
DEPARTMENT OF
COMPUTER SCIENCE

MARIA BEATRIZ LOURENÇO E SÁ DE FERREIRA
MOREIRA

Master in 〈Computer Science and Engineering〉

FORMALISATION OF SMART CONTRACT
LANGUAGES

〈COMPUTER SCIENCE AND ENGINEERING〉

NOVA University Lisbon
〈September〉, 〈2021〉

DEPARTMENT OF
COMPUTER SCIENCE

FORMALISATION OF SMART CONTRACT LANGUAGES

MARIA BEATRIZ LOURENÇO E SÁ DE FERREIRA MOREIRA

Master in 〈Computer Science and Engineering〉

Adviser: António Ravara
Associate Professor, NOVA University Lisbon

Co-adviser: Mário Pereira
Researcher, NOVA University Lisbon

〈COMPUTER SCIENCE AND ENGINEERING〉

NOVA University Lisbon
〈September〉, 〈2021〉

Formalisation of Smart Contract Languages

Copyright © Maria Beatriz Lourenço e Sá de Ferreira Moreira, NOVA School of Science

and Technology, NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Acknowledgements

A year and a half has passed, a pandemic has passed, and I would like to thank the people

without whom this work would not be possible.

I would like to start by thanking Professor António Ravara and Doctor Mário Pereira

for the opportunity, for their support, and for the insight they shared with me throughout

this work.

I thank my friends: André for always understanding my frustrations; Guilherme for

making all those all nighters feel less stressful; and my friends João and Tiago for keeping

me in check. And I cannot forget Dr. Tânia Carneiro who has helped me through this

journey, and made me feel heard and validated.

I would also like to thank my boyfriend Filipe, who was always there for me in times

of need, who has never let me give up and has always celebrated my accomplishments

, and who, whenever I was doubtful about my path, has always shined a bright light to

help me see my future. I could not have asked for a better person to share my successes

with.

To my family, who has always pushed me forward and allowed me to follow my

dreams.

I would also like to give special thanks to my sister, Madalena, my best friend and

confidant, my work partner on those long days and even longer nights, for always believ-

ing in me and for always reminding me of who I am whenever I lost sight of who I was. I

cannot wait to see you grow and accomplish all the things you want in life and deserve.

And of course, my parents. To my mother who bestowed upon me her work ethic and

has always held my hand through my failures, and to my father who always told me I

could do everything. I thank both for working tirelessly to give me a good education and

to allow me to have all these opportunities, and for that I could not be more grateful.

iv

“Success is not final, failure is not fatal: it is the courage to
continue that counts. ” (Winston Churchill)

Abstract

Smart contracts automatically verify and enforce contractual agreements without the

need of a trusted intermediary, as potential conflicts are resolved by the network’s consen-

sus protocol. Since "code is law", contracts should be correct, but bugs and vulnerabilities,

often exploited by attackers, allow erroneous or even fraudulent behaviour. These days

smart contracts are still mostly being written in general purpose programming languages,

without proper specifications, let alone correctness proofs. Immutability is one of its

selling points, but it is also one of its major problems, as once a contract is deployed to

the blockchain it cannot be amended. Additionally, many vulnerabilities come from the

misimplementation of contracts’ intended behaviour, as developers struggle to grasp the

behavioural impact that the contract has in the blockchain. It is thus crucial to achieve

correct implementations of smart contracts.

In order to aid developers to promote the design of safer contracts that follow the

protocols they are supposed to implement, we propose the use of behavioural types in

smart languages. We believe that the use of typestates, for dynamic checking, and session

types, for static checking, can ensure the intended behaviour of the contract before and

during its execution.

To better understand a contract’s behaviour throughout its execution, we took advanta-

ge of Racket (and PLT Redex), to have a visualisation of a step-by-step execution graph.

By formally defining the syntax and reduction rules of a "core" smart contract language,

and how each rule affects the statements and the programs configuration, this visualisa-

tion tool allows programmers to check and adjust the language’s formal semantics. This is

a successful proof-of-concept exercise, confirming the suitability of Racket to develop pro-

gram semantics which can be analysed throughout its execution. In the context of smart

contract languages, these are important features (to be combined with formal verification

with proof assistants). Furthermore, we also implemented a typechecker in OCaml that

provides a type derivation tree of the program, in addition to preventing the occurrence

of execution errors.

To illustrate the usefulness of this approach, we took two different smart contract

languages, one completely formalised with syntax, operational semantics and type system

vi

(Featherweight solidity, FS), and another only with its natural language semantics (Flint).

We formalised FS in Racket and OCaml, where we were able to detect an inaccuracy;

and we repeated this process with Flint, formalising its operation semantics and type

system. The latter was much more challenging as it incorporated the use of typestates.

Throughout this thesis, we present many examples on how the use of visual tools can

help in the developing states of contracts and better understand the correct execution of

programs, as well as how the use of behavioural types can prevent many execution errors

even before running.

The framework we define herein not only finds defects in the contracts, but also,

crucially, detects vulnerabilities in a language construction, as we demonstrate with our

use-cases. Therefore, this approach is very valuable not only for the programmer as visual

debugging, but also for the language designer to test the effects of definitions.

Keywords: Executable Operational Semantics, Error Detection, Smart Contract Lan-

guages, Behavioural types, Type Systems, Programming Language Formalisation,

Blockchain

vii

Contents

List of Figures x

List of Tables xiii

Glossary xv

Symbols xvi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

2 Background 5

2.1 Distributed Systems: Concepts . 5

2.1.1 CAP Properties . 5

2.2 Blockchain . 5

2.2.1 Consensus Algorithms . 6

2.3 Smart Contracts . 8

2.3.1 Real World Examples . 8

2.3.2 Problems . 9

2.4 Racket . 10

2.4.1 Typed Arithmetic Expressions . 10

2.5 Behavioural Types . 14

2.5.1 Typestates . 15

2.5.2 Session Types . 16

3 Featherweight Solidity 18

3.1 Racket Implementation . 19

3.1.1 Syntax . 19

3.1.2 Operational Semantics . 20

3.1.3 Implementation Examples in Racket 25

viii

CONTENTS

3.2 Type System . 45

3.2.1 Type System Judgements . 45

3.2.2 OCaml Typechecker . 46

3.2.3 Examples . 46

4 Flint-2 49

4.1 Racket Implementation / Executable Semantics 50

4.1.1 Syntax . 50

4.1.2 Operational Semantics . 54

4.1.3 Implementation Examples in Racket 60

4.2 Type System . 76

4.2.1 Typing Rules . 78

4.2.2 Example of Typing Derivations 82

4.3 Extension of the Type System with Usages 87

4.3.1 Syntax . 88

4.3.2 Type System . 89

4.3.3 Typechecking Example . 90

5 Conclusions 93

5.1 Future Work . 93

Bibliography 95

Appendices

A Revised Typing Rules of Featherweight Solidity 99

B Operational Rules of Flint-2 101

C Typing Rules of Flint-2 104

D Typing Rules of Flint-2 with Usages 106

Annexes

I Featherweight Solidity - Original Reduction Rules 108

ix

List of Figures

1.1 BlockKing code fragments . 3

2.1 Syntax of AE . 11

2.2 Evaluation Context of AE . 11

2.3 Operational semantic rules of AE . 11

2.4 AE’s Typing Rules . 12

2.5 AE’s Grammar in Racket . 13

2.6 AE’s Operational Semantic Rules in Racket 14

2.7 AE’s Reduction Graph . 14

2.8 AE’s Typing Rules in Racket . 15

2.9 An auction implementation in MOOL [8] . 17

3.1 Modified Syntax of Featherweight Solidity [14] 19

3.2 Evaluation Contexts of Featherweight Solidity 21

3.3 Environments of Featherweight Solidity . 21

3.4 Judgement xin . 23

3.5 Racket implementation of rule Call - simplified 24

3.6 Remove parenthesis . 24

3.7 Function CALL2 - simplified . 25

3.8 Bank contract in Featherweight Solidity . 26

3.9 Racket implementation of Bank contract . 27

3.10 Contract’s initial state . 27

3.11 State after xeoa deployment . 28

3.12 State after yBank deployment . 28

3.13 Evaluation of function deposit . 28

3.14 Calling function withdraw . 29

3.15 Function withdraw’s body . 29

3.16 Calling transfer . 30

3.17 Final state of Di Pirro’s evaluation . 30

3.18 Featherweight Solidity Contract of Blood Bank 31

x

LIST OF FIGURES

3.19 BloodBank contract in Racket . 32

3.20 Initial state . 33

3.21 Defining xDoctor . 33

3.22 Doctor variables . 34

3.23 BloodBank deployment . 34

3.24 Calling setHealth . 35

3.25 Applying CallTopLevel rule . 35

3.26 setHeatlh body . 36

3.27 Modifying healthy variable . 36

3.28 Returning healthy . 37

3.29 Adding to healthy . 37

3.30 Final state . 38

3.31 Applier and Test contracts in Featherweight Solidity 39

3.32 Racket implementation of the Applier and Test contracts 39

3.33 Contract’s initial state . 40

3.34 Calling f1 . 40

3.35 Calling apply . 40

3.36 Calling square . 41

3.37 Evaluating square . 41

3.38 Final state . 42

3.39 BlockKing code in Featherweight Solidity 43

3.40 BlockKing initial state . 43

3.41 Contracts deployment . 43

3.42 BlockKing after aBx enters . 44

3.43 BlockKing after aBy enters . 44

3.44 BlockKing appoints aBy king . 44

3.45 OCaml typechecker - simplified . 46

3.46 OCaml typechecker output . 48

4.1 Example of an Auction in Flint . 50

4.2 Syntax of the Racket Implementation of Flint-2 51

4.3 Evaluation Contexts . 53

4.4 Flint-2’s Environments . 54

4.5 BlockKing Flint-2 code . 61

4.6 BlockKing Execution Example Pt.1 . 62

4.7 BlockKing Execution Example Pt.2 . 62

4.8 BlockKing Execution Example Pt.3 . 63

4.9 BlockKing Execution Pt.5 . 63

4.10 BlockKing Execution Example - Caller Groups 63

4.11 Solidity Concurrent Counter . 64

4.12 Flint-2 code of the Solidity Counter . 64

xi

LIST OF FIGURES

4.13 Counter Execution Example Pt.1 . 65

4.14 Counter Execution Example Pt.2 . 65

4.15 Counter Execution Example Pt.3 . 66

4.16 Counter Execution Example Pt.4 . 67

4.17 Counter Execution Example - Typestate . 67

4.18 Example of Auction by Sylvain Conchon, Alexandrina Komeva and Fatiha

Zaidi . 68

4.19 Auction Ligo code . 69

4.20 Auction Code Flint-2 . 71

4.21 Automaton Auction . 72

4.22 Automaton Client . 72

4.23 Client Code Flint-2 . 73

4.24 Auction Example Pt.1 . 73

4.25 Auction Example Pt.2 . 74

4.26 Auction Example Pt.3 . 75

4.27 Auction Example Pt.4 . 76

4.28 Auction Example Pt.5 . 77

4.29 Auction Example Pt.6 . 78

4.30 Auction Example Pt.7 . 79

4.31 Auction Example Pt.8 . 80

4.32 Auction Example Pt.9 . 81

4.33 Auction Example Pt.10 . 82

4.34 Auction Example Pt.11 . 83

4.35 Traffic Light contract . 84

4.36 Racket’s implementation of Traffic Light contract 85

4.37 Initial State of Traffic Light . 85

4.38 After contract deployment . 85

4.39 Light is amber . 86

4.40 Final state . 86

4.41 Revised Syntax of the Racket Implementation of Flint-2 with Usages 88

4.42 BlockKing initial state . 91

4.43 BlockKing execution stopped . 91

4.44 OCaml Main Contract . 91

4.45 BlockKing Usage . 91

4.46 Output of OCaml Typechecker . 92

xii

List of Tables

xiii

List of Listings

2.1 Withdraw function . 9

2.2 Simplified DAO Contract . 9

2.3 Mallory Contract . 9

2.4 Stack Typestate Protocol . 16

3.1 Example of an Auction in Solidity . 18

xiv

Glossary

liveness The liveness property guarantees that something good will happen. [7]

i

safety The safety property guarantees that nothing bad will ever happen. [7] i

type inference The process which consists of reasoning the type of a term within a

given typed system is called type inference [41]. Similar to type check-

ing, this process should be done at compile time. i

type checking To ensure that the program executes in accordance with the type system

and prevent some execution errors related to improper use of a variable

or expression type [41], the program is checked to impede these errors

from happening. This process is called type checking. When the type

checking is done at compile time, it is said to be a static checking, which

allows the errors to be detected earlier [29]. If these checks are done

during runtime, then it is a dynamic check [41]. i

type safety Property which declares that programs will not have errors which will

cause an unexpected behavior. [41] i

xv

Symbols

x̃ Sequence Notation: The symbol ˜ represents a sequence of zero or more elements,

i.e, ẽ represents e0 · · ·en, for some n ∈ N0. Similarly, x̃ : e defines x0 : e0 · · ·xn : en for

some n ∈N0. i

xvi

1

Introduction

With the rise of blockchain’s popularity, so did smart contracts’. Blockchain is a dis-

tributed infrastructure which comprises of peer nodes. Each node stores information

about the state of the network, which in itself contains a structure, ledger, that has the

information about the order of the transactions that were made within the network [46].

Every transaction executed in the blockchain has to be validated by the network through

a consensus protocol which assures that every node has the same ledger’s copy [46]. There

are two main consensus protocols, proof of work (PoW) and proof of stake (PoS).

Smart contracts are programs that describe and enforce the execution of a contractual

agreement without needing to rely on a third party to enforce it [13]. Without a trusted

intermediary, the network relies on a consensus protocol to reach an agreement on the

order of the transactions[46]. There are many applications of these contracts in the real

world, such as in the financial and banking sector - in the settlement and clearing; or in

the healthcare sector - to provide reliable and easy access to information [1].

Even though these contracts seem to be perfect for certain applications, there are still

many vulnerabilities that can be exploited. Like all software, smart contracts also have

security vulnerabilities and bugs that can be exploited and lead to millions in losses [13].

A well-known example of an attack to the Ethereum blockchain is The DAO [37], which

was a result of the exploitation of a vulnerability in the contract that managed to drained

millions of dollars in Ether, cryptocurrency of Ethereum. The vulnerability was due to

the variables of the contract only updating after calling the fallback function of the other

contract, which subsequently lead to a loop, resulting in the continuous extraction of

money; hence the importance of preventing such errors.

As a result, contract vulnerabilities are well known and categorized in order to help

prevent developers to commit the same mistakes. However, this approach is not enough

as many smart contract are written in general purpose programming languages that do

not enforce any type of specification of correctness. Furthermore, to make matters worse,

once contracts are deployed to the blockchain they cannot be modified.

As Dijkstra stated: "Program testing can be used to show the presence of bugs, but

1

CHAPTER 1. INTRODUCTION

never to show their absence!", and we believe many of the mistakes done by smart con-

tract developers arise from the difficulty in identifying the disparity between the actual

behaviour of the contract and the intended one [6].

1.1 Motivation

BlockKing 1,a smart contract with the intent of gambling money, is an interesting case

study as it utilises a server outside of the blockchain, Oraclize2, which in turn "invites

true concurrency" [36].

The behaviour of the BlockKing contract is defined by having, at any moment, a "block

king", which in the beginning is assigned to the writer of the contract. A new BlockKing

is appointed whenever a client sends money to the contract, and the modulo 10 of its

current block number (singleDigitNumber), which finds a number between 0 and 9,

ends up being the same as the random number j generated by a trusted third party, line

341. The now BlockKing is then sent a percentage of the money in the contract.

In Figure 1.1, we present a few snippets of the BlockKing’s Solidity code. The main

function is enter, called whenever a client s sends money to the contract. Through

lines 299-301, we can see information of s being stored in single valued variables. In

line 303, the contract queries Oraclize for a random number. The Oraclize’s response

enters through function __callback (line 305), which then triggers the function pro-

cess_payment in line 308. This last function is responsible for checking if the current

warrior’s singleDigitBlock matches the random number sent by Oraclize (line 340),

and if so, assigns it the new king (lines 347 and 348).

As Oraclize services are outside the blockchain, its response might not be immediate,

which means that by the time the BlockKing contract gets its random number, its state can

be significantly different. As stated before, all senders’ information are stored in single

valued variables, which can be a problem. In between the random number query and the

response from Oraclize, another client can enter the gamble, consequently rewriting the

warrior variables, and by the time of its response, the latter client has two chances of

winning, as it takes the previous client random number.

These kind of mistakes are common in smart contracts, but cannot permissible, as

these programs deal with great amounts of valuable assets; hence the importance of

preventing such errors.

1.2 Contributions

As testing alone is not sufficient, the need for tools to aid programmers in the design

of smart contracts and ensure safety before deployment is crucial. For this reason, we

advocate for behavioural types in smart languages, which have already been proven

1https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
2http://www.oraclize.it

2

https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
http://www.oraclize.it

1.2. CONTRIBUTIONS

293 function enter() {

294 // 100 finney = .05 ether minimum payment otherwise refund payment and

stop contract

295 if (msg.value < 50 finney) {

296 msg.sender.send(msg.value);

297 return;

298 }

299 warrior = msg.sender;

300 warriorGold = msg.value;

301 warriorBlock = block.number;

302 bytes32 myid = oraclize_query(0, "WolframAlpha", "random number between 1

and 9");

303 }

304

305 function __callback(bytes32 myid, string result) {

306 if (msg.sender != oraclize_cbAddress()) throw;

307 randomNumber = uint(bytes(result)[0]) - 48;

308 process_payment();

309 }

310

311 function process_payment() {. . .
312 ...

340 singleDigitBlock = singleDigit;

341 if (singleDigitBlock == randomNumber) {

342 rewardPercent = 50;

343 // If the payment was more than .999 ether then increase reward

percentage

344 if (warriorGold > 999 finney) {

345 rewardPercent = 75;

346 }

347 king = warrior;

348 kingBlock = warriorBlock;

349 }

Figure 1.1: BlockKing code fragments

successfully in object oriented programming language, as well as in communication-

centered ones, in order to promote safe smart contract design.

We present herein a proof-of-concept: an approach that takes advantage of both types-

tates and session types. We introduce Flint-2, a smart contract languages with typesstates

for dynamic checking, to session types, in order to promote static verification. Further-

more, throughout our work we introduce two visual debugging tools, PLT Redex and

OCaml typechecker to display all typing derivations in order to get a better understand-

ing of the actual behaviour of the contracts.´

This document is structured as follows: Chapter 2 presents the state of the art study

on Blockchain, smart contracts, Racket and behavioural types. In Chapter 3 we intro-

duce Featherweight Solidity, a calculus that models the core of Solidity. We present

our implementation and running examples with Racket, as well as a typechecker in

OCaml. This language was completed with syntax, operational semantics and typing

system formalisation, which we found to be a great base to our own implementation

3

CHAPTER 1. INTRODUCTION

of another smart language. In Chapter 4 we present our own formalisation of Flint-

2, and our implementation in Racket and OCaml. We finish the chapter with the in-

tegration of session types to Flint-2, and another example that proves the efficiency

of behavioural types. Chapter 5 summarises the accomplishments of our work and

what we want to do form future work. The work we developed is available at https:

//bitbucket.org/beatrizmoreira/msc/src/master/thesis/.

4

https://bitbucket.org/beatrizmoreira/msc/src/master/thesis/
https://bitbucket.org/beatrizmoreira/msc/src/master/thesis/

2

Background

2.1 Distributed Systems: Concepts

In this section we will present some relevant concepts, such as the CAP properties, what

is blockchain and some problems that arise from it, what are smart contracts and be-

havioural types.

2.1.1 CAP Properties

As Gilbert and Lynch [23] state, it is impossible for a web service to provide the following

guarantees:

• Consistency

• Availability

• Partition-tolerance

Web services attempt to achieve consistency in their database by relying on ACID

properties. ACID stands for Atomic (either the operations are committed or fail in their

entirety), Consistent (all transactions must result in consistent data), Isolated (uncom-

mitted transactions are isolated from each other), and Durable (once a transaction is

committed it is permanent) [23]. Likewise, web services are also expected to be always

available. And finally, on a distributed network, if any component fails, it should still

perform as expected.

2.2 Blockchain

A Blockchain is a distributed infrastructure within a network of peer nodes. Each node

maintains a copy of the ledger which consists in a "transaction log structure as hash-

linked blocks of transaction" [24]. Each block contains an ordered set of transactions,

and a hash that links each block to the previous one. A block can only be added to the

blockchain if it has been validated by a consensus protocol, and once a block is added to

5

CHAPTER 2. BACKGROUND

the chain it cannot be changed, making blockchain’s ledgers immutable in comparison

with other distributed ledgers. Blockchain provides ledger and smart contract services to

applications.

Blockchains can be classified into three main categories [46]:

• Public Blockchain: Anyone can read, send and receive transactions, and any partic-

ipant can join the consensus procedure.

• Consortium Blockchain: Has some constraints when it comes to writing permis-

sions, only pre-selected participants of the network can influence the consensus

procedure, whilst reading permissions are given to any participant.

• Private Blockchain: The writing permissions are restricted to a single participant

(or organization), despite the reading permissions being open to anyone.

2.2.1 Consensus Algorithms

A consensus algorithm is used to reach an agreement within the network in order to

validate the new blocks added to the chain, and to assure that every peer has the same

order of transactions in its ledger’s copy [46]. The problem of reaching consensus in a

network is that this process may be manipulated by malicious actors and faulty processes.

The "Byzantine Generals Problem" 2.2.1.1 is when the network fails to reach consensus

due to faulty actors. This problem will be explained with detail in section 2.2.1.1 and in

sections 2.2.1.2 and 2.2.1.3, we will discuss two of the most used consensus algorithms.

2.2.1.1 Byzantine Fault Tolerance

Byzantine Fault Tolerance is defined as the failure tolerance of a system against the Byzan-

tine Generals’ Problem (BGP) [46].

This problem is an abstraction that conveys the system components as generals, in

which their main goal is to reach consensus over the plan of attack. This problem also

describes how a reliable system should deal with faulty components that send messages

to the system to mislead others. The solution to this problem was proposed by Leslie

Lamport, Robert Shostak and Marshall Pease [28] that says that the problem can be solved

if more than 2/3 of the generals are honest, and if there are only 3 generals and one of

them is a traitor, then there is no possible solution. For it to work, the algorithm must

guarantee that the generals satisfy the following properties [28]:

1. All honest generals must decide the same plan, that is, an honest general will al-

ways execute the algorithm correctly, whilst the traitors can behave in anyway. The

algorithm must guarantee this condition, and the honest generals must reach an

agreement and also come up with a reasonable plan. For this condition to be satis-

fied, the following must be true:

6

2.2. BLOCKCHAIN

a) Any two honest generals must get the same value as the other honest general.

b) If the general is honest, then the value that he sends must be used by any other

honest general that receives it.

2. A small number of traitors will not be able to cause the honest generals to follow

the wrong plan. As the final decision is based on the majority of the votes, a small

number of traitors can influence the decision of the honest ones but only if they are

torn between two possible plans, in which case both plans are reasonable.

With this said, we will analyse two consensus algorithms that provide a probabilistic

solution to the Byzantine Generals’ Problem [46].

2.2.1.2 Proof of Work (PoW)

This consensus protocol is characterized by the following properties [46]:

1. It should be difficult and time consuming for any participant to produce a proof

that meets certain requirements, this is, it is hard to find a correct nonce.

2. It should be easy and fast to verify if the proof is correct, in other words, it is easy

to validate the resulting hash.

This protocol is efficient in terms of solving the BGP, but it suffers other limitations

like the following [46]:

1. It is inefficient due to the great computational complexity and low probability of

generating a successful proof of work.

2. The security of this protocol derives from the reward associated to the creation

of blocks, which attracts a large number of participants, which may be a problem

when trying to reach consensus.

3. The fact that the participants may have different levels of computational capabilities,

which leads to different probabilities of successfully generating proof of work.

2.2.1.3 Proof of Stake (PoS)

Unlike PoW, this protocol doesn’t depend on incentives to guarantee security, it promotes

penalty-based solutions [46]. It sets the constraint that only participants "who have locked

up their capital as deposits" (stake) can be chosen to be miners or validators. Anyone

can become a participant as long as they send "a special type of transaction to lock up

a certain amount of their coins" [46]. The blockchain maintains a record of the set of

validators that have shown proof of stake.

To add a block in the chain, each validator will place a bet on the block in order

to qualify as validator for the block. If the block gets added to the chain, then all the

7

CHAPTER 2. BACKGROUND

validators that bet on it will be rewarded. So, unlike PoW in which security is achieved by

rewarding the "burning of computational energy", in PoS security is ensured by penalizing

the ones that cause economic losses.

2.2.1.4 CAP Properties in Blockchain

As it was previously presented, all web services try to achieve the CAP properties, and

blockchain is no different. In blockchain achieving them means [46]:

• Consistency: All peer nodes have the same ledger with the most recent update.

• Availability: Any transaction made will be accepted by the ledger.

• Partition Tolerance: If any node fails, the network can still operate.

2.3 Smart Contracts

A smart contract is code used for definition of protocols between different organisations,

that intends to automatically verify or enforce contractual agreements just like a tradi-

tional contract [40]. When these contracts are invoked, they generate transactions that

are recorded on the ledger [24]. Blockchain is a great platform as it is immutable, and

also if a "smart contract is properly implemented it leaves little space for corruption, and

eliminates the need for third-party authentication" [1].

In the following sections we will present some real world applications of smart con-

tracts and vulnerabilities that can be exploited.

2.3.1 Real World Examples

With smart contracts’ popularity growing over the years, many believe that they will

revolutionize many industries as they will replace humans. In this section, we will analyse

some cases where smart contracts are being utilized.

One of the sectors that most benefits from the blockchain technology is the financial

and banking ones, as its immutable properties make the blockchain perfect for storing

financial information and records [1]. Additionally, the settlement and clearing process

must guarantee that the money was indeed transferred and that all parties involved in the

exchange updated their respective accounts [1]. This can be ensured by smart contracts

as they enforce and verify if all participants respected the agreements in the contract [40].

Besides, by doing this automatically, it reduces the risk of human error [1].

Another area in which smart contracts are being used is healthcare, as they provide

reliable and easy access to patients’ data. Some applications, like Ethereum’s MedRec 1,

try to tackle the issue of data scatter throughout multiple organisations by having a single

platform where you can keep and access every patient’s record.

1https://medrec.media.mit.edu

8

2.3. SMART CONTRACTS

In the real estate market, smart contracts can also be used to store all types of docu-

ments and records from buyers and sellers. With blockchain contracts, intermediates can

be removed and payments can be done through it. Propy 2 is an application that intends

to integrate the real estate market model in the blockchain to make the whole process

easier and more secure [1].

Just like the examples above, the education sector benefits from blockchain for record

keeping, and also for organisation and verification of diplomas and certificates in order

to eliminate its forgery [1].

2.3.2 Problems

Since these contracts deal with such valuable assets, programmers must be extra wary of

attacks that aim to steal or tamper with them [6], as these vulnerabilities cause a lot of

money loss. For example, the DAO attack, which stands for Decentralised Autonomous

Organisation, was a crowdfunding platform implemented in the Ethereum blockchain,

that loss approximately 60M$ by exploiting a vulnerability where the variables of the

contract only updated after calling the other contracts fallback function.

To exemplify the attack, we present a simplified version of the protocol taken from [6],

where in 2.1 contracts can call function withdraw to take from the account a specific

amount, and in 2.2 participants can donate money to any contract of their choice.

1 function withdraw(uint amount) {

2 if (credit[msg.sender]>= amount

) {

3 msg.sender.call.value(

amount)();

4 credit[msg.sender]-=amount;

5 }

6 }

Listing 2.1: Withdraw function

1 contract SimpleDAO {

2 mapping (address => uint)

public credit;

3 function donate(address to){

4 credit[to] += msg.value;

5 }

6 function queryCredit(address to

) returns (uint){

7 return credit[to];

8 }

9 }

Listing 2.2: Simplified DAO Contract

To initiate the attack, the adversary needs to publish the contract in 2.3, and then do-

nate some money to Mallory. Invoking the command call when withdrawing, triggers

the fallback function of Mallory which calls the function withdraw that transfers money

to Mallory. As the update of the credit variable is only done after the call function,

this will subsequently loop until there is no more money in DAO, or it runs out of gas,

resulting in the continuous extraction of money from the account.

1 contract Mallory {

2 SimpleDAO public dao = SimpleDAO(0x354...);

3 address owner;

2https://propy.com/browse/about/

9

CHAPTER 2. BACKGROUND

4 function Mallory(){

5 owner = msg.sender;

6 }

7 function() {

8 dao.withdraw(dao.queryCredit(this));

9 }

10 function getJackpot(){

11 owner.send(this.balance);

12 }

13 1

Listing 2.3: Mallory Contract

Other problems from Ethereum’s Solidity arise from the difficulty that programmers

have of expressing themselves with Solidity’s semantics[6]. These weaknesses are known

and well described with test cases for each and everyone in [11], as these security breaches

have to be kept in mind as they can lead to millions in losses.

2.4 Racket

Racket is a programming language in the Lisp family, which offers a rich language to

help create other programming languages, by offering multiple tools for programmers to

define their language and to implement it [16].

PLT Redex consists of a domain-specific language that was developed to specify reduc-

tion semantics [18]. To model a programming language in Redex, the programmer must

formulate the grammar and its reduction rules [15]. As Redex is embedded in Racket, all

its features are also available, including the one used to developed our work, DrRacket.

This allows the generation of reduction graphs automatically, which then enables pro-

grammers to visualise the step-by-step reductions. Pattern matching and judgement-form

evaluation, are other key features of Redex, which can be use, respectively, for grammar

and type-system testing.

2.4.1 Typed Arithmetic Expressions

In this section we introduce a simple language from Pierce [33] of typed boolean and

arithmetic expressions in order to demonstrate how we implement other, more com-

plex, languages. This language consists of the boolean constants true and false; the

if-expression; the constant 0; the arithmetic functions for successor (succ) and predeces-

sor (pred); and finally the function iszero that evaluates a term and returns true when

it is 0, and false when it is not. The language has two types, Bool and Nat, to distinguish

between numeric and boolean values. The syntax is presented in Figure 2.1. Furthermore,

we also present the evaluation context of AE in Figure 2.2.

In Figure 2.3, we can see the semantic rules. The first three rules regard the evaluation

of the conditional (e-iftrue, e-iffalse, e-if); then e-succ, e-pred and e-iszero

10

2.4. RACKET

(Terms) t ::= true | false | if t then t else t |
0 | succ t | pred t | iszero t

(Values) v ::= true | false | nv
(Numeric Values) nv ::= 0 | succ nv
(Types) T ::= Bool | Nat

Figure 2.1: Syntax of AE

E ::= [] | if E then t else t | succ E | pred E | iszero E

Figure 2.2: Evaluation Context of AE

that evaluate their subterm; and finally the computation rules, which determine how

pred and iszero behave when applied to numbers [33].

t→ t′

〈if t then t1else t2〉 → 〈if t′ then t1else t2〉
E-IF

〈if true then t1else t2〉 → 〈t1〉
E-IFTRUE

〈if false then t1else t2〉 → 〈t2〉
E-IFFALSE

t1→ t′1
〈succ t1〉 → 〈succ t′1〉

E-SUCC
t1→ t′1

〈pred t1〉 → 〈pred t′1〉
E-PRED

t1→ t′1
〈iszero t1〉 → 〈iszero t′1〉

E-ISZERO

〈pred(0)〉 → 〈0〉
E-PREDZERO

〈pred(succ(nv))〉 → 〈nv〉
E-PREDSUCC

〈iszero(0)〉 → 〈true〉
E-ISZEROZERO

〈iszero(succ(nv))〉 → 〈f alse〉
E-ISZEROSUCC

Figure 2.3: Operational semantic rules of AE

Lastly, we present the typing rules in Figure 2.4 that assign types to terms. Both true

and false are assigned Bool by the inference rules T-TRUE and T-FALSE respectively.

Rule T-IF assigns a type to the conditional that is derived from the type of the subterms,

t1 has to evaluate to Bool, and both t2 and t3 have to evaluate to the same type T.

The last three rules evaluate to Nat, T-Succ and T-Pred’ sub-expression must eval-

uate to Nat, and T-IsZero gives the type Nat as long as its sub-term evaluates to Bool.

11

CHAPTER 2. BACKGROUND

true : Bool
T-TRUE

false : Bool
T-FALSE

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

T-IF

t1 : Nat
succ t1 : Nat

T-SUCC
t1 : Nat

pred t1 : Nat
T-PRED

t1 : Nat
iszero t1 : Bool

T-ISZERO

Figure 2.4: AE’s Typing Rules

2.4.1.1 Grammar

In Racket, we start by defining a language with the define-language form to name our

grammar, which in this case is AE, and then specifying the syntax, values and evaluation

context.

Referencing Figure 2.1, we can define our syntax as t, and the terminal terms as v.

The evaluation context is defined in Figure 2.2, and will decide where in the term the

evaluation will occur.

The grammar of AE is defined in Figure 2.5, and as we can see it is nearly identical to

its formalization, being the substitution hole term the only difference, but its meaning is

the same as [].

2.4.1.2 Relation Rules

Now that we defined our language in Racket, the next step is to write the operational

semantic rules. To do so, one must use the reduction-relation form, which receives

the language name, domain and rules.

Every rule has the form -> pattern pattern rule-name. These rules work by pattern-
matching, which means that every pattern going into the rules has to match its domain.

Since the terms t are bound to be evaluated according to our evaluation context E, we use

the in-hole pattern which decomposes the patterns into some E that will match to the

succeeding pattern. This is why the operational semantic rules presented in Figure 2.6

are less than the ones presented in 2.3, as rules E-If, E-Succ, E-Pred and E-IsZero

are described in the evaluation context of the grammar in Figure 2.5.

As we can see in the rules presented in Figure 2.6, the first pattern we present left

side of the rules, and on the second one we write what the first term evaluates to.

2.4.1.3 Reduction Graph

Now that we presented our Racket implementation, we can test it and show the step-by-

step execution graph. The expression is the following:

12

2.4. RACKET

1 (define-language AE

2 ;Syntax

3 ;terms

4 (t ::= true ;constant true

5 false ;constant false

6 (if t then t else t) ;conditional

7 0 ;constant zero

8 (succ t) ;successor

9 (pred t) ;predecessor

10 (iszero t) ;zero test

11)

12 ;values

13 (v ::= true ;true value

14 false ;false value

15 nv ;numeric values

16)

17

18 ;numeric values

19 (nv ::= 0 ;zero value

20 (succ nv) ;successor value

21)

22

23 ;Context Evaluation

24 (E ::= hole

25 (if E then t else t) ;E-IF

26 (succ E) ;E-SUCC

27 (pred E) ;E-PRED

28 (iszero E) ;E-ISZERO

29)

30)

Figure 2.5: AE’s Grammar in Racket

if (iszero 0) then (pred (succ 0)) else (succ 0),

and its evaluation produces the graph in Figure 2.7.

2.4.1.4 Type System

In Racket, we are also able to check if from a type environment we are able to derive a

type. To do so, we need to firstly define a type environment by extending the existing

language. AE does not have a type environment as it is a really simple language.

Afterwards, we write the required typing rules. We use define-judgement-form,

which allowed us to implement them, by defining the shape of our judgements through

#:contract, and specifying how Redex should compute the derivations, either as inputs

or outputs in #:mode. AE’s judgements follow the ` t T pattern, where t is thought as

input, as it is the term that is judged, whereas T is the output, as in the type of the term.

By looking at Figure 2.8, we can see that the judgements in our Racket code follow

the same lines as the typing rules presented in Figure 2.4, since the judgements above the

dotted line must check in order for the one below to hold.

If our judgements hold, Racket will print out t, and f if not.

13

CHAPTER 2. BACKGROUND

1 (reduction-relation AE

2 #:domain (t)

3 ;Arithmetic Expressions

4 (--> [(in-hole E (if true then t_1 else t_2))]

5 [(in-hole E t_1)]

6 "E-IFTRUE")

7 (--> [(in-hole E (if false then t_1 else t_2))]

8 [(in-hole E t_2)]

9 "E-IFFALSE")

10 (--> [(in-hole E (pred 0))]

11 [(in-hole E 0)]

12 "E-PREDZERO")

13 (--> [(in-hole E (pred (succ nv)))]

14 [(in-hole E nv)]

15 "E-PREDSUCC")

16 (--> [(in-hole E (iszero 0))]

17 [(in-hole E true)]

18 "E-ISZEROZERO")

19 (--> [(in-hole E (iszero (succ nv)))]

20 [(in-hole E false)]

21 "E-ISZEROSUCC")

22)

Figure 2.6: AE’s Operational Semantic Rules in Racket

Figure 2.7: AE’s Reduction Graph

2.5 Behavioural Types

It is important to ensure that a program correctly executes its defined protocol [43]. A

program is considered to be well behaved if it follows its supposed execution flow. Pro-

gramming languages rely on type systems to prevent execution errors and to determine

whether or not a program is well behaved, which inherently ensures its safety [41].

Typed systems analyse the variables and expression types of typed languages to deter-

mine if the program follows the specification rules. [41]

Behavioural types, initially proposed by Nielson and Nielson [32], define a program’s

expected patterns of execution, which are then used to determine if a sequence of inter-

action is permissible according to its specification [25]. Additionally, behavioural types

are known to describe notions such as causality, choice and resource usage.

Two approaches to behavioural types are session types and typestates that are pre-

sented in the following sections.

14

2.5. BEHAVIOURAL TYPES

1 (define-judgment-form

2 AE

3 #:mode(|- I O)

4 #:contract(|- t T)

5 [-------------

6 (|- true Bool)] ;T-TRUE

7 [-------------

8 (|- false Bool)] ;T-FALSE

9 [(|- t_1 Bool) (|- t_2 T) (|- t_3 T)

10 --------------------------------

11 (|- (if t_1 then t_2 else t_3) T)] ;T-IF

12 [---------

13 (|- 0 Nat)] ;T-ZERO

14 [(|- t_1 Nat)

15 ------------------

16 (|- (succ t_1) Nat)] ;T-SUCC

17 [(|- t_1 Nat)

18 ------------------

19 (|- (pred t_1) Nat)] ;T-PRED

20 [(|- t_1 Nat)

21 ------------------

22 (|- (iszero t_1) Bool)] ;T-ISZERP

23)

Figure 2.8: AE’s Typing Rules in Racket

2.5.1 Typestates

One notion of behavioural types is typestates, which can be preceded to 1986 in Strom

and Yemini’s [39]. Typestates are similar to finite-state machines [25], as a typestate

defines the set of functions that are allowed for a certain entity at a certain state. These

states are associated to types, allowing the program to be statically verified at compilation

time and check its correctness, i.e., if all resulting sequences of procedures are valid.

Garcia et al [21] established this idea of typestate-oriented programming by integrat-

ing the typestate concept, where each object type also includes access permissions and

state guarantees. The Plaid language, developed by Aldrich [4], has typestates as its

central concept.

Mungo [2, 27] is a type-checking tool for Java that statically checks the sequence of

permitted calls for each class. This tool validates implementations by comparing them

to their type state definitions, and it works by associating classes with their respective

state machines which define their sequence of permitted method calls. To link the class

to a typestate definition, the user must add the annotation @Typestate to the class with

the name of the typestate definition file, @Typestate(“OwnerProtocol”) [27]. This dec-

laration allows Mungo to ensure that all instances of the class with that annotation are

handled correctly according to the typestate declaration. Each protocol is defined as a

state machine, where for each state there is a set of possible methods that can be exe-

cuted; and for each method a successor state is specified. In 2.4, we present a possible

15

CHAPTER 2. BACKGROUND

implementation of a typestate protocol for a stack from [27].

1 typestate StackProtocol {

2 Empty = {void push(int): NonEmpty,

3 void deallocate(): end}

4 NonEmpty = {void push(int): NonEmpty,

5 int pop(): Unknown}

6 Unknown = {void push(int): NonEmpty,

7 Check isEmpty(): <EMPTY: Empty,

8 NONEMPTY: NonEmpty >}

9 }

Listing 2.4: Stack Typestate Protocol

The definition of the stack implies that the initial state is Empty. From the Empty

state we can either do push(int), where it pushes an integer into the stack and it is no

longer empty (state NonEmpty); or do deallocates() where it frees all the resources and

terminates the procedure. This method can only be called from the Empty state, requiring

the client to empty the stack beforehand [27]. The following declarations of state are just

as straight forward, where from the state NonEmpty, we can only call push(int), which

after execution remains in the same state; or pop(), from which the succeeding state is

Unknown as it depends on the number of elements in the stack. From the Unknown state

we can then execute push(int) and go to the state NonEmpty; or call isEmpty() which

tests the size of the stack and returns either EMPTY or NONEMPTY which, depending on the

result, will proceed to state Empty or NonEmpty, respectively.

Mungo’s typestate inference guarantees that the program will behave accordingly to

the typestate protocols [27], by associating classes to state machines which then define

the permitted sequences of method calls.

2.5.2 Session Types

Session types provide a specification of the program’s behaviour [44], enforcing the se-

quence of permitted function calls using static verification in a concurrent environment.

The use of session types provides a great tool to developers due to it being statically

verifiable and ensuring type-safety, as well as forcing the programmer to reason over the

intended behaviour of the program.

The integration of session types in the formulation of programming languages has

been attempted by many. Neubauer and Thiemann [31] proposed an Haskell based core

language with session types. Capecchi et al. [9] present an object-oriented language

which focuses on sessions. Gay et al. [22] propose a amalgamation of session-typed

communication channels and distributed object-oriented programming, where different

states within an object allow for different permitted operations.

MOOL (Mini Object-Oriented Language) [8, 42], is based in the Java programming

language, which takes advantage of session types. MOOL was based on the work of Gay

16

2.5. BEHAVIOURAL TYPES

1 class Auction {

2 usage lin init;

3 *{bid + getInitialPrice + getMaxBid + getBidder };

4 unit init(string item, int initPrice) {

5 ... // initialize fields

6 }

7 sync unit bid(int pid, int bid) {

8 if(maxBid <= bid) {

9 bidder = pid ;

10 maxBid = bid;

11 }

12 }

13 ... // the getters

14 }

Figure 2.9: An auction implementation in MOOL [8]

et al. [22] and their proposal of a object-oriented programming language with session

types, also known as modular session types. The modularity aspect derives from the fact

that session is implemented over a set of methods instead of individual operations.

This core language has constructs that allow programmers to specify usage protocols,

which define how a object should be used and accessed [8] based on its state. An usage

type can then be defined as the combination between the state and the status of an object.

An object can only be granted access if the aliasing restrictions allow it. Thus, there

is a distinction between linear and unrestricted status. A linear status means that only

one client can reference a specific object, whereas an unrestricted, or shared, status can

be used by many. By virtue of usage types, MOOL’s type system allows for the static

verification of the correct sequence of operations, as well as aliasing.

In Figure 2.9, we present an auction implementation to illustrate the use of usage

types. In line 2, we specify that the constructor of the object Auction is init, and lin

denotes that only one user can reference it. Subsequently, the object status changes to

unrestricted, here characterised by *, allowing multiple users to repeatedly call any of

the following methods: bid, getInitialPrice, getMaxBid and getBidder.

17

3

Featherweight Solidity

Solidity is an imperative language that has a similar syntax to JavaScript which, means

that it is simple and developers may be able to learn it more quickly [30]. The Solidity

code is executed in the EVM, and developers need to set an amount of gas for the contract,

which needs to be enough for the contract to execute completely, as each line needs some

amount of gas to be executed [30]. Furthermore, Solidity is statically typed and also

supports complex types [38]. In 3.1, we present the function bid from an example of

auction taken from [38]. The onlyBefore(biddingEnd) declaration checks if the auction

has not ended, and only if this is verified, can the client bid on the auction.

1 contract BlindAuction {

2 function bid(bytes32 _blindedBid)

3 public

4 payable

5 onlyBefore(biddingEnd)

6 {

7 bids[msg.sender].push(Bid({

8 blindedBid: _blindedBid,

9 deposit: msg.value

10 }));

11 }

12 }

Listing 3.1: Example of an Auction in Solidity

Featherweight Solidity (FS) [14] is a calculus that models the core of Solidity. Its

intent is to allow the study of smart contracts, such as contract deployment, interaction

among contracts and money transfers, as it includes formalised operational semantics

and a type-system. It is inspired by two other calculi, FJ [26] and DJ [3], and it is aimed

to prove type safety.

18

3.1. RACKET IMPLEMENTATION

(Contract decl.) SC ::= contract C {(T̃ s) K F̃}
(Constructor decl.) K ::= C ((T̃ x))(˜this.s = x))
(Function decl.) F ::= T f ((T̃ x)){return e} |

unit f b() {return e}
(Expression) e ::= v | x | b | this | this.f |

msg.sender | msg.value |
address(e) | e.s | e.transfer(e)
new C.value(e)((x̃ : e))(c a) |
e e | T x = e | x = e | e.s = e |
e[e] | e[e→ e] | e.value(e)(x̃ : e) |
e.f .value(e)(x̃ : e) | revert |
e.f .value(e).sender(e)(x̃ : e) |
if e then e else e

(Values) v ::= true | false | n | a | u |M |
c

vv ::= v|c.f
(Types) T ::= T̃ → T | bool | uint | address |

unit | mapping(T ⇒ T) | C

Figure 3.1: Modified Syntax of Featherweight Solidity [14]

3.1 Racket Implementation

In this section we present our implementation of Featherweight Solidity using PLT Redex,

starting with the grammar and the modifications we made due to Racket’s syntax in

section 3.1.1; its context evaluation in 3.1.2.1; how we model the environments in 3.1.2.2;

and how we implemented the operational semantic rules in 3.1.2.3.

3.1.1 Syntax

We implemented FS as presented in [14] using PLT Redex. Due to Racket’s syntax, we

had to adapt its grammar, such as:

• Every expression must be in between parenthesis.

• ; is reserved by Racket for comments in the code, so expressions cannot be separated

using a semicolon.

• . is reserved by Racket, so we replaced it with a→.

• ... denotes the repetition of the previous pattern 0 or more times.

• −− > denotes the representation of the arrow in the statement e[e→ e].

19

CHAPTER 3. FEATHERWEIGHT SOLIDITY

3.1.1.1 Revised Syntax

In Figure 3.1 we present the modified syntax of the FS language. The following are the

changes we made to the original FS’ grammar:

• return e was added to e since in Racket our semantic rules evaluate expressions of

e, therefore all expressions in the evaluation context must be in e.

• To simplify, instead of the program generating random references and addresses

to the contracts, we provide in the instantiation of a new contract, its respective

contract reference (c) and address (a) to make it easier to understand and to be

similar to the examples presented in [14].

• We separate the values in v and vv, so we can separate the value c -> f from the

other terminal values, as it is a special value which identifies a function and can be

evaluated. This is because the Racket pattern-matching cannot distinguish function

instantiations from state variable calls, as both are represented by the pattern x→ y.

Therefore, it can result in multiple evaluation branches, as the syntax allows for

variables to not reach their terminal values. This special case, required a special call

rule, for when we have functions passed in its arguments.

• Instead of only passing the values in the calling functions, in our implementation

the parameters names have to be written explicitly as such: (x : v).

Values. In Racket, the terminal values were declared as such:

• x, s, C as variable-not-otherwise-mentioned, which matches any symbol except

the ones that are used as literals.

• f as variable, matches any symbol

• c, a as variable-prefix, every variable has to begin with a c and a, respectively.

• M is defined as set of key-value pairs of types v, which we denote as (vk :: vv)

• u is a literal.

• n is a number.

3.1.2 Operational Semantics

In this section we present the operational semantics of the Featherweight Solidity lan-

guage. It is a binary relation between configurations C, which describes the state of the

execution. The configuration of the FS language is defined by a tuple 〈e,β,σ〉, which is

comprised of an expression that is going to be evaluated over the following environments:

the blockchain and the call stack. Both environments store the state of the program, in

which the blockchain stores the information of the contracts; the call stack keeps record

20

3.1. RACKET IMPLEMENTATION

E ::= [] | balance(E) | address(E) | E.s |
E.transfer(e) | a.transfer(E) | E;e |
new C.value(E)(x̃ : e) | new C.value(n)(x̃ : v,x : E, x̃ : e) |
C(e) | E.f .value(e)(x̃ : e) | c.f .value(E)(x̃ : e) |
c.f .value(E)(x̃ : v,x : E, x̃ : e) | E.value(e)(x̃ : e) |
E.f .value(e).sender(e)(x̃ : e) | c.f .value(E).sender(e)(x̃ : e) |
c.f .value(n).sender(E)(x̃ : e) | c.f .value(n).sender(a)(x̃ : v,x : E, x̃ : e) |
T x = E;e | x = E | E.s = e | c.s = E | E[e] |
M[E] | E[e→ e] |M[E→ e] |M[v→ E] |
if E then e else e | return E

Figure 3.2: Evaluation Contexts of Featherweight Solidity

(Blockchain) β ::= ∅ | β · [x 7→ v] |
β · [(c,a) 7→ ((C, s̃ : v,n), (x̃ 7→ v))]

(Call Stack) σ ::= β | σ · a
(Contract Table) CT ::= ∅ | CT · [C 7→ SC]

Figure 3.3: Environments of Featherweight Solidity

of the addresses that call functions during the current transaction, and when it is empty

it means that the transaction was successful; and the typestates stack which tracks the

type states of each contract.

3.1.2.1 Context Evaluation

The context of evaluation remains almost the same as in [14], with the only changes being

on the evaluation of parameters and the representation of the hole pattern, but only

because of Racket’s syntax.

3.1.2.2 Environments

The environments in our implementation are the same as the ones in [14], as presented

in Figure 3.3. Although not explicit in the formalisation, in Racket we need the contract

table CT in the domain, in order to match functions’ inputs and return function bodies.

We now explain each of the productions of the grammar in the figure:

Blockchain. The β represents the blockchain, and follows the formalisation of the

Ethereum one. β maps pairs (c, a) to triples (C, s̃ : v, n), and variable identifiers x to

values v. The unique pair of unique identifiers (c, a) represents the contracts reference

and its address respectively, and it is associated to the name of the contract C, the con-

tract’s state variables (s̃ : v), and its balance n, and also to its instantiated variables. We

made this change in order to be able to call functions multiple times, as when the variable

21

CHAPTER 3. FEATHERWEIGHT SOLIDITY

is already in the scope of the contract, it is pushed out and its value modified. This allows

us to keep a record of all variables’ values.

A Call Stack σ tracks the addresses of the contracts that performed function calls

within the execution of a transaction [14]. At the bottom of the stack, there is a copy

of the blockchain at the beginning of the transaction. In case of abort, the state of the

blockchain has to be unrolled to the beginning of the transaction, which is the state on

the bottom of the call stack. If the transaction is proven successful, β will be a copy of σ .

This stack grows, as top-level calls are made, and addresses of those contracts are ap-

pended to σ . Upon a function return, an element a is popped from σ until it becomes β

again.

The Contract Table maps contract names to their declaration SC.

3.1.2.3 Reduction Rules

In Racket, to define the relation rules, one has to define its domain and co-domain. They

are the following: an expression e; a blockchain environment (env-β); a call stack (env-σ);

and a contract table CT.

These rules work by pattern-matching, which means that every pattern going into

the rules has to match each domain. Since the expressions e are bound to be evaluated

according to our evaluation context, we use the in-hole pattern which allows us to match

the pattern of the input expression with the one from Figure 3.3, where the hole appears

to match.

Now that we have introduced how the relation rules work in Racket, we now present

the implementation of some rules we considered most relevant from [14]. Nevertheless,

all the reduction rules are in Annex I.

Variable Declaration. The inference rule presented below was taken from Di Pirro’s

operational semantic rules [14]. The rule Decl models variable declarations, where the

variable x is added to the blockchain β, with value v. Additionally, this rule has a premise

that states that the variable x cannot be in β.

x < dom(β)

〈T x = v;e,β,σ〉 → 〈v;e,β · [x 7→ v],σ〉
Decl

The Racket implementation of this rule is below.

(--> [(in-hole E (T x = v e)) (B ...) env-s CT]

[(in-hole E (v e)) (B ... (x -> v)) env-s CT]

"DECL" (side-condition (not (judgment-holds (xin (B ...) x)))))

22

3.1. RACKET IMPLEMENTATION

1 (define-judgment-form FS

2 #:mode (xin I I)

3 #:contract (xin env-B any)

4 [------------------

5 (xin (B_1 ... (x -> v) B_2 ...) x)]

6)

Figure 3.4: Judgement xin

We can divide this rule in three distinct parts, one for each line: what is on the left of

the arrow in the inference rule; what is on the right side, the conclusion of the rule; and

then the side-conditions.

The similarities are clear between the semantic rule and the one implemented, apart

from the representation of the expression part, where instead of T x = v we have it enclose

a in-hole pattern, which as explained before allows it to decompose the term where the

hole appears to match. The conclusion of the rule is also very similar, as we can see the

variable declaration being appended to the blockchain environment, as well as its premise

which denotes that x cannot be in the blockchain. This is enforced by the side-condition

in the last line, which judgement returns true or false depending on if x is in β or not.

This judgement is presented in Figure 3.4.

This judgement takes as input the environment env − β and a variable x, and returns

true if there is a pair (x 7→ v) in said environment.

Call Function. This next rule is a bit more complex, as it has more premises. The rule

of function calling can be seen below:

β̂(c) = a βC(c) = C fbody(C,f , ṽ) = (x̃, e)
β′ = uptbal(uptbal(declcall(β,c, (x̃ : v)), a,n),Top(σ),−n)
es = e{this := c,msg.sender := Top(σ),msg.value := n}

〈c.f .value(n)(ṽ),β,σ〉 → 〈es,β′ ,σ · a〉
CALL

This rule defines the call of function f , by returning its body es. The premises are that

the contract c can only be called if and only if the contract exists in the blockchain and if

the function f occurs in said contract.

In Figure 3.5, we present our revised Racket implementation of the Call rule. We

remove the premise where x cannot be in β to allow for multiple calls of the same function.

As explained prior, the instantiated variables are now within the contract scope, and if

the variables x̃ are already in the blockchain, we modify them to its new value, and add

the old value to the end of the blockchain.

Again, we can see the similarities in both the rule and its implementation. The premise

that checks if the contract is in the blockchain is represented in line 2 in Figure 3.5, where

the contract reference c has to match some contract declaration. The expression body e is

returned by matching the contract name C and the function name f to the contract table

CT . The contract in CT is denoted as:

23

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (--> [(in-hole E (c -> f -> value (n_0) ((x : v) ...)))

2 (B_1 ... ((c a) -> (C (s : v_s)... n)) B_2 ...)

3 (B ... a_0 ... a_1)

4 CT]

5 [(in-hole E (return (subst-e c a_1 n_0 (subst-x ((x : v) ...) e))))

6 (uptbal (uptbal (declcall env-B c ((x : v) ...) a n_0) a_1 ,(- (term 0)(

term n_0))))

7 (B ... a_0 ... a_1 a)

8 CT]

9 "CALL")

Figure 3.5: Racket implementation of rule Call - simplified

(C→ (contract C {(Tx xx)...K F0...(Tf f ((T x)...){return e}) F1...}))

The balance update is done in line 6, which is almost equal to its formal represen-

tation. The expression substitution and argument values of the function body is done

with functions subst-e and subst-x respectively, and represented in line 5. The function

subst-e substitutes all occurrences of this, msg.sender and msg.value with c, Top(σ)

and n, respectively; whilst subst-x replaces all the occurrences of the variables x with

their respective value v. The function declcall appends the instantiated variables to the

contract’s c scope. If the variables already exist in the scope, we modify their new values,

and their old values are appended to the end of the blockchain.

3.1.2.4 Revised Operational Semantics

In this section, we present how we implement the operational semantic rules of Feather-

weight Solidity in Racket.

Parenthesis Removal. This rule is needed in cases where the evaluation of the first term

of an expression of type e -> value (e) ((x : e)...) returns a function call and the

parenthesis need to me removed so it matches the pattern we define in the syntax.

1 (--> [(in-hole E ((c -> f) -> value (n) ((s : vv) ...))) env-B env-s CT]

2 [(in-hole E (c -> f -> value (n) ((s : vv) ...))) env-B env-s CT]

3 "REM-PARENTHESIS")

Figure 3.6: Remove parenthesis

Function call 2. Both CALL and CALL2 have the same behaviour, being that the only

difference is the values of the input parameters. This is because of the value separation in

terminal values and function instantiations, due to the pattern matching issue explained

earlier. This problem was brought to our attention by the Applier example in Di Pirro’s,

as the input argument of a function is another function, and without this separation there

24

3.1. RACKET IMPLEMENTATION

would be multiple branches, as Racket could evaluate the state variable lookups in the

functions parameters or not.

1 (--> [(in-hole E (c -> f -> value (n_0) ((x : vv) ...)))

2 env-B

3 (B ... a_0 ... a_1)

4 CT]

5 [(in-hole E (return (subst-e c a_1 n_0 (subst-x ((x : vv) ...) e))))

(uptbal (uptbal env-B a n_0) a_1 ,(- (term 0)(term n_0)))

6 (B ... a_0 ... a_1 a)

7 CT]

8 "CALL-2" (side-condition (not (judgment-holds (xin env-B (x ...))))))

Figure 3.7: Function CALL2 - simplified

3.1.3 Implementation Examples in Racket

In this section we present the execution of the examples presented in Di Pirro’s thesis [14].

For presentation purposes and to keep our results as close to the original example, in the

first three examples we ignore the blockchain changes that we presented of the instanti-

ated variables, where we insert them in the contract scope. Additionally, we present the

previously mentioned contract, BlockKing, that aims to prove the need of instantiated

variables within each contract’s scope to allow multiple calls to the same function, as well

as showing that FS does not prevent some ill-behaved contracts.

3.1.3.1 Bank

Figure 3.8 shows a bank contract. It contains a state variable balances that represents the

amount in each bank account. Function deposit increases the balance of the msg.sender

account by the amount read form msg.value. Function getBalance returns the balance

of the caller. In addition, functions withdraw and transfer allow the clients to transfer

the money to their own account or to another client’s account, respectively.

Figure 3.9 shows the FS’ bank contract in our Racket implementation. We can see that

the contracts in both figures are the same.

Now that we have presented the contract, we proceed to the program’s execution

which is presented in Figure 3.10. This is the same as the one presented in Di Pirro’s [14],

where we first initialise the contracts and deploy them to the blockchain, and then the

client xeoa deposits 500 and withdraws 100. The following execution steps are the same as

the ones presented in FS’s thesis, which we can compare and conclude that the execution

is the same.

The following state presented in Figure 3.11, is after the deployment of the external

client xeoa. We can see that the client has been deployed to the blockchain. Because of our

visualisation tool we are also able to tell the sequence of the operational rules applied to

reach that state, which is: New-2; Decl and Seq.

25

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 contract Bank{

2 mapping(address => unit) balances;

3

4 Bank(mapping(address => unit) balances) {

5 this.balances = balances;

6 }

7 unit deposit() {

8 return this.balances = this.balances[msg.sender -> this.balances[msg.

sender] + msg.value]; u

9 }

10 uint getBalance() {

11 return this.balances[msg.sender]

12 }

13 unit transfer(address to, uint amount) {

14 return

15 if this.balances[msg.sender] >= amount

16 then

17 this.balances = this.balances[msg.sender -> this.balances[msg.

sender] - amount];

18 this.balances = this.balances[to -> this.balances[to] + amount

];

19 u

20 else

21 u

22 }

23 unit withdraw(uint amount) {

24 return

25 if this.balances[msg.sender] >= amount

26 then

27 this.balances = this.balances[msg.sender -> this.balances[msg.

sender] - amount];

28 msg.sender.transfer(amount);

29 u

30 else

31 u

32 }

33 }

Figure 3.8: Bank contract in Featherweight Solidity

The contract yBank is then deployed and we reach the state in Figure 3.12. This state

is also reached by applying the same rules as before: New-2; Decl and Seq.

By calling the function deposit, its body is returned and we get to the state described

in Figure 3.13. The sequence of rules applied were: Var; Var; Address; and CallTo-

pLevel. It is also important to note that Di Pirro’s exercise in this state is different, as

the expression presented here is different from the one in the original contract.

After the 500 have been deposited in xeoa account, we can see in Figure 3.14 that the

state variable balances has been updated and this information added. Again, this state

can be reached by applying the following sequence: StateSel; StateSel; MappSel;

Add; MappAss; StateAss; Seq; Return, and Seq. We do want to note that we think

the u in Di Pirro’s exercise was added by mistake, since it is not in the original expression.

After the expression has been evaluated and the function withdraw has been called,

26

3.1. RACKET IMPLEMENTATION

1 (contract Bank {

2 ((mapping (address => unit)) balances)

3

4 (Bank (((mapping (address => unit)) balances)) {

5 (this -> balances = balances)

6 })

7 (unit deposit () {

8 return ((this -> balances = ((this -> balances)[(msg -> sender) -->

(((this -> balances)[(msg -> sender)]) + (msg -> value))])) u)

9 })

10 (uint getBalance() {

11 return ((this -> balances)[(msg -> sender)])

12 })

13 (unit transfer ((address to) (uint amount)) {

14 return

15 (if (((this -> balances)[(msg -> sender)]) >= amount)

16 then

17 (((this -> balances = ((this -> balances)[(msg -> sender) -->

(((this -> balances)[(msg -> sender)]) - amount)]))

18 (this -> balances = ((this -> balances)[to --> (((this ->

balances)[to]) + amount)])))

19 u)

20 else

21 u)

22 })

23 (unit withdraw ((uint amount)) {

24 return

25 (if (((this -> balances)[(msg -> sender)]) >= amount)

26 then

27 (((this -> balances = ((this -> balances)[(msg -> sender) -->

(((this -> balances)[(msg -> sender)]) - amount)]))

28 ((msg -> sender) -> transfer (amount)))

29 u)

30 else u)

31 })

32 })

Figure 3.9: Racket implementation of Bank contract

1 (EOC xEOA = (new EOC -> value (1000) ()

(cEOA aEOA))

2 (Bank yBank = (new Bank -> value (0)

((balances : ())) (cBank aBank))

3 ((yBank -> deposit -> value (500) ->

sender ((address (xEOA))) ())

4 (yBank -> withdraw -> value (0) ->

sender ((address (xEOA))) ((amount

: 100))))))

5 ()

6 ()

Figure 3.10: Contract’s initial state

27

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (Bank yBank = (new Bank -> value (0) ((

balances : ())) (cBank aBank))

2 ((yBank -> deposit -> value (500) ->

sender ((address (xEOA))) ())

3 (yBank -> withdraw -> value (0) ->

sender ((address (xEOA))) ((amount

: 100)))))

4 (((cEOA aEOA) -> (EOC 1000))

5 (xEOA -> cEOA))

6 (((cEOA aEOA) -> (EOC 1000))

7 (xEOA -> cEOA))

Figure 3.11: State after xeoa deployment

1 ((yBank -> deposit -> value (500) ->

sender ((address (xEOA))) ())

2 (yBank -> withdraw -> value (0) ->

sender ((address (xEOA))) ((

amount : 100))))

3 (((cEOA aEOA) -> (EOC 1000))

4 (xEOA -> cEOA)

5 ((cBank aBank) -> (Bank (balances : ()

) 0))

6 (yBank -> cBank))

7 (((cEOA aEOA) -> (EOC 1000))

8 (xEOA -> cEOA)

9 ((cBank aBank) -> (Bank (balances : ()

) 0))

10 (yBank -> cBank))

Figure 3.12: State after yBank deployment

1 ((return ((cBank -> balances = ((cBank

-> balances) (aEOA --> (((cBank ->

balances) (aEOA)) + 500)))) u))

2 (yBank -> withdraw -> value (0) ->

sender ((address (xEOA))) ((amount

: 100))))

3 (((cEOA aEOA) -> (EOC 500))

4 (xEOA -> cEOA)

5 ((cBank aBank) -> (Bank (balances : ()

) 500))

6 (yBank -> cBank))

7 (((cEOA aEOA) -> (EOC 1000))

8 (xEOA -> cEOA)

9 ((cBank aBank) -> (Bank (balances : ()

) 0))

10 (yBank -> cBank)

11 aBank)

Figure 3.13: Evaluation of function deposit

28

3.1. RACKET IMPLEMENTATION

1 (yBank -> withdraw -> value (0) ->

sender ((address (xEOA))) ((amount

: 100)))

2 (((cEOA aEOA) -> (EOC 500))

3 (xEOA -> cEOA)

4 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 500))) 500))

5 (yBank -> cBank))

6 (((cEOA aEOA) -> (EOC 500))

7 (xEOA -> cEOA)

8 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 500))) 500))

9 (yBank -> cBank))

Figure 3.14: Calling function withdraw

1 (return (if (((cBank -> balances) (aEOA

)) >= 100)

2 then

3 (((cBank -> balances = ((cBank ->

balances) (aEOA --> (((cBank ->

balances) (aEOA)) - 100))))

4 (aEOA -> transfer (100)) u)

5 else u))

6 (((cEOA aEOA) -> (EOC 500))

7 (xEOA -> cEOA)

8 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 500))) 500))

9 (yBank -> cBank)

10 (amount -> 100))

11 (((cEOA aEOA) -> (EOC 500))

12 (xEOA -> cEOA)

13 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 500))) 500))

14 (yBank -> cBank)

15 aBank)

Figure 3.15: Function withdraw’s body

its body is returned so it can be evaluated. Figure 3.15 represents just that, and it was

reached by the following rules: Var; Var; Address; and CallTopLevel.

Figure 3.15 represents the state of the program at the end of the evaluation of the if

statement’s first branch. We can gather that the call stack is yet to be changed to the new

version of the blockchain since there is an address on top of the stack. Again, we got

to this state by applying this sequence of rules: StateSel; MappSel; Greater-Eq;

If-True; StateSel; StateSel; MappSel; Sub; MappAss; StateAss; and Seq.

The next and last state is the one presented in Figure 3.17. The only rule applied was

Transfer.

29

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (return ((aEOA -> transfer (100)) u))

2 (((cEOA aEOA) -> (EOC 500))

3 (xEOA -> cEOA)

4 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 400))) 500))

5 (yBank -> cBank)

6 (amount -> 100))

7 (((cEOA aEOA) -> (EOC 500))

8 (xEOA -> cEOA)

9 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 500))) 500))

10 (yBank -> cBank)

11 aBank)

Figure 3.16: Calling transfer

1 (return ((return u) u))

2 (((cEOA aEOA) -> (EOC 600))

3 (xEOA -> cEOA)

4 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 400))) 400))

5 (yBank -> cBank)

6 (amount -> 100))

7 (((cEOA aEOA) -> (EOC 500))

8 (xEOA -> cEOA)

9 ((cBank aBank) -> (Bank (balances : ((

aEOA :: 500))) 500))

10 (yBank -> cBank)

11 aBank

12 aEOA)

Figure 3.17: Final state of Di Pirro’s evaluation

3.1.3.2 Blood Bank

The contract shown in Figure 3.18 models a blood bank. This contract has a map of all

donors and their health state. The only actor that can modify these variables is the doctor

in function setHealth, which is verified by an if statement. Only verified donors in a

healthy state and enough blood can donate.

The Donor contract represents the blood donors which are defined by the amount of

blood and the address of their blood bank.

In Figure 3.19, we present our implementation of the BloodBank contract in Racket.

We can see that both contracts are really similar apart from the few changes to the FS’

syntax.

In the following figures we will present the side by side visualisation of the execution

example presented by Di Pirro. In Figure 3.20 we can see that the program deploys

three contracts, a doctor xdoctor ; a blood bank yBank and a blood donor zDonor , followed

by the doctor setting the health of zDonor . Our blockchain and call stack are empty in the

beginning of the execution (lines 5 and 6).

The state presented in Figure 3.21 represents the state where the doctor’s contract has

30

3.1. RACKET IMPLEMENTATION

1 contract BloodBank{

2 mapping(address => bool) healty;

3 address doctor;

4 uint blood;

5 BloodBank(mapping(address => bool) healty, address doctor, uint blood) {

6 this.healty = healty;

7 this.doctor = doctor;

8 this.blood = blood;

9 }

10 unit setHealth(address donor, bool isHealty) {

11 return

12 if msg.sender == this.doctor

13 then this.healty = this.healty[donor -> isHealty]; u

14 else revert

15 }

16 bool isHealty(address donor) {

17 return

18 if msg.sender == this.doctor

19 then this.healty[donor]

20 else revert

21 }

22 unit donate(uint amount) {

23 return

24 uint donorBlood = Donor(msg.sender).getBlood();

25 if this.healty[msg.sender]&&donorBlood > 3000&&donorBlood - amount

> 0

26 then this.blood = this.blood + amount; true

27 else false

28 }

29 address getDoctor() {

30 return this.doctor

31 }

32 uint getBlood() {

33 return this.blood

34 } }

35 contract Donor {

36 uint blood;

37 address bank;

38 Donor(uint blood, address bank) {

39 this.blood = blood;

40 this.bank = bank;

41 }

42 unit donate(uint amount){

43 return

44 if BloodBank(this.bank).donate(amount)

45 then this.blood=this.blood - amount;u

46 else u

47 }

48 BloodBank getBank() {

49 return this.bank

50 }

51 uint getBlood() {

52 return this.blood

53 } }

Figure 3.18: Featherweight Solidity Contract of Blood Bank

31

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (contract BloodBank {

2 ((mapping (address => bool)) healthy)

3 (address doctor)

4 (uint blood)

5 (BloodBank (((mapping (address => bool)) healthy) (address doctor) (uint

blood)) {

6 (this -> healthy = healthy)

7 (this -> doctor = doctor)

8 (this -> blood = blood)

9 })

10 (unit setHealth ((address donor) (bool isHealthy)) {

11 return

12 (if ((msg -> sender) == (this -> doctor))

13 then ((this -> healthy = ((this -> healthy) [donor -> isHealthy]))

u)

14 else revert)

15 })

16 (bool isHealty ((address donor)) {

17 return

18 (if ((msg -> sender) == (this -> doctor))

19 then ((this -> healthy) [donor])

20 else revert)

21 })

22 (bool donate ((uint amount)) {

23 return

24 ((uint donorBlood = ((msg -> sender) -> getBlood -> value (0) ()))

25 (if (((this -> healthy)[(msg -> sender)]) && ((donorBlood > 3000)

&& ((donorBlood - amount) > 0)))

26 then ((this -> blood = ((this -> blood) + amount)) true)

27 else false))

28 })

29 (address getDoctor () {

30 return (this -> doctor)

31 })

32 (uint getBlood () {

33 return (this -> blood)

34 })

35 })

36 (contract Donor {

37 (uint blood)

38 (address bank)

39 (Donor ((uint blood) (address bank)) {

40 (this -> blood = blood)

41 (this -> bank = bank)

42 })

43 (unit donate ((uint amount)) {

44 return

45 (if ((this -> bank) -> donate -> value (0) ((amount : amount)))

46 then ((this -> blood = ((this -> blood) - amount)) u)

47 else u)

48 })

49 (BloodBank getBank () {

50 return (this -> bank)

51 })

52 (uint getBlood () {

53 return (this -> blood)

54 })})

Figure 3.19: BloodBank contract in Racket

32

3.1. RACKET IMPLEMENTATION

1 (EOC xDoctor = (new EOC -> value (0) ()

(cDoctor aDoctor))

2 (BloodBank yBank = (new BloodBank ->

value (0) ((healthy : ()) (doctor

: (address (xDoctor))) (blood : 0)

) (cBank aBank))

3 (Donor zDonor = (new Donor -> value

(0) ((blood : 5000) (bank : (

address (yBank)))) (cDonor aDonor)

)

4 (yBank -> setHealth -> value (0) ->

sender ((address (xDoctor))) ((

donor : (address (zDonor))) (

isHealthy : true))))))

5 ()

6 ()

Figure 3.20: Initial state

1 (EOC xDoctor = cDoctor

2 (BloodBank yBank = (new BloodBank ->

value (0) ((healthy : ()) (doctor

: (address (xDoctor))) (blood : 0)

) (cBank aBank))

3 (Donor zDonor = (new Donor -> value

(0) ((blood : 5000) (bank : (

address (yBank)))) (cDonor aDonor)

)

4 (yBank -> setHealth -> value (0) ->

sender ((address (xDoctor))) ((

donor : (address (zDonor))) (

isHealthy : true))))))

5 (((cDoctor aDoctor) -> (EOC 0)))

6 ()

Figure 3.21: Defining xDoctor

been deployed to the blockchain, and we are now defining the variable xDoctor . This state

was reached by applying the New-2 rule.

After applying the Decl rule, we reach the state in Figure 3.22. We can see that the

variable xDoctor is now defined in the blockchain.

The next state is presented in Figure 3.23, which is after applying the Seq rule. We can

see that both the blockchain and the call stack are the same, which means the operation

was successful.

Figure 3.24 represents the state after the deployment of the Bloodbank and Donor

contracts. Both contracts are now in the blockchain and call stack, and we are ready to

evaluate the function calling in line 1.

The state presented in Figure 3.25 is the state after the parameters have been reduced

to values and we can apply the CallTopLevel function. The rule evaluation sequence

is: Var, Var; Address; Var; Address.

After the CallTopLevel, we reach the state in Figure 3.26, we can see that the

33

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (cDoctor

2 (BloodBank yBank = (new BloodBank ->

value (0) ((healthy : ()) (doctor

: (address (xDoctor))) (blood : 0)

) (cBank aBank))

3 (Donor zDonor = (new Donor -> value

(0) ((blood : 5000) (bank : (

address (yBank)))) (cDonor aDonor)

)

4 (yBank -> setHealth -> value (0) ->

sender ((address (xDoctor))) ((

donor : (address (zDonor))) (

isHealthy : true))))))

5 (((cDoctor aDoctor) -> (EOC 0))

6 (xDoctor -> cDoctor))

7 ()

Figure 3.22: Doctor variables

1 (BloodBank yBank = (new BloodBank ->

value (0) ((healthy : ()) (doctor :

(address (xDoctor))) (blood : 0))

(cBank aBank))

2 (Donor zDonor = (new Donor -> value

(0) ((blood : 5000) (bank : (

address (yBank)))) (cDonor aDonor)

)

3 (yBank -> setHealth -> value (0) ->

sender ((address (xDoctor))) ((

donor : (address (zDonor))) (

isHealthy : true)))))

4 (((cDoctor aDoctor) -> (EOC 0))

5 (xDoctor -> cDoctor))

6 (((cDoctor aDoctor) -> (EOC 0))

7 (xDoctor -> cDoctor))

Figure 3.23: BloodBank deployment

setHealth’s body has been returned and the address of the caller aBank is on top of the

call stack, and the values of the function arguments appended to the contract.

By applying the sequence: StateSel; Equals; If-True, we reach the state in Fig-

ure 3.27.

After returning the value of the map healthy, by rule StateSel, we get to state in

Figure 3.28. Since the map is empty, it returns ().

The MappAss rule gets us to the state shown in the Figure3.29, where the key-value

(aDonor, true) has been added to the map variable.

The last state of our execution is reached in Figure 3.30. The healthy variable has

been updated, and the call stack is different from the blockchain as the statement has not

been consumed through the Seq rule.

34

3.1. RACKET IMPLEMENTATION

1 (yBank -> setHealth -> value (0) ->

sender ((address (xDoctor))) ((

donor : (address (zDonor))) (

isHealthy : true)))

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor))

8 (((cDoctor aDoctor) -> (EOC 0))

9 (xDoctor -> cDoctor)

10 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

11 (yBank -> cBank)

12 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

13 (zDonor -> cDonor))

Figure 3.24: Calling setHealth

1 (cBank -> setHealth -> value (0) ->

sender (aDoctor) ((donor : aDonor)

(isHealthy : true)))

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor))

8 (((cDoctor aDoctor) -> (EOC 0))

9 (xDoctor -> cDoctor)

10 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

11 (yBank -> cBank)

12 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

13 (zDonor -> cDonor))

Figure 3.25: Applying CallTopLevel rule

35

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (return (if (aDoctor == (cBank ->

doctor)) then ((cBank -> healthy =

((cBank -> healthy) (aDonor -->

true))) u) else revert))

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor)

8 (donor -> aDonor)

9 (isHealthy -> true))

10 (((cDoctor aDoctor) -> (EOC 0))

11 (xDoctor -> cDoctor)

12 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

13 (yBank -> cBank)

14 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

15 (zDonor -> cDonor)

16 aBank)

Figure 3.26: setHeatlh body

1 (return ((cBank -> healthy = ((cBank ->

healthy) (aDonor --> true))) u))

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor)

8 (donor -> aDonor)

9 (isHealthy -> true))

10 (((cDoctor aDoctor) -> (EOC 0))

11 (xDoctor -> cDoctor)

12 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

13 (yBank -> cBank)

14 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

15 (zDonor -> cDonor)

16 aBank)

Figure 3.27: Modifying healthy variable

36

3.1. RACKET IMPLEMENTATION

1 (return ((cBank -> healthy = (() (

aDonor --> true))) u))

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor)

8 (donor -> aDonor)

9 (isHealthy -> true))

10 (((cDoctor aDoctor) -> (EOC 0))

11 (xDoctor -> cDoctor)

12 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

13 (yBank -> cBank)

14 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

15 (zDonor -> cDonor)

16 aBank)

Figure 3.28: Returning healthy

1 (return ((cBank -> healthy = ((aDonor

:: true))) u))

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor)

8 (donor -> aDonor)

9 (isHealthy -> true))

10 (((cDoctor aDoctor) -> (EOC 0))

11 (xDoctor -> cDoctor)

12 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

13 (yBank -> cBank)

14 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

15 (zDonor -> cDonor)

16 aBank)

Figure 3.29: Adding to healthy

37

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (return u)

2 (((cDoctor aDoctor) -> (EOC 0))

3 (xDoctor -> cDoctor)

4 ((cBank aBank) -> (BloodBank (healthy

: ((aDonor :: true))) (doctor :

aDoctor) (blood : 0) 0))

5 (yBank -> cBank)

6 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

7 (zDonor -> cDonor)

8 (donor -> aDonor)

9 (isHealthy -> true))

10 (((cDoctor aDoctor) -> (EOC 0))

11 (xDoctor -> cDoctor)

12 ((cBank aBank) -> (BloodBank (healthy

: ()) (doctor : aDoctor) (blood :

0) 0))

13 (yBank -> cBank)

14 ((cDonor aDonor) -> (Donor (blood :

5000) (bank : aBank) 0))

15 (zDonor -> cDonor)

16 aBank)

Figure 3.30: Final state

3.1.3.3 Applier

This example models a contract Applier, that has one state variable state and one single

method apply, that takes as input a function, and then applies it to the variable state.

The contract Test is there to use the contract Applier. This is an interesting example that

depicts functions as first class values.

Figure 3.31 is the Featherweight Solidity version of these two contracts, whereas

Figure 3.32 is its implementation in Racket.

The initial state of the program’s execution is represented in Figure 3.33. It begins

with the deployment of all three contracts until it reaches the state in Figure 3.34, by

applying the following sequence: New-2; Decl; Seq-C; New-2; Decl; Seq-C; Var;

New-2; Decl; Seq-C.

As depicted in Figure 3.35, the body of the function f1 has been returned and the

caller aTest added to the top of the call stack. The state is reached by applying this

sequence of rules: Var; Var; Address; and CallTopLevel.

After calling the function apply, we reach the state in Figure 3.36 by rules StateSel

and Call.

The next step in our evaluation example is the return of function square, depicted

in Figure3.37 and then the return of the calculated value, in Figure 3.38. The sequence

of rules is the following: Rem-Par; Call; StateSel; StateSel; Mult; Return;

Return; and Return.

38

3.1. RACKET IMPLEMENTATION

1 contract Applier {

2 uint state;

3 Applier(uint state) {

4 this.state = state;

5 }

6 unit apply(uint -> uint f) {

7 return f (this.state)

8 } }

9 contract Test {

10 Applier app;

11 Test(Applier app) {

12 this.app = app

13 }

14 unit f1() {

15 return this.app.apply(this.square)

16 }

17 unit f2() {

18 return this.app.apply(this.double)

19 }

20 unit square(uint n) {

21 return n*n

22 }

23 unit double(uint n) {

24 return n+n

25 } }

Figure 3.31: Applier and Test contracts in Featherweight Solidity

1 (contract Applier {

2 (uint state)

3 (Applier ((uint state)) {

4 (this -> state = state)

5 })

6 (unit apply (((uint -> uint) f)) {

7 return (f -> value (0) ((n : (this -> state))))

8 }) })

9 (contract Test {

10 (Applier app)

11 (Test ((Applier app)) {

12 (this -> app = app)

13 })

14 (unit f1 () {

15 return ((this -> app) -> apply -> value (0) ((f : (this -> square))))

16 })

17 (unit f2 () {

18 return ((this -> app) -> apply -> value (0) ((f : (this -> double))))

19 })

20 (unit square ((uint n)) {

21 return (n * n)

22 })

23 (unit double ((uint n)) {

24 return (n + n)

25 }) })

Figure 3.32: Racket implementation of the Applier and Test contracts

39

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 (EOC xEOA = (new EOC -> value (0) () (

cEOA aEOA))

2 (Applier yApp = (new Applier -> value

(0) ((state : 10)) (cApp aApp))

3 (Test zTest = (new Test -> value (0)

((app : yApp)) (cTest aTest))

4 (zTest -> f1 -> value (0) -> sender ((

address (xEOA))) ()))))

5 ()

6 ()

Figure 3.33: Contract’s initial state

1 (zTest -> f1 -> value (0) -> sender ((

address (xEOA))) ())

2 (((cEOA aEOA) -> (EOC 0))

3 (xEOA -> cEOA)

4 ((cApp aApp) -> (Applier (state : 10)

0))

5 (yApp -> cApp)

6 ((cTest aTest) -> (Test (app : cApp)

0))

7 (zTest -> cTest))

8 (((cEOA aEOA) -> (EOC 0))

9 (xEOA -> cEOA)

10 ((cApp aApp) -> (Applier (state : 10)

0))

11 (yApp -> cApp)

12 ((cTest aTest) -> (Test (app : cApp)

0))

13 (zTest -> cTest))

Figure 3.34: Calling f1

1 (return (cApp -> apply -> value (0) ((f

: (cTest -> square)))))

2 (((cEOA aEOA) -> (EOC 0))

3 (xEOA -> cEOA)

4 ((cApp aApp) -> (Applier (state : 10)

0))

5 (yApp -> cApp)

6 ((cTest aTest) -> (Test (app : cApp)

0))

7 (zTest -> cTest))

8 (((cEOA aEOA) -> (EOC 0))

9 (xEOA -> cEOA)

10 ((cApp aApp) -> (Applier (state : 10)

0))

11 (yApp -> cApp)

12 ((cTest aTest) -> (Test (app : cApp)

0))

13 (zTest -> cTest)

14 aTest)

Figure 3.35: Calling apply

40

3.1. RACKET IMPLEMENTATION

1 (return (return (cTest -> square ->

value (0) ((n : (cApp -> state)))))

)

2 (((cEOA aEOA) -> (EOC 0))

3 (xEOA -> cEOA)

4 ((cApp aApp) -> (Applier (state : 10)

0))

5 (yApp -> cApp)

6 ((cTest aTest) -> (Test (app : cApp)

0))

7 (zTest -> cTest)

8 (f -> (cTest -> square)))

9 (((cEOA aEOA) -> (EOC 0))

10 (xEOA -> cEOA)

11 ((cApp aApp) -> (Applier (state : 10)

0))

12 (yApp -> cApp)

13 ((cTest aTest) -> (Test (app : cApp)

0))

14 (zTest -> cTest)

15 aTest

16 aApp)

Figure 3.36: Calling square

1 (return (return (return (10 * 10))))

2 (((cEOA aEOA) -> (EOC 0))

3 (xEOA -> cEOA)

4 ((cApp aApp) -> (Applier (state : 10)

0))

5 (yApp -> cApp)

6 ((cTest aTest) -> (Test (app : cApp)

0))

7 (zTest -> cTest)

8 (f -> (cTest -> square))

9 (n -> 10))

10 (((cEOA aEOA) -> (EOC 0))

11 (xEOA -> cEOA)

12 ((cApp aApp) -> (Applier (state : 10)

0))

13 (yApp -> cApp)

14 ((cTest aTest) -> (Test (app : cApp)

0))

15 (zTest -> cTest)

16 aTest

17 aApp

18 aTest)

Figure 3.37: Evaluating square

41

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 100

2 (((cEOA aEOA) -> (EOC 0))

3 (xEOA -> cEOA)

4 ((cApp aApp) -> (Applier (state : 10)

0))

5 (yApp -> cApp)

6 ((cTest aTest) -> (Test (app : cApp)

0))

7 (zTest -> cTest)

8 (f -> (cTest -> square))

9 (n -> 10))

10 (((cEOA aEOA) -> (EOC 0))

11 (xEOA -> cEOA)

12 ((cApp aApp) -> (Applier (state : 10)

0))

13 (yApp -> cApp)

14 ((cTest aTest) -> (Test (app : cApp)

0))

15 (zTest -> cTest))

Figure 3.38: Final state

3.1.3.4 BlockKing

In addition to the examples presented in Di Pirro’s thesis, we present BlockKing contract,

previously mention in Chapter 1. As we recall, this contract allowed for many clients to

enter the gamble, which is a problem as it would only store the information of one (the

last) user, allowing other users to steal the prizes of others as they were waiting on their

result.

As FS’ specification does not support concurrency, in Figure 3.39, we present a simpli-

fied version of the BlockKing code in Figure 1.1. As the present version of the language

specification does not support concurrency, we have disregarded the __callback func-

tion, and we trigger the response of the Oraclize service by simply calling the process_payment

function to mimic concurrency. We have also left out the if statements and some variables

to have less evaluation steps. However, we guarantee the contract’s behaviour, and we

still maintain the key elements, such as the variables king and warrior.

Figure 3.40 introduces the initial state of our BlockKing program. Through the demon-

stration of the execution of the contract, we are going to omit the call stack as it stores

a copy of the blockchain at the beginning of a transaction and the addresses that call

functions during each transaction, which is not relevant to the presentation. Because of

the changes made to the contracts representation in the blockchain to allow for multiple

calls of the same function, they are now represented as mappings of pairs (c,a), contract

reference and address, to a triple (C, s̃ : v,n): contract name, a sequence of state variables

and respective values, and its balance, and a set of instantiated variables (x 7→ v).

In Figure 3.41, we present the state of the blockchain after the deployment of all

three contracts, aBK being the BlockKing and both clients aBx and aBy; and the remaining

expressions. Both BlockKing’s warrior and king are set with the contract’s address.

42

3.1. RACKET IMPLEMENTATION

1 ((contract BlockKing(

2 (address warrior)

3 (uint warriorGold)

4 (uint myid)

5 (address king)

6 (BlockKing ((address warrior) (uint warriorGold)

7 (uint myid) (address king))

8 ((this -> warrior = warrior)

9 (this -> warriorGold = warriorGold)

10 (this -> myid = myid)

11 (this -> king = king)))

12 (uint enter () (

13 return

14 ((this -> warrior = (msg -> sender))

15 (this -> warriorGold = (msg -> value)))))

16 (uint process_payment () (

17 return

18 (this -> king = (this -> warrior))))))

19 (contract EOC (

20 (EOC () ())

21 (unit fb () (

22 return u))))))

Figure 3.39: BlockKing code in Featherweight Solidity

1 ((BlockKing bk = (new BlockKing -> value (0) ((warrior : aBK) (warriorGold :

8) (myid : 9) (king : aBK)) (cBK aBK)))

2 ((EOC x = (new EOC -> value (6) () (cBx aBx)))

3 ((EOC y = (new EOC -> value (4) () (cBy aBy)))

4 ((bk -> enter -> value (2) -> sender (aBx) ())

5 ((bk -> enter -> value (3) -> sender (aBy) ())

6 ((bk -> process_payment -> value (0) -> sender (aBK) ())

7 ((bk -> process_payment -> value (0) -> sender (aBK) ()) ())))))))

8 (())

9 (())

Figure 3.40: BlockKing initial state

1 ((bk -> enter -> value (2) -> sender (aBx) ())

2 ((bk -> enter -> value (3) -> sender (aBy) ())

3 ((bk -> process_payment -> value (0) -> sender (aBK) ())

4 ((bk -> process_payment -> value (0) -> sender (aBK) ()) ()))))

5 ((((cBK aBK) -> (BlockKing

6 (warrior : aBK)

7 (warriorGold : 8)

8 (myid : 9)

9 (king : aBK)

10 0) ->)

11 (bk -> cBK)

12 ((cBx aBx) -> (EOC 6) ->)

13 (x -> cBx)

14 ((cBy aBy) -> (EOC 4) ->)

15 (y -> cBy)))

Figure 3.41: Contracts deployment

43

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 ((bk -> enter -> value (3) -> sender (aBy) ())

2 ((bk -> process_payment -> value (0) -> sender (aBK) ())

3 ((bk -> process_payment -> value (0) -> sender (aBK) ()) ())))

4 ((((cBK aBK) -> (BlockKing (warrior : aBx) (warriorGold : 2) (myid : 9) (king

: aBK) 2) ->)

5 (bk -> cBK)

6 ((cBx aBx) -> (EOC 4) ->)

7 (x -> cBx)

8 ((cBy aBy) -> (EOC 4) ->)

9 (y -> cBy)))

Figure 3.42: BlockKing after aBx enters

1 ((bk -> process_payment -> value (0) -> sender (aBK) ())

2 ((bk -> process_payment -> value (0) -> sender (aBK) ()) ()))

3 ((((cBK aBK) -> (BlockKing (warrior : aBy) (warriorGold : 3) (myid : 9) (king

: aBK) 5) ->)

4 (bk -> cBK)

5 ((cBx aBx) -> (EOC 4) ->)

6 (x -> cBx)

7 ((cBy aBy) -> (EOC 1) ->)

8 (y -> cBy)))

Figure 3.43: BlockKing after aBy enters

1 ((bk -> process_payment -> value (0) -> sender (aBK) ()) ())

2 ((((cBK aBK) -> (BlockKing (warrior : aBy) (warriorGold : 3) (myid : 9) (king

: aBy) 5) ->)

3 (bk -> cBK)

4 ((cBx aBx) -> (EOC 4) ->)

5 (x -> cBx)

6 ((cBy aBy) -> (EOC 1) ->)

7 (y -> cBy)))

Figure 3.44: BlockKing appoints aBy king

The state presented in Figure 3.42 is after the client aBx has entered the gamble. aBx

is the new warrior and is now waiting for the Oraclize service to respond. But, as we can

see, the next expression to be evaluated is the entrance of client aBy, which simulates the

concurrency we have previously discussed.

The evaluation of the statement in which the client aBy enters the gamble takes us to

the state shown in Figure 3.43. As we can see, aBy is the new warrior, which means that

whenever the Oraclize server returns the random number for the aBx call, the chance to

win the prize will not be for aBx, but for aBy, as it is the current warrior.

Figure 3.44 represents the state after the first random number has been sent by the

Oraclize service. As we can clearly see, the new king is the current warrior and not aBx.

This behaviour can not be prevented with the current FS specification, as it does not

guarantee safety when in a concurrent setting. We believe that other smart contract

44

3.2. TYPE SYSTEM

languages, which are equipped with mechanisms such as typestates, can prevent some ill-

behaved programs, in a world where these types of errors can cost millions in losses [6].

3.2 Type System

Our OCaml implementation, besides checking that a program is well-typed, it also pro-

duces the type derivation trees of the execution, for illustrative purposes. This tree is

useful by at least two reasons: (i) it illustrates the application of the typing rules as con-

crete examples; and (ii) saves the programmer from doing it by hand. In short, it helps

the language designer to check how the rules actually work.

Before proceeding, we recall the types of FS syntax, defined in Figure 3.1.

(Types) T ::= T̃ → T | bool | uint | address |
unit | mapping(T ⇒ T) | C

3.2.1 Type System Judgements

The FS type environment is defined as follows:

(Type environment) Γ ::= ∅ | Γ ,x : t | Γ , a : Address

Further, Di Pirro defines the type system judgements as the relation between types,

terms and environments. Thus, representing this relation as:

Γ ` e : T

where Γ is the typing context input, and e : t means that the expression e has type t, given

the assumptions in Γ .

As we explain next, we made changes to the judgements representation. The typing

relation is now defined as:

Γ ` e : T . Γ ′

where Γ and Γ ′ are the input and output typing contexts , respectively., and again e : t

means that the expression e has type t in Γ .

This change is due to the typing rule Decl in page 91 of Di Pirro’s thesis [14]. This

rule makes the original type system not driven by the syntax of expressions. To solve

the issue, we introduce the output context Γ in the sequential composition typing rule,

as shown below. Furthermore, this alteration removes the need for the particular rule

Decl.

Γ ` e1 : T1 . Γ
′ Γ ′ ` e2 : T2 . Γ

′′

Γ ` e1;e2 : T2 . Γ
′′ Seq

In Annex A, we present the revised typing rules with the added output Γ context.

45

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 let rec typecheck whites gamma ct ty t =

2 match ty with

3 | None -> for i = 0 to whites - 1 do Format.eprintf " " done ;

4 Format.eprintf "%a , %a |- %a : " pp_contract ct pp_gamma gamma pp_term t;

5 begin match t with

6 | TmSeq(e1, e2) -> Format.eprintf "(SEQ) @." ;

7 ignore(typecheck (whites + 2) gamma ct None e1);

8 typecheck (whites + 2) gamma ct None e2;

9 ...

10 | Some ty -> for i = 0 to whites - 1 do Format.eprintf " " done ;

11 Format.eprintf "%a , %a |- %a : %a@." pp_contract ct pp_gamma gamma

pp_term t pp_typ ty ;

12 begin match t with

13 | TmSeq(e1, e2) -> Format.eprintf "(SEQ) @." ;

14 ignore(typecheck (whites + 2) gamma ct None e1);

15 typecheck (whites + 2) gamma ct (Some ty) e2;

16 ...

Figure 3.45: OCaml typechecker - simplified

3.2.2 OCaml Typechecker

In this section, we briefly present our OCaml implementation of FS’ typechecker. In

Figure 3.45, we show part of the typechecker code, where we present the implementation

of the typing rule Seq. The typecheck function has as input the amount of white spaces

(in order to distinguish which lines are which premises); a context gamma; a contract table

ct; a type ty; and a term t.

Firstly, we need to match the type of the statement ty to some type or none, as in the

case of the rule Seq the conclusion of the rule has no information of the type of the e1

statement. As a result, we then get two evaluations, one for each case. If we have the type

of term, we recursively continue the evaluation of the statement. Else, the evaluation

continues with no type, until we reach the end of the typification and a type is returned

through the judgement of an axiom.

The typechecker allows us to prove if the program is well-typed, as well as it outputs

the derivation tree.

3.2.3 Examples

In this example we will prove that the example defined in Section 3.1.3.1 is well-typed,

as well as it provides the derivation trees with the typing rules. This example is the same

as the one Di Pirro uses to prove that the program is well-typed. The expression we are

going to evaluate is the following:

e = EOAx = newEOA.value(500)();

Banky = newBank.value(0)([]);

y.deposit.value(100).sender(address(x))()

46

3.2. TYPE SYSTEM

The Γ is initially empty, and we use placeholders like (1) to indicate another derivation

tree.

X
Γ ` 500 : uint . Γ

Nat

Γ ` EOA x = new EOA.value(500)() : EOA. Γ
NEW

(1)

Γ ,x : EOA ` e′ : unit . Γ ,x : EOA

Γ ` EOA x = new EOA.value(500)();e′ : unit . Γ ,x : EOA
DECL

The derivation tree represented by (1) is as follows, where Γ ′ = ∅,x : EOA.

(1)

X
Γ ′ ` 0 : uint . Γ ′

Nat

X
Γ ′ ` [] :mapping(address⇒ uint)

MAPPING

Γ ′ ` Bank y = new Bank.value(0)([]) : Bank . Γ ′
NEW (2)

Γ ′ ` Bank y = new Bank.value(0)([]);e′′ : unit . Γ ′ , y : Bank
DECL

And where (2) is, Γ ′′ = ∅,x : EOA,y : Bank:

(2)

X
Γ ′′ ` x : EOA. Γ ′′

REF

Γ ′′ ` address(x) : Address . Γ ′′
ADDR (3)

Γ ′′ ` y.deposit.value(100).sender(address(x))() . Γ ′′
CALLTOPLEVEL

(3)

X
Γ ′′ ` y : Bank . Γ ′′

REF
X

Γ ′′ ` 100 : uint
NAT

Γ ′′ ` y.deposit.value(100)() : unit . Γ ′′
CALL

In Figure 3.46, we present the output of this same example in the OCaml typechecker.

47

CHAPTER 3. FEATHERWEIGHT SOLIDITY

1 contract Bank {(mapping(address => uint) : balance)} unit deposit () ; uint

getBalance () ; unit transfer ((address : to)(uint : amount)) ; unit

withdraw ((uint : amount))

2 contract EOA {}

3 , |- EOA x = new EOA.value(500)() ; Bank y = new Bank.value(0)([]) ; y.

deposit.value(100).sender(address(x))() : EOA

4 (DECL)

5 , |- new EOA.value(500)() : EOA

6 (NEW)

7 , |- 500 : uint

8 (NAT)

9 , (x : EOA); |- Bank y = new Bank.value(0)([]) ; y.deposit.value(100).

sender(address(x))() : Bank

10 (DECL)

11 , (x : EOA); |- new Bank.value(0)([]) : Bank

12 (NEW)

13 , (x : EOA); |- 0 : uint

14 (NAT)

15 , (x : EOA); |- [] : mapping(address => uint)

16 (MAPPING)

17 , (x : EOA); (y : Bank); |- y.deposit.value(100).sender(address(x))() :

unit

18 (CALLTOPLEVEL)

19 , (x : EOA); (y : Bank); |- address(x) : address

20 (ADDR)

21 , (x : EOA); (y : Bank); |- x : EOA

22 (REF)

23 , (x : EOA); (y : Bank); |- y.deposit.value(100)() : unit

24 (CALL)

25 , (x : EOA); (y : Bank); |- y : Bank

26 (REF)

27 , (x : EOA); (y : Bank); |- 100 : uint

28 (NAT)

29 Success

Figure 3.46: OCaml typechecker output

48

4

Flint-2

Flint is a statically-typed language created for writing smart contracts [20, 34, 35]. It

was developed originally by Franklin Schrans and carried out by other students at Im-

perial College Department of Computing under Professors Susan Eisenbach and Sophia

Drossopoulou orientation. Inspired by the Swift Programming Language [5], Flint was de-

signed to be integrated in the Ethereum blockchain, by supporting Solidity [38] contracts

and other applications to interact with contracts written in Flint.

Like many, Schrans [34, 35] believes that the vulnerabilities found in smart contracts

were mostly derived from the programmers own mistakes. As we emphasise throughout

this paper, these types of errors cannot occur under the smart contracts’ execution, as

many users rely on the correct behaviour of these programs, which mostly deal with

sensitive information, such as great amounts of money and voting systems. Furthermore,

these programs cannot be changed once they have been deployed, which adds an even

bigger emphasis on safe programming.

With this in mind, Schrans and the Imperial College team took upon themselves to

design a language that made it harder on programmers to write unsafe contracts. They

employed caller blocks to protect sensitive functions from unauthorised callers, as well

as to force programmers to infer about the correct behaviour of a contract.

Additionally, these protection blocks can prevent incorrect behaviour of contracts, as it

uses typestates. These blocks restrict when the code can be executed, as states are checked

statically for internal calls, and at runtime for external calls to the contract.

In Figure 4.1, we present a method from an auction written in Flint, where it checks

the state before executing the function.

Flint-2 is the newest iteration of Flint. Rust 1 based, Flint-2 captures the "safety-

oriented" characteristics once introduced in Flint, being the protection blocks the main

feature we want to focus on.

Flint-2 was formalised by us, as we took inspiration from the configurations and

structure of di Piro’s work [14]. Flint-2 poses an extra challenge as it had no formalisation,

1https://www.rust-lang.org

49

https://www.rust-lang.org

CHAPTER 4. FLINT-2

1 // Enumeration of states.

2 contract Auction (AuctionRunning, AuctionEnded) {}

3

4 Auction @(AuctionRunning) :: caller <- (owner) {

5 public endAuction() {

6 // ...

7 become AuctionEnded

8 }

9 }

Figure 4.1: Example of an Auction in Flint

like many other smart contract languages, but also because it takes advantage of typestates

and caller groups by restricting the function callings. These features give Flint-2 an

advantage when it comes to ensuring contract’s safety.

4.1 Racket Implementation / Executable Semantics

In this section, we present our definition of the syntax of a core version of Flint-2, based

on the language guide [19] and examples available 2. It is important to note that we

left some parts unimplemented and made some modifications of our own, which are

addressed in Section 4.1.1.1.

4.1.1 Syntax

We assume the following sets:

1. CN, of contract names, ranged over by C;

2. TS, of typestates names, ranged over by ts (possibly indexed);

3. CL, of caller groups, ranged over by cl (possibly indexed);

4. FN, of function names, ranged over by f (possibly indexed);

5. X, of variable names, ranged over by x (possibly indexed);

Moreover, we assume that a set of integer values ranged over by n, and a set of addresses

ranged over by a. In Figure 4.2, we present a simplified version of Flint-2’s syntax3.

Contract declaration. The contracts are made up by the following components, in this

order:

• the keyword contract;

• the contract name C;

2https://github.com/flintlang/flint-2/tree/master/tests
3https://github.com/flintlang/flint-2/blob/master/docs/guide.md#language-guide

50

https://github.com/flintlang/flint-2/tree/master/tests
https://github.com/flintlang/flint-2/blob/master/docs/guide.md##language-guide

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

(Contract Declaration) CD ::= contract C (ts t̃s) {ṽd} K P̃ B
(Constructor Block) K ::= C :: (cl c̃l) {(public init(x̃ : t) {ẽ}) F̃}
(P rotectionBlock) P B ::= C@ (ts t̃s) :: (cl c̃l){F̃}
(FunctionDeclaration) F ::= public func f (x̃ : t)→ t{ẽ return e}
(Variable Declaration) VD ::= let x : t = v | var x : t = v | let x : t |

var x : t
(Expressions) e ::= x | v | self | if e then e else e | var x : t = e |

var x : t | let x : t = e | let x : t | x = e |
e.x = e | e.x |C.init(x̃ : e).a | e.f (x̃ : e) |
f (x̃ : e) | e.f (x̃ : e).sender(a) | return e | e ẽ |
become ts | e[e] | e[e : e] | e a-op e | e b-op1 e |
e b-op2 e

(Values) v ::= n | a | true | false | unit |M
(Types) t ::= Int | Address | Bool | Void | (t : t)

Figure 4.2: Syntax of the Racket Implementation of Flint-2

• a list of its typestates ts;

• variable and constant declarations and assignments VD;

• a special protection block K for the function init;

• and protection blocks (P B).

Constructor block. The constructor block K is composed by the name of the contract

C, a caller group cl, a function init, and other functions F .

We added this constructor to the syntax for two main reasons. Firstly, we noticed

that as the function init is the entry point of the contract, in most of the examples, this

particular protection block did not have the typestate protection. Furthermore, by adding

a constructor to the contract we ensure that every contract has a function init.

Protection block. Unlike in Flint-2, the typestate protection is not optional. Every pro-
tection block must consist of the contract name C; the typestate protection ts; the caller

group cl; and finally the functions F.

Additionally, we make sure every protection block has at least one typestate and one

caller member, even if it is any.

Function declaration. In our Racket implementation of Flint-2, every function is de-

clared public, and has a return type t. With this said, our function declaration is com-

posed by: a function name f ; a list of parameters (x̃ : t); a return type t; a list of statements

ẽ; and a return statement.

Expressions. e denotes the expressions. x denotes a variable, v a value, and self is a

variable that refers to the address of the contract which is calling the current function.

51

CHAPTER 4. FLINT-2

The expression if e then e else e defines the if expression. var x : t = e and let x : t = e

denote variable and constant declaration respectively. Both x = e and e1.x = e are variable

assignment, where if e1 evaluates to an address; and e.x denotes an access to a field

(variable, constant, function). The expression f (x̃ : e) is the function call. We added

another call function with a slight nuance, e1.f (x̃ : e), where the programmer can declare

the contract’s address of which the function belongs, as e1 evaluates to a contract’s address.

The expression C.init(x̃ : e).a deploys a new contract C to the blockchain with an address

a, and invokes the function init. e.f (x̃ : e).sender(a) is a special top-level call function

where we can declare the address of the contract who is calling the function. return e

is the return statement, the expression e ẽ is sequential composition, and the become

statement is defined as become e. Arithmetic and boolean operations are denoted as e

a-op e; e b-op1 e; and e b-op2 e, where a-op represents the following arithmetic operators:

+ (addition); - (subtraction); * (multiplication); / (division); ** (exponentiation); and %

(modulus). b-op1 denotes < (less than); <= (less than or equal to); == (equal to); >=

(greater than or equal to); > (greater than); != (not equal to), and b-op2 && (logical and).

e[e′] denotes the reading of a variable with e′ as a key, where e evaluates to a map, whilst

e[e′ : e′′] is for the writing of a pair with e′′ as value.

Values. v ranges over values. true, false and unit have the expected meaning. n repre-

sents any integer and a indicates an address. M denotes a map with key-value pairs of

values.

Types t ranges over types. Bool, Int, Void and String have the expected meaning. Ad-

dress represents an address, which in out Racket implementation means that it must start

with the character a. The type of mapping is (t : t′), being t the type of the keys and t′ of

values.

4.1.1.1 Revised Syntax

Due to Racket’s syntax, we had to adapt Flint-2’s grammar as such:

• Every expression must be in parenthesis.

• ; is reserved by Racket for comments in the code, so expressions cannot be separated

using a semicolon.

• . is reserved by Racket, so we replaced it with a ->.

• any is a reserved word, we use anycaller and anystate to represent it in the caller

group and typestate protection in protection blocks.

• ... denotes the repetition of the previous pattern.

• The expressions e[e] and e[e : e] in Racket have the forms e[e ::] and e[e :: e] respec-

tively, to make the expression evaluation deterministic.

52

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

These are the changes we made to the original Flint-2’s grammar, mainly because we

wanted to simplify it:

• The type Void must be explicit in the return type of a function, as every function

terminates with a return statement.

• We removed type String, as in Racket, we cannot distinguish between a variable

and a String, leaving us with an inconsistent execution

• Dynamic, range and external types were not implemented, except for Dictionary.

• public is the only function and variable modifier.

• Structs were not implemented.

• The caller group is either a list of addresses or anycaller.

• Contract and external traits were not implemented.

• External call and an attempt to call a function were also not implemented.

• Type cast was not implemented.

• Loops and do catch blocks were not implemented.

• Enumerations were not implemented.

4.1.1.2 Evaluation Contexts

In Figure 4.3, we define the evaluation contexts of our take on the Flint-2 language.

The contexts contain a hole, denoted by [], which represents the location of the next

evaluation [17]. The evaluation contexts E guarantee that the evaluation of expressions

is done from left to right [45], by uniquely identifying the next expression that will be

evaluated [17]. We can formalize it as the following:

〈e〉 → 〈e′〉
〈E[e]〉 → 〈E[e′]〉

E ::= [] | if E then e else e | var x : t = E | let x : t = E |
C.init(x̃ : v,x : E, x̃ : e) |E.f (x̃ : e) | a.f (x̃ : v,x : E, x̃ : e) |
f (x̃ : v,x : E, x̃ : e) |E.f (x̃ : e).sender(a) |
a.f (x̃ : v,x : E, x̃ : e).sender(a) |E.x |E.x = e | a.x = E
E ẽ | return E |E a-op e | v a-op E |E b-op1 e | v b-op1 E |
E b-op2 e | bool b-op2 E |E[e] |M[E] |E[e : e] |M[E : e] |M[v : E]

Figure 4.3: Evaluation Contexts

53

CHAPTER 4. FLINT-2

(Blockchain) β ::= ∅ | env − β · [a 7→ ((C, s̃ : v,n), (c̃ : v), (x̃ : v))] |
env − β · [x 7→ v]

(Call Stack) env − σ ::= ∅ | env − σ · a
(T ype State Stack) CT S ::= ∅ |CT S · [a 7→ t̃s]

Figure 4.4: Flint-2’s Environments

4.1.2 Operational Semantics

In this section we present the operational semantics of the Flint-2 language. It is a bi-

nary relation between configurations C, which describes the state of the execution. The

configuration of the Flint-2 language is defined by a tuple 〈e,β,σ ,CT S〉, which is com-

prised of an expression that is going to be evaluated over the following environments: the

blockchain, the call stack, and the typestate stack. All three of these environments store

the state of the program, in which the blockchain stores the information of the contracts;

the call stack keeps record of the addresses that call functions during the current trans-

action, and when empty it means that the transaction was successful; and the typestate

stack which tracks the typestates of each contract.

We define the evaluation relation as the transitions between states, C→ C, where→
represents the one step evaluation of an expression [17], and is defined inductively by the

inference rules applied to our syntax of Flint-2 in Section 3.1.2.3.

Subsequently, we define the multi-step evaluation→∗ as the reflexive, transitive clo-

sure of the relation→ [33].

C→∗ C C→∗ C′ C′→ C′′

C→∗ C′′

4.1.2.1 Environments

We based Flint-2’s environments on the presentation of another programming language

for smart contracts, Featherweight Solidity [14]. In Figure 4.4, we present the environ-

ments we see fit for Flint-2’s formalisation.

Blockchain. Flint-2 maps the contracts’ address a to its contract name C, state variables

s and balance n, its constants c and the arguments of functions x and its respective values.

Mappings of variables and its values are also kept in the blockchain.

Remark (Contract Representation). To represent the contracts in the blockchain, we sim-
plified the notation of the state, constant and local variables and their respective values as
such:

s̃ : v as s

c̃ : v as c

x̃ : v as y

54

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

Call stack ’s only purpose is to keep the addresses of the contracts that make function

calls. When a return statement is evaluated, the address on top of the stack is removed.

Typestate stack contains the record of the program’s states during execution, being the

top of the stack the current state. When a contract calls a function, the current state has

to match with the state declared in the protection blocks. When a become ts is evaluated,

ts is pushed to the top of the stack, becoming its current state.

4.1.2.2 Auxiliary functions

In this section, we present some functions that make the operational rules simpler and

more readable.

Top(σ) returns the address on the top of the environment σ .

Top(σ) =

 a if σ = σ ′ · a
∅ if σ = ∅

Top(CTS) returns the current typestate.

Top(CT S) =

 ts if CT S = CT S ′ · ts
∅ if CT S = ∅

finit returns the variables and constant declaration of the contract C varsn, and the body

of the function init with the statement return unit appended so the contract’s address

can be popped from σ at the end of the evaluation.

finit(C, x̃) = (Ṽ D,e · return unit) if classes(C) = contract C(t̃s){Ṽ D}K P̃ B
∧ K = C :: (c̃l){(public init(x̃ : t){e}) F̃}

fbody checks if function f exists in the contract C, and returns both the body of the

function and the set of typestates and callers that guard the protection block pb.

fbody(C,f , x̃) = (e′ return e, ˜ts′ , c̃l, t) if classes(C) = contract C(t̃s){Ṽ D} K P̃ B
∧ pb = C@ (˜ts′) :: (c̃l) {F̃}
∧ pb ∈ P̃ B
∧ f c = public func f (x̃′ : t′)→ t {e′ return e}
∧ f c ∈ F̃
∧ x̃ = x̃′

55

CHAPTER 4. FLINT-2

fbodyinit is applied when the function f belongs to the protection block of the init

function. Just like fbody, it takes as input the contract C, the function f and the set of the

arguments {xv}. It then returns only the body of f and the set of the caller group, as this

protection block has no typestate restrictions.

fbodyinit(C,f , x̃) = (e′ return e, c̃l, t) if classes(C) = contract C(t̃s){ṽd} K P̃ B
∧ K = C :: (c̃l){(public init(x̃′ : t′){e}) F̃}
∧ f c = public func f (x̃′′ : t′′)→ t {e′ return e}
∧ f c ∈ F̃
∧ x̃ = x̃′′

sv returns the state variables, and their types, of a given contract C.

sv(C) = (x̃ : t) if classes(C) = contract C(t̃s){ṽd} K P̃ B

where the variables in x̃ : t are those in each vd in ṽd, which is in turn of one of the

following forms: let x : t = v; var x : t = v; let x : t;and var x : t.

uptbal updates the balance of the contract with address a.

uptbal(β,a,n) = β[a 7→ ((C, s̃,n′ +n), c̃, ỹ)] if β(a) = ((C, s̃,n′), c̃, ỹ)

∧ n′ +n > 0

4.1.2.3 Rules

The rules presented in this section follow the 〈e,β,σ ,CT S〉 configuration, where e is the

expression, and the succeeding ones are the environments: a blockchain β; a call stack σ ;

a typestate map CT S. Boolean and arithmetic operation rules are omitted.

If expression. The rules for if expressions have the standard meaning, and both then
and else branches are mandatory.

〈if true then e1else e2,β,σ ,CTS〉 → 〈e1,β,σ ,CTS〉
IF-TRUE

〈if false then e1else e2,β,σ ,CTS〉 → 〈e2,β,σ ,CTS〉
IF-FALSE

Variable and constant declaration. Rule DeclVar models variable declaration, whilst

DeclCons models constants.

Remark (x not in x̃). In the following rules, the notation x < x̃ represents that the x does not
belong to the set of identifiers x̃ in x̃ : v.

56

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

Top(σ) = a x < x̃
β(a) = (s, c, x̃ : v)

β′ = β[a 7→ (s, c, x̃ : v · x : v)]

〈var x : t = v,β,σ ,CTS〉 → 〈v,β′ ,σ ,CTS〉
DECLVAR

Top(σ) = a x < c̃
β(a) = ((C, s̃,n), c̃ : v, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃ : v · x : v, ỹ)]

〈let x : t = v,β,σ ,CTS〉 → 〈v,β′ ,σ ,CTS〉
DECLCONS

For variables and constants that are not initialised, we made a rule for each type, so

when the type t is Int its default value vt is 0, Bool is false, and Adress is aNULL.

Top(σ) = a x < x̃
β(a) = ((C, s̃,n), c̃, x̃ : v)

β′ = β[a 7→ ((C, s̃,n), c̃, x̃ : v · x : vt)]

〈var x : t,β,σ ,CTS〉 → 〈vt ,β′ ,σ ,CTS〉
DECLVAR-T

Top(σ) = a x < c̃
β(a) = ((C, s̃,n), c̃ : v, ỹ)

β′ = β[a 7→ ((C, s̃,n),�c : vt · x : vt , ỹ)]

〈let x : t,β,σ ,CTS〉 → 〈vt ,β′ ,σ ,CTS〉
DECLCONS-T

Function call. To simplify our approach to Flint-2, we removed some of the call func-

tions, such as external and attempt calls, and kept the function call. If the programmer

does not declare the contract instantiated in the calling of the function, we add the con-

tract name on top of the stack to know what function to call.

All these rules have the same behaviour, they return the body of the function f, and

append the input arguments to the scope of variables of the contract with address a.

Additionally, when a function is called, it is assumed that the caller is the address on top

of the call stack. Therefore, we push the same address that is on top of σ , so at the end of

the function body evaluation it can be popped.

Rule Call is applied when function f belongs to a protection block and the typestate

guard is different than any, whereas rule Call-2 is applied whenever function f is in the

constructor block of the contract. Lastly, the rule Call-Any is for when the typestate

guard of the protection block is anystate. Rule Try is the same as Call, it just has a

different syntax, whereas rule Call-Sender-R is called when the function caller does

not have enough gas to proceed with the transaction.

C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t) Top(CT S) ∈ t̃s a ∈ c̃l
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈a.f (x̃ : v),β,σ ,CTS〉 → 〈es,β′′ ,σ ·Top(σ),CTS〉
CALL

57

CHAPTER 4. FLINT-2

C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t) Top(CT S) ∈ t̃s a ∈ c̃l
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈try ? (a.f (x̃ : v)),β,σ ,CTS〉 → 〈es,β′′ ,σ ·Top(σ),CTS〉
TRY

C ∈ classes fbodyinit(C,f , x̃) = (e, c̃l, t) a ∈ c̃l
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈a.f (x̃ : v),β,σ ,CTS〉 → 〈e,β′′ ,σ ·Top(σ),CTS〉
CALL-2

C ∈ classes fbody(C,f , x̃ : v) = (e, t̃s, c̃l, t) a ∈ c̃l anystate ∈ t̃s
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈a.f (x̃ : v),β,σ ,CTS〉 → 〈e,β′′ ,σ ·Top(σ),CTS〉
CALL-ANY

uptbal(β,Top(σ),−amount) =⊥
〈a.f (x̃ : v),β,σ ,CTS〉 → 〈revert,β,σ ,CTS〉

CALL-SENDER-R

Furthermore, we added a special top-level call function, where we can declare the

address of the contract that is calling the function in question. All rules below, Call-

Sender; Call-Sender-2; Call-Sender-Any; and Call-Sender-R, are equiva-

lent to the ones above, being the only difference the added sender address as, that will be

pushed to the top of σ .

β(a) = ((C, s̃,n), c̃, ỹ)
C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t)

Top(CT S) ∈ t̃s es = e{self := a} a ∈ c̃l Top(σ) = ∅
β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]

β′′ = uptbal(uptbal(β′ , a,amount), as,−amount)

〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈es,β′′ ,σ · as,CTS〉
CALL-SENDER

β(a) = ((C, s̃,n), c̃, ỹ)
C ∈ classes fbodyinit(C,f , x̃) = (e, c̃l, t)
es = e{self := a} a ∈ c̃l Top(σ) = ∅
β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]

β′′ = uptbal(uptbal(β′ , a,amount), as,−amount)

〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈es,β′′ ,σ · as,CTS〉
CALL-SENDER-2

β(a) = ((C, s̃,n), c̃, ỹ)
C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t) anystate ∈ t̃s

es = e{self := a} a ∈ c̃l Top(σ) = ∅
β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]

β′′ = uptbal(uptbal(β′ , a,amount), as,−amount)

〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈es,β′′ ,σ · as,CTS〉
CALL-SENDER-ANY

58

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

uptbal(β,Top(σ),−amount) =⊥
〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈revert,β,σ ,CTS〉

CALL-SENDER-R

Variable lookup. Rule StateSel returns the value of the state variable x of the contract

with the address a. Var returns the variable x declared in {xvars∗} of the contract address

on top of σ .

β(a) = ((C, s̃,n), c̃, ỹ) x ∈ s̃∪ c̃
〈a.x,β,σ ,CTS〉 → 〈v,β,σ ,CTS〉

STATESEL

a = Top(σ) x ∈ ỹ
β(a) = ((C, s̃,n), c̃, ỹ)

〈x,β,σ ,CTS〉 → 〈v,β,σ ,CTS〉
VAR

Variable assignment. Both these rules enable the mutation of variables. Rule State-

Ass allows the alteration of the state variable x’s value, while rule ASS modifies the

value of the given variable.

β(a) = ((C, s̃,n), c̃, ỹ) x ∈ s̃∪ c̃
〈a.x = v,β,σ ,CTS〉 → 〈v,β[a.x 7→ v],σ ,CTS〉

STATEASS

β(a) = ((C, s̃,n), c̃, ỹ) x ∈ ỹ
〈x = v,β,σ · a,CTS〉 → 〈v,β[a.x 7→ v],σ · a,CTS〉

ASS

Sequential composition. Rule Seq discards v, so we can go to the evaluation of e.

〈v e,β,σ ,CTS〉 → 〈e,β,σ ,CTS〉
SEQ

σ = β0 · ã
〈revert e,β,σ ,CTS〉 → 〈revert,β0,σ ,CTS〉

SEQ-R

Become statement. Become rule modifies the current typestate of the program by

adding ts to the top of the stack CTS.

〈become ts,β,σ ,CTS〉 → 〈unit,β,σ ,CTS · ts〉
BECOME

Return statement. The Return rule is applied when the evaluation of a function was

successful, and we can pop an element from σ .

〈return v,β,σ · a,CTS〉 → 〈v,β,σ ,CTS〉
RETURN

59

CHAPTER 4. FLINT-2

Contract initialization. Init rule deploys a new contract C to the blockchain. We

added it to our syntax in order to be able to call function init by specifying the contract

we wish to invoke. We have to specify the contract’s address a, that in the real world

would be given by the blockchain.

The variables provided as input have to be the same, and in the same order, as the ones

declared as arguments of function init. The provided address a cannot be associated to

any other contract, since it has to be unique. All the self and x̃ instances in the expression

returned by the auxiliary function initc will be substituted by a and ṽ respectively.

The contract is appended to the blockchain, with the state variables and the constant

declared and with an initial balance of 0. If those variables have no initial value, they

will be added to the blockchain with their respective default value, as their values will be

added later when es, the function init’s body, is evaluated. The address of the contract

will be added to the top of σ .

finit(C, x̃ : v) = (�s : v′ , c̃ : v′′ , e)
es = e{self := a, x̃ := ṽ} a < dom(β)
cn = a 7→ ((C,�s : v′ ,n), c̃ : v′′ ,)

〈C.init(x̃ : v).n.a,β,σ ,CTS〉 → 〈es,β · cn,σ · a,CTS〉
INIT

Mappings. The following rules pertain to the mappings.

〈M[v1],β,σ ,CTS〉 → 〈M(v1),β,σ ,CTS〉
MAPSEL

M ′ =M\{(v1,M(v1))} ∪ {v1,v2}
〈M[v1 : v2],β,σ ,CTS〉 → 〈M ′ ,β,σ ,CTS〉

MAPASS

The rule MapSel evaluates the expression M[v1] by returning the value in M in

which v1 is the key. MapAss assigns the value of v2 to v1 and appends it to M. If v1 is

already in M, than v2 replaces the old value of v1.

4.1.3 Implementation Examples in Racket

In this section we show some execution examples of smart contracts, their vulnerabilities

and how we can fix them with Flint-2’s protection blocks.

4.1.3.1 BlockKing

In this section we recall once again the BlockKing contract introduced in Chapter 1.

Figure 4.5 presents BlockKing’s code in our Flint-2 implementation in Racket. We simpli-

fied the code, but the main idea of the Block King is kept. We removed the ifs, as it would

lead to many execution steps, and then took all three functions of our original contract,

and encapsulated them in protection blocks. Each function has its own block, which is

guarded by its own typestate. We thought best to have three typestates, as state canEnter

denotes that the contract has finished processing the last play and it is currently available

60

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

1 (contract BlockKing (waiting canEnter processing){

2 (var warrior : Address)

3 (var warriorGold : Int)

4 (var king : Address)}

5 (BlockKing :: (anycaller) {

6 (public init ((warrior : Address) (warriorGold : Int)) {

7 (self -> warrior = warrior)

8 (self -> warriorGold = warriorGold)

9 (self -> king = warrior)

10 (become canEnter)})})

11 (BlockKing @ (canEnter) :: (anycaller) {

12 (public func enter ((warrior : Address) (warriorGold : Int)) -> Void {

13 (self -> warrior = warrior)

14 (self -> warriorGold = warriorGold)

15 (become waiting)

16 return unit})})

17 (BlockKing @ (waiting) :: (anycaller) {

18 (public func __callback () -> Void {

19 (become processing)

20 (process_payment ())

21 return unit})})

22 (BlockKing @ (processing) :: (anycaller) {

23 (public func process_payment () -> Void {

24 (self -> king = (self -> warrior))

25 (become canEnter)

26 return unit})})

27)

Figure 4.5: BlockKing Flint-2 code

for a new player; waiting which indicates that it sent a request to Oraclize and is now

waiting for its new random number; and finally processing, which can only be accessed

after receiving the random number. Moreover, a caller protection has been added to the

function __callback to only allow calls from the Oraclize server.

By having these three typestates, the contract is bound to behave accordingly, as we

established an execution stream that does not allow the contract to take any other bets,

only when the current one is correctly processed.

Racket Execution. In this section we are going to present a simple execution example

of the BlockKing contract. As explained previously, the configuration of Flint-2 is defined

by a triple 〈e,β,σ ,CT S〉. As Redex’s language specification does not support concurrency,

we trigger the response of the Oraclize service by simply calling the __callback function

to mimic concurrency.

In Figure 4.6, through lines 1 to 8, we have the execution statements: lines 1 through

4 are the initialisation of both clients, the Oraclize service and the BlockKing contract,

respectively; lines 5 and 6 reference the calls of the clients to enter the gamble, whereas 7

and 8 mimic the Oraclize service response. Lines 9 and 10 are the empty blockchain and

call stack environments; and finally, line 11 refers to the typestate environment. This last

one is a mapping of contract addresses to their respective typestate stack, being that the

61

CHAPTER 4. FLINT-2

last element of the stack is their current typestate.

We start by initialising the contracts, which applies the rule Init, that adds the

contracts to the blockchain and executes the state variable and constant statements and

the statements inside the function init.

1 ((EOC -> init () -> 10 -> aBx)

2 (EOC -> init () -> 10 -> aBy)

3 (EOC -> init () -> 10 -> aO)

4 (BlockKing -> init ((warrior : aBK) (warriorGold : 0)) -> 9 -> aBK)

5 (aBK -> enter ((warrior : aBx) (warriorGold : 3)) -> sender (aBx))

6 (aBK -> enter ((warrior : aBy) (warriorGold : 3)) -> sender (aBy))

7 (aBK -> __callback () -> sender (aO))

8 (aBK -> __callback () -> sender (aO)))

9 ()

10 ()

11 ()

Figure 4.6: BlockKing Execution Example Pt.1

After successfully initialising the contracts, we reach the state presented in Figure 4.7.

Only two more statements remain (lines 1 and 2), the blockchain has the state of our

contract, the call stack is empty, and the current typestate is canEnter.

The following step is to evaluate the statement in line 1 from Figure 4.7, which is a

client with the address aBx that wants to enter the game, with a bid of 3.

1 ((aBK -> enter ((warrior : aBx) (warriorGold : 3)) -> sender (aBx))

2 (aBK -> enter ((warrior : aBy) (warriorGold : 3)) -> sender (aBy))

3 (aBK -> __callback () -> sender (aO))

4 (aBK -> __callback () -> sender (aO)))

5 ((aBx -> (EOC 10) -> ->)

6 (aBy -> (EOC 10) -> ->)

7 (aO -> (EOC 10) -> ->)

8 (aBK -> (BlockKing (warrior : aBK) (warriorGold : 0) (king : aBK) (Oraclize

: aO) 9) -> ->))

9 ((aBK -> canEnter))

Figure 4.7: BlockKing Execution Example Pt.2

As we can see in Figure 4.8, the client successfully entered the game. The state of our

contract is now updated in the blockchain, as the warrior is now aBx and warriorGold

is 3. The current typestate has also changed to waiting, as the request to the Oraclize

service has been made, and is waiting for a response.

Figure 3.44 is the last state of our execution, as the calling of function enter does not

meet all requirements, because of our typestate protection.

Racket execution of this program allows us to prove that the BlockKing contract does

not behave as expected, as it does not come to an end, as well as the typestate guards

guarantee an ill-behaved execution.

Furthermore, to demonstrate that the caller groups prevent unsolicited calls from non-

authorised contracts, we present in Figure 4.10 an example where a contract aV, which

62

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

1 (((((return (unit)))))

2 (aBK -> enter ((warrior : aBy) (warriorGold : 3)) -> sender (aBy))

3 (aBK -> __callback () -> sender (aO))

4 (aBK -> __callback () -> sender (aO)))

5 ((aBx -> (EOC 9) -> ->)

6 (aBy -> (EOC 10) -> ->)

7 (aO -> (EOC 10) -> ->)

8 (aBK ->

9 (BlockKing (warrior : aBx) (warriorGold : 3) (king : aBK) (Oraclize : aO)

10) -> -> (warrior : aBx) (warriorGold : 3)))

10 ((aBK -> canEnter waiting))

Figure 4.8: BlockKing Execution Example Pt.3

1 ((aBK -> enter ((warrior : aBy) (warriorGold : 3)) -> sender (aBy))

2 (aBK -> __callback () -> sender (aO))

3 (aBK -> __callback () -> sender (aO)))

4 ((aBx -> (EOC 9) -> ->)

5 (aBy -> (EOC 10) -> ->)

6 (aO -> (EOC 10) -> ->)

7 (aBK -> (BlockKing (warrior : aBx) (warriorGold : 3) (king : aBK) (Oraclize

: aO) 10) -> -> (warrior : aBx) (warriorGold : 3)))

8 ((aBK -> canEnter waiting))

Figure 4.9: BlockKing Execution Pt.5

is not assigned as Oraclize, calls the function __callback. We call special attention to

the current typestate, which is the same as the one in the protection block of __callback.

However, the Oraclize variable has a different address, and for that reason, if we run it on

Racket, the program stops as there is no permitted next step.

1 (((aBK -> __callback () -> sender (aV)))

2 ((aBK -> (BlockKing

3 (warrior : aBK)

4 (warriorGold : 3)

5 (king : aBK)

6 (Oraclize : aO)

7 0) -> ->))

8 ()

9 ((aBK -> waiting)))

Figure 4.10: BlockKing Execution Example - Caller Groups

4.1.3.2 Concurrent Counter

This next example is a simple concurrent counter implemented in Solidity [36], as pre-

sented in Figure 4.11. Function get returns the current value of the variable balance,

and function set updates the balance, sends back the previous amount and returns it.

If multiple contracts interact with the Counter at the same time, there is no guarantee

that the value of balance will be synchronised through all interactions. This problem is

63

CHAPTER 4. FLINT-2

caused by the shared-memory in the blockchain, variable balance.

Figure 4.11: Solidity Concurrent Counter

As well as before, we made some modifications to the contract when implementing

it to our version of Flint-2, as presented in Figure 4.12. As far as we know, there is no

equivalent to Solidity’s msg.value, so the value is passed as an input argument. Addi-

tionally, we did not understand how Flint-2 manages the gas of the contracts, thus we do

not send money to the contract’s callee. To solve the synchronisation problem, we added

a simple locking mechanism to the contract, by using a typestate. Before modifying the

variable balance, it enters the state cannotSet, which does not allow any other contract

to re-write it, only when it reaches the state canSet.

The use of typestates prevents the modification of the variable by multiple contracts

at the same time, as well as guarantying the atomicity of the procedure.

1 (contract Counter (canSet cannotSet){

2 (var balance : Int = 0) }

3 (Counter :: (anycaller) {

4 (public init () {

5 (become canSet)})

6 (public func get () -> Int {

7 return (self -> balance)})}

8)

9 (Counter @ (canSet) :: (anycaller) {

10 (public func set ((value : Int)) -> Int {

11 (become cannotSet)

12 (var t : Int = (self -> balance))

13 (self -> balance = value)

14 (become canSet)

15 return t})}

16)

17)

Figure 4.12: Flint-2 code of the Solidity Counter

Racket Execution Similar to the example presented in Section 4.1.3.1, in Figure 4.13 we

have an example of execution of the contract Counter, which is comprised of the contract

64

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

initialisation and function call of set and get. Just like before, our environments start

empty.

1 (((Counter -> init () -> aCounter)

2 (aCounter -> set ((value : 3)) -> sender (aCounter))

3 (aCounter -> get () -> sender (aCounter)))

4 ()

5 ()

6 ()

7 ((contract Counter (canSet cannotSet)

8 ((var balance : Int = 0))

9 (Counter :: (anycaller) (

10 (public init () (

11 (become canSet)))

12 (public func get () -> Int (

13 return (self -> balance)))))

14 (Counter @ (canSet) :: (anycaller) (

15 (public func set ((value : Int)) -> Int (

16 (become cannotSet)

17 (var t : Int = (self -> balance))

18 (self -> balance = value)

19 (become canSet)

20 return t)))))))

Figure 4.13: Counter Execution Example Pt.1

After the first statements is evaluated, we can see in Figure 4.14 that the contract was

deployed to the blockchain, and that our current typestate is canSet.

1 (((aCounter -> set ((value : 3)) -> sender (aCounter))

2 (aCounter -> get () -> sender (aCounter)))

3 ((aCounter -> (Counter

4 (balance : 0)

5 0) -> ->))

6 ()

7 ((aCounter -> canSet))

8 ((contract Counter (canSet cannotSet)

9 ((var balance : Int = 0))

10 (Counter :: (anycaller) (

11 (public init () (

12 (become canSet)))

13 (public func get () -> Int (

14 return (self -> balance)))))

15 (Counter @ (canSet) :: (anycaller) (

16 (public func set ((value : Int)) -> Int (

17 (become cannotSet)

18 (var t : Int = (self -> balance))

19 (self -> balance = value)

20 (become canSet)

21 return t)))))))

Figure 4.14: Counter Execution Example Pt.2

Figure 4.15, represents the state right after the CallSender rule was applied to

retrieve the body of function set. We can observe that by evaluating these next statements,

65

CHAPTER 4. FLINT-2

the current typestate will change twice, as it locks and unlocks the ability to call the

function set.

1 ((((become cannotSet)

2 ((var t : Int = (aCounter -> balance))

3 ((aCounter -> balance = 3)

4 ((become canSet)

5 (return (t))))))

6 (aCounter -> get () -> sender (aCounter)))

7 ((aCounter -> (Counter

8 (balance : 0)

9 0) -> -> (value : 3)))

10 (aCounter)

11 ((aCounter -> canSet))

12 ((contract Counter (canSet cannotSet)

13 ((var balance : Int = 0))

14 (Counter :: (anycaller) (

15 (public init () (

16 (become canSet)))

17 (public func get () -> Int (

18 return (self -> balance)))))

19 (Counter @ (canSet) :: (anycaller) (

20 (public func set ((value : Int)) -> Int (

21 (become cannotSet)

22 (var t : Int = (self -> balance))

23 (self -> balance = value)

24 (become canSet)

25 return t)))))))

Figure 4.15: Counter Execution Example Pt.3

The change in the typestate stack is visible in Figure 4.16, as well as the contracts

balance was updated to 3. The evaluation continues and successfully ends by returning

the value 3.

As Racket’s step-by-step evaluation of statements is atomic, we are not able to show

the concurrency this example needs. Instead, we now present a similar example where

we try to call function set and the current typestate is cannotEnter, to prove that the

use of this typestate will prevent the modification of the variable by multiple contracts at

the same time.

When trying to evaluate the code presented in Figure 4.17, Racket cannot apply any

rule, as the function set can only be called if the current typestate is canEnter, which

in this example it is not.

4.1.3.3 Auction

In this example we have an Auction, in which Clients can bid to win, and if they lose or

their bid is no longer the highest one, they can withdraw.

We modelled this example after Sylvain Conchon, Alexandrina Komeva and Fatiha

Zaidi example of the automaton [12], as presented in Figure 4.18. It describes a simple

contract of a bidding auction, where there is an Owner who sets up the auction and defines

66

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

1 (((aCounter -> get () -> sender (aCounter)))

2 ((aCounter -> (Counter

3 (balance : 3)

4 0) -> -> (value : 3) (t : 0)))

5 ()

6 ((aCounter -> canSet cannotSet canSet))

7 ((contract Counter (canSet cannotSet)

8 ((var balance : Int = 0))

9 (Counter :: (anycaller) (

10 (public init () (

11 (become canSet)))

12 (public func get () -> Int (

13 return (self -> balance)))))

14 (Counter @ (canSet) :: (anycaller) (

15 (public func set ((value : Int)) -> Int (

16 (become cannotSet)

17 (var t : Int = (self -> balance))

18 (self -> balance = value)

19 (become canSet)

20 return t)))))))

Figure 4.16: Counter Execution Example Pt.4

1 ((aCounter -> set ((value : 3)) -> sender (aCounter))

2 ((aCounter -> (Counter

3 (balance : 0)

4 0) -> ->))

5 ()

6 ((aCounter -> cannotSet))

7 ((contract Counter (canSet cannotSet)

8 ((var balance : Int = 0))

9 (Counter :: (anycaller) (

10 (public init () (

11 (become canSet)))

12 (public func get () -> Int (

13 return (self -> balance)))))

14 (Counter @ (canSet) :: (anycaller) (

15 (public func set ((value : Int)) -> Int (

16 (become cannotSet)

17 (var t : Int = (self -> balance))

18 (self -> balance = value)

19 (become canSet)

20 return t)))))))

Figure 4.17: Counter Execution Example - Typestate

when it ends, as well as multiple clients that interact with the contract in order to win

the auction. These clients can bid as long as the auction is running. Only the client who

made the highest bid will win, and the others will be refunded their bids.

The auction has five shared state variables: HBidder, which denotes the highest bid-

der; HBid, the highest bid; PRi , pending returns of the ith client; Ended, represents if the

auction is over; and finally Owner, which is the owner of the auction in progress. Addi-

tionally, the actions of the auction are represented in red in Figure 4.18. These actions,

or entrypoints, are the following: bid, which has v as a parameter that represents the

67

CHAPTER 4. FLINT-2

Figure 4.18: Example of Auction by Sylvain Conchon, Alexandrina Komeva and Fatiha
Zaidi

amount of money being bid; withdraw; win and end.

There are three states, S_canBid; S_hasBid; and S_won. The first one, can be accessed

by clients that have no pending returns, i.e., or have not bid yet or have already withdrawn

their money. From this state, the client can bid if and only if the following conditions

are all true: v is greater than the highest bid; the client bidding is not the highest bidder

already; and the auction is still running. If so, the state variables HBidder and HBid will

be updated with the client’s index and the amount that was bid, and also the previous

highest bid will be added to the pending returns of the preceding highest bidder.

The following state, S_hasBid, can be accessed only by clients who had bid beforehand.

The client stays in this state until the auction ends, or it is no longer the highest bidder

and has pending returns which, at this point, can withdraw the money, which will be

refunded by the contract, and go back to state S_canBid. If the auction ends, and it is the

highest bidder, then it can execute win and reclaim its prize by accessing the state S_won.

If not, it will have to withdraw.

It is important to note that the owner of the auction can at any point end it by setting

the variable Ended to True.

In Figure 4.19, we show a snippet of the code in Ligo 4, a smart contract language for

Tezos, of the Auction presented in 4.18.

The three functions represent the ones in the automaton, and the typestates and

pre-conditions presented in the example are checked in the if statements.

The code is verbose, and its prone to errors, as some pre-conditions can be left out by

mistake.

Our approach with Flint-2 is much more compact and simple, as we use the typestates

to prevent some undesired behaviours.

We made some adjustments to the contract when adapting it to Flint-2, but the be-

haviour of both is equivalent. Firstly, we divided the auction into two, Auction and Client.

This separation between the auction and its clients is important as their behaviours are

distinct, and so are their typestates.

4https://ligolang.org

68

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

52 let bid (bidding, storage : bidding * storage) : return =

53 let no_op : operation list = [] in

54 match Map.find_opt bidding.address storage.store with

55 Some (b) -> if b > 0 then

56 (failwith ("Already bid, need to withdraw first") : return) else

57 if bidding.address = 0 then

58 (failwith ("Owner cannot bid") : return)

59 else if storage.auctionEnded = 1 then

60 (failwith ("Auction is over") : return)

61 else if bidding.address = storage.highestBidder then

62 (failwith ("Client is already the highest bidder") : return)

63 else if bidding.amount <= 0 then

64 (failwith ("Value bid needs to be greater than 0") : return)

65 else

66 let s: storage = {storage with store = Map.update bidding.address (

Some bidding.amount) storage.store} in

67 (([] : operation list), s)

68 | None -> (failwith ("Error"): return)

69

70 let withdraw (a, storage : act * storage) : return =

71 let no_op : operation list = [] in

72 match Map.find_opt a.address storage.store with

73 Some (b) -> if b > 0 then

74 (failwith ("Client has no pending returns") : return) else

75 if a.address = 0 then

76 (failwith ("Owner cannot withdraw") : return)

77 else if a.address = storage.highestBidder then

78 (failwith ("Client is the highest bidder, cannot withdraw") : return)

79 else if b > 0 then

80 (failwith ("Client has no pending returns") : return)

81 else

82 let s : store = Map.update a.address (Some 0) storage.store in

83 (no_op, {storage with store = s})

84 | None -> (failwith ("Error"): return)

85

86 let win (a, storage : act * storage) : return =

87 let no_op : operation list = [] in

88 match Map.find_opt a.address storage.store with

89 Some (b) -> if b = 0 then

90 (failwith ("Prize was already collected") : return) else

91 if a.address = 0 then

92 (failwith ("Owner cannot win") : return)

93 else if storage.auctionEnded = 0 then

94 (failwith ("Auction is still running") : return)

95 else if a.address <> storage.highestBidder then

96 (failwith ("Isnt the winner of the auction") : return)

97 else

98 let s : store = Map.update a.address (Some 0) storage.store in

99 (no_op, {storage with store = s})

100 | None -> (failwith ("Error"): return)

Figure 4.19: Auction Ligo code

69

CHAPTER 4. FLINT-2

Firstly, the Auction contract keeps the information about the owner and the all the

bids, while the Client only stores its own address and bid.

Additionally, the typestate of the auction is auctionEnded, if the auction has ended,

or auctionRunning if it has not. As it can be seen in Figure 4.20, there are many functions

that can be called regardless of the state of the auction. When the auction is running, bid

and endAuction can be called, although only the latter can only be called by the owner

of the auction. Furthermore, function win() is only available whenever the current state

is aunctionEnded.

In Figure 4.21, we present the automaton that models the behaviour of this Auction.

Note that the functions presented in the constructor block are omitted, as they can be

called whenever. The automata presented here was created by using Typestate Editor 5.

On the other hand, the Client’s are greater in number, so inevitably the automaton is

slightly more elaborate, as is presented in Figure 4.22. The typestates are canBid; hasBid;

won (just like the ones in Figure 4.18), in addition to lost; canWithdraw; and ended.

When the contract is initiated, it begins as canBid. From it, the client can only bid,

and if has the highest bid, then it changes to hasBid, otherwise it goes to canWithdraw.

From canWithdraw, the client withdraws its previous bid, and checks if the auction

has ended. In case it is still running, it goes back to canBid, whereas if it has already

ended, it goes to lost.

When in state hasBid, the client checks if it is still the highest bidder and if the auction

is running. If it is the highest bidder and the auction has ended, the state changes to won,

but if it is still going, then it remains in that state. If the client is no longer the highest

bidder then it goes to canWithdraw.

We easily modelled the automaton in Figure 4.22 into a Flint-2 contract, which is

presented in Figure 4.23. The state S_checkEnded is omitted as we can simply check if

the auction is running in an if statement.

4.1.3.4 Racket Execution

In this section we present and discuss the execution of the auction shown in the previous

section. This example consists in an auction aAuction, and two clients, aC1 and aC2, who

interact with the auction to win the bidding. This example starts with the initialisation of

the auction, which owner is aOwner, and the clients, as presented in Figure 4.24, as well

as empty environments. Apropos of this example, we omit the contracts declaration as it

would be too extensive and repetitive.

In Figure 4.25, we can observe that the blockchain environment now has the auction

and both the clients. The auction store is empty, it has no highest bidder or bid, and has

not ended. And the clients’ bids are also set to zero. The typestate environment informs

us that the auction is running, and both the clients can proceed to bid. What follows is

client aC1 bids with the value 8.

5https://typestate-editor.github.io

70

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

1 (contract Auction (auctionEnded auctionRunning) {

2 (var store : (Address : Int))

3 (var owner : Address)

4 (var ended : Bool)

5 (var highestBid : Int)

6 (var highestBidder : Address)}

7 (Auction :: (anycaller) {

8 (public init ((owner : Address)) {

9 (self -> owner = owner)

10 (self -> ended = false)

11 (self -> highestBid = 0)

12 (self -> highestBidder = aNull)

13 (self -> store = ())

14 (become auctionRunning)})

15 (public func getHBidder () -> Address {

16 return (self -> highestBidder)})

17 (public func getHBid () -> Int {

18 return (self -> highestBid)})

19 (public func hasEnded () -> Bool {

20 return (self -> ended)})

21 (public func withdraw ((bidder : Address)) -> Bool {

22 return (

23 if (((bidder != (self -> highestBidder)) && (((self -> store)[

bidder ::]) != 0)))

24 {((self -> store = ((self -> store)[bidder :: 0])) (true))

}

25 else {false})}) })

26 (Auction @ (auctionRunning) :: (owner) {

27 (public func endAuction () -> Void {

28 (self -> ended = true)

29 (become auctionEnded)

30 return unit})})

31 (Auction @ (auctionRunning) :: (anycaller) {

32 (public func bid ((bid : Int) (bidder : Address)) -> Address {

33 (if ((((self -> store)[bidder ::]) == 0))

34 {((self -> store = ((self -> store)[bidder :: bid]))

35 (if ((bid > (self -> highestBid)))

36 {((self -> highestBid = bid) (self -> highestBidder =

bidder))}

37 else {unit}))}

38 else {unit})

39 return (self -> highestBidder)}) })

40 (Auction @ (auctionEnded) :: (anycaller) {

41 (public func win ((bidder : Address)) -> Bool {

42 return

43 (if (((bidder == (self -> highestBidder)) && (((self -> store)

[bidder ::]) != 0)))

44 {((self -> store = ((self -> store)[bidder :: 0])) (true))

}

45 else {false})})}))

Figure 4.20: Auction Code Flint-2

71

CHAPTER 4. FLINT-2

Figure 4.21: Automaton Auction

Figure 4.22: Automaton Client

72

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

1 (contract Client (canBid canWithdraw won lost hasBid ended) {

2 (var auction : Address)

3 (var bid : Int = 0)}

4 (Client :: (anycaller) {

5 (public init ((auction : Address)) {

6 (self -> auction = auction)

7 (become canBid)})

8 (public func hasEnded () -> Bool {

9 return ((self -> auction) -> ended)})})

10 (Client @ (canBid) :: (anycaller) {

11 (public func bid ((bid : Int)) -> Int {

12 (self -> bid = bid)

13 (if ((((self -> auction) -> bid ((bid : bid) (bidder : self))) ==

self))

14 {(become hasBid)}

15 else {(become canWithdraw)})

16 return bid})})

17 (Client @ (canWithdraw) :: (anycaller) {

18 (public func withdraw () -> Void {

19 ((self -> auction) -> withdraw ((bidder : self)))

20 (if (((self -> auction) -> hasEnded ()))

21 {(become lost)}

22 else {(become canBid)})

23 return unit})})

24 (Client @ (hasBid) :: (anycaller) {

25 (public func isHB () -> Bool {

26 return (if ((((self -> auction) -> getHBidder ()) == self))

27 {(if (((self -> auction) -> hasEnded ()))

28 {((become won) (true))}

29 else {true})}

30 else {((become canWithdraw) (false))})})})

31 (Client @ (won) :: (anycaller) {

32 (public func won () -> Bool {

33 return (if (((self -> auction) -> win ((bidder : self))))

34 {(become ended)}

35 else {false})})}))

Figure 4.23: Client Code Flint-2

1 ((Auction -> init ((owner : aOwner)) -> aAuction)

2 (Client -> init ((auction : aAuction)) -> aC1)

3 (Client -> init ((auction : aAuction)) -> aC2)

4 (aC1 -> bid ((bid : 8)) -> sender (aC1))

5 (aC2 -> bid ((bid : 8)) -> sender (aC2))

6 (aC2 -> withdraw () -> sender (aC2))

7 (aC2 -> bid ((bid : 10)) -> sender (aC2))

8 (aAuction -> endAuction () -> sender (aOwner))

9 (aC1 -> isHB () -> sender (aC1))

10 (aC1 -> withdraw () -> sender (aC1))

11 (aC2 -> isHB () -> sender (aC2))

12 (aC2 -> won () -> sender (aC2)))

13 ()

14 ()

15 ()

Figure 4.24: Auction Example Pt.1

73

CHAPTER 4. FLINT-2

1 ((aC1 -> bid ((bid : 8)) -> sender (aC1))

2 (aC2 -> bid ((bid : 8)) -> sender (aC2))

3 (aC2 -> withdraw () -> sender (aC2))

4 (aC2 -> bid ((bid : 10)) -> sender (aC2))

5 (aAuction -> endAuction () -> sender (aOwner))

6 (aC1 -> isHB () -> sender (aC1))

7 (aC1 -> withdraw () -> sender (aC1))

8 (aC2 -> isHB () -> sender (aC2))

9 (aC2 -> won () -> sender (aC2)))

10 ((aAuction -> (Auction

11 (store : ())

12 (owner : aOwner)

13 (ended : false)

14 (highestBid : 0)

15 (highestBidder : aNull)

16 0) -> ->)

17 (aC1 -> (Client

18 (auction : aAuction)

19 (bid : 0)

20 0) -> ->)

21 (aC2 -> (Client

22 (auction : aAuction)

23 (bid : 0)

24 0) -> ->))

25 ()

26 ((aAuction -> auctionRunning)

27 (aC1 -> canBid)

28 (aC2 -> canBid))

Figure 4.25: Auction Example Pt.2

The auction has in its store the bid, and also, by being the first bid and greater than

0, the new highest bid is now 8, and belongs to aC1. Additionally, the typestate of aC1 has

now changed to hasBid; and aC2 is ready to its won bidding with the same value.

As the bid of aC2 was not greater than the highest bid, aC2’s typestate indicates that

the client has to withdraw their previous bid, as in Figure 4.27. As a result, the next step

on our evaluation is aC2 withdrawing its bid.

Figure 4.28 represents the state of the blockchain after aC2 withdraw. At this point,

the typestate of aC2 is back to canBid, and is ready to bid again, now with a bid of value

10.

As it can be seen in Figure 4.29, the auction’s highest bid and bidder has changed to

10 and aC2, respectively. Additionally, the current typestate of client aC2 is now hasBid;

and the owner is about to end the auction.

After aOwner ends the auction, the typestate of the auction changes to auctionEnded,

as in Figure 4.30, which in turn means that the clients can no longer bid.

As aC1 asked if it was still the highest bidder and receiving that was no longer true, via

calling isHB(), its typestate changed to canWithdraw as it has to be refund its previous

bid.

After client aC1 withdraws, the value stored in the blockchain for aC1 bid is reset to

74

4.1. RACKET IMPLEMENTATION / EXECUTABLE SEMANTICS

1 ((aC2 -> bid ((bid : 8)) -> sender (aC2))

2 (aC2 -> withdraw () -> sender (aC2))

3 (aC2 -> bid ((bid : 10)) -> sender (aC2))

4 (aAuction -> endAuction () -> sender (aOwner))

5 (aC1 -> isHB () -> sender (aC1))

6 (aC1 -> withdraw () -> sender (aC1))

7 (aC2 -> isHB () -> sender (aC2))

8 (aC2 -> won () -> sender (aC2)))

9 ((aAuction -> (Auction

10 (store : ((aC1 : 8)))

11 (owner : aOwner)

12 (ended : false)

13 (highestBid : 8)

14 (highestBidder : aC1)

15 0) -> -> (bid : 8) (bidder : aC1))

16 (aC1 -> (Client

17 (auction : aAuction)

18 (bid : 8)

19 0) -> -> (bid : 8))

20 (aC2 -> (Client

21 (auction : aAuction)

22 (bid : 0)

23 0) -> ->))

24 ()

25 ((aAuction -> auctionRunning)

26 (aC1 -> canBid hasBid)

27 (aC2 -> canBid))

Figure 4.26: Auction Example Pt.3

zero, and its typestate is set to lost, as seen in Figure 4.32, which means that the client

can no longer execute any calls other than hasEnded.

As client aC2 got the confirmation that it is the winner of the auction, its typestate

changed to won, as shown in Figure 4.33. The only transaction remaining is for aC2 to

claim its prize.

By evaluating the last expression, our execution comes to a halt as we reach terminal

value unit. We can examine Figure 4.34 and see that the auction has no bids left to

refund, our call stack is empty, and that client aC2’s typestate is set to ended.

4.1.3.5 Traffic Light

This example was based on a traffic light case study in the Flint-2’s Git repository 6. The

original code is presented in Figure 4.35, and the colour changing functions of the light

are guarded with typestates. The light can only turn red or green if the current state is

amber, and only turn amber if the light is red or green.

In Figure 4.36, we present the Racket implementation of this code. They are very

similar, apart from the only missing statement, the mutates expression, which we have

not implemented for simplicity purposes.

6https://github.com/flintlang/flint-2/blob/master/tests/behaviour_tests/traffic_
lights.flint

75

https://github.com/flintlang/flint-2/blob/master/tests/behaviour_tests/traffic_lights.flint
https://github.com/flintlang/flint-2/blob/master/tests/behaviour_tests/traffic_lights.flint

CHAPTER 4. FLINT-2

1 ((aC2 -> withdraw () -> sender (aC2))

2 (aC2 -> bid ((bid : 10)) -> sender (aC2))

3 (aAuction -> endAuction () -> sender (aOwner))

4 (aC1 -> isHB () -> sender (aC1))

5 (aC1 -> withdraw () -> sender (aC1))

6 (aC2 -> isHB () -> sender (aC2))

7 (aC2 -> won () -> sender (aC2)))

8 ((aAuction -> (Auction

9 (store : ((aC1 : 8)

10 (aC2 : 8)))

11 (owner : aOwner)

12 (ended : false)

13 (highestBid : 8)

14 (highestBidder : aC1)

15 0) -> -> (bid : 8) (bidder : aC2))

16 (bid : 8)

17 (bidder : aC1)

18 (aC -> (Client

19 (auction : aAuction)

20 (bid : 8)

21 0) -> -> (bid : 8))

22 (aC2 -> (Client

23 (auction : aAuction)

24 (bid : 8)

25 0) -> -> (bid : 8)))

26 ()

27 ((aAuction -> auctionRunning)

28 (aC1 -> canBid hasBid)

29 (aC2 -> canBid canWithdraw))

Figure 4.27: Auction Example Pt.4

Now that we have introduced the Racket code, we are ready to show the step-by-step

evaluation of a program that changes the light’s colour. As it can be seen in Figure 4.37,

all environments are initially empty before the contract initialisation.

Once the contract has been deployed, its typestate is set to Red, as represented in

Figure 4.38. The next step on the program’s evaluation is its change to the colour amber

(line 1), which is permitted due to the current typestate being Red.

Figure 4.39 represents the program state after the light has turn amber. Line 5 shows

that the current typestate is Amber, as the traffic light’s following function call is to turn

green, and then amber again.

At the end of the execution, which is represented in Figure 4.40, line 4 describes

the evolution of the traffic light’s states, and we can assume that the program behaved

correctly as there was no changes from Red to Green, or vice-versa, without passing

through Amber.

4.2 Type System

In this section we defined a type system for Flint-2, an original presentation based on that

of Featherweight Solidity [14].

76

4.2. TYPE SYSTEM

1 ((aC2 -> bid ((bid : 10)) -> sender (aC2))

2 (aAuction -> endAuction () -> sender (aOwner))

3 (aC1 -> isHB () -> sender (aC1))

4 (aC1 -> withdraw () -> sender (aC1))

5 (aC2 -> isHB () -> sender (aC2))

6 (aC2 -> won () -> sender (aC2)))

7 ((aAuction -> (Auction

8 (store : ((aC1 : 8) (aC2 : 0)))

9 (owner : aOwner)

10 (ended : false)

11 (highestBid : 8)

12 (highestBidder : aC1)

13 0) -> -> (bid : 8) (bidder : aC2))

14 (bidder : aC2)

15 (bid : 8)

16 (bidder : aC1)

17 (aC1 -> (Client

18 (auction : aAuction)

19 (bid : 8)

20 0) -> -> (bid : 8))

21 (aC2 -> (Client

22 (auction : aAuction)

23 (bid : 8)

24 0) -> -> (bid : 8)))

25 ()

26 ((aAuction -> auctionRunning)

27 (aC1 -> canBid hasBid)

28 (aC2 -> canBid canWithdraw canBid))

Figure 4.28: Auction Example Pt.5

Before proceeding, we recall the types of our syntax, as defined in Figure 4.2:

(Types) t ::= Int | Address | Bool | Void | (t : t)

A type system of a given language is usually an inductively defined relation, via

rules following the syntax of the language. A rule is represented as a number of premise

judgements above a horizontal line, and below it a conclusion judgement [10]. A rule is

valid if all the premises hold. These judgements define the relation between types, terms

and environments. Thus, we define the judgements of this type system as the following

relation:

Γ ` e : t . Γ ′

where:

• Γ and Γ ′ are the context input and output respectively;

• and e : t means that the expression e has type t in Γ .

We define a context Γ as a function assigning types to variables and the type Address

to addresses.

77

CHAPTER 4. FLINT-2

1 ((aAuction -> endAuction () -> sender (aOwner))

2 (aC1 -> isHB () -> sender (aC1))

3 (aC1 -> withdraw () -> sender (aC1))

4 (aC2 -> isHB () -> sender (aC2))

5 (aC2 -> won () -> sender (aC2)))

6 ((aAuction -> (Auction

7 (store : ((aC1 : 8) (aC2 : 10)))

8 (owner : aOwner)

9 (ended : false)

10 (highestBid : 10)

11 (highestBidder : aC2)

12 0) -> -> (bid : 10) (bidder : aC2))

13 (bid : 8)

14 (bidder : aC2)

15 (bidder : aC2)

16 (bid : 8)

17 (bidder : aC1)

18 (aC1 -> (Client

19 (auction : aAuction)

20 (bid : 8)

21 0) -> -> (bid : 8))

22 (aC2 -> (Client

23 (auction : aAuction)

24 (bid : 10)

25 0) -> -> (bid : 10))

26 (bid : 8))

27 ()

28 ((aAuction -> auctionRunning)

29 (aC1 -> canBid hasBid)

30 (aC2 -> canBid canWithdraw canBid hasBid))

Figure 4.29: Auction Example Pt.6

(Type environment) Γ ::= ∅ | Γ ,x : t | Γ , a : Address

In the following sections, we will present the typing rules that define the Flint-2 type

system.

4.2.1 Typing Rules

In this section we present the typing rules we formalised for Flint-2.

Axioms. These rules all have the expected meaning.

Γ ` true : Bool . Γ
T-True

Γ ` false : Bool . Γ
T-False

Γ ` unit : Void . Γ
T-Unit

n ∈Z
Γ ` n: Int . Γ

T-Int

Γ , a: Address ` a: Address . Γ
T-Address

Γ ,x : t ` x : t . Γ
T-Var

Γ , a : C ` a : C . Γ
T-Ref

78

4.2. TYPE SYSTEM

1 ((aC1 -> isHB () -> sender (aC1))

2 (aC1 -> withdraw () -> sender (aC1))

3 (aC2 -> isHB () -> sender (aC2))

4 (aC2 -> won () -> sender (aC2)))

5 ((aAuction -> (Auction

6 (store : ((aC1 : 8) (aC2 : 10)))

7 (owner : aOwner)

8 (ended : true)

9 (highestBid : 10)

10 (highestBidder : aC2)

11 0) -> -> (bid : 10) (bidder : aC2))

12 (bid : 8)

13 (bidder : aC2)

14 (bidder : aC2)

15 (bid : 8)

16 (bidder : aC1)

17 (aC1 -> (Client

18 (auction : aAuction)

19 (bid : 8)

20 0) -> -> (bid : 8))

21 (aC2 -> (Client

22 (auction : aAuction)

23 (bid : 10)

24 0) -> -> (bid : 10))

25 (bid : 8))

26 ()

27 ((aAuction -> auctionRunning auctionEnded)

28 (aC1 -> canBid hasBid)

29 (aC2 -> canBid canWithdraw canBid hasBid))

Figure 4.30: Auction Example Pt.7

Standard Rules. The rules include the return expression, sequential composition, vari-

able declaration and assignment, and the if expression. These rules have the standard

meaning.

Γ ` e : t . Γ
Γ ` return e : t . Γ

T-Return

Γ ` e1 : t1 . Γ ′ Γ ′ ` e2 : t2 . Γ ′′

Γ ` e1;e2 : t2 . Γ ′′
T-Seq

Γ ,x : t ` e : t . Γ ′

Γ ` var x : t = e : t . Γ ′
T-DeclVar

Γ ` var x : t : t . Γ ,x : t
T-DeclVar2

Γ ` e1 : Bool . Γ Γ ` e2 : t . Γ Γ ` e3 : t . Γ
Γ ` if e1 then e2 else e3 : t . Γ

T-If

Γ ,x : t ` e : t . Γ ′

Γ ` let x : t = e : t . Γ ′
T-DeclCons

Γ ` let x : t : t . Γ ,x : t
T-DeclCons2

Γ ` x : t Γ ` e : t
Γ ` x = e : t . Γ

T-Ass

79

CHAPTER 4. FLINT-2

1 ((aC1 -> withdraw () -> sender (aC1))

2 (aC2 -> isHB () -> sender (aC2))

3 (aC2 -> won () -> sender (aC2)))

4 ((aAuction

5 ->

6 (Auction

7 (store : ((aC1 : 8) (aC2 : 10)))

8 (owner : aOwner)

9 (ended : true)

10 (highestBid : 10)

11 (highestBidder : aC2)

12 0)

13 ->

14 ->

15 (bid : 10)

16 (bidder : aC2))

17 (bid : 8)

18 (bidder : aC2)

19 (bidder : aC2)

20 (bid : 8)

21 (bidder : aC1)

22 (aC1

23 ->

24 (Client (auction : aAuction) (bid : 8) 0)

25 ->

26 ->

27 (bid : 8))

28 (aC2

29 ->

30 (Client (auction : aAuction) (bid : 10) 0)

31 ->

32 ->

33 (bid : 10))

34 (bid : 8))

35 ()

36 ((aAuction -> auctionRunning auctionEnded)

37 (aC1 -> canBid hasBid canWithdraw)

38 (aC2 -> canBid canWithdraw canBid hasBid))

Figure 4.31: Auction Example Pt.8

State variables. The rules listed below are for the access of a contract’s state variables.

Γ ` e : C . Γ sv(C) = (x̃ : t) x ∈ x̃
Γ ` e.x : t . Γ

T-StateSel

Γ ` e1.x : t . Γ Γ ` e2 : t . Γ
Γ ` e1.x = e2 : t . Γ

T-StateAss

Mapping. The typing rules presented below are for typing the mapping values as well

as the read and write of them. The type t for Γ ` {vn|n ∈N0} : t is fixed for all values in vn.

M = k̃ : v Γ ` k̃ : tk . Γ Γ ` ṽ : tv . Γ

Γ `M : (tk : tv) . Γ
T-Mapping

Γ ` e1 : (tk : tv) . Γ Γ ` e2 : tk . Γ Γ ` e3 : tv . Γ

Γ ` e1[e2 : e3] : (tk : tv) . Γ
T-MapAss

80

4.2. TYPE SYSTEM

1 ((aC2 -> isHB () -> sender (aC2))

2 (aC2 -> won () -> sender (aC2)))

3 ((aAuction -> (Auction

4 (store : ((aC1 : 0) (aC2 : 10)))

5 (owner : aOwner)

6 (ended : true)

7 (highestBid : 10)

8 (highestBidder : aC2)

9 0) -> -> (bid : 10) (bidder : aC1))

10 (bidder : aC2)

11 (bid : 8)

12 (bidder : aC2)

13 (bidder : aC2)

14 (bid : 8)

15 (bidder : aC1)

16 (aC1 -> (Client

17 (auction : aAuction)

18 (bid : 8)

19 0) -> -> (bid : 8))

20 (aC2 -> (Client

21 (auction : aAuction)

22 (bid : 10)

23 0) -> -> (bid : 10))

24 (bid : 8))

25 ()

26 ((aAuction -> auctionRunning auctionEnded)

27 (aC1 -> canBid hasBid canWithdraw lost)

28 (aC2 -> canBid canWithdraw canBid hasBid))

Figure 4.32: Auction Example Pt.9

Γ ` e1 : (tk : tv) . Γ Γ ` e2 : tk . Γ

Γ ` e1[e2] : tv . Γ
T-MapSel

Call functions. The following rules are for functions, as well as contract deployment

to the blockchain. Function f must be defined in the code of contract C, as fbody returns

both the type of the function and the return statement.

C ∈ classes sv(C) = x̃ : t Γ ` ẽ : t . Γ

Γ ` C.init(x̃ : e).a : Void . Γ , a : Address
T-Init

Γ ` e0.f (x̃ : e) : t Γ ` a : Address . Γ

Γ ` e0.f (x̃ : e).sender(a) : t . Γ
T-CallSender

Γ ` e0 : Address fbody(C,f ,x) = (e′′ · return e, c̃l, t̃s, t) Γ ` ẽ′ : t′ . Γ

Γ ` e0.f (�x : e′) : t . Γ
T-Call

Γ ` e0 : Address fbodyinit(C,f ,x) = (e′′ · return e, c̃l, t) Γ ` ẽ′ : t′ . Γ

Γ ` e0.f (�x : e′) : t . Γ
T-Call-2

81

CHAPTER 4. FLINT-2

1 ((aC2 -> won () -> sender (aC2)))

2 ((aAuction -> (Auction

3 (store : ((aC1 : 0) (aC2 : 10)))

4 (owner : aOwner)

5 (ended : true)

6 (highestBid : 10)

7 (highestBidder : aC2)

8 0) -> -> (bid : 10) (bidder : aC1))

9 (bidder : aC2)

10 (bid : 8)

11 (bidder : aC2)

12 (bidder : aC2)

13 (bid : 8)

14 (bidder : aC1)

15 (aC1 -> (Client

16 (auction : aAuction)

17 (bid : 8)

18 0) -> -> (bid : 8))

19 (aC2 -> (Client

20 (auction : aAuction)

21 (bid : 10)

22 0) -> -> (bid : 10))

23 (bid : 8))

24 ()

25 ((aAuction -> auctionRunning auctionEnded)

26 (aC1 -> canBid hasBid canWithdraw lost)

27 (aC2 -> canBid canWithdraw canBid hasBid won))

Figure 4.33: Auction Example Pt.10

Γ ` e0 : Address . Γ fbody(C,f ,x) = (e′′ · return e, c̃l, t̃s, t)
Γ ` ẽ′ : t′ . Γ anystate ∈ t̃s

Γ ` e0.f (�x : e′) : t . Γ
T-Call-Any

4.2.2 Example of Typing Derivations

In the following sections we will prove the well typification of the examples presented in

Section 4.1.3.

4.2.2.1 BlockKing

In this section we try to prove that the code presented in Figure 4.6 is well-typed. Because

of presentation purposes, we do omit some premises presented in the judgements, such

as C ∈ classes and sv(C) = x̃ : t, nevertheless our typechecker guarantees all of them. To

that extent, the expression that we are going to evaluate, which is a segment from before,

is:
e = BlockKing.init((warrior : aBK); (warriorGold : 0))(aBK)

e′ = aBK.enter((warrior : aBx); (warriorGold : 3)).sender(aBx)

The initial context is Γ = ∅,Oraclize : Address, aBx : Address, and Γ ′ = Γ , aBK : Address.

(1) represents another derivation tree, that is presented separately.

82

4.2. TYPE SYSTEM

1 (unit

2 ((aAuction -> (Auction

3 (store : ((aC1 : 0) (aC2 : 0)))

4 (owner : aOwner)

5 (ended : true)

6 (highestBid : 10)

7 (highestBidder : aC2)

8 0) -> -> (bid : 10) (bidder : aC2))

9 (bidder : aC1)

10 (bidder : aC2)

11 (bid : 8)

12 (bidder : aC2)

13 (bidder : aC2)

14 (bid : 8)

15 (bidder : aC1)

16 (aC1 -> (Client

17 (auction : aAuction)

18 (bid : 8)

19 0) -> -> (bid : 8))

20 (aC2 -> (Client

21 (auction : aAuction)

22 (bid : 10)

23 0) -> -> (bid : 10))

24 (bid : 8))

25 ()

26 ((aAuction -> auctionRunning auctionEnded)

27 (aC1 -> canBid hasBid canWithdraw lost)

28 (aC2 -> canBid canWithdraw canBid hasBid won ended))

Figure 4.34: Auction Example Pt.11

T-Seq

(3)
T-Init

X
Γ ′ ` aBK : Address . Γ ′

T-Address (1) (2)

Γ ` e : Void . Γ , aBK : Address
Γ ` e;e′ : Void . Γ ′

Where (1) and (2) are, is where the evaluation of the parameters of the expression:

(1) X
Γ ′ ` aBx : Address . Γ ′

T-Address (2) X
Γ ′ ` 0 : Int . Γ ′

T-Int

After the evaluation of the left branch, we proceed to the following:

(3)
X

Γ ′ ` aBx : Address . Γ ′
T-Address (4)

Γ ′ ` e′ : Void . Γ ′
T-CallSender

Judgement T-CallSender evaluates the address of the sender and the expression

e′′ = aBK .enter((warrior : aBx); (warriorGold : 3)), which derivation tree is presented

in (4):

(4)
X

Γ ′ ` aBK : Address . Γ ′
T-Address (5) (6)

Γ ′ ` e′′ : Void . Γ ′
T-Call

83

CHAPTER 4. FLINT-2

1 contract TrafficLights (Red, Amber, Green) {

2 var signal: Int = 0

3 }

4

5 TrafficLights :: (any) {

6 public init() {

7 become Red

8 }

9

10 public func getSignal() -> Int {

11 return signal

12 }

13 }

14

15 TrafficLights @(Red, Green) :: (any) {

16 public func moveToAmber() mutates (signal) {

17 signal = 1

18 become Amber

19 }

20 }

21

22 TrafficLights @(Amber) :: (any) {

23 public func moveToGreen() mutates (signal) {

24 signal = 2

25 become Green

26 }

27

28 public func moveToRed() mutates (signal) {

29 signal = 0

30 become Red

31 }

32 }

Figure 4.35: Traffic Light contract

The evaluation of both input arguments of function enter is on (5) and (6).

(5) X
Γ ′ ` aBx : Address . Γ ′

T-Address (6) X
Γ ′ ` 3 : Int . Γ ′

T-Int

This exercise proves the well-typification of the code presented in Figure 4.6, whilst

the example we demonstrate next shows that our type system rejects ill-formed expres-

sions.

In this next example, instead of providing an address as input for warrior, we give

an integer: e′′′ = BlockKing.init((warrior : 3); (warriorGold : 0))(aBK).

(7)
Γ ′ ` 3 : Address . Γ ′

T-Address (2)

Γ ` e′′′ : Void . Γ , aBK : Address
T-Init (3)

Γ ` e′′′;e′ : Void . Γ ′
T-Seq

However, when we proceed to the evaluation of the branch of the warrior variable, be-

cause it expects an address from the premise sv(C) = warrior : Address, warriorGold : Int,

84

4.2. TYPE SYSTEM

1 (contract TrafficLights (Red Amber Green) {

2 (var signal : Int = 0)

3 }

4

5 (TrafficLights :: (anycaller) {

6 (public init () {

7 (become Red)

8 })

9

10 (public func getSignal () -> Int {

11 return signal

12 })

13 })

14

15 (TrafficLights @ (Red Green) :: (anycaller) {

16 (public func moveToAmber () -> Void {

17 (signal = 1)

18 (become Amber)

19 return unit

20 })

21 })

22

23 (TrafficLights @ (Amber) :: (anycaller) {

24 (public func moveToGreen () -> Void {

25 (signal = 2)

26 (become Green)

27 return unit

28 })

29

30 (public func moveToRed () -> Void {

31 (signal = 0)

32 (become Red)

33 return unit

34 })

35 }))

Figure 4.36: Racket’s implementation of Traffic Light contract

1 ((TrafficLights -> init () -> 10 -> aTL)

2 (aTL -> moveToAmber () -> sender (aTL))

3 (aTL -> moveToGreen () -> sender (aTL))

4 (aTL -> moveToAmber () -> sender (aTL)))

5 ()

6 ()

7 ()

Figure 4.37: Initial State of Traffic Light

1 ((aTL -> moveToAmber () -> sender (aTL))

2 (aTL -> moveToGreen () -> sender (aTL))

3 (aTL -> moveToAmber () -> sender (aTL)))

4 ((aTL -> (TrafficLights (signal : 0) 10) -> ->))

5 ((aTL -> (TrafficLights (signal : 0) 10) -> ->))

6 ((aTL -> Red))

Figure 4.38: After contract deployment

85

CHAPTER 4. FLINT-2

1 ((aTL -> moveToGreen () -> sender (aTL))

2 (aTL -> moveToAmber () -> sender (aTL)))

3 ((aTL -> (TrafficLights (signal : 1) 10) -> ->))

4 ((aTL -> (TrafficLights (signal : 1) 10) -> ->))

5 ((aTL -> Red Amber))

Figure 4.39: Light is amber

1 unit

2 ((aTL -> (TrafficLights (signal : 1) 10) -> ->))

3 ((aTL -> (TrafficLights (signal : 2) 10) -> ->))

4 ((aTL -> Red Amber Green Amber))

Figure 4.40: Final state

the typechecker throws an error message that says: "type mismatch : expected type

Address but got type Int".

4.2.2.2 Auction

In this example we try to prove that the program is well-typed by using part of the code

in Section 4.1.3.4. The expression we are evaluating is:

e := Client.init((auction : aAuction))(aC1);

aC1.bid((bid : 8))

We start with context Γ = aAuction : Address, and e′ = aC1.bid((bid : 8)). In the

branch of T-Init, we omit the premises Client ∈ classes and sv(C) = auction : Address,

for visualisation purposes; nevertheless they are both ensured by our typechecker.

X
Γ ` aAuction : Address

(T-Address)

Γ ` Client.init((auction : aAuction))(aC1) : Void a Γ , aC1 : Address
(T-Init)

(1)

Γ ′ ` e′ : Int

Γ ` Client.init((auction : aAuction))(aC1);e′ : Int
(T-Seq)

After the evaluation of the left branch, Γ ′ = Γ , aC1 :Address. Where (1) is, the deriva-

tion is:

X
Γ ′ ` aC1 : Address

(T-Address)

X
Γ ′ ` 8 : Int

(T-Int)

Γ ′ ` aC1.bid((bid : 8)) : Int
(T-Call)

We also omit the pre-condition fbody(Client,bid,bid) = (e′·return bid, c̃l, t̃s, Int), which

is also guaranteed by our typechecker. As we can see, this exercise proves that the pro-

gram presented in Section 4.1.3.4 is well-typed, whereas the one we describe next demon-

strates that our type system rejects ill-formed expressions.

86

4.3. EXTENSION OF THE TYPE SYSTEM WITH USAGES

In this next example, instead of providing an integer as input for function bid, we give

a boolean: e = Client.init((auction : aAuction))(aC1);aC1.bid((bid : true)). The context

starts as Γ : aAuction : Address.

(2)

(3) Γ ′ ` true : Int . Γ ′

Γ ′ ` aC1.bid((bid : true)) : Int . Γ ′
T-Call

Γ ` e′;aC1.bid((bid : true)) : Int . Γ ′
(T-Seq)

The derivation trees assigned as (5) and (6) are the same as the ones presented in the

exercise above. As we reach the evaluation of the statement true : Int, the typechecker

throws the following error message: "type mismatch : expected type Int but got

type Bool".

We now present the derivation for an example with maps, to demonstrate the mapping

typification rules.

The initial context is Γ = aAuction : Address, aC1 : Address, aC2 : Address, and ex-

pression we are evaluating is:

e = aAuction.store = aAuction.store[aC1 : 0]

where aAuction.store = [(aC1 : 8), (aC2 : 10)].

X
Γ ` aAuction : Client . Γ

T-Address

Γ ` aAuction.store : (Client : Int) . Γ
T-StateSel (4)

Γ ` aAuction.store = aAuction.store[aC1 : 0] : (Client : Int) . Γ
T-StateAss

(4)
(5) X

Γ ` aC1 : Client . Γ
T-Address

X
Γ ` 0 : Int . Γ

T-Int

Γ ` [(aC1 : 8), (aC2 : 10)][aC1 : 0] : (Client : Int) . Γ
T-MapAss

Derivation tree (5) evaluates all elements in aAuction.store.

(5)

X
Γ ` aC1 : Client . Γ

T-Address

X
Γ ` aC2 : Client . Γ

T-Address

X
Γ ` 8 : Int . Γ

T-Int

X
Γ ` 10 : Int . Γ

T-Int

Γ ` [(aC1 : 8), (aC2 : 10)](Client : Int) . Γ
T-Mapping

4.3 Extension of the Type System with Usages

In this section, based on the work of Vasconcelos and Ravara [42] of MOOL language,

a small object-oriented programming language that integrates behavioural types in the

form of usages, we present an extension proposal to Flint-2, completed with syntax for-

malisation, operational semantics and type system.

87

CHAPTER 4. FLINT-2

4.3.1 Syntax

In this version of Flint-2 with usages, we keep most of the syntax presented in 4.2 intact,

apart from the following items:

• In the contract declaration, we add a construct for the usage declaration u.

• There is no longer a distinction between constants and variables so, we simplified it

and we only have variable declarations as well as there is no longer an environment

for the constants in the blockchain.

• We removed the constructor block, and we only use the syntax of the protection blocks.

• The type contract is now defined as C[u F̃], which is detailed below.

• We removed the dictionary structure and the expressions associated with its lookups

and modification, in order to simplify the new implementation.

In Figure 4.41, we present the revised syntax of our implementation of Flint-2 with

Usages, and below we describe the new additions to our syntax.

(Contract Declaration) CD ::= contract C (u) {F̃} P̃ B
(...)
(Types) t ::= (...) | C[u; F̃]
(Field Declaration) F ::= (f t)
(Class Session Types) u ::= q{m̃ : u} | < u +u > | µX.u | !X
(Usage Qualifiers) q ::= lin | un

Figure 4.41: Revised Syntax of the Racket Implementation of Flint-2 with Usages

Types. The new type of contract C[u; F̃] now contains information of contract C usage

type u, as well as the state variables (or fields) and its respective types.

Field declaration. As previously mentioned, contains information over each state vari-

able type.

Class session types. q{m̃ : u} denotes the branch type, which specifies every method

available m̃ and their continuation ũ. Variant types are defined over < u + u >, which is

indexed by the values returned by the prior function called, true or false. Recursive

types are denoted by µX.u, which are required to be contractive, i.e. the sub-expression

µX1. · · ·µXn.X1 cannot be contained [22].

Usage qualifiers. Usage branch types are annotated with an usage qualifier q for alias-

ing purposes. The qualifier lin, which stands for linear, specifies that the contract can

only be used by only one client, unlike the qualifier un which allows for it to be shared

among multiple clients. The latter stands for unrestricted or shared.

88

4.3. EXTENSION OF THE TYPE SYSTEM WITH USAGES

4.3.2 Type System

In this section, we will present the formalisation of the type system of Flint-2 with usages.

4.3.2.1 Judgements

In the implementation of the type system of Flint-2 with usages, we define a new judge-

ment for usage types, in addition to the previously defined one. The two judgements are

shown below:

Θ;Γ `C u . Γ ′ Γ ` e : t . Γ ′

In the usage typing relation defined above, Γ and Γ ′ are the initial and final type

environments, respectively, when checking if the type usage u is valid in contract C.

Furthermore, we introduced a new construct Θ, which is detailed below, as well as

extended the typing environment Γ .

Environment Γ . What was previously defined as Γ , is now Σ, and we now define it as:

Γ ::= Σ | < Γ + Γ >

The latter construct represents a pair of maps for the variant type, as the map on the

left is value true and the one on the right is for the value false.

Environment Θ. This new environment maps usage types u to typing environments

Γ , as it prevents cycles on recursive usage types by keeping record of previously visited

ones [8].

Θ ::= ∅ |Θ, u : Γ

4.3.2.2 Typing Rules

The typing rules are similar to the ones presented in the work of Vasconcelos and Ravara [42]

for the revision of the MOOL language, as we had to make minor adjustments to be able

to implement them in Flint-2. In the following sections, we introduce our formalisation

of some typing rules that we thought relevant. Nevertheless, all typing rules of Flint-2

new typing system are in Appendix D.

Usage Typing Rules The use of usages is the main difference between our previous type

system and the new one. We now present these new rules, that are equivelant to the ones

presented by Vasconcelos and Ravara [42].

89

CHAPTER 4. FLINT-2

∀i ∈ I
C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t)

self : C[u; F̃],�x : t′ Γ `�x : t′ un(t′) Γ ` self : C[ui ; F̃i] Θ;Γ ` ui . Γ ′

Θ;C[u; F̃] ` {mi : ui}i∈I . Γ ′
T-Branch

Θ;Γ ` .Γ
T-BranchEnd

Θ;Γ ′ ` ut . Γ Θ;Γ ′′ ` uf . Γ
Θ;< Γ ′ + Γ ′′ >`< ut +uf > .Γ

T-Variant

(Θ,X : Γ);Γ ` X . Γ
T-UsageVar

(Θ,X : Γ);Γ ` u . Γ ′

Θ;Γ ` µX.u . Γ ′
T-Rec

Variable Lookups. The main difference between our previous implementation is that

now variables can be linear or shared. Because of this, if a variable is linear it has to be

removed from the environment Γ in order for no one to access it.

lin(t)

Γ ,x : t ` x : t . Γ
T-LinVar

un(t)

Γ ,x : t ` x : t . Γ ,x : t
T-UnVar

Call functions. The biggest distinction in the calling rules is that the method being

called has to be part of the set of functions allowed by the current usage. Function

allows does exactly that, where it checks if the method f belongs to the set of functions

in usage u.

fbody(C,f ,x) = (e, c̃l, t̃s, t) e0 , self

Γ ` ẽ′ : t′ . Γ ′ Γ ′ ` e : t . Γ ′′

Γ ′ ` e0 : C[u; F̃] u.allows(f) = u′

Γ ` e0.f (�x : e′) : t . Γ ′′{e0 7→ C[u; G̃]}
T-Call

4.3.3 Typechecking Example

In this section we will present the BlockKing example where our typechecker catches a

wrong sequence of operations, to prove that it can prevent execution errors.

In the BlockKing problem, we recall that with the typestates we were able to catch an

execution errors. In Figure 4.42, we demonstrate an execution where the client aBK tries

to enter the gamble two times in a row (lines 4 and 5).

When running this program with Racket, the execution comes to halt as the second

call for enter is blocked due to the typestate protection. which states that this method

can only be called if and only if the current state is canEnter.

Figure 4.43 demonstrates this last execution state, where the the client aBK current

state is waiting, preventing it from accessing the enter function.

But the use of typestates can only guarantee dynamic safety. Thus, we propose the

introduction of usages in the type system to ensure safety before running the code.

90

4.3. EXTENSION OF THE TYPE SYSTEM WITH USAGES

1 ((EOC -> init () -> 10 -> aC)

2 (EOC -> init () -> 10 -> aO)

3 (BlockKing -> init ((warrior : aBK) (warriorGold : 3)) -> 9 -> aBK)

4 (aBK -> enter ((warrior : aC) (warriorGold : 3)) -> sender (aC))

5 (aBK -> enter ((warrior : aC) (warriorGold : 3)) -> sender (aC))

6 (aBK -> __callback () -> sender (aO)))

7 ()

8 ()

Figure 4.42: BlockKing initial state

1 (((aBK -> enter ((warrior : aC) (warriorGold : 3)) -> sender (aC))

2 (aBK -> __callback () -> sender (aO)))

3 ((aC -> (EOC 9) -> ->)

4 (aO -> (EOC 10) -> ->)

5 (aBK -> (BlockKing

6 (warrior : aC)

7 (warriorGold : 3)

8 (king : aBK)

9 (Oraclize : aO)

10 10) -> -> (warrior : aC) (warriorGold : 3)))

11 ((aBK -> canEnter waiting))

Figure 4.43: BlockKing execution stopped

1 contract main (lin{(main : un{})}) {

2 main (anystate) :: (anycaller) {

3 public func main () -> Void {

4 var bk : BlockKing[lin{(enter : lin{(callback : lin{(

processpayment : ! canEnter)})})}] = BlockKing.init(9, aBK);

5 bk.enter((warrior : 2); (warriorGold : 3));

6 bk.enter((warrior : 2); (warriorGold : 3));

7 }

8 }

9 }

Figure 4.44: OCaml Main Contract

In Figure 4.44, we show the contract main, which has the same behaviour of the

statement presented in Figure 4.42: the contract BlockKing is initialised and then it

proceeds to do two calls in a row of function enter.

Additionally, we introduce in Figure 4.45 the BlockKing’s usage. It states that after

calling the constructor method BlockKing, the sequence of function calls must be: enter;

callback; and processpayment, which at this point it returns back to enter and so on.

1 contract BlockKing (lin{(BlockKing : mu canEnter.lin{(enter : lin{(callback :

lin{(processpayment : ! canEnter)})})})}) {

2 (...)

3 }

Figure 4.45: BlockKing Usage

91

CHAPTER 4. FLINT-2

1 (bk BlockKing[lin{(callback : lin{(processpayment : ! canEnter)})}])

2 |- bk.enter((warrior : 2); (warriorGold : 3)) : Void

3 (T-CALL)

4 //argument evaluation

5 (bk BlockKing[lin{(callback : lin{(processpayment : ! canEnter)})}]);

6 |- bk : BlockKing[lin{(callback : lin{(processpayment : ! canEnter)})}]

7 (T-VAR)

8 Call to method is not permitted

9 Fatal error: exception TypecheckerUsages.InvalidMethod("enter")

Figure 4.46: Output of OCaml Typechecker

When testing this code with our OCaml typechecker, the execution stops when eval-

uating the second call of function enter, and an exception is thrown as this method is

not permitted. Figure 4.46 shows the execution of the typechecker. In line 2 we have the

statement that we want to evaluate, i.e. the second call to enter, which applies the typing

rule T-Call. Line 4 represents the evaluation of the input arguments of the function;

and lines 1 and 5 represent the typing context Γ . If we take a close look at the usage

type of the variable bk, we can observe its usage type differs from the one previously

introduced in Figure 4.45. Due to the update of the variable’s usage type as methods are

called, they are removed in order to guarantee the correct sequence of events.

Thus, when trying to call function enter, the type system will check if the method

is available in its usage, therefore guaranteeing statically that the program will behave

correctly.

92

5

Conclusions

Due to the challenges posed by the development of programming languages, specially

smart contract languages, our work reinforces that the use of behavioural types and

model checking has to become a key component of smart contract languages, as they can

guarantee safety and correctness of the code executed.

Some languages, such as Flint-2, have the expressive power to prevent specific be-

haviours. The use of typestates can guarantee dynamically the correct execution of a

program, and prevent some execution errors.

However, as smart contracts cannot be modified once they are deployed to the blockchain,

it is important to ensure safety prior to compilation. Static type verification can be en-

forced with the use of session types.

Thus, we combined the typestate feature of Flint-2, which guarantees the dynamical

safety throughout the protocols execution, with session types which enforce is statically,

as we believe that both are complementary.

It is also necessary to develop tools to promote safe smart contracts.. A tool like Racket,

can be very useful for: (i) programmers, to visually debug their code, checking the status

of the relevant environments; (ii) language developers, as it allows a quick and intuitive

execution environment without the need of a compiler, telling them if their language has

all the mechanisms to stop undesired behaviours. Furthermore, a typechecker allows for

the possibility of detecting execution errors statically, i.e. prior to the deployment.

Racket provides a very useful laboratory for defining reduction semantics and type

systems. Although the lack of visualisation of the type-checker lead us to implement

independent checkers in OCaml. This task, for small languages, is straightforward.

5.1 Future Work

The formalisation of a programming language, smart or not, is a weary and time consum-

ing task. Although our process can be helpful in their design and also the development

of new contracts, we believe it can be improved. That is why we propose a tool that will

take the functional requirements in the assertion and our behavioural type protocol to

93

CHAPTER 5. CONCLUSIONS

automatically verify the contracts correctness, which will be supported by a deductive

verification platform like Why31, or by an automata based model checker like Cubicle2,

which would enforce dynamically functional requirements.

As future work, we will also apply our approach to other languages for other blockchain

systems, to have a better coverage and thus validation of our proof-of-concept exercise.

1http://why3.lri.fr
2http://cubicle.lri.fr

94

http://why3.lri.fr
http://cubicle.lri.fr

Bibliography

[1] url: https://kucoinblog.com/real-world-examples-of-smart-contracts-

and-blockchain-in-industry/ (cit. on pp. 1, 8, 9).

[2] url: http://www.dcs.gla.ac.uk/research/mungo/index.html (cit. on p. 15).

[3] A. J. Ahern. “Code mobility and Java RMI”. In: (2007) (cit. on p. 18).

[4] J. Aldrich et al. “Typestate-oriented programming”. In: Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems languages
and applications. 2009, pp. 1015–1022 (cit. on p. 15).

[5] Apple. Swift Language. url: https://swift.org (cit. on p. 49).

[6] N. Atzei, M. Bartoletti, and T. Cimoli. “A Survey of Attacks on Ethereum Smart

Contracts SoK”. In: Proceedings of the 6th International Conference on Principles
of Security and Trust - Volume 10204. Berlin, Heidelberg: Springer-Verlag, 2017,

pp. 164–186. isbn: 9783662544549. doi: 10.1007/978-3-662-54455-6_8. url:

https://doi.org/10.1007/978-3-662-54455-6_8 (cit. on pp. 2, 9, 10, 45).

[7] M. Ben-Ari. Principles of Concurrent and Distributed Programming. USA: Prentice-

Hall, Inc., 1990. isbn: 013711821X (cit. on p. xv).

[8] J. C. Campos. “Linear and shared objects in concurrent programming”. PhD thesis.

2010 (cit. on pp. 16, 17, 89).

[9] S. Capecchi et al. “Amalgamating sessions and methods in object-oriented lan-

guages with generics”. In: Theoretical Computer Science 410.2-3 (2009), pp. 142–

167 (cit. on p. 16).

[10] L. Cardelli. “Type systems”. In: ACM Computing Surveys (CSUR) 28.1 (1996),

pp. 263–264 (cit. on p. 77).

[11] Common Weakness Enumeration. url: https://cwe.mitre.org/index.html (cit.

on p. 10).

[12] S. Conchon, A. Komeva, and F. Zaidi. “Verifying Smart Contracts with Cubicle”.

In: FMBC’19: Workshop on Formal Methods for Blockchains. 2019 (cit. on p. 66).

95

https://kucoinblog.com/real-world-examples-of-smart-contracts-and-blockchain-in-industry/
https://kucoinblog.com/real-world-examples-of-smart-contracts-and-blockchain-in-industry/
http://www.dcs.gla.ac.uk/research/mungo/index.html
https://swift.org
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://cwe.mitre.org/index.html

BIBLIOGRAPHY

[13] A. Das et al. Resource-Aware Session Types for Digital Contracts. 2019. arXiv: 1902

.06056 [cs.PL] (cit. on p. 1).

[14] M. Di Pirro. “How solid is Solidity? An in-dept study of solidity’s type safety”. In:

(2018) (cit. on pp. 18–22, 25, 45, 49, 54, 76).

[15] M. Felleisen, R. B. Findler, and M. Flatt. Semantics engineering with PLT Redex. Mit

Press, 2009 (cit. on p. 10).

[16] M. Felleisen et al. “The Racket Manifesto”. In: 1st Summit on Advances in Pro-
gramming Languages (SNAPL 2015). Ed. by T. Ball et al. Vol. 32. Leibniz Interna-

tional Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2015, pp. 113–128. isbn: 978-3-939897-80-4.

doi: 10.4230/LIPIcs.SNAPL.2015.113. url: http://drops.dagstuhl.de/

opus/volltexte/2015/5021 (cit. on p. 10).

[17] X. Feng. Operational Semantics. url: http://staff.ustc.edu.cn/~xyfeng/

teaching/TOPL/lectureNotes/06_operational.pdf (cit. on pp. 53, 54).

[18] R. B. Findler, C. Klein, and B. Fetscher. “Redex: Practical semantics engineering”.

In: (2014) (cit. on p. 10).

[19] Flint Language Guide. https://github.com/flintlang/flint-2/blob/master/

docs/guide.md#external-calls. [Online; accessed 12-January-2021] (cit. on

p. 50).

[20] Flintlang. flintlang/flint. url: https://github.com/flintlang/flint (cit. on

p. 49).

[21] R. Garcia et al. “Foundations of typestate-oriented programming”. In: ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 36.4 (2014), pp. 1–44

(cit. on p. 15).

[22] S. J. Gay et al. “Modular session types for distributed object-oriented program-

ming”. In: ACM Sigplan Notices 45.1 (2010), pp. 299–312 (cit. on pp. 16, 17, 88).

[23] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-Tolerant Web Services”. In: SIGACT News 33.2 (June 2002),

pp. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601. url: https://doi.

org/10.1145/564585.564601 (cit. on p. 5).

[24] Glossary. [Online; accessed 20-11-2019]. 2019. url: https://hyperledger-

fabric.readthedocs.io/en/release-1.4/glossary.html (cit. on pp. 5, 8).

[25] H. Hüttel et al. “Foundations of Session Types and Behavioural Contracts”. In:

ACM Comput. Surv. 49.1 (2016), 3:1–3:36. doi: 10.1145/2873052. url: https:

//doi.org/10.1145/2873052 (cit. on pp. 14, 15).

[26] A. Igarashi, B. C. Pierce, and P. Wadler. “Featherweight Java: a minimal core

calculus for Java and GJ”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 23.3 (2001), pp. 396–450 (cit. on p. 18).

96

https://arxiv.org/abs/1902.06056
https://arxiv.org/abs/1902.06056
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
http://drops.dagstuhl.de/opus/volltexte/2015/5021
http://drops.dagstuhl.de/opus/volltexte/2015/5021
http://staff.ustc.edu.cn/~xyfeng/teaching/TOPL/lectureNotes/06_operational.pdf
http://staff.ustc.edu.cn/~xyfeng/teaching/TOPL/lectureNotes/06_operational.pdf
https://github.com/flintlang/flint-2/blob/master/docs/guide.md##external-calls
https://github.com/flintlang/flint-2/blob/master/docs/guide.md##external-calls
https://github.com/flintlang/flint
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://hyperledger-fabric.readthedocs.io/en/release-1.4/glossary.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/glossary.html
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052

BIBLIOGRAPHY

[27] D. Kouzapas et al. “Typechecking protocols with Mungo and StMungo: A session

type toolchain for Java”. In: Science of Computer Programming 155 (Apr. 2018),

pp. 52–75. doi: 10.1016/j.scico.2017.10.006. url: https://doi.org/10.101

6/j.scico.2017.10.006 (cit. on pp. 15, 16).

[28] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”. In: ACM
Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401. issn: 0164-0925. doi:

10.1145/357172.357176. url: https://doi.org/10.1145/357172.357176

(cit. on p. 6).

[29] E. Meijer and P. Drayton. “Static Typing Where Possible, Dynamic Typing When

Needed: The End of the Cold War Between Programming Languages”. In: Jan.

2004 (cit. on p. xv).

[30] R. Mitra and R. Mitra. Tezos VS Ethererum: [The Ultimate Comparison Guide]. Aug.

2019. url: https://blockgeeks.com/guides/tezos- vs- ethererum- the-

ultimate-comparison-guide/ (cit. on p. 18).

[31] M. Neubauer and P. Thiemann. “An implementation of session types”. In: Inter-
national Symposium on Practical Aspects of Declarative Languages. Springer. 2004,

pp. 56–70 (cit. on p. 16).

[32] F. Nielson and H. R. Nielson. “From CML to process algebras”. In: International
Conference on Concurrency Theory. Springer. 1993, pp. 493–508 (cit. on p. 14).

[33] B. C. Pierce and C. Benjamin. Types and programming languages. MIT press, 2002

(cit. on pp. 10, 11, 54).

[34] F. Schrans, S. Eisenbach, and S. Drossopoulou. “Writing safe smart contracts in

flint”. In: Conference companion of the 2nd international conference on art, science,
and engineering of programming. 2018, pp. 218–219 (cit. on p. 49).

[35] F. Schrans et al. Flint for Safer Smart Contracts. 2019. arXiv: 1904.06534 [cs.PL]

(cit. on p. 49).

[36] I. Sergey and A. Hobor. “A concurrent perspective on smart contracts”. In: Inter-
national Conm5erence on Financial Cryptography and Data Security. Springer. 2017,

pp. 478–493 (cit. on pp. 2, 63).

[37] D. Siegel. Understanding The DAO Hack for Journalists. July 2016. url: https:

//medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2

312dd43e993 (cit. on p. 1).

[38] Solidity¶. url: https://solidity.readthedocs.io/en/v0.4.24/index.html

(cit. on pp. 18, 49).

[39] R. E. Strom and S. Yemini. “Typestate: A programming language concept for

enhancing software reliability”. In: IEEE Transactions on Software Engineering 1

(1986), pp. 157–171 (cit. on p. 15).

97

https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://blockgeeks.com/guides/tezos-vs-ethererum-the-ultimate-comparison-guide/
https://blockgeeks.com/guides/tezos-vs-ethererum-the-ultimate-comparison-guide/
https://arxiv.org/abs/1904.06534
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://solidity.readthedocs.io/en/v0.4.24/index.html

BIBLIOGRAPHY

[40] N. Szabo. “Formalizing and Securing Relationships on Public Networks”. In: First
Monday 2.9 (1997). issn: 13960466. doi: 10.5210/fm.v2i9.548. url: https:

//ojphi.org/ojs/index.php/fm/article/view/548 (cit. on p. 8).

[41] A. B. Tucker, ed. The Computer Science and Engineering Handbook. CRC Press, 1997.

isbn: 0-8493-2909-4 (cit. on pp. xv, 14).

[42] C. Vasconcelos and A. Ravara. “A Revision of the Mool Language”. In: arXiv
preprint arXiv:1604.06245 (2016) (cit. on pp. 16, 87, 89).

[43] C. Vasconcelos and A. Ravara. “From Object-Oriented Code with Assertions to

Behavioural Types”. In: Proceedings of the Symposium on Applied Computing. SAC

’17. Marrakech, Morocco: Association for Computing Machinery, 2017, pp. 1492–

1497. isbn: 9781450344869. doi: 10 . 1145 / 3019612 . 3019733. url: https :

//doi.org/10.1145/3019612.3019733 (cit. on p. 14).

[44] V. T. Vasconcelos. “Fundamentals of session types”. In: Information and Computa-
tion 217 (2012), pp. 52–70 (cit. on p. 16).

[45] A. K. Wright and M. Felleisen. “A syntactic approach to type soundness”. In:

Information and computation 115.1 (1994), pp. 38–94 (cit. on p. 53).

[46] R. Zhang, R. Xue, and L. Liu. “Security and Privacy on Blockchain”. In: ACM
Comput. Surv. 52.3 (July 2019). issn: 0360-0300. doi: 10.1145/3316481. url:

https://doi.org/10.1145/3316481 (cit. on pp. 1, 6–8).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 98).

98

https://doi.org/10.5210/fm.v2i9.548
https://ojphi.org/ojs/index.php/fm/article/view/548
https://ojphi.org/ojs/index.php/fm/article/view/548
https://doi.org/10.1145/3019612.3019733
https://doi.org/10.1145/3019612.3019733
https://doi.org/10.1145/3019612.3019733
https://doi.org/10.1145/3316481
https://doi.org/10.1145/3316481
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

Revised Typing Rules of

Featherweight Solidity

Axioms

Γ , c : C,Γ ′ ` c : C . Γ , c : C,Γ ′
Ref

Γ ,x : T ,Γ ′ ` x : T . Γ ,x : T ,Γ ′
Var

Γ ` true : bool . Γ
True

Γ ` false : bool . Γ
False

Γ , a : address,Γ ′ ` a : address . Γ , a : address,Γ ′
[Address]

Γ ` u : unit . Γ
Unit

Γ ` revert : T . Γ
Revert

n ∈N+

Γ ` n : uint . Γ
Nat

Standard rules

Γ ` e : address . Γ
Γ ` balance(e) : uint

Bal
Γ ` e : C . Γ

Γ ` address(e) : address
Addr

Γ ` e : T . Γ
Γ ` return e : T . Γ

Return

Γ ` x : T . Γ Γ ` e : T . Γ
Γ ` x = e : T . Γ

Ass

Γ ` e1 : T1 Γ ′x : T1 ` e2 : T2

Γ ` T1 x = e1;e2 : T2 . Γ
Decl

Γ ` e1 : T1 . Γ
′ Γ ′ ` e2 : T2 . Γ

′′

Γ ` e1;e2 : T2 . Γ
′′ Seq

Γ ` e1 : bool . Γ Γ ` e2 : T . Γ Γ ` e3 : T . Γ
Γ ` ife1thene2elsee3 : T . Γ

If

99

APPENDIX A. REVISED TYPING RULES OF FEATHERWEIGHT SOLIDITY

Mappings
M = {(k̃,v)} Γ ` k̃ : T1 . Γ Γ ` ṽ : T2 . Γ

Γ `M : mapping(T1⇒ T2) . Γ
Mapping

Γ ` e1 : mapping(T1⇒ T2) . Γ Γ ` e2 : T1 . Γ Γ ` e3 : T2 . Γ

Γ ` e1[e2→ e3] : mapping(T1⇒ T2) . Γ
MappAss

Γ e1 : mapping(T1⇒ T2) . Γ Γ ` e2 : T1 . Γ

Γ ` e1[e2] : T2 . Γ
MappSel

Contract instantiation and access

Γ ` e : C . Γ sv(C) = T̃ s si ∈ s̃
Γ ` e.si : Ti . Γ

StateSel

Γ ` e1.s : T . Γ Γ ` e2 : T . Γ
Γ ` e1.s = e2 : T . Γ

StateAss

sv(C = T̃ s)Γ ` ẽ : T̃ . Γ |ẽ| = |s̃| Γ ` e′ : uint . Γ
Γ ` new C.value(e′)(ẽ) : C . Γ

New

Functions
Γ ` c : C . Γ ftype(C,f) = T̃1→ T2

Γ ` c.f : ˜T1→ T2 . Γ
Fun

Γ ` e1 : C . Γ Γ ` e2 : uint . Γ
ftype(C,f) = T̃1→ T2 Γ ` ẽ : T̃1 . Γ

|ẽ| = |T̃1|
Γ ` e1.f .value(e2)(ẽ) : T2 . Γ

Call

Γ ` e3address . Γ Γ ` e1.f .value(e2)(ẽ : T2) . Γ

Γ ` e1.f .value(e2).sender(e3)(ẽ : T2) . Γ
CallTopLevel

100

B

Operational Rules of Flint-2

If expression

〈if true then e1else e2,β,σ ,CTS〉 → 〈e1,β,σ ,CTS〉
IF-TRUE

〈if false then e1else e2,β,σ ,CTS〉 → 〈e2,β,σ ,CTS〉
IF-FALSE

Variable and constant declaration.

Top(σ) = a x < x̃
β(a) = (s, c, x̃ : v)

β′ = β[a 7→ (s, c, x̃ : v · x : v)]

〈var x : t = v,β,σ ,CTS〉 → 〈v,β′ ,σ ,CTS〉
DECLVAR

Top(σ) = a x < c̃
β(a) = ((C, s̃,n), c̃ : v, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃ : v · x : v, ỹ)]

〈let x : t = v,β,σ ,CTS〉 → 〈v,β′ ,σ ,CTS〉
DECLCONS

Top(σ) = a x < x̃
β(a) = ((C, s̃,n), c̃, x̃ : v)

β′ = β[a 7→ ((C, s̃,n), c̃, x̃ : v · x : vt)]

〈var x : t,β,σ ,CTS〉 → 〈vt ,β′ ,σ ,CTS〉
DECLVAR-T

Top(σ) = a x < c̃
β(a) = ((C, s̃,n), c̃ : v, ỹ)

β′ = β[a 7→ ((C, s̃,n),�c : vt · x : vt , ỹ)]

〈let x : t,β,σ ,CTS〉 → 〈vt ,β′ ,σ ,CTS〉
DECLCONS-T

Function call.

C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t) Top(CT S) ∈ t̃s a ∈ c̃l
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈a.f (x̃ : v),β,σ ,CTS〉 → 〈es,β′′ ,σ ·Top(σ),CTS〉
CALL

101

APPENDIX B. OPERATIONAL RULES OF FLINT-2

C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t) Top(CT S) ∈ t̃s a ∈ c̃l
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈try ? (a.f (x̃ : v)),β,σ ,CTS〉 → 〈es,β′′ ,σ ·Top(σ),CTS〉
TRY

C ∈ classes fbodyinit(C,f , x̃) = (e, c̃l, t) a ∈ c̃l
es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈a.f (x̃ : v),β,σ ,CTS〉 → 〈e,β′′ ,σ ·Top(σ),CTS〉
CALL-2

C ∈ classes fbody(C,f , x̃ : v) = (e, t̃s, c̃l, t)
a ∈ c̃l anystate ∈ t̃s

es = e{self := Top(σ)} β(a) = ((C, s̃,n), c̃, ỹ)
β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]

β′′ = uptbal(uptbal(β′ , a,amount),Top(σ),−amount)

〈a.f (x̃ : v),β,σ ,CTS〉 → 〈e,β′′ ,σ ·Top(σ),CTS〉
CALL-ANY

uptbal(β,Top(σ),−amount) =⊥
〈a.f (x̃ : v),β,σ ,CTS〉 → 〈revert,β,σ ,CTS〉

CALL-SENDER-R

β(a) = ((C, s̃,n), c̃, ỹ)
C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t)

Top(CT S) ∈ t̃s es = e{self := a}
a ∈ c̃l Top(σ) = ∅

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount), as,−amount)

〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈es,β′′ ,σ · as,CTS〉
CALL-SENDER

β(a) = ((C, s̃,n), c̃, ỹ)
C ∈ classes fbodyinit(C,f , x̃) = (e, c̃l, t)
es = e{self := a} a ∈ c̃l Top(σ) = ∅

β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]
β′′ = uptbal(uptbal(β′ , a,amount), as,−amount)

〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈es,β′′ ,σ · as,CTS〉
CALL-SENDER-2

β(a) = ((C, s̃,n), c̃, ỹ)
C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t) anystate ∈ t̃s

es = e{self := a} a ∈ c̃l Top(σ) = ∅
β′ = β[a 7→ ((C, s̃,n), c̃, ỹ · x̃ : v)]

β′′ = uptbal(uptbal(β′ , a,amount), as,−amount)

〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈es,β′′ ,σ · as,CTS〉
CALL-SENDER-ANY

uptbal(β,Top(σ),−amount) =⊥
〈a.f (x̃ : v).sender(as),β,σ ,CTS〉 → 〈revert,β,σ ,CTS〉

CALL-SENDER-R

102

Variable lookup.
β(a) = ((C, s̃,n), c̃, ỹ) x ∈ s̃∪ c̃
〈a.x,β,σ ,CTS〉 → 〈v,β,σ ,CTS〉

STATESEL

a = Top(σ) x ∈ ỹ
β(a) = ((C, s̃,n), c̃, ỹ)

〈x,β,σ ,CTS〉 → 〈v,β,σ ,CTS〉
VAR

Variable assignment.

β(a) = ((C, s̃,n), c̃, ỹ) x ∈ s̃∪ c̃
〈a.x = v,β,σ ,CTS〉 → 〈v,β[a.x 7→ v],σ ,CTS〉

STATEASS

β(a) = ((C, s̃,n), c̃, ỹ) x ∈ ỹ
〈x = v,β,σ · a,CTS〉 → 〈v,β[a.x 7→ v],σ · a,CTS〉

ASS

Sequential composition.

〈v e,β,σ ,CTS〉 → 〈e,β,σ ,CTS〉
SEQ

σ = β0 · ã
〈revert e,β,σ ,CTS〉 → 〈revert,β0,σ ,CTS〉

SEQ-R

Become statement.

〈become ts,β,σ ,CTS〉 → 〈unit,β,σ ,CTS · ts〉
BECOME

Return statement.

〈return v,β,σ · a,CTS〉 → 〈v,β,σ ,CTS〉
RETURN

Contract initialization.

finit(C, x̃ : v) = (�s : v′ , c̃ : v′′ , e)
es = e{self := a, x̃ := ṽ} a < dom(β)
cn = a 7→ ((C,�s : v′ ,n), c̃ : v′′ ,)

〈C.init(x̃ : v).n.a,β,σ ,CTS〉 → 〈es,β · cn,σ · a,CTS〉
INIT

Mappings.

〈M[v1],β,σ ,CTS〉 → 〈M(v1),β,σ ,CTS〉
MAPSEL

M ′ =M\{(v1,M(v1))} ∪ {v1,v2}
〈M[v1 : v2],β,σ ,CTS〉 → 〈M ′ ,β,σ ,CTS〉

MAPASS

103

C

Typing Rules of Flint-2

Axioms

Γ ` true : Bool . Γ
T-True

Γ ` false : Bool . Γ
T-False

Γ ` unit : Void . Γ
T-Unit

n ∈Z
Γ ` n: Int . Γ

T-Int

Γ ′ = Γ , a : : Address
Γ , a: Address ` a: Address . Γ ′

T-Address

Γ ,x : t ` x : t . Γ ,x : t
T-Var

Γ , a : C ` a : C . Γ , a : C
T-Ref

Standard Rules

Γ ` e : t . Γ
Γ ` return e : t . Γ

T-Return

Γ ` e1 : t1 . Γ ′ Γ ′ ` e2 : t2 . Γ ′′

Γ ` e1;e2 : t2 . Γ ′′
T-Seq

Γ ,x : t ` e : t . Γ ′

Γ ` var x : t = e : t . Γ ′
T-DeclVar

Γ ` var x : t : t . Γ ,x : t
T-DeclVar2

Γ ` e1 : Bool . Γ Γ ` e2 : t . Γ Γ ` e3 : t . Γ
Γ ` if e1 then e2 else e3 : t . Γ

T-If

Γ ,x : t ` e : t . Γ ′

Γ ` let x : t = e : t . Γ ′
T-DeclCons

Γ ` let x : t : t . Γ ,x : t
T-DeclCons2

Γ ` x : t Γ ` e : t
Γ ` x = e : t . Γ

T-Ass

State variables

Γ ` e : C . Γ sv(C) = (x̃ : t) x ∈ x̃
Γ ` e.x : t . Γ

T-StateSel

Γ ` e1.x : t . Γ Γ ` e2 : t . Γ
Γ ` e1.x = e2 : t . Γ

T-StateAss

104

Mapping
M = k̃ : v Γ ` k̃ : tk . Γ Γ ` ṽ : tv . Γ

Γ `M : (tk : tv) . Γ
T-Mapping

Γ ` e1 : (tk : tv) . Γ Γ ` e2 : tk . Γ Γ ` e3 : tv . Γ

Γ ` e1[e2 : e3] : (tk : tv) . Γ
T-MapAss

Γ ` e1 : (tk : tv) . Γ Γ ` e2 : tk . Γ

Γ ` e1[e2] : tv . Γ
T-MapSel

Call functions
C ∈ classes sv(C) = x̃ : t Γ ` ẽ : t . Γ

Γ ` C.init(x̃ : e).a : Void . Γ , a : Address
T-Init

Γ ` e0.f (x̃ : e) : t Γ ` a : Address . Γ

Γ ` e0.f (x̃ : e).sender(a) : t . Γ
T-CallSender

Γ ` e0 : Address fbody(C,f ,x) = (e′′ · return e, c̃l, t̃s, t)
Γ ` ẽ′ : t′ . Γ

Γ ` e0.f (�x : e′) : t . Γ
T-Call

Γ ` e0 : Address fbodyinit(C,f ,x) = (e′′ · return e, c̃l, t)
Γ ` ẽ′ : t′ . Γ

Γ ` e0.f (�x : e′) : t . Γ
T-Call-2

Γ ` e0 : Address . Γ fbody(C,f ,x) = (e′′ · return e, c̃l, t̃s, t)
Γ ` ẽ′ : t′ . Γ anystate ∈ t̃s

Γ ` e0.f (�x : e′) : t . Γ
T-Call-Any

105

D

Typing Rules of Flint-2 with Usages

Typing Rules for Contracts

check(∅,u) C[u;∅] ` u .C[u; F̃] un(F̃)

` contractC (u) {F̃} P̃ B
T-Contract

Usage Typing Rules

∀i ∈ I
C ∈ classes fbody(C,f , x̃) = (e, t̃s, c̃l, t)

self : C[u; F̃],�x : t′ Γ `�x : t′ un(t′) Γ ` self : C[ui ; F̃i] Θ;Γ ` ui . Γ ′

Θ;C[u; F̃] ` {mi : ui}i∈I . Γ ′
T-Branch

Θ;Γ ` .Γ
T-BranchEnd

Θ;Γ ′ ` ut . Γ Θ;Γ ′′ ` uf . Γ
Θ;< Γ ′ + Γ ′′ >`< ut +uf > .Γ

T-Variant

(Θ,X : Γ);Γ ` X . Γ
T-UsageVar

(Θ,X : Γ);Γ ` u . Γ ′

Θ;Γ ` µX.u . Γ ′
T-Rec

Axioms

Γ ` true : Bool . Γ
T-True

Γ ` false : Bool . Γ
T-False

Γ ` unit : Void . Γ
T-Unit

n ∈Z
Γ ` n: Int . Γ

T-Int

Γ ′ = Γ , a : : Address
Γ , a: Address ` a: Address . Γ ′

T-Address

lin(t)

Γ ,x : t ` x : t . Γ
T-LinVar

un(t)

Γ ,x : t ` x : t . Γ ,x : t
T-UnVar

Standard Rules
Γ ` e1 : t1 . Γ ′ Γ ′ ` e2 : t2 . Γ ′′

Γ ` e1;e2 : t2 . Γ ′′
T-Seq

Γ ,x : t ` e : t . Γ ′

Γ ` var x : t = e : t . Γ ′
T-DeclVar

Γ ` x : t Γ ` e : t . Γ ′

Γ ` x = e : t . Γ ′
T-Ass

Γ ` e1 : Bool . Γ Γ ` e2 : t . Γ Γ ` e3 : t . Γ
Γ ` if e1 then e2 else e3 : t . Γ

T-If

106

State variables

Γ ` this : C[u; F̃] F̃(f) = t lin(t)

Γ ` this.f : t . Γ {self 7→ C[u; (F̃ \ f)]}
T-LinStateSel

Γ ` this : C[u; F̃] F̃(f) = t un(t)

Γ ` this.f : t . Γ
T-UnStateSel

Γ ` e : gΓ ′
Γ ′ ` self : C[u; F̃] sv(C) = (̃x : t) f ∈ x̃

Γ ` self.f = e: VoidΓ ′{self 7→ C[u; (F̃ ∪ (f t))]}
T-StateAss

Call functions
C ∈ classes sv(C) = x̃ : t Γ ` ẽ : t . Γ

C.usage = lin[C;u]

Γ ` C.init(x̃ : e).a : C[u] . Γ , a : Address
T-Init

Γ ` e0.f (x̃ : e) : t Γ ` a : Address . Γ

Γ ` e0.f (x̃ : e).sender(a) : t . Γ
T-CallSender

fbody(C,f ,x) = (e, c̃l, t̃s, t) e0 , self

Γ ` ẽ′ : t′ . Γ ′ Γ ′ ` e : t . Γ ′′

Γ ′ ` e0 : C[u; F̃] u.allows(f) = u′

Γ ` e0.f (�x : e′) : t . Γ ′′{e0 7→ C[u; G̃]}
T-Call

fbody(C,f ,x) = (e, c̃l, t̃s, t) e0 , self

Γ ` ẽ′ : t′ . Γ ′ Γ ′ ` e : t . Γ ′′

Γ ′ ` self : C[u; F̃]

Γ ` self.f (�x : e′) : t . Γ ′′
T-SelfCall

107

I

Featherweight Solidity - Original

Reduction Rules

If expression

〈if true then e1else e2,β,σ〉 → 〈e1,β,σ〉
IF-TRUE

〈if true then e1else e2,β,σ〉 → 〈e2,β,σ〉
IF-FALSE

Sequential composition

σ = β0

〈v;e,β,σ〉 → 〈e,β,β〉
SEQ-C

σ = β0

〈revert;e,β,σ〉 → 〈revert,β0,σ〉
SEQ-R

Top(σ) = a

〈v;e,β,σ〉 → 〈e,β,σ〉
SEQ-C

Variables
x < dom(β)

〈T x = v;e,β,σ〉 → 〈v;e,β · [x 7→ v],σ〉
DECL

〈x,β,σ〉 → 〈β(x),β,σ〉
VAR

x ∈ dom(β)

〈x = v,β,σ〉 → 〈v,β[x 7→ v],σ〉
ASS

Mappings

〈M[v1],β,σ〉 → 〈M(v1),β,σ〉
MAPPSEL

M ′ =M\{(v1,M(v1))} ∪ {(v1,v2)}
〈M[v1→ v2],β,σ〉 → 〈M ′ ,β,σ〉

MAPPASS

Address
β̂(c) = a

〈address(c),β,σ〉 → 〈a,β,σ〉
ADDRESS

Contract instantiation

(c,a) < dom(β) sv(C) = T̃ s |ṽ| = |s̃| Top(σ) = ∅
〈new C.value(n)(ṽ),β,σ〉 → 〈c,β · [(c,a) 7→ (C,s:̃v,n)],σ〉

NEW-2

108

State variables
β(c) = (C,s:̃v,n) s ∈ s̃
〈c.s,β,σ〉 → 〈v,β,σ〉

STATESEL

β(c) = (C,s:̃v,n) s ∈ s̃
〈c.s = v′ ,β,σ〉 → 〈v′ ,β[c.s 7→ v′],σ〉

STATEASS

Money transfer

βC(a) = C fbody(C,f b, {}) = ({}, e)
β′ = uptbal(uptbal(β,a,n),Top(σ),−n)

〈a.transfer(n),β,σ〉 → 〈e{this := c,msg.sender := Top(σ),msg.value := n},β,σ〉
TRANSFER

Function calls

β̂(c) = a βC(c) = C fbody(C,f , ṽ) = (x̃, e) x̃ < dom(β)
β′ = uptbal(uptbal(β,a,n),Top(σ),−n) · [x̃ 7→ ṽ]

es = e{this := c,msg.sender := Top(σ),msg.value := n}
〈c.f .value(n)(ṽ),β,σ〉 → 〈es,β′ ,σ · a〉

CALL

β̂(c) = a βC(c) = C fbody(C,f , ṽ) = (x̃, e) x̃ < dom(β)
β′ = uptbal(uptbal(β,a,n), a′ ,−n) · [x̃ 7→ ṽ] Top(σ) = ∅
tes = e{this := c,msg.sender := a′ ,msg.value := n}
〈c.f .value(n).sender(a′)(ṽ),β,σ〉 → 〈es,β′ ,σ · a〉

CALL-TOP-LEVEL

〈return v,β,σ · a〉 → 〈v,β,σ〉
RETURN

〈return revert,β,σ · a〉 → 〈revert,β,σ〉
RETURN-R

109

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Quote
	Abstract
	Contents
	List of Figures
	List of Tables
	Glossary
	Symbols

	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Distributed Systems: Concepts
	2.1.1 CAP Properties

	2.2 Blockchain
	2.2.1 Consensus Algorithms

	2.3 Smart Contracts
	2.3.1 Real World Examples
	2.3.2 Problems

	2.4 Racket
	2.4.1 Typed Arithmetic Expressions

	2.5 Behavioural Types
	2.5.1 Typestates
	2.5.2 Session Types

	3 Featherweight Solidity
	3.1 Racket Implementation
	3.1.1 Syntax
	3.1.2 Operational Semantics
	3.1.3 Implementation Examples in Racket

	3.2 Type System
	3.2.1 Type System Judgements
	3.2.2 OCaml Typechecker
	3.2.3 Examples

	4 Flint-2
	4.1 Racket Implementation / Executable Semantics
	4.1.1 Syntax
	4.1.2 Operational Semantics
	4.1.3 Implementation Examples in Racket

	4.2 Type System
	4.2.1 Typing Rules
	4.2.2 Example of Typing Derivations

	4.3 Extension of the Type System with Usages
	4.3.1 Syntax
	4.3.2 Type System
	4.3.3 Typechecking Example

	5 Conclusions
	5.1 Future Work

	Bibliography
	A Revised Typing Rules of Featherweight Solidity
	B Operational Rules of Flint-2
	C Typing Rules of Flint-2
	D Typing Rules of Flint-2 with Usages
	I Featherweight Solidity - Original Reduction Rules
	Back Matter
	Back Cover

