompts a user response, the simulated user will answer with an

utterance that satisfies the system prompt (or not, depending on the degree of intended

user collaboration). A corpus-based user will find in an available data source, utterances

that match the agent’s prompt. Although in a different scope, [10] follows this pattern and

picks matching utterances from available annotated corpora, given the current context.

2.4.3 Metamorphic testing

The previous methods shown, expect that the desired outcome is known beforehand.

Those approaches assume there is some sort of ground truth or expected result given a

certain input. However, that might not always be the case. As Conversational Agents be-

come more and more complex and user behavior is unpredictable, there can be dialogue

paths through several states that might not be known in advance. The test and classifica-

tion of this sort of flow are very challenging and a test oracle is often nonexistent. [39]

[12]. To tackle this challenge, [12] performs metamorphic testing to not only test these

scenarios where no expected values are available but also generate test cases for chatbots.
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In metamorphic testing, the output of a system is not checked against an ‘expected’ out-

put, but to a metamorphic relation between the input data and the corresponding output.

New test cases are generated based on a source test case (pair of input-output). Given the

source test input, a new test input can be originated respecting given metamorphic rules.

The output of the system regarding this new test is then compared with the source test’s

output and if the metamorphic rules were not held, then it can be concluded that a fault

or consistency was detected [12].

These metamorphic rules can be several, such as synonym replacement, utterance

order change, and others, however, they must take into consideration the context of the

chatbot. Considering TWIZ, for example, if a numerical value was changed in skipping

to a certain step, the output might have been in a completely different phase, and the

input could even be invalid due to changing to a nonexistent step. We can see there needs

to be careful planning in designing these rules.

2.4.4 AI planning testing

Regardless of the name, this type of planning is respective to modeling utterances as

actions to achieve a certain goal. The combination of valid predicates during execution

defines a state and actions change the current state. These actions may have pre or post

conditions and they are utterances that will be input to the system, using constants to

form a concrete utterance. For example in [11], the authors develop a chatbot for hotel

reservations. The state is the set of predicates of current variables that are defined, for

example, whether the number of days of the stay is defined. An action can take place

if the preconditions are satisfied and will run with given constants as parameters. As a

specific example, the action ‘askPrague’ can take place only if the ‘Place?’ has not yet been

chosen. Actions have effects, like in this case where the location was set and the predicate

‘Place?’ satisfied. Given a plan, it is possible to deduct several concrete tests by using

multiple values in a different order. These may then be run and when the predicates are

satisfied the goal state has been reached and the test passed successfully.

This type of planning requires careful consideration of the formation of the domain

description, namely extracting the variables or constants, forming the actions, and record-

ing their pre-conditions and effects among other definitions. Hence, while forming a plan

may result in several tests that can be automatically run, the formation itself is a time-

consuming manual process.

2.4.5 Paraphrasing testing

As users can express the same intention in a plethora of ways, testing for robustness

in user input understanding is key. As such paraphrasing testing is exactly important

in testing different expressions while keeping the same intention. In [52], the authors

developed a testing framework where given a base test case, the sentences are replaced
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by equally meaningful sentences. If the output to the divergent input is dissimilar to the

original output, then it might mean the system under test is not flexible enough.

While it is a simple concept, this chatbot testing methodology focuses on making

sure different input is understood correctly, promoting chatbots that correctly handle the

variety of user utterances inherent to conversational speech.

2.5 Similarity comparison between Dialogue Utterances

Similarity comparison is simply a metric of correlation between two samples (in this case

text). The correlation, however, is dependent on how the measurement is performed. One

can argue that there can be infinite styles of measurement, for example, one can measure

how the texts correlate in their sentiment, in their style of writing, among others. Here

we will consider two ways text similarity comparison is performed: by their terms (letters

and words); by their meaning.

2.5.1 Levenshtein distance

The Levenshtein distance [36], is a string metric for measuring the difference between

two sequences in a lexical manner. This distance is the sum of the number of edits (which

can be insertions, deletions, or substitutions) required to change one string into another.

Thus, a Levenshtein difference of 0, means perfect matching strings. Further on, the

Levenshtein ratio is the Levenshtein difference with respect to the comparing string’s

length (number of characters). If the string has the same size, the Levenshtein ratio

is given by the Levenshtein distance divided by the string’s (unique/same) size. If the

strings have different sizes then the Levenshtein ratio is given by the Levenshtein distance

divided by the average of the two string’s lengths. These metrics are very fast and are a

good indicator of if there are mismatches on a given string.

2.5.2 Universal Sentence Encoder

In contrast with previous works, in [59] is presented models for encoding entire sentences,

into embeddings. The authors, do not use the previous approach of averaging the sum of

the embeddings of each word in a sentence, forming the sentence embedding. Instead,

they present two models for encoding the whole sentence into one single representa-

tion. The more accurate and computationally intensive module follows the encoder of

standard transformer architecture, consisting of 6 layers of this encoder, resulting in a

512-dimensional vector representative of the input sentence. The other model follows a

Deep Averaging Network, where the token embeddings are averaged together and then

passed through a feed-forward neural network, producing, once again a 512-dimension

vector with the sentence’s representation. This approach is much more lightweight with

inference times being almost linear with sentence length. These representations can then
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be used to understand sentence similarity, by comparison (such as cosine similarity) of

their embeddings.

2.5.3 BLEURT

BLEURT is a machine learning-based automatic metric to capture the semantic meaning

of sentences [55]. Previous similarity comparison metrics, such as the previously men-

tioned Levenshtein distance, use lexical features of the sentence, to infer how much they

had in common. The authors build upon the contextual word representations of BERT

but proceed to further train it on a generated dataset, consisting of Wikipedia sentence

pairs with noise insertion. They do this in three different ways. First, they mask random

positions of the sentences, or create a contiguous sequence of masked tokens, requiring

BERT to then try and output the same sentence. Second, the authors use back-translation,

where they translate an English sentence to another language, and then back to English,

so they paraphrase a given sentence, asking BERT to consider them equal. Finally, the

authors randomly drop words from the generated examples, to create other examples. Af-

ter this training, the authors further fine-tune the model on human-annotated ratings of

sentence similarity. This approach was shown to high correlation with human judgment.

2.5.4 Sentence BERT

The performance of using BERT’s embeddings as they are was found to yield underper-

forming results. Sentence BERT is a Deep learning model that follows a Siamese BERT

architecture [51]. The output vectors of BERT [16] are pooled to derive the sentences’

embeddings. Using these embeddings, their distance is then calculated using a function

such as the Euclidean Distance or the cosine similarity which is used by the authors. The

smaller the distance between the embeddings of given sentences, the more similar they

are. This way it is possible to semantically compare two sentences, by their meaning.

2.5.5 Diffchecker

Diffchecker [4] is a tool for finding differences in various items, ranging from text to PDF

or folders. It is especially useful for finding differences between two different texts. Given

a reference, Diffchecker will highlight any lexical differences between it and a candidate.

2.6 Summary

In this chapter, we presented the foundations and essential concepts of conversational

agents, detailing task retrieval methods. We also discussed deep learning methods for

conversation agent testing along with other useful tools for the continuous development

of the components.
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Task Retrieval

This chapter presents the work done related to the Task Retrieval assignment. As previ-

ously mentioned in 1, this work is part of a team project (TWIZ), to compete in Amazon’s

ongoing Alexa TaskBot challenge. This competition has as its objective to develop a

TaskBot, a virtual assistant, to assist Alexa users to complete certain tasks (namely Wik-

ihow tasks or recipes). Here we will describe what advancements have been made in

the Retriever component, aiming to expose both how logically the components are laid

out with their inner workings, as well as give a system overview of how the elements are

distributed and integrated.

3.1 Dense Passage Retrieval

Amazon has provided us with APIs to retrieve relevant documents to a user’s query,

both for recipes and DIY tutorials. These are, however lexically dominated, and suffered

greatly from term-mismatch be it due to the user using synonym words to the one in the

document, or due to Speech Recognition errors. Hence, we decided to use a fully semantic

retriever, to counterbalance this lexical dependency. We opted for Dense Passage Retrieval

[34] due to its shown performance on the paper on document retrieval, due to it being

easily coupled with FAISS [31] for document retrieval on GPU and the fact that with

the improvement made by [29], the DPR is trained relatively quickly on a single GPU.

Our Retriever has, like most supervised Machine Learning systems, two stages. One for

training the model, and adapting it to the environment it will serve. The other stage is

inference, where the trained model is put to use.

3.1.1 T5 Question Generator

To be trained, the DPR needs for each document at least a question regarding that doc-

ument and another question that is irrelevant to said document. For example, if the

document was concerning a recipe for chicken, a good question would be related to the

proceedings of cooking a chicken or how it can be done. On the other, an irrelevant

question would be about what the rules of football are. Hence, for each question, the DPR
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takes as input a positive sample (a relevant document) and a negative sample (an irrele-

vant document). Internally, the DPR’s encoders will be trained to minimize the difference

between the encodings of the document and its positive samples, while maximizing the

difference between the document and its negative samples (regarding their encodings).

In most scenarios, when using a model like DPR, there is a Dataset available, such as

MS MARCO [13], which have immediately available this relation of query and relevant

document. MS MARCO includes several real questions from users of Bing and Cortana,

with relevant passages, documents, or even fully editorially generated answers. In the

case of this project, we do not have questions regarding our documents, both WikiHow

documents and WholeFoods Market Recipes. In order to overcome this obstacle, we use

the T5 question generator [30]. This model is trained to generate reading comprehension-

style questions with answers extracted from a text. For each document we have available,

we generate two questions. We’ve found the best way to generate these questions, to

assure they are useful and similar to the way a user would search, by probing several

options. Also, due to the different structures of the types of documents (WikiHow articles

vs WholeFoodsMarket recipes), there are distinct optimal solutions for each.

For recipes, we tried using all the fields as they were (title, description, and steps).

Sample of the analysis in appendix A. Analyzing the results, we realized the steps were

adding too much noise to the generated questions. A user looking to do a certain recipe,

say Roasted Butternut Squash, will not search for it by asking how long it takes to roast

squash. We confirmed this, by having as input for the T5 question generator, the title,

and the steps. This resulted in questions that are too focused on a certain step of the task

and not the task as a whole. After removing the steps we can see the questions are much

more focused on the purpose of the task, not its procedures. However, often, especially if

the description is smaller, we see some of the generated questions are more adequate for

Question answering systems, as they are of the type “What is a <subject>”. This is not

exactly the purpose of a TaskBot (at least not in the stage of searching for recipes). As so,

we tried guiding the T5 question generator, by adding a simple "How to make"prefix to

the title of the recipe. This resulted in better and more focused questions, which users

are more likely to perform in order to search for a recipe. While it still formed “What

is (...)” questions, they are more appropriate - such as the “What is the best recipe for

egg white omelettes”. We also tried adding back the steps fields using this approach

but found that it barely added anything, while making the performance of the generator

much worse. Given we would need to generate thousands of questions we decided to

proceed without this field. The diagram with the fields we decided to use for question

generation on Recipes articles is in figure 3.1(a)

Following the same methodology, questions for the WikiHow articles were generated.

We deemed a combination of title, method or part name, and step titles to generate

the best questions. Sample results of different combinations of the article fields are in

appendix A. We again found that having the steps provided to the T5 question generator

introduced too much noise. For example in an article about jumping rope, one of the
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Recipe Articles

Article

"How to make"

Article Title

Description

T5
Question

Generator

How to make egg white 
omelettes?

What is the best recipe for 
egg white omelettes?

+

+

(a) Recipes

Wikihow Articles

Article

Article Title

Method/parts

Step headlines

T5
Question

Generator

Where do you put the spare 
tire?

How to change a tire?+

+

(b) Wikihow

Figure 3.1: Question generation - article field choice

generated questions was How many pieces of bubble gum do you wish to put in a dish. This

is because, in a certain step’s description, the authors told about a song for jump timing,

which confused the T5. We found the title, method, or part names and the headline of

each step were enough to generate good questions, without taking too much time. The

diagram with the fields we decided to use for question generation on Wikihow articles is

in figure 3.1(b).

After having the question generated as our positive sample, we opted to simply use

another generated question, from a different document as a negative sample. This process

is rather simple but is not optimal. We can imagine a case of a negative sample being

very similar to the positive sample if the randomly chosen document was similar to the

positive one. However due to the large document collection, the chance of this happening

was rather low.

3.1.2 Training

In BIER [57], it’s reported that DPR doesn’t perform its best when executing outside of

its trained domain. While it was pre-trained on datasets with a similar domain as the one

in this project, we deemed we should perform training (fine tuning) with the questions

generated with T5. Additionally, we have two different models of the same kind, but

trained on different data (WikiHow articles and WholeFoodsMarket recipes). We will

consider this opaque to us and will treat it as the same DPR for both occasions.
1 In figure 3.2, the architecture of our training of the DPR is shown. Here we can see

the process of training this model includes several steps. It starts with generating for each

article a pair of questions, by using the T5 question generator model 3.1.1. This model

will generate questions regarding the document at hand, which will be used as positive

samples for the DPR. As negatives, we use random questions from other articles. The

article is then encoded by the document encoder, generating an embedding. The Loss

function (L) is responsible for updating the module in a way that minimizes the inner

1What is considered a positive or negative sample is a pair of Question-Answer, but for simplicity of the
diagrams only one of these was considered as positive or negative.

20



3.1. DENSE PASSAGE RETRIEVAL

Articles

Article Dense Passage Retriever

T5
Question 

Generator

Article's 
Questions

Random 
Article

Random article's 
questions

Document
encoder

Query
encoder

Document
Embedding

Query
Embedding

+

-

L X

Figure 3.2: DPR training

product of this embedding to the positive samples’ embeddings while maximizing the

inner product of the document embedding to the negative sample’s embeddings.

Question 
(utterance)

Dense Passage Retriever

Document
encoder

Query
encoder

Document
Embedding

Query
Embedding

+

-
L X

Answer
(article)

Evalu- 
ator

Relevant? Yes

Articles
Random 
Article

No

Figure 3.3: DPR training with annotations

As we moved through the competition’s stages, we were storing more of our users’

utterances. We decided to put these real conversations to use, in regard to the DPR

training as well. A simplified overview of this process is represented in 3.3. We grouped

600 utterances of our users at the task retrieval stage and gathered the articles that our

Task Bot returned. We separated these into a question-answer fashion, where the question

was the user’s utterance (asking for help for a certain task) and the answer was a retrieved

document (DIY tutorial or recipe). We then asked both our team and students at our

University to rank the answer relative to the question on a scale from 0 to 2, where 0

is an irrelevant result and 2 is a very relevant result. We used the answers that were

really relevant to the question, as two-time positive samples, meaning we introduced this
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pair question-positive sample two times in our dataset (with different negative samples

and in another batch). We introduced the relatively relevant (documents which scored 1)

answers one time as a positive sample in our dataset. For negative samples, we used the

answers (documents) that were considered irrelevant by our users, as well as other random

documents (since some questions did not have an irrelevant answer). The result was a

dataset of around 5500 DIY and 2000 recipes question-document pairs. The reason for

the difference in the number of pairs is that our initial 600 utterances had a distribution

of 65% DIY related utterances and our Task Bot tends to return more results regarding

this topic.

Additionally, an index must be built. We use FAISS [31], which allows for, given a

query representation, or embeddings/encodings, the retrieval of similar documents. The

process is shown in 3.4.

Articles

Dense Passage Retriever

Document
encoder

Query
encoder

Document
Embeddings

FAISS

Index

Figure 3.4: DPR Data indexing

In this figure, we can see the available articles/documents are encoded using the

trained DPR model’s document encoder, which will generate an embedding for each of

the documents. Afterward, we feed the FAISS indexer these embeddings and it will create

an index with data that will allow us to query for relevant documents given a query’s

embeddings. Once again, we create two different indexes, for each type of data (WikiHow

articles and WholeFoodsMarket recipes).

3.1.3 Inference - document retrieval

In our project, we do not use the DPR alone. This is due to data scarcity, especially

when regarding recipes, but also to operate on a basis of maximum performance. On our

project, we were provided two APIs, one for querying the WikiHow website, and another

for querying the WholeFoodsMarket recipes website. These APIs are not controlled by

us and their inner workings are not transparent to us. The process of retrieving the most
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relevant documents from a user’s query is in figure 3.5. A user’s query is encoded by the

DPR’s query encoder, generating an embedding for it, which is the query’s representation.

We then use FAISS to get the most relevant documents relative to the query’s embeddings,

by performing a simple cosine similarity operation between the whole set of document

embeddings and the query’s embedding. In parallel, we call the API on the user’s query.

This request is not plain as it may have some alterations to the query, but this is out of the

scope of the project. After gathering both the APIs and the DPR’s relevant documents,

we proceed to a fusion of their ranks.

Dense Passage Retriever

Document
encoder

Query
encoder

User query

Query
Embedding

DPR relevant 
articles

Provided API

Index

API relevant 
articles

Ranking 
Fusion

FAISS

Index

Relevant 
articles

Figure 3.5: Inference - document retrieval

This fusion is dependent on which class of article is being fused. For recipes, we found

that it’s best to use DPR as a backup. This is due to the almost exact matching retriever

the WholeFoodsMarket recipe API returns. If the terms in the document are not the same

as in the query, there is a high chance this document is not considered relevant. However,

this API is very good at exact term matching, so we first try to use the recipes API to get

relevant recipes, and only if there are few recipes, do we resort to the DPR. This allows

for specific recipes to be privileged and returned to the user before the DPR attempts to

retrieve more far-fetching recipes. On the other hand, if the API doesn’t present enough

results, which may be the case when a user converses more naturally, the DPR is good at

filtering through the user’s text request and performing based on semantic analysis.

Figure 3.6 show both good and bad result for using DPR as a backup to the API. We

can see when the user queries for something in a more natural manner, it is possible

to return something related to it, as in figure 3.6(a), which presents chicken recipes.

However, sometimes when there shouldn’t be any matches (as is the case for a recipe of

fried dog eggs), we can see the DPR still returns something, although unrelated.

The WikiHow API is less rigid when it comes to query matching. This means this

technique of using the DPR as a backup is not viable, as even if almost unrelated to the

user’s query, this API will many times return articles. To avoid having less good results,
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we mix the ranks of the returned documents of both retrievers, by their confidence score

and the difference between the retrieved articles’ titles and the user’s query, measured

by the Levenshtein distance. By doing this, we can minimize the cases where the API

suggests irrelevant articles, but unfortunately at the cost of adding noise to good results

(where relevant articles by the API are sometimes interpolated with less relevant articles

the DPR suggests).

In figure 3.72, we can see both a case of a good ranking fusion and a bad one. In

figure 3.7(a), the user has asked (using voice commands), “How to tie shoelaces”. The

speech recognition software miss interpreted the words and queried our end as “How to

die shoelaces”. We can see that DPR shows both articles on how to tie shoelaces and how

to die shoes, trying to achieve the best of both worlds. The API was severely impacted by

the fact the word shoelaces was, instead of shoe laces with a white space in between. On

the other hand, in figure 3.7(b), it was asked “How to change a tire”, and we can see the

DPR ranks an article on “How to make a tire swing” very high, even when compared to

other articles DPR itself returned as less relevant.

(a) Query: recipe of heavenly made chicken (b) Query: recipe of fried dog eggs

Figure 3.6: Using DPR as backup on recipes

(a) Query: How to die shoelaces (b) Query: How to change a tire

Figure 3.7: Using DPR on DIY

2The articles marked with an asterisk are the ones retrieved by DPR
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3.1.4 Continuous Deployment

In this project, when a user calls for the assistance of our TaskBot (TWIZ), a lambda

function is launched to manage the dialog, being this is the core component of our bot.

This lambda function is responsible for calling the needed modules at each part of the

conversation, depending on the dialogue state. When it is time for a user to search for a

task, to which our TWIZ will assist, the retrieval component in this project is called. This

means we need our DPR module to be available at all times. On the other hand, as we

gather more data, we need to update both the index and possibly the models inside of

DPR, without disturbing the normal operation of the whole retrieval component.

The deployment diagram of the DPR integration in the article retrieval stage is repre-

sented in figure 3.8. While this omits several components, including the Alexa device and

other modules inside of TWIZ, like the filtering of possible articles that are dangerous

for example, it gives an overview of how this system is integrated into production. Note

that this diagram represents only one class of search (WikiHow or WholeFoodsMarket

Recipes), but there are two Docker containers and two APIs, one for each class. Currently,

to run the DPR, we have allocated an EC2 machine, more specifically a g4dn instance

with GPU, which is essential for running the both DPR’s inference and the FAISS similar-

ity search fast. For each class of article, we have a Docker container, which contains in

its file system both the FAISS index and the DPR’s model - this is the bi-encoder model

we’ve mentioned in section 3.1.2. Running inside the container is a Flask Server, which

allows for communication with Lambda (TWIZ), through HTTP requests.
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Figure 3.8: Deployment of DPR with TWIZ

When a user queries TWIZ for a given task, the Ranking Fusion module will request
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relevant articles to both the DPR and the API, by sending an HTTP request with the

query on the request. The order in which this happens is determined by the fusion

strategy, previously explained in 3.1.3. The API will respond with the articles it deems

relevant in a black-box fashion to us (as mentioned, we do not know the inner workings

of these APIs). When the DPR EC2 receives a request, it will forward it to the Docker

container, which will in turn forward it to the Flask Server. Here DPR will proceed and

return the query’s relevant documents and the HTTP response will have the documents

inside. The steps of how the relevant documents are retrieved are explained in section

3.1.3. Finally, following the appropriate ranking strategy, the Ranking Fusion module

will present the several task articles to the user (through the Alexa Device). This ranking

fusion strategy was not defined in the scope of the thesis. It was developed in an ad-hoc

fashion, prioritizing document features that we empirically found the users to prefer

(such as having video tutorials).
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Figure 3.9: Updating of Retrieval Component - live

For the basis of work, another EC2 (Playground) instance was used. This is, more

specifically a p2.xlarge instance, that once again has a GPU, essential for training. Despite

access to a cluster in the University being granted, this EC2 machine was preferred.

Although the cluster had more computing power, the EC2 machine was more versatile

and had a big leverage over the cluster, which is its network speed. The EC2 is in the

same region as the other Amazon Web Services the project uses, such as Lambda, or S3.

This means any file transfers are extremely fast, which is convenient since models and

indexes can be rather large files, in the order of 3GB per version. Any experiments or
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model training tasks done, such as training the DPR, building an index, or other works

were made in this machine.

The current procedure of updating of the Retrieval Component is laid out in the

diagram of figure 3.9. Here we skip the part of getting data for training as this comes

from several sources, described in 3.1.2. On the EC2, we proceed with the training of

the model on the new data, as well as the construction of the FAISS index. Afterward,

we upload both the model and index to an S3 bucket, hosted by Amazon. We keep the

several versions of the Retrieval component in this bucket. Having the new files stored

on the S3 bucket, we send a request to the EC2 machine that is running DPR, to update

the model used. The Flask Server will download the respective files from the S3 bucket

and will update both the model and index that is serving the Lambda requests.

3.2 Summary

In this chapter, we described the process of developing the task retrieval component for

TWIZ. We present how the training data was gathered or generated, how we integrated

DPR in TWIZ, as well as how the model is changed given new data.
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4

Testing

On our project, our team cannot only focus on developing new and improved features

for TWIZ. We were, as mentioned before, running in a research competition with nine

other teams as adversaries, and are publicly available on the behalf of Amazon through

Alexa. This means we must be able to perform according to a high standard and failures

are expensive.

For quality assurance, we at TWIZ, are obligated to make sure we comply with the

guidelines of Alexa Prize TaskBot Challenge [1]. This means, that every time we introduce

a change to our Bot, we need to perform a certification, to make sure we are meeting the

guideline’s criteria. These guidelines were given to us by Amazon and include several

requirements, from not allowing us to identify ourselves to the user (as bot TWIZ), so the

competition remains fair and anonymous, to not giving or recommending any financial-

related advice to the user. The list of requirements is very big and making sure that we

check every box is very time-consuming. If done as we were doing initially, it could take

around three hours to make sure our bot was up to the required standards. After tuning

this manual process, we were able to make it more efficient, but it still takes around two

hours to do this manually. This is because, we currently have to use Alexa verbally, going

through several sequences of interactions, that assure TWIZ’s behavior is acceptable.

Furthermore, testing a complex Dialogue System extensively is bound to face issues

regarding the complexity of the system [37]:

• The number of use cases that can be created to test the bot’s behavior is very large,

due to the many possible paths of dialogue the system supports;

• An automated testing oracle needs to be very broad as it needs to accommodate a

plethora of dialogue trees which we do not have in advance;

• A human testing oracle is prone to error and once again time-consuming;

• Since the output of the systems can vary greatly due to their Conversational nature

a testing oracle tool would be very hard to develop.
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Additionally, as these systems often rely on Machine or Deep Learning models, classic

software testing is not enough. The output of a system can be radically different without

changing a single line of ‘code’, by changing the models themselves or their configuration.

Conversational agents have gained popularity as of recent [52] and so has Quality

Assurance on these systems [37]. To accommodate the variance that these Deep learning

based agents produce, we follow a Deep learning approach to quality assurance. In this

section, we present a testing tool, which allows for quality assurance on Conversational

Agents, which we use on TWIZ. 1

An example use-case of this tool is presented in figure 4.1. In this example, the

developer first interacts with TWIZ through the testing creator/runner, creating a base

test. Then using the base test as input for the conversation generator, an alternative test

input is created. The developer must then run this input through TWIZ using the test

creator/runner, which will save the interaction and return it to the developer. Finally, the

developer passes both the base test and the alternative test to the conversation comparator

which will present the developer with a comparison HTML file for analysis.

4.1 Test creation and running

Test creation was a mundane process, which involved using the Alexa device 4.2(a) (or

its Developer Console 4.2(b)), to interact with TWIZ and copy in sequence the input

files, generated by the console. For the certification tests, for example, this process took

almost ten hours of human-machine interactions. This is very limiting and discourages

developers from further developing other tests, which can hinder the robustness of TWIZ.

As so, we wanted to simplify this process. A great example of how this feature can be

useful is in debugging. If we find that a sequence of interactions leads to an abnormal

response by TWIZ, we will probably need to repeat that entire interaction, with its several

steps, countless times until we find and correct the error. If a user could easily reproduce

this, through a test, the time to find the bug and correct it would decrease significantly.

Our tool provides a create mode, where users can input any desired text and this

will be automatically transformed into a test. We started automating the whole testing

and running process. Using some of the features that Amazon had provided us in their

toolkit, we can mimic Alexa, more concretely TWIZ, in a normal laptop or desktop

computer. TWIZ is usually run on an AWS Lambda function, which is a Server-less

Computing service that Amazon provides. Being able to run our bot locally, means

that we can easily run the local version of the code, without having to wait for it to

deploy and avoiding having to deal with code versioning for a simple test. This means

that the developer saves a lot of time in setting up a way to see the alterations they did

when introducing or correcting a functionality since it is almost instantaneous. For the

developer to test the alterations on the code belonging to TWIZ, they just need to save

1The link to the testing tool repository is: https://github.com/RuiMargarido/ConvFlowA.I.

gentTester
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Figure 4.1: Usecase flow of the testing tool
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(a) Device (b) Developer Console

Figure 4.2: Alexa - Device and Developer Console

the files. If the developers want to see behavior changes introduced on remote modules

(docker contained), they can also just run the updated dockerized module locally.

Not only are we able to run TWIZ interactively, using only a command line, but

even more importantly, we were able to make scripts that our bot will run in one go.

This means that for pre-defined checks or certifications we want to run, they can just

be launched and the developer can focus on other tasks while they wait for the output.

The running tests can be seen in 4.3. This solution provides a sort of automated manual

testing. Automated, due to the hands-off approach during test running, however, the

developer must still manually verify the presented behavior after the fact.

Figure 4.3: Output of test running on the terminal

While running, the tests output information that might be useful for the developer to

see. At the moment, for each interaction with the user (being simulated, following the

script) we are outputting the information below:

• The user’s speech content - what the test inputted into TWIZ;
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• The Intent detected by TWIZ - what TWIZ recognizes as the task to be accomplished

in a step;

• The output text of TWIZ - what the user would hear from Alexa, in response to

their input.

At the end of the test, the same information is generated into a file. An example of this

output is provided in figure 4.4. This example matches the running test example of figure

4.3.

Figure 4.4: Output file of test run

To make sure the testing suite is the most adaptive as possible, we have come up with

several ways for the developer to create and run a test:

1. Saving a local interaction as a process. This way, the developer can freely interact

with TWIZ, while the information (utterances; intent; bot response) is being stored

for later reproduction.

2. Running from a predefined set of utterances. The developer shows the utterances

to run and these will be passed through TWIZ, in the given order, saving the entire

interaction for later analysis.

3. Use previous conversations. This is very broad, but the conversations can be the

output of previously ran tests, or previous interactions with our users. This is

especially useful if you want to see changes that were introduced in TWIZ.

Another thing we had in consideration is the difference in flow that TWIZ shows

when using a screen-less device, compared to when using an Alexa device with a screen.

As mentioned in TWIZ’s paper [24], to reduce the user’s cognitive load, we introduce

variations in the output of our bot. An example is the search results, which present more

information to a user who uses an Alexa with screen device, as they can easily review the

information on the screen. With the tool, the developer can choose to run it as the device

they intend.
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4.2 Test presentation

Automation of running an interaction is very important, but so far the developer must

analyze the output on the command line or on a text file, to see if it is what is intended.

For this, the developer must have had to look at the output text files of the TWIZ’s run,

compare it to a previous version’s output and try to find the changes themselves. This is

not desirable, as looking at two similar raw text files and trying to identify the differences,

is not efficient and prone to errors.

Hence, we developed a way of producing HTML files, to explicitly show the differ-

ences between conversations. We developed this tool, to help the team compare any

conversations they want. One very important use case of this tool is presenting behav-

ior changes introduced by the developers. If for example, the Intent Identifier module

changed, the same sentence could at different times lead to different flows. This is a very

important area to assure, as introducing changes by accident can radically change the

user’s experience.

By using HTML, we can heavily customize the formatting of the text. Additionally,

users wouldn’t have to install any other program, as a browser can easily render these

files. An example of the tool is presented in 4.5. As shown, the tool presents a lot of

information. For a user that knows where to look at this might make sense, however, to

improve comprehension, we will detail the several parts of the tool, one at a time.

Figure 4.5: Test suite example presentation

Focusing on the headers in figure 4.5, we can see several attributes:

1. Turn - This shows the conversation turn, to which the following rows belong to;
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2. Class - Here, it’s shown the type of information that row contains. It can be the

user’s request utterance, the Intent TWIZ identified in the user’s utterance, and

finally, the bot response, meaning what TWIZ responded in regards to the request;

3. Old conversation - This is the original conversation;

4. New conversation - This is the new conversation or the conversation that is being

compared to the old conversation;

5. Score - This is a semantic similarity score, between the comparing sentences. More

detail is in section 4.3, but in summary, the meaning of the sentences are compared

and this column shows their similarity. The resulting range is from 0 to 1, the latter

being perfectly similar.

On items 3 and 4, it is presented in the color of the text, the letters in which the

texts differ (lexically speaking) as shown in image 4.6. If these sentences are significantly

different, then both texts are fully highlighted. Point 2, similarly follows this, comparing

the lexical similarity on user requests and also highlighting the intent entry, if the texts

have different values. We can see these two cases in image 4.6. These lexical differences

are calculated and colored using the ‘difflib’ library [17], which generates the HTML for

the text coloring. This whole table (except for the in-word text coloring/highlighting, as

mentioned), was generated using Airium library [17].

Figure 4.6: Difference highlighter

With this tool, the developers can see the differences between any two conversations

much faster. The example in figure 4.5, shows the case of two very similar conversations

concerning the user’s utterances. Although what the user was requesting was essentially

the same, there was a misclassification by TWIZ in turn 4. Both conversations intended to

see more options, but in the New Conversation, TWIZ acted as if the user wanted to go to

a certain step. We can see that the classified Intents are different - we decided to highlight

this difference in vivid red since this is usually a breaking point in conversation similarity.

This is the case in this turn as well, as from the breaking point on they follow different

flows. On the Score column, we can see what the tool judges as having the same meaning.

As one can see, although in the three first rows there were some minor differences in

the bot’s response, the semantical similarity score is quite high. In these three rows,

the lexical differences were small, so the tool only shows the difference in certain parts

(highlights in yellow on certain letters). This is more easily seen in figure 4.6. When

there are some differences as in turn 3, the lexical difference highlighter shows them in
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yellow. However, if the differences are significant, the whole text is highlighted. The Score

column follows a similar style. If semantically speaking, the sentences are very similar,

we do not highlight the background of that row, as in turn 3. If there the difference is

reasonable, we color the background from yellow to red, depending on the degree of

semantic dissimilarity (red being more severe). We implemented the highlights in this

way, to help the user focus on the differences. By using a contrasting red to emphasize

the big differences, the user’s attention is drawn out to this part [41].

4.3 Semantic Score of bot responses

Presenting the users with the differences in the comparing texts is very important, as

differences in the text may mean the behavior of our bot has changed. However, this is

not necessarily sufficient. As a complex task-assisting bot, TWIZ’s Response Sentence

module replies a plethora of synonyms for different instances of same the dialog flow. As

mentioned in section 1.2, this module is the one responsible for actually formulating the

response to be presented to the user. For example, if a user says something TWIZ does not

comprehend, sometimes we will say that what the user said is a tough request and that

we do not know how to respond, while other times we will apologize and say that TWIZ

is still learning and therefore it doesn’t understand the request. This complexity in the

response means that lexical similarity algorithms will show differences in sentences that

TWIZ generates, even though they mean fundamentally the same. As it is fundamental

to take into consideration these small variations, as the correct procedure for the bot, we

must analyze not only the lexical similarity of the responses but also their meaning. In

this manner, we can better compare whether conversations follow the same dialog flow

or not.

A human looking at two similar sentences would understand that their underlying

meaning is the same, and for that reason, they would quickly judge them as equal. The

approach we want to follow is similar. We will use a Deep learning model, to under-

stand how two sentences convey the same meaning, by comparing the reference sentence

(the expected result - an interaction) to the candidate sentence (the output of an interac-

tion in the test). These models permit a semantic understanding of sentences, which as

previously mentioned, are essential for a complete comparison between utterances. An

example of the advantages of these natural language understanding models concerning

lexical algorithms is shown in figure 4.7. We can see all three models (BLEURT, Universal

Sentence Encoder, and Sentence BERT) outperform the Levenshtein Ratio, namely in

correctly judging the second candidate sentence as more similar than the third.

While BERT [16] is still a baseline, when it comes to Natural Language Understanding,

it was shown to under-perform on sentence embedding methods and be computation-

ally inefficient for semantic text similarity, due to the cross-encoder approach the model

follows [51]. For our tool, we opted to use Sentence-BERT [51] to derive semantically

meaningful sentence embeddings and compare two sentences. Sentence-BERT follows
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Hm, I heard 'what tools do i need'. Hm, that's 
a tough- one. I don't know that, but you can 

say 'help' to find out the things I can do.

Could it be rain? Could it be someone? It 
most certainly isn't someone and the rain 

does not fall like this

I'm sorry, I don't know how to do that BLEURT

Candidates

Hm, I heard 'what tools do i need'. Sorry, I 
don't know that. I'm still learning. If you are 
not sure what to say next, please say 'help'.

Reference

0.627...

0.480...

0.316...

(a) BLEURT

Hm, I heard 'what tools do i need'. Hm, that's 
a tough- one. I don't know that, but you can 

say 'help' to find out the things I can do.

Could it be rain? Could it be someone? It 
most certainly isn't someone and the rain 

does not fall like this

I'm sorry, I don't know how to do that
Universal 
Sentence 
Encoder

Candidates

Hm, I heard 'what tools do i need'. Sorry, I 
don't know that. I'm still learning. If you are 
not sure what to say next, please say 'help'.

Reference

0.745...

0.324...

0.030...

(b) Universal Sentence Encoder

Hm, I heard 'what tools do i need'. Hm, that's 
a tough- one. I don't know that, but you can 

say 'help' to find out the things I can do.

Could it be rain? Could it be someone? It 
most certainly isn't someone and the rain 

does not fall like this

I'm sorry, I don't know how to do that Sentence
BERT

Candidates

Hm, I heard 'what tools do i need'. Sorry, I 
don't know that. I'm still learning. If you are 
not sure what to say next, please say 'help'.

Reference

0.861...

0.330...

0.003...

(c) Sentence BERT

Hm, I heard 'what tools do i need'. Hm, that's 
a tough- one. I don't know that, but you can 

say 'help' to find out the things I can do.

Could it be rain? Could it be someone? It 
most certainly isn't someone and the rain 

does not fall like this

I'm sorry, I don't know how to do that Levenshtein 
Ratio

Candidates

Hm, I heard 'what tools do i need'. Sorry, I 
don't know that. I'm still learning. If you are 
not sure what to say next, please say 'help'.

Reference

0.595...

0.375

0.4

(d) Levenshtein Ratio

Figure 4.7: Similarity calculation, with different methods. A score of 1 means perfect
similarity
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a Siamese BERT architecture, where the output vectors of BERT are pooled to derive

the embeddings. These embeddings’ spatial distance is then calculated using a distance

function. This function is chosen depending on the objective of the task at hand, but in

this work, we use a simple cosine similarity. The simplified architecture of the model is

represented in figure 4.8.

Sentence- Bert

BERT BERT

Embedding u Embedding v

Distance Function (u, v)
Po

ol
in

g

Po
ol

in
g

Sentence 1 Sentence 2

Figure 4.8: Sentence BERT Architecture

This model is used in our tool, to form the Score, column. With this, we show the

user the semantic difference between two responses from TWIZ. This way the developer

can, for example, evaluate more easily if the conversation output for the same input is

different. This column can be seen in figure 4.5. Other models, such as BLEURT [55],

were used, but were found to be underperforming.

With this functionality, we do not aim to be a test oracle, but try to expose a proba-

bilistic test oracle [9]. These do not consider whether a given test activity is acceptable or

not, instead, it reports the probability of the test case is acceptable. Even further, we do

not provide a probability for the whole test, but only for each bot utterance.

4.4 Conversation Test Simulation

Having tests be easily created by the developers is very important since we can ensure

a higher defect detection and minimize errors in TWIZ. However, our bot’s behavior

throughout the competition [1] changed regularly, and manually creating tests for every

scenario, in every version is not feasible. Unit testing is a test of the smallest separate

module executed by the developer in a laboratory environment to find if the software

matches the specified requirements [53]. Due to the complex nature of TWIZ’s current
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architecture, unit testing would be very demanding, due to the limitless ways a conversa-

tion can go. Designing a dialogue tree, with every possible path of a conversation, is not

feasible either and any purposeful change in the behavior of this task bot would mean

this tree (if it was ever possible to accomplish) would need a big refactor. We can see

that neither manual testing nor AI planning testing 2 is feasible in our context. Manual

testing, since it would take a long time for a human to test our bot extensively, and AI

planning testing has a big overhead in terms of time consumption while also not being

easily maintainable. After heavy consideration, we considered there was no better tester

than the user himself. As such, we will be leveraging the past, for conversation replay,

employing automatic test generation. The simplest way we support this is by actually

allowing easy reproduction of past conversations. This way, the developers can just grab

one past conversation, reproduce it and quickly compare the output using our tool.

New 
convs.

Runnable
testsTest 

generation
All 

conversations
Alternative utterances

Figure 4.9: Scheme of automatic test generation

4.4.1 Tests with multiple Dialogue branches

While the previously mentioned method repeats previous conversations, we want to be

able to mimic users and generate new conversations, to give us a broader testing ground.

As seen in figure 4.9, for the test generation, we are fetching alternative utterances from

the bank of previous conversations. These are utterances with the same meaning, but

with different words, or structured differently. For example, to see the ingredients of

a recipe, the user might say for example “Show me the ingredients” or “What do I need
for ingredients”. We want to gather these alternative utterances and replace them in

parts of the user interactions, in a way that mixes several of the user’s conversations,

generating a new artificial one. This follows the logic of both paraphrasing testing 2.4.5

and metamorphic testing 2.4.3. Given a base user utterance, we need to choose utterances

that should result in a similar conversation flow as we can’t for example perform these

changes on the task retrieval part of the interaction, without expecting a major impact on

the logic of the conversation. This is due to this change possibly cutting the conversation

flow, as the retriever would not return the same set of tasks or recipes and the next step of

task choosing could fail, making this test less useful. Visualization of the kind of impact

that certain changes on cause in a conversation flow is in image 4.10, where it’s possible

2see Related Work 2.4
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to see that a single change in the task search utterance, causes a different flow for the rest

of the conversation.

Figure 4.10: Example of conversation flow break, due to change in search utterance

How many onions do I need?

How many oranges should I use?

How many onions should I chop? BLEURT

Candidates How many onions should I use?

Reference

0.804...

0.714...

0.646...

(a) BLEURT - good example

How many onions do I need?

How many oranges should I use?

How many onions should I chop?
Universal 
Sentence 
Encoder

Candidates How many onions should I use?

Reference

0.864...

0.890...

0.654...

(b) Universal Sentence Encoder - good example

Go to the first step.

Last step please.

Show the last step. BLEURT

Candidates Go to the last step.

Reference

0.670...

0.645

0.658...

(c) BLEURT - bad example

Go to the first step.

Last step please.

Show the last step.
Universal 
Sentence 
Encoder

Candidates How many onions should I use?

Reference

0.699...

0.692...

0.668...

(d) Universal Sentence Encoder - bad example

Figure 4.11: Similarity calculation of different Utterances with same Intent, using differ-
ent methods. A score of 1 means perfect similarity

4.4.2 Switching between Dialogue branches

Some utterances with the same classified intent (according to TWIZ’s Intent Identifier

module), express two different meanings. This is the case for QuestionIntent. This intent

is matched when the user asks a question to TWIZ, for example “How many onions
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should I use?”. Although “What time should the oven be?” also matches QuestionIntent,

they should not be used as substitutes for one another. Once again, we are to apply

deep learning models, in conjunction with the Intent segmentation, to understand the

underlying meaning of the sentences and use closely related sentences as alternatives. In

figure 4.11(a) and 4.11(b), we can see an example where the models classify the intuitively

similar examples as having a higher similarity. However, we can see in 4.11(c) and 4.11(d),

this is not always the case. While all the sentences are related to the GoToStep intent, they

are about different steps, thus would change the flow of the conversation. The models

do not perform as intended and using them, would cause a jump to a different step, thus

causing a very different flow of conversation. As such here are the parts which we decided

not to change:

• LaunchRequestIntent - This is the intent that is captured by Alexa to launch skills,

such as TWIZ. This is only propagated to us and has no impact on the rest of the

flow of the conversation;

• IdentifyProcessIntent - This is the intent given to an utterance where the user is

trying to find a task to achieve with the help of TWIZ. We found that although there

were many similar utterances in meaning, these introduced small variations, which

cause the returned tasks to be different or in a different order, which compromises

the rest of the flow.

• FallbackIntent - An utterance is classified with this intent when no other Intent

is adequate. This means this intent’s utterances are often badly formed, caused by

speech recognition errors or user speech clutter. For example, vocalizing interjec-

tions during the thought process.

• UserEvent, ProvideUserNameIntent, RequestAnonimityIntent, NoRestriction-

sIntent, ToolConfirmationIntent, ConfirmUserNameIntent, AdjustServingsIn-

tent, ZoomStepIntent, AskAboutCuriosityIntent, ScrollUpIntent - These intents

take a variety of tasks, but are either too infrequently used, unrelated to the conver-

sation or have few logical utterances (they are senseless).

To generate new conversations, by switching similar user utterances in previous

conversations, we reuse the already implemented models BLUERT[55] and Sentence-

BERT[51], used in section 4.3. These, have a role in finding semantically analogous

sentences, that should not generate a divergence in the flow of the rest of the conversation

(if the bot behaves as intended). An example of this switch is demonstrated in figure 4.12.

From the conversation in the old output column, we generated a new conversation, shown

in the new output column. This new conversation is heavily based on the old one and

should have the same flow. We can see that the IdentifyProcessIntent user request was

not swapped, since as previously mentioned 4.4.2, this would impact the flow. We can

see in this figure, in turn 4, there was a bug in TWIZ’s behavior. For us, it’s plain to see
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that the user’s utterance “I like more options”, intends to see what other options (tasks)

TWIZ has available. In the old output, the correct behavior was exhibited and TWIZ

showed more options, while in the new output, the user’s objective was not detected and

the FallbackIntent was activated. While the rest of the test followed a similar logical flow,

its contents were completely off, since it was a different task.

Note that we are not developing a Simulated user testing tool 2.4.2. While this sort of

testing could be useful to create tests that could then be used to assert new versions of

TWIZ were still accepted, we found a better advantage in using the user data we already

had, by our system’s user. This would assure a known expected behavior in our bot.

Figure 4.12: Conversation generation, by utterance swapping

4.4.3 Using BLEURT comparison metric for conversation simulation

As exposed by the authors in [55], BLEURT is a reference-based text generation metric.

This deep learning model is built on top of BERT, by adding an additional classification

layer to BERT’s output. Although its architecture is heavily based on BERT, it was shown

to correlate better with human judgment when it comes to sentence comparison, due to

its training procedure. This model takes two sentences as input, which will pass by a

cross-encoder and lastly by the previously mentioned similarity classification layer, which

according to the generated embeddings will output a similarity score.

Even though it was originally developed to evaluate text generation systems, we use it

as a semantic sentence comparison metric between utterances of our users (humans). This

is due to its intended objective of classifying sentences in a human-correlated fashion. In

this feature of our tool, we wanted to generate new conversations using other conversa-

tions as a base, by mixing up equal-meaning user utterances. Due to its cross-encoder
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nature, BLEURT must compare only two sentences at a time (regardless of batch size, here

we are mentioning the specific comparison between sentences). Hence, when we want to

replace a user utterance with another similar utterance, we cannot do it in real-time, as

this would involve comparing it against a huge bank of utterances (effectively one against

all other utterances). This meant we must, before any utterance replacing, have a way of

quickly fetching similar utterances for a given sentence. This stage is shown in 4.13.

BLEURT

Utterances

Intent Grouping

Next  
Intent

Yes 
Intent

Cancel 
Intent

... Intents

BERT

Utterance A
Utterance B

Classification
Utt. A

Utt. B

Utts

...

Utt. A
-

Similarity

Utt. X
-

Similarity

Utt. B
-

Similarity

Utt. X
-

Similarity
...

...

...Utt. Ref
-

Similarity

Utt. Ref
-

Similarity

A and B Similarity

Figure 4.13: Storing utterance similarity with BLEURT

In the figure4.13, it’s shown that every user utterance we had in our record, was

separated and grouped by intent. This is due to the fact that utterances that were classified

with the same intent, are likely to be similar. By having this heuristic, we can reduce the

number of runs of BLEURT utterance pair comparison, since an utterance will only be

compared to other utterances of the same intent and not other ones. Moving forward,

every utterance is compared to other utterances of the same intent and it’s BLEURT

similarity score is stored in a dictionary. This dictionary, represented on the right side of

figure 4.13, has an entrance for every utterance with an array inside. This array has in

each position a tuple with both another utterance reference that the entrance’s utterance

was compared with, as well as the BLEURT similarity between the two utterances. This

array is ordered by similarity, meaning the first entrance of the array, will be the sentence

deemed most similar.

Having this dictionary makes the conversation generation process relatively straight-

forward. This process is shown in figure 4.14. Given a base conversation, from which we
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Response A

Utterance A

Response B

Utterance B

Response C

Utterance C

Response D

Utterance D

Utt. B

Utt. A

Utts

...

Utt. B

Utt. B
Utt. Z

-
Similarity

Utt. W
-

Similarity

Utt. X
-

Similarity

Utt. Ref
-

Similarity

Utt. Y
-

Similarity

Response X

Utterance X

Response Y

Utterance Y

Response W

Utterance W

Response Z

Utterance Z

Figure 4.14: Using BLEURT to generate new conversations from a previous one

will generate a mimic, for every utterance, we go to the dictionary and switch it with one

of the most similar ones. This is of course done only for intents that allow for it since as

previously mentioned, some intents are too sensitive for changes and a slight difference

may severely impact the rest of the flow. We do not wish for this flow change, as the

idea is to keep a concise flow and thus test the bot for utterance variation and not flow

variation. By the end of this process, we have a newly generated conversation from a mix

of past conversations, which should have a similar conversation flow. This conversation

can then be run on a conversation agent, to see if the bot responds differently than before.

This implementation of the conversation flow tester has however drawbacks, which

cause it to fall short in some regards. First, the initial computation power to form the

dictionary is quite high. Even when considering performance optimizations, such as

length batching, running BLEURT this many times is time costly. This optimization

organizes sentences in a way that minimizes the use of padding by maximizing the sen-

tence sizes in a batch to fit the model, without introducing dissimilarity in batch sentence

size. However, this is not enough, since we have to run pair comparisons between hun-

dreds to thousands of utterances, depending on the intent group. As more utterances are

gathered, this problem would only become worse, as those utterances would need to be

compared with the previously stored ones. Hence, creating new conversations from very

recent transcripts of user interactions would mean an update of the dictionary, which is

time-consuming.

43



CHAPTER 4. TESTING

4.4.4 Using Sentence BERT sentence portrayal for test generation

As previously mentioned, the cross-encoder architecture of BLEURT forces a comparison

to be done within the model, with a pair of sentences 4.4.3. The drawbacks that are

brought by this led us to use Sentence BERT to generate alternative conversations. This

model follows a Siamese BERT architecture, where the outputs vectors of BERT are pooled

to derive the embeddings. These embeddings’ spatial distance is then calculated using a

distance function. This means the model does not perform a direct comparison between

the sentences, but instead it generates a representation vector for each sentence, which

can easily be later compared. The way we store the utterances for comparison is shown

in figure 4.15.

Utterances

Sentence- Bert

FAISS

Index
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Figure 4.15: Storing utterance similarity with Sentence BERT

The process exemplified in 4.15 is quite simple. We run every utterance at our disposal

through the model and store its generated embeddings in an index using FAISS[31]. This

library allows for very fast index search, which coupled with the fact that Sentence BERT’s

inference is quite fast when run on a powerful GPU, means that fetching alternative

similar utterances can be done on-demand. This contrasts heavily with our previous

approach, where we had to put a sentence through a pipeline to get similar ones and

where adding a new “unseen” utterance, could not be done live as it had to be previously

compared.
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The process of actually generating a new conversation can be seen in figure 4.16.

Here, all utterances in a conversation with appropriate intent, are run through Sentence

BERT to extract their representations (their embeddings) and these are searched in FAISS

which allows us to find neighboring embeddings, meaning similar utterances, which will

replace the current ones.

This approach is much more suitable for distribution among developers since they

can use any conversation they intend, which will be a basis to generate a new one.
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Utterance Y

Response W

Utterance W

Response Z

Utterance Z

Neighbour finder

Neighbour finder

Neighbour finder

Figure 4.16: Using Sentence BERT to generate new conversations from a previous one

4.5 Conversation flow breakpoints

In the previous sections, we showed the difference in output that TWIZ generates, with

either the same or slightly different input. We showed when TWIZ’s intent detection

module classifies sentences as different intents, the conversation flows from there on is

usually different. This was shown in figure 4.5, where after the Intent highlighted in red

the output text is very different.

To get a better grasp of our bot’s behavior, we implemented a way of quickly com-

paring the conversations with an additional one. This allows for an understanding of

whether this conversation flow-breaking utterance is indicative of a major change in the

conversational agent. The objective of this feature is to understand whether this change

is recurring and understand whether it’s intended or not.

There are essentially two modes of this feature.
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4.5.1 Anomaly detection

The first mode is the detection of an anomaly. In this situation, the three conversations

present are meant to be the following:

1. Old output - A conversation that has happened in the past, between a user and a

previous version of TWIZ;

2. New output - A newly generated input conversation that was fed to TWIZ. This

conversation was meant to mimic the previous conversation 1 and was formed using

the methods in section 4.4; 3

3. New output after breakage - A new conversation based on 2, with the only differ-

ence being the utterance of the previous conversation’s breaking point.

The idea of using this mode is to understand whether a given unintended breakage

in the flow of the conversation is an isolated event or whether it is a recurring issue. A

practical example is in the case of the developers finding that a certain utterance is being

misclassified by the intent detection module. Consider 1, to be a previous conversation

interaction with a real user, 2 to be a generated conversation based on that previous

conversation with semantically similar utterances, and 3 to be equal to the previously

mentioned generated conversation, but with the only difference being the miss classified

utterance. An example of this exact scenario is shown in figure 4.17. With this three con-

versation verification, the developer can understand more accurately and in a systematic

way that the miss classified utterance was just an isolated event and that it likely is just an

edge case of the classifier. This means that the anomaly can be quickly corrected without

worrying about deeper issues.

We can extrapolate the previous example to a scenario where several alternative ut-

terances of the misclassified utterance were tested. This would provide an even greater

assurance that proves this was an isolated miss classification and there was no major issue

within the classifier. While this functionality was not explicitly developed, it could be

performed using the provided tools.

In the image of the example 4.17, we see that the utterance in turn 4 of the conversa-

tion respective to item 2 caused a conversation flow breakage. The “go to more options”

utterance was misclassified and the detected intent was different from the previous classi-

fication. From here on, the tool shows the comparison between the original conversation

1 and the altered one with the corrected alternative utterance to the miss classified one

3. As we can see, although there are some differences between the conversations 1 and 3,

they are semantically similar, with the worst score given by our Semantic score equalling

0,8. This is acceptable and proves that the issue is small.

3This can also be a conversation created by the developer which closely follows the conversation of item
1
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Figure 4.17: Three-way conversation analysis for anomaly detection

4.5.2 Change introduction

The other mode is the detection of the introduction of a new change. In this mode, the

three conversations present are meant to be the following:

1. Old output - A conversation that has happened in the past, between a user and a

previous version of TWIZ;

2. New output - A newly generated input conversation that was fed to TWIZ. This

conversation was meant to mimic the previous conversation 1 and was formed

using the methods in section 4.4. However, it was created after a change had been

introduced in the bot; 4

3. New output after breakage - A new conversation that heavily mimics conversation

2. This is an assertion that the conversation is indeed repeatable (although in a

differently spoken manner).

In this mode, a user can quickly understand if a change that has been introduced, was

successfully implemented. With a base conversation the developer has created for testing

purposes as base 2, they can now see if other similar conversations 3 follow the same logic

and are similar, comparing to the intended new flow 2 and also the older undesired flow

1.

In figure 4.19, we can see a use case for this mode. The conversation on the left

contains a bug that was found in the behavior of the bot, regarding intent detection in

4This can also be a conversation created by the developer which closely follows the conversation of item
1
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turn 4. After proceeding with code or model changes, the developer tested again with

a similar conversation (the conversation in the middle of the figure), which still had the

failing utterance. The output was what was intended, but for extra assurance, another

conversation was generated (the right one), which was heavily based on the previous one,

although with different utterances (with the same semantic meaning still). From figure

4.19, it can be seen that the behavior was the same for the two most right conversations,

which was intended.

If the new conversation 3, did not follow the same logic as 2, then not only would the

conversation on the red be more highlighted in red with even some red Intent rows, the

Score column would have presented lower results. This would tell the developer that the

change was not correctly introduced and was instead too specific fixing only the provided

base case.

Having the possibility to quickly judge if the changes were propagated or not to other

possible conversations with a similar flow, is very beneficial. This is due to the plethora

of flows that can exist that should follow the same logic as shown in figure 4.18. If the

developer only tests the behavior with a single conversation, then others might have been

ignored and still exist.

Let's work together

Hi, this is an Alexa Prize Taskbot.
I'm excited to help you cook tasty recipes, 

and handy DIY tasks! ...

Hi, this is an Alexa Prize Taskbot.
I'm excited to help you cook irresistible 
recipes, and entertaining DIY tasks! ...

...

Can you help baking a cakeHow do I bake a cake I'm interested in baking a cake ...

Here's what I found in Whole Foods Market for cake .    
Hummingbird  Cake, Chiffon Cake, and Crazy Cake.  If you 

prefer visual queues, the  videos in the  first  recipe can help 
you better understand what to do.   You can also ask me for 

more options.

Here's what I found in Whole Foods Market for cake. 
Hummingbird Cake, Chiffon Cake, and Crazy Cake. The first 

recipe has some videos which might help follow along. You can 
also ask me for more options.

...

Can I have the second Chiffon Cake please Show me the first recipe
...

.

.

.
User utterance

Bot response

Figure 4.18: Dialogue tree of several possible paths for the same flow
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Figure 4.19: Three-way conversation analysis for change introduction

4.6 Summary

In this chapter, we describe the developed tool for TaskBot quality assurance. We explain

the features this tool implements encompassing the automated running, the presentation

of the differences in an HTML format with a semantic similarity comparison between the

output, and the generation of new tests by mimicking user conversations among other

features. We believe this tool can optimize resources, including development time, as

well as increase the quality of a TaskBot.
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5

Evaluation

In this chapter, we aim to evaluate the work done. We will evaluate both the Retrieval

component, developed for TWIZ, as well as the test suite designed to test Task Bot con-

sistency and correctness. We present the metrics and methods of evaluation in both

sections, as well as the preliminary results of the Retrieval component and an analysis of

the developed test suite.

5.1 Task Retrieval

When a user intends to ask for guidance on a task, we must fetch the closest article to the

user’s intention given their utterance. This is not simple, as several factors may hinder

the ability to fetch the correct task article, such as term mismatch. We opted to use

Dense Passage Retrieval [34], as it is a semantic retrieval algorithm, aiming to tackle the

lack of flexibility in article fetching of the APIs that Amazon has provided us. Here we

evaluate how the Dense Passage Retrieval algorithm implemented in TWIZ behaves, with

its several versions.

5.1.1 Metrics and Method

To evaluate the Dense Passage Retrieval, as well as the Task Retrieval component as a

whole, we use manual annotation on query-article pairs. We gathered previous conver-

sations with TWIZ’s users and grouped their queries along with the given results. We

obtained a dataset of around 10.000 (ten thousand) query-article pairs. We distributed

these pairs among both team members, university students and crowd-workers of Me-

chanical Turk [7]. We asked the users to rate how relevant the article was, concerning the

query, ranging from 0 to 2, zero being irrelevant, one considerably relevant, and two very

relevant.

With this annotated dataset, we then calculated the Mean Reciprocal Rank (MRR) and

the Mean Precision at 3 (MP@3) for several of the parts of this component. The Mean

Reciprocal Rate is the mean of the reciprocal rank (RR) over the query-article pairs in

the dataset. The reciprocal rank is calculated based on the place of the first relevant
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article in the results. If the first relevant article is in the first position, then the RR is 1

(1/rank). If the first relevant article is in position two, then the RR is 0.5 (1/2) and it

would be 0.33(3) if the first relevant article is placed in the third position. This metric

was shown because it favors models that return relevant articles in the first position. This

is especially important given that to the Alexa[6] devices without screen we only present

a resulting article at a time. The mean precision at 3, is the mean of the precision over all

the query-article pairs, looking at the first 3 returned results. This means that for each

query, we must see how relevant the first three results are, or how many of those three are

relevant. If the retrieval component returns only relevant articles, then the precision at 3

is 1 (Sum of relevant/ 3). The reason MP@3 was chosen is that the Alexa[6] devices with

a screen can only show three articles at a time in the result presentation screen, therefore

we want to see how many of these are relevant. A more thorough explanation of these

metrics is located in the Related Work section.

Created Metrics

We found there was an issue with our evaluation method. Since the data that was

gathered, meaning the queries and resulting articles that were annotated, were from past

conversations before we had implemented the stable version of DPR trained with T5.

Instead, there was a first basic version of DPR that was not fine-tuned, which returned

only results as a backup when there were no recipes and that only returned a result

at every third position (i.e. third, sixth ...) on Wikihow articles. To evaluate the T5

trained version of DPR, we queried the model with the dataset’s queries and matched

the resulting articles to the given annotations. This meant that we could only evaluate

DPR by articles returned by the APIs, which is at least limiting. Many of the articles that

DPR returned were not annotated and using those same metrics was unfair, since DPR

could have returned better articles, which were considered irrelevant, due to the lack of

annotation.

To minimize this issue we created adapted metrics. These would not solve the initial

issues, of DPR being able to return articles the APIs did not, but at least the non-annotated

articles were considered irrelevant. The metrics we created were called Sampled MRR

(S-MRR) and Sampled MP@3 (S-MP@3). These metrics follow a similar fashion as the

original metrics, however, there are two changes. First, only queries in which the DPR

returns at least one annotated article. Second, inside each query’s results, articles that

were annotated are considered for the ranking.

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

(5.1)

For clarification, looking at the expression for MRR in 5.1, a couple of things have

changed. Q is no longer the set of queries in the dataset, but the set of queries that

have at least one resulting retrieved article which was annotated. For the ranki , only

articles which were annotated are considered. For example, over two queries, one did
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Results MRR MP@3 S-MRR S-MP@3
(Threshold) 1 2 1 2 1 2 1 2
Amazon API 0.75 0.67 0.82 0.69 0.95 0.84 0.91 0.77
Fused 0.76 0.72 0.84 0.64 0.96 0.77 0.93 0.70
DPR T5 0.60 0.52 0.44 0.37 0.98 0.86 0.97 0.80

Table 5.1: Results on recipe retrieval

Results MRR MP@3 S-MRR S-MP@3
(Threshold) 1 2 1 2 1 2 1 2
Amazon API 0.64 0.48 0.45 0.26 0.66 0.50 0.46 0.28
Fused 0.72 0.56 0.60 0.36 0.75 0.58 0.62 0.38
DPR T5 0.35 0.28 0.22 0.15 0.79 0.61 0.73 0.51

Table 5.2: Results on Wikihow retrieval

not have any annotated articles and in the second if the first retrieved article by DPR

was not annotated, the second was and was irrelevant, and the third retrieved article was

annotated and relevant, the sampled Mean Reciprocal Rated for the set of those queries

would be 0.5. This is because |Q| = 2, and the S-RR in the annotated query was 1/2, as

ranki was 2, due to the first result not counting.

S-MP@3 follows a similar logic, but when the Precision is calculated in a given query,

the division cell is at most 3. There can be the case where if only one of the returned

results of DPR (it returns 5) is annotated, then the dividing cell might be 1.

5.1.2 Results

The results are shown in the tables below (5.1 and 5.2. The tables are separated depending

on whether they are in respect to a recipe or wikiHow article retrieval and by relevance

threshold - the score in a range of 0 to 2, where a recipe is considered relevant. The Fused

category, represents a fusion of the articles of the Amazon API and the out-of-the-box

DPR (pre-trained only), fused as mentioned in section 3.1.3

As expected the results are very dispersed. In general, we can see that the search

component performs better on recipe retrieval than Wikihow. This should be due to

the very broad range of topics that Wikihow supports, which even includes recipes as a

subtopic. Looking both at the results of MRR and MP@3, we can infer that there must be

some queries that aren’t returning any relevant articles, taking into account that several

times the MP@3 is below 1/3. On the other hand, the MRR is higher than the MP@3,

meaning that when there is a match for a query, it’s usually on the first two or three

positions. We can understand that the base DPR is helping the Amazon-provided APIs,

as the Fused results, which are a mix of API and the base pre-trained only DPR, often has

better results than the API alone. Furthermore, we find that DPR trained on T5 performs

badly on these metrics, most probably due to the number of not annotated articles. In

general, this retrieval only matches (annotated results) around one-fourth of what the
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other methods return. Looking at the sampled columns, it seems that the DPR trained

with T5, outperforms the other models, but we are unsure if there is any bias in these

created metrics. Overall, we were satisfied with the behavior of DPR, as it could fetch

articles that greatly suffered from term mismatch, not limiting the user to his own words.

5.2 Test Suite

Extensively testing a chatbot as complex as TWIZ, is an intricate issue. Traditional soft-

ware testing faces issues since the agent doesn’t interact in a pre-defined way and its reins

are much looser. The users can input an expansive amount of utterances and given it’s a

Deep learning-based system, the output can also be fairly unexpected. Therefore quality

assurance on these Dialogue Systems must follow a different approach.

At the time of writing, TWIZ is live on Alexa [1] and if the guidelines that Amazon has

provided us are not respected, we are at risk of being put offline. Therefore we developed

a testing tool, that aims to test that the behavior of our TaskBot is robust and saves the

working hours of our developers, so they can focus on developing or improving features.

The benefits that our testing suite provides are divided into two categories:

1. Time savings - the time that the developers save on manual testing;

2. User robustness - the new user-based scenarios that are generated;

3. Ease of use - how much easier it is to use the tool

The last category is hard to measure, as user satisfaction tests would need to be taken.

What we gathered from example users as obvious benefits of using the testing suite is the

following:

1. Comparing too text files side by side is much harder. Using the tool the users didn’t

need to scroll simultaneously on two files, to compare the differences between the

contents;

2. Mental load - Users informed us the mental load needed to compare the two files

was much higher than that of looking at the generated HTML file by our tool;

3. Organization - A user reported that if using our tool to find errors, these were

plainly visible. On the other hand, if using just the two text files for comparison,

they needed to write down where errors were found, to later address them.

4. Skipping - Users said that since the tool highlighted all the differences, they were

much more confident in their analysis. Using the text files, the users were demo-

tivated by the end and reported they might have skipped something since they

weren’t reading all the text to find small details. This was also observed when a user

didn’t find a bug in the text while using the text files.
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As for negatives of our tool regarding ease of use, users had two to three complaints.

1. The highlighting of the bot response had weird behavior. Users said that sometimes

when two large responses were big, any difference between them would highlight

the entire rectangle. This is a limitation of the used highlighting tool we used [17],

however, users said the ‘Score’ column helped them understand if there was any

obvious difference;

2. The score column was not highlighted enough. Some users mentioned how they

hadn’t even noticed the column was there and didn’t initially understand the func-

tionality.

3. Intent mismatch highlighting. A user said that some intents were wrongly high-

lighted in red and the bright color detracted them from continuing to read the test.

This was due to a breakage in the conversation flow, caused by an unfortunate

alternative generation. More on this in 5.2.2.

5.2.1 Time savings

Regarding time savings, our tool helps with different tasks. Simply running the certi-

fication tests the team developed, a process that is essential to ensure that we aren’t

compromising Amazon’s requirements, used to take around 2 hours of active interaction.

This interaction between the developer and Alexa followed an existent document with

the input to test and the expected output.

Running time savings - Using our testing suite, running these test interactions in an

automated fashion, this time is reduced by a third, down to just 80 minutes. This is by

itself, a big improvement but it is much further enhanced by the fact that in the automated

test-running version that we developed, the developers do not need to be active. They

can dedicate their time to doing something else while the tests are running. So in fact

to run these certification tests that we developed, the developer needs only to dedicate

around 5 minutes, to manage the input and output files. We can extrapolate these savings

to other interactions as well, meaning a 30% decrease in test run time, but an actual 95%

reduction in time in active developer interaction. This latter data does not include the

time the developer needs to then analyze the results, which is being done actively by the

developer when they have to run the interaction.

To run these certification tests, we first had to create them. These were initially created

manually, in a shared text document. They were in the form of input and expected output.

Using only the tools that Amazon provided us to test our bot, the creation of these tests in

the appropriate format for automated reproduction took almost 10 hours of manual labor.

This was acceptable for a one-time practice and initially, before we had time to develop

any testing tools, it meant this was the only way to actually automate the certification. We

quickly classified this approach as unfeasible. The reason was that any change in the logic

in our bot, would mean having to either partially (or totally) create the test again, which
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would take too long (once again 10 hours for the entire batch), or edit the files manually,

which is both confusing and error-prone. Hence we created a way of simplifying this

practice.

With the current tool, the developer can create a test as he goes, meaning that during

the interaction with Alexa, the test is created in the background. It is hard to quantify

how long it takes to create a test since it is dependent on the length of the conversation

between the developer and Alexa. We can use the example of the certification tests once

again. To fully re-write these tests, the interaction took around 2 hours, instead of the 10

hours initially needed. Once again, we found another way to optimize this, by accepting

the input immediately. If the developer knows the input that he needs to pass to TWIZ,

he can just input the utterance lines at the beginning of the interaction and our testing

tool will take the utterances from the queue as they are needed. By doing this, the

developer can just write or copy the lines in advance, pass it to our testing tool and the

tool will take care of the rest, waiting for TWIZ’s replies and saving the interaction as a

reproducible test. Once again this is abstract for all conversations, as any can be turned

into a test. To measure the improvement, we can consider the same example as above.

Having the certification tests handmade as we had, the developer needs only to spend the

time inputting these lines into our tool. While the test running (and of course creation

in the background) procedure takes around 80 minutes, the developer can be inactive

during that period, since only a few minutes are necessary to pass the input.

An aspect we also decided to implement was to quickly reproduce a previous conver-

sation. During the competition [1], we had access to conversations with our users. If we

found there was a bug or something that seemed off, we could input that conversation

into our tool which runs it on TWIZ. This means that trying to reproduce a bug is quite

fast and the developer doesn’t need to talk with Alexa, they can just repeatedly run that

conversation (of course logging information and analyzing it), so they can quickly find

the issue. These interactions are saved as tests for later use if intended.

Summing up the running time savings:

• Running our certifications tests, from around 2 hours of active time to 5 minutes of

active time;

• Creating the certifications tests, from around 10 hours of active time to around 2

hours of active time;

Analysis time savings - Regarding the time to analyze the differences between the

output of the initial test and the new one, we measured the time savings that users had

on a use case of our tool. In order to measure this we gathered 3 developers of our

application. Given that asking these people to analyze the certification tests would take

too much of their time, we created another shorter interaction which we will call the

Standard interaction. This was an interaction of 40 turns, that correctly evaluated if

some functionality is working as intended such as choosing recipes, changing steps, and
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User 1 User 2 User 3Time in seconds to analyze
the test results File Tool FIle Tool File Tool

Approximate
time savings

1 - Same input 274 94 325 144
60%

(3m avg.)
2 - BLEURT generated
alternative

380 218 312 150
47%

(2m47s avg.)
3 - Sentence BERT generated
alternative

390 188 503 208
55%

(4m08s avg.)

Table 5.3: Test analysis results

reading the ingredients list. We validated this interaction to assure the behavior was

correct. Having this interaction, we created 3 more:

1. Same input - We ran the same interaction (same input as the Standard interaction)

using our tool and recorded the output;

2. Generated input BLEURT - We generated a new alternative input, based on the

Standard interaction, using the BLEURT model, as described in 4.4.3;

3. Generated input Sentence BERT - We generated a new alternative input, based on

the Standard interaction, using the Sentence BERT model, as described in 4.4.4.

We then developed 3 comparisons. One between each of the new inputs (and outputs)

and the Standard interaction. For each of these 3 comparisons, there were two methods

of doing it, the text file approach and the comparison using our tool. We asked each

developer to look to analyze 4 comparisons with at least all developers looking at one

of the text file comparisons and an HTML approach, while also making sure there were

gathered two opinions on each comparison. The results from this experiment are in the

table 5.3. Our tool compared to manual analysis between two files almost always halve

the needed time. Although we don’t have a concrete idea of how much time would be

saved on the certification tests by using our tool, an extrapolation can be made. Given the

developed certification tests have around 10 times the size of this Standard interaction,

we expect our users to take around (94+144/2) * 10, equalling around 20 minutes to

analyze the results of these tests. This means we can expect the total active time for

a developer to perform the certification tests, of around 25 minutes, five of them for

running, twenty to analyze the results

5.2.2 User robustness

The other scope of our tool is to be able to create new test cases from previous ones. Much

like [12] and [52], testing our bot with semantically similar utterances, should output

semantically similar responses. This way, we can test the robustness of TWIZ, to the

human conversational unpredictability [37].
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For evaluation of this aspect, we should look at two variables:

• Quantity - how many alterations can we generate?

• Quality - are the generated alternatives behaving as expected? Are errors found?

Regarding the Quantity of alternatives that can be generated, we depend on the num-

ber of unique user utterances. While we cannot disclose these values, we can affirm that

naturally, some intents have a greater number than others. For example, task selection is

our largest set of unique utterances while moving on to the next step has a much lower

volume of utterances. Our tool allows us to generate alternatives possibly creating an

exponential number of new conversations from old ones, as sentences can be combined

in different forms. Furthermore, the generation of an alternative conversation is almost

instantaneous (this is subjective to the runtime computing environment), being able to

generate one conversation in a few seconds, depending on how many turns the base

conversation has.

Concerning the Quality of the alternatives, its evaluation can only be qualitative. The

users that performed the comparison in the previous topic 5.2.1, also gave input regard-

ing the quality of the generated alternatives. For the 40 utterances of the test case, the

Sentence BERT method 4.4.4 replaced 19. The users considered that 3 of them were bug

finders (meaning that there seemed to be some unexpected behavior) and another 3 of

them were unacceptable, as they changed the flow of the conversation and the mean-

ing was too different. Using the BLEURT method 4.4.3, of the same 40 utterances, 24

were replaced. The users considered one of them a bug finder and two of them to be

unacceptable replacements.

Conclusion

While the testing data is small for generalization, we can extract some conclusions

from this information. The first is that there should be a confidence threshold defining the

point at which the methods do not replace utterances. This would decrease the number of

total replacements, however, the unacceptable replacements will also decrease, so overall

the quality of the generated tests would increase. The reduction of the total amount of

replacements could be atoned since we wouldn’t need to ignore some utterances for re-

placement. Another possible conclusion we can draw from this evaluation is the BLEURT

method is a little more conservative. This is due to this method only looking to replace an

utterance with an utterance that was classified with the same intent. This minimizes the

utterance replacement to all of those gathered with the same intent, while the Sentence

BERT method compares to all gathered utterances. Overall the users found that the test

generation was a useful feature, even at the current state, since they could generate a test

and replace only the utterances they found unacceptable. Considering this, we developed

a way of quickly doing these small changes by providing the turn number which needs

to be replaced.
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Conclusion and Future Work

In this chapter, we present the conclusion for this thesis dissertation. We first reflect on

the contributions and then evaluate future work.

6.1 Contributions

In this thesis the contributions are three-fold:

1. We generated a synthetic dataset, based on queries that we obtained from a T5

model. This model ran on several articles from both Wikihow and WholeFoodsMar-

ket, and pairs of question - article were generated, for each category, for a total of

around fifty thousand recipes and two hundred and twenty thousand DIY pairs.

2. We first develop a task retrieval algorithm, which allows for the user to better fetch

articles that would help guide them. By avoiding a lexical retrieval algorithm and

instead focusing on a semantical similarity model, we can avoid term miss-match

on the users’ queries. We trained this model on the previously mentioned dataset 1,

thus adapting to this year’s Alexa Prize TaskBot domain.

3. We developed a Conversational Agent testing tool. This allows asserting contin-

uous quality in Conversational Agents, such as TaskBots, by presenting and com-

paring conversation runs, evaluated with Semantic similarity. It also allows for

conversation generation by mimicking previous conversations - ensuring previous

conversation flows are kept upon utterance variation.

6.2 Future work

This dissertation has improvement points. Firstly the Evaluation section (5) is missing

a proper comparison between DPR and the previously existing API retrieval, but also

between the several versions of DPR, the base one, the trained on the T5 generated

dataset, and the one finetuned on a further created dataset of annotations made by our

team members. While our created metrics and our general perception seem to indicate
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that the DPR is performing well and is beneficial to TWIZ, we should have a simple and

concrete way of showing this. The evaluation of the testing tool could be more exhaustive,

as only one use case was tested (although an extensive one).

Regarding the testing tool that we developed some points could be improved:

• Change the difference highlighting tool [17]. Users reported anomalous behavior

when the responses were big, as sometimes the entire rectangles would be high-

lighted.

• Introduce changes in the test generation. Some generated tests had utterances that

were semantically different replaced.

• A conversation flow is only considered broken (different from the test) when the

detected intent is different. Other methods to detect this could be used, such as the

Semantic score itself.

• Automatically create another conversation when a breaking point is found. This

newly generated conversation could be used to immediately show whether an anomaly

was repetitive or a change introduction was successful.

Finally, the updating procedure of the DPR model is not optimal and could be im-

proved by using orchestration services such as Kubernetes [47], which would avoid any

downtime.
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A

T5 question generator sample

questions

Table A.1: T5 question generator - Recipes

Recipe title Fields used Questions generated

Egg White

Omelet Bites

Title + description +

steps

How long does it take to cook

mushrooms?

How long does it take to make

omelet bites?

Title + description
How to make egg white

omelettes?

What are egg white omelettes?

Title + steps
How long does it take to make

omelet bites?

How long does it take to re-

move omelet bites?

"How to make"+ Title

+ description

How to make egg white

omelettes?

What is the best recipe for egg

white omelettes?

"How to make"+ Title

+ description + steps

How long can you keep the

omelet bites in an airtight con-

tainer?

How long does it take to cook

mushrooms?

How to Cook:

Roasted

Butternut Squash

Title + description +

steps

How long does it take to roast

squash?

How to prepare hard winter

squash?

Title + description
how to cook hard winter

squash?
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how to cook butternut squash?

Title + steps
How to peel butternut squash?

what size baking sheet should I

use?

"How to make"+ Title

+ description

how to make hard winter

squash?

how to make butternut squash?

"How to make"+ Title

+ description + steps

How long does it take to roast

a squash?

How to make hard winter

squash?

Mulled Wine

Title + description +

steps

What is the best recipe for

mulled wine?

How many orange slices do you

serve?

Title + description
what is mulled wine?

-

Title + steps
How many orange slices do you

serve in a mug?

How do you prepare mulled

wine?

"How to make"+ Title

+ description

How to make mulled wine?

-

"How to make"+ Title

+ description + steps

How to make mulled wine?

-

Table A.2: T5 question generator - Wikihow

Wikihow title Fields used Questions generated

How to Get to

Sleep

Title + description +

methods/parts + step

headline + steps

What can help you get to sleep?

What can you do to help you

get to sleep?

Title + methods/parts

+ step headline + steps

What are some of the things

that may keep you awake?

What can help you get to sleep?

Title + methods/parts

+ step headline

What is the best way to get to

sleep?

What are the best ways to get

to sleep?
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APPENDIX A. T5 QUESTION GENERATOR SAMPLE QUESTIONS

Title + description +

methods/parts + step

headline

What is the best way to get to

sleep?

What can you do to get a good

night’s sleep?

How to Jump

Rope

Title + description +

methods/parts + step

headline + steps

How do you swing the rope

over your head?

How many skips can you do in

one stretch?

Title + methods/parts

+ step headline + steps

How many pieces of bubble

gum do you wish to put in a

dish?

How many skips can you do in

one stretch?

Title + methods/parts

+ step headline

How do you get better at jump-

ing rope forwards?

What is the best way to jump

rope?

Title + description +

methods/parts + step

headline

How do you get better at jump-

ing rope forwards?

What is the best way to jump

rope?

How to Get to

Sleep

Title + description +

methods/parts + step

headline + steps

What is the reason for the tire

to stick

What is the best place to put

the jack?

Title + methods/parts

+ step headline + steps

What is the reason for the tire

to stick?

What should you do to prevent

the car from rolling?

Title + methods/parts

+ step headline

Where do you put the spare

tire?

How to change a tire?

Title + description +

methods/parts + step

headline

How do you change a tire with-

out having to ask for help?

Where do you put the spare

tire?
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