
NunoMorais
Bachelor in Computer Science and Engineering

DeMMon
Decentralized Management and Monitoring

Framework

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science

Adviser: João Leitão
Assistant Professor, NOVA University of Lisbon

Examination Committee:
Chair: Joaquim Francisco Ferreira da Silva

Full Professor, FCT-NOVA

Rapporteur: João Nuno de Oliveira e Silva
Associate Professor, Instituto Superior Técnico

Adviser: João Carlos Antunes Leitão
Associate Professor, FCT-NOVA

〈6〉, 〈2021〉





DeMMon Decentralized Management and Monitoring Framework

Copyright © Nuno Morais, NOVA School of Science and Technology, NOVA University

Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.





Acknowledgements

The development of the work presented in this document would not have been possible

without the help of some people and institutions that deserve the dearest acknowledge-

ments.

First, I would like to thank the mentorship provided by my advisor, João Leitão, that,

through example, inspired me to become a harder working person, and that through his

insight and patience guided me to create this work.

Second, I would like to thank Bruno Anjos for the contributions provided to the

developed benchmarking application, as well as for providing great company and coming

into the lab with a smile throughout a rather unusual year due to COVID. Secondly, I

would like to extend my thanks to Pedro Akos, for being a great colleague that was always

ready to step in and help, providing great insights into my work as well as providing tools

that helped benchmark the developed work.

Then, I would like to thank the Department of Informatics of the NOVA University of

Lisbon and the NOVA LINCS research centre for providing a framework with mentorship

and tools that greatly helped develop an ever-increasing interest in the area.

I also would like to extend a personal thank you to my partner, Marta Carlos, for

making this thesis possible through the always enthusiastic support provided, given with

a bright smile, even during the grimmest days of this, rougher than usual, year.

Then, I would like to thank my friends and family for always supporting me and

encouraging me to follow what makes me happy.

Finally, the work presented in this thesis was partially supported by FC&T through

NOVA LINCS (grant UIDB/04516/2020) and NG-STORAGE (PTDC/CCIINF/32038/2017).

Experiments presented in this paper were carried out using the Grid’5000 testbed, sup-

ported by a scientific interest group hosted by Inria and including CNRS, RENATER and

several Universities as well as other organizations (see https://www.grid5000.fr).

v





Abstract

The centralized model proposed by the Cloud computing paradigm mismatches the de-

centralized nature of mobile and IoT applications, given the fact that most of the data

production and consumption is performed by end-user devices outside of the Data Center

(DC). As the number of these devices grows, and given the need to transport data to and

from DCs for computation, application providers incur additional infrastructure costs,

and end-users incur delays when performing operations.

These reasons have led us into a post-cloud era, where a new computing paradigm

arose: Edge Computing. Edge Computing takes into account the broad spectrum of

devices residing outside of the DC, closer to the clients, as potential targets for compu-

tations, potentially reducing infrastructure costs, improving the quality of service (QoS)

for end-users and allowing new interaction paradigms between users and applications.

Managing and monitoring the execution of these devices raises new challenges previ-

ously unaddressed by Cloud computing, given the scale of these systems and the devices’

(potentially) unreliable data connections and heterogenous computational power. The

study of the state-of-the-art has revealed that existing resource monitoring and manage-

ment solutions require manual configuration and have centralized components, which

we believe do not scale for larger-scale systems.

In this work, we address these limitations by presenting a novel Decentralized Man-

agement and Monitoring (“DeMMon”) system, targeted for edge settings. DeMMon pro-

vides primitives to ease the development of tools that manage computational resources

that support edge-enabled applications, decomposed in components, through decentral-

ized actions, taking advantage of partial knowledge of the system. Our solution was

evaluated to amount to its benefits regarding information dissemination and monitoring

capabilities across a set of realistic emulated scenarios of up to 750 nodes with variable

failure rates. The results show the validity of our approach and that it can outperform

state-of-the-art solutions regarding scalability and reliability.

Keywords: Edge Computing, Resource Management, Resource Monitoring, Topology

Management, Middleware
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Resumo

O modelo centralizado de computação utilizado no paradigma da Computação na Nu-

vem apresenta limitações no contexto de aplicações no domínio da Internet das Coisas

e aplicações móveis. Neste tipo de aplicações, os dados são produzidos e consumidos

maioritariamente por dispositivos que se encontram na periferia da rede. Desta forma,

transportar estes dados de e para os centros de dados impõe uma carga excessiva nas

infraestruturas de rede que ligam os dispositivos aos centros de dados, aumentando a

latência de respostas e diminuindo a qualidade de serviço para os utilizadores.

Para combater estas limitações, surgiu o paradigma da Computação na Periferia, este

paradigma propõe a execução de computações, e potencialmente armazenamento de

dados, em dispositivos fora dos centros de dados, mais perto dos clientes, reduzindo

custos e criando um novo leque de possibilidades para efetuar computações distribuídas

mais próximas dos dispositivos que produzem e consomem os dados.

Contudo, gerir e supervisionar a execução desses dispositivos levanta obstáculos não

equacionados pela Computação na Nuvem, como a escala destes sistemas, ou a variabili-

dade na conectividade e na capacidade de computação dos dispositivos que os compõem.

O estudo da literatura revela que ferramentas populares para gerir e supervisionar apli-

cações e dispositivos possuem limitações para a sua escalabilidade, como por exemplo,

pontos de falha centralizados, ou requerem a configuração manual de cada dispositivo.

Nesta dissertação, propõem-se uma nova solução de monitorização e disseminação

de informação descentralizada. Esta solução oferece operações que permitem recolher

informação sobre o estado do sistema, de modo a ser utilizada por soluções (também

descentralizadas) que gerem aplicações especializadas para executar na periferia da rede.

A nossa solução foi avaliada em redes emuladas de várias dimensões com um máximo

de 750 nós, no contexto de disseminação e de monitorização de informação. Os nossos

resultados mostram que o nosso sistema consegue ser mais robusto ao mesmo tempo que

é mais escalável quando comparado com o estado da arte.

Palavras-chave: Computação na periferia, Computação distribuída, Gestão de recursos,

Monitorização, Gestão de topologias de redes
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1

Introduction

1.1 Context

Nowadays, the Cloud Computing paradigm is the standard for the development, deploy-

ment, and management of services for most software systems present in our everyday life.

Google Apps, Amazon, Twitter, among many others, are deployed on some form of cloud

infrastructure and benefit from cloud-based services. Cloud Computing refers to both

the applications delivered as services over the Internet and the hardware and software

systems in the data centers that provide those services [4]. This paradigm enables the

illusion of unlimited computing power, which revolutionized the way companies and

developers design, develop, maintain and manage their online applications, as well as

the expectations that users have from them.

However, the centralized model proposed by the Cloud Computing paradigm mis-

matches the needs of many types of applications such as latency-sensitive applications,

interactive mobile applications, and IoT applications [37]. All these application domains

are characterized by having data being generated and accessed (predominantly) by end-

user devices. When the computation resides in the data center (DC), far from the source

of the data, challenges may arise: from the physical space needed to contain all the in-

frastructure, the increasing amount of bandwidth needed to support the information

exchanges as well as the latency in communication from the clients to the DC. All of

these challenges have directed us into a new computing paradigm: Edge Computing.

Edge computing addresses the increasing need for enriching the interaction between

cloud computing systems and interactive/collaborative web and mobile applications [19]

by taking into consideration computing and networking resources which exist beyond

the boundaries of DCs, closer to the edge of systems [34] [55]. This paradigm also aims at

enabling the creation of systems that could otherwise be unfeasible with Cloud Comput-

ing: Google’s self-driving car generates 1 Gigabyte every second [54], and a Boeing 787

produces data at a rate close to 5 gigabytes per second [16], which would be impossible

to transport and process in real-time (e.g., towards self-driving) if the computations were

to be carried exclusively in a DC.

1



CHAPTER 1. INTRODUCTION

By taking into consideration all the devices which are external to the DC, as these

range from Edge Data Centers to 5G towers and mobile devices, we are faced with a huge

increase in the number and diversity of computational devices, that contrary to the cloud,

have a wide range of computational capacity, and limited and (potentially) unreliable

connections. Given this, we believe developing an efficient resource management/sharing

platform that uses these devices toward generic computation is an open challenge to fully

accomplish in Edge Computing.

1.2 Motivation

Resource management/sharing platforms are extensibly used in Cloud systems (e.g. Mesos [23],

Yarn [62], Omega [53], among others), whose high-level functionality consists of: (1)

federating all the devices and tracking their state and utilization of computational and

networking resources; (2) keeping track of resource demands which arise from different

tenants; (3) performing resource allocations to satisfy the needs of such tenants; (4) adapt-

ing to dynamic workloads such that the system remains balanced and system policies as

well as performance criteria can be ensured.

Most popular resource management and sharing platforms are tailored towards small

numbers of homogenous resource-heavy devices, which rely on a centralized system com-

ponent that performs resource allocations with a global knowledge of the system (includ-

ing available computational resources, their usage, workloads received per each hosted

application, e.t.c). Although this system architecture heavily simplifies the management

of the resources, we argue that such systems, as they are often plagued by a central point

of failure and a single point of contention, have hindered scalability and fault-tolerance,

making them unsuitable for the more heterogeneous and larger infrastructure that can

be leveraged by Edge Computing systems.

Instead, to achieve general-purpose computation in Edge systems, we argue in favour

of decentralized management/sharing systems, composed of multiple components, orga-

nized in a flexible hierarchical way, that perform resource management decisions sup-

ported by partial and localized knowledge of the system state. Because building such a

platform from scratch is not trivial, and as we believe that in such a system, the accu-

racy and freshness of the information available to each component (which includes but

is not exclusive to the execution of components or services), dictates how efficiently they

manage resources, we focus on that particular task: decentralized data collection and

aggregation.

Hence, the goal of this work is to propose a novel solution that provides efficient

decentralized data collection and aggregation primitives over multiple nodes located

in and outside of the DC. It is our end goal to ease the creation of a new generation

of fully decentralized resource management solutions that employ partial and localized

knowledge, paving the way to more decentralized and effective solutions to manage com-

plex edge infrastructures, enabling to improve the performance of future edge-enabled

2



1.3. CONTRIBUTIONS

applications.

1.3 Contributions

The contributions which arose from the conducted work are as follows:

1. A smaller contribution that derived from the work conducted in the context of this

thesis which consists in a port to Golang of Babel [1], a framework for building

distributed systems, used to help developing the remaining components. This con-

tribution has some additions focused on latency measurement and fault detection.

2. A distributed monitoring framework, built for decentralized resource management

systems, composed of four main components:

a) A novel overlay protocol which strives to build a logical multi-tree-shaped log-

ical network using both bandwidth and node latency as heuristics for defining

the topology of the network. This protocol is fully decentralized and fault-

tolerant, with its configuration being only a set of static nodes: the roots of the

trees.

b) A distributed aggregation protocol, which uses the connections made available

by the overlay protocol’s tree structure to perform efficient on-demand and

decentralized information collection.

c) An API that allows resource management applications to insert, process, and

retrieve time-series data to and from a DeMMon node. This API also offers

operations that allow the collection and processing of information from other

DeMMon nodes in the network.

3. A proposed benchmark in the form of an edge-enabled application composed by

multiple loosely coupled micro-services, tailored to evaluate the performance of

resource management platforms. In this benchmark, geographical proximity leads

to a significant improvement of QOS for the end-user, favouring resource manage-

ment platforms that optimize placement of their services closer to the client (i.e.

applications that take advantage of edge computing).

4. An experimental evaluation of the membership protocol against popular alterna-

tives found in the state of the art, where their fault tolerance, the ability to improve

the network cost, and their capacity to perform information dissemination reliably

is studied.

5. An experimental evaluation of the monitoring protocol against different Prometheus [46]

configurations. This evaluation focuses on the accuracy of the collected monitoring

values over time, as well as the cost for networking/processing the information.

3



CHAPTER 1. INTRODUCTION

1.4 Document structure

The remaining of this document is structured as follows:

Chapter 2 studies related work that is relevant to the overall goal of the work presented

in this thesis: we begin by analyzing similar paradigms to Edge Computing, the devices

which compose these environments, and execution environments for edge-enabled appli-

cations. We also discuss strategies towards federating various devices in an abstraction

layer and study search strategies to find resources in this layer. Finally, we cover monitor-

ing and management of system resources.

Following, chapter 3 explains the implementation of the developed solution. It be-

gins with the design and implementation of the initial contribution, that as previously

mentioned, consists of a port to Golang of Babel [1], which in turn was used to build the

remaining components. After we cover the design and implementation of the overlay

protocol, followed by the aggregation protocol that uses the overlay protocols’ connec-

tions, and lastly, we cover the monitoring module of our system that stores and serves

information as time-series.

After, in chapter 4, we cover the design and implementation of the previously men-

tioned edge-enabled benchmarking application targeted for testing decentralized re-

source management platforms.

In chapter 5, we provide the results of our experimental evaluation regarding the

devised overlay protocol and aggregation protocol.

Finally, in chapter 6, we draw conclusions from the conducted work and discuss the

future work we intend to pursue to further improve our solution.

4



2

Related Work

The goal of this chapter is to present the work in the state of the art that is related to our

objectives. We begin by presenting what we believe to be four main high-level require-

ments of a decentralized resource sharing platform, as denoted in Figure 2.1:

1. Topology Management consists in the study of how to organize multiple devices in a

logical network such that they can cooperatively solve tasks. Efficiently managing

the topology is an essential building block for achieving efficient operation of the

remaining components.

2. Resource Location and Discovery focuses on how to efficiently index and locate re-

sources in the aforementioned logical network. For example, in the context of

resource sharing, resource discovery is paramount towards locating nearby devices

which have enough (free) computing and networking capabilities to perform a cer-

tain task, or host a certain applicational component or service.

3. Monitoring and aggregation studies how to track device metrics and how to efficiently

compress the size of those metrics through (possibly decentralized) aggregation.

Then, the compressed result may be used to improve the operation of a certain

service or component.

4. Resource Management addresses how to efficiently manage system resources and

schedule jobs (including hosting services, running a single task, among other types

of jobs) across existing resources such that: (1) the system remains load-balanced; (2)

jobs can operate efficiently; (3) jobs have (preferably) data locality; (4) resources are

not wasted. While the work conducted in this thesis is tailored toward supporting

this goal, this thesis does not aim at devising a complete scheduling solution, as that

is a complete research line on its own. However, for completeness, in this chapter,

we also discuss this aspect.

Considering the identified high-level requirements of such a system, and considering

the goal of creating such a system for the edge environment, in the following sections we
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Figure 2.1: High-level components for a resource sharing platform

begin by covering the taxonomy of devices that compose the edge environment and dis-

cuss how they can be employed towards the design of the proposed solution (Section 2.1).

Following, we study how to federate devices in an efficient abstraction layer that es-

tablishes an efficient topology (Section 2.2), we address how peers can efficiently organize

to index and search for the resources they need (e.g. services, peers, computing power,

among others), which in turn enables the delegation of particular application components

(Section 2.3).

Next, in Section 2.4, we cover the current state-of-the-art regarding the collection and

aggregation of metrics, which are paramount to summarize and enrich nodes with the

necessary information to perform efficient resource management decisions in a decen-

tralized manner. We study current aggregation practices and discuss relevant resource

monitoring systems in the literature. For each system, we address its limitations and

advantages for the edge environment. Lastly, as we believe it is necessary to gather a

perception of the needs of current state-of-the-art resource management solutions, in

Section 2.5 we briefly survey the related work in this area.

2.1 Edge Environment

In this section, we study the taxonomy of the devices which materialize edge environ-

ments and analyze, according to the literature, which computations each device can

perform.

2.1.1 Edge Environment Taxonomy

According to Leitão et al. [34], edge devices may be classified according to three main

attributes: capacity refers to computational, storage and connectivity capabilities of the

device, availability consists in the probability of a device being reachable, and finally,

domain characterizes the way in which a device may be employed towards applications,

either by performing actions on behalf of users (user domain) or performing actions on
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behalf of applications (applicational domain). Given that the concern of our work is

towards building the underlying infrastructure for these applications, we will only focus

on capacity and availability when classifying the taxonomy of the environment.

Table 2.1: Taxonomy of the edge environment

Level Category Availability Capacity
L0 Cloud Data Centers High High
L1 ISP, Edge & Private DCs High High
L2 5G Towers High Medium
L3 Networking devices High Low

Level Category Availability Capacity
L4 Priv. Servers & Desktops Medium Medium
L5 Laptops Low Medium
L6 Mobile devices Low Low
L7 Actuators & Sensors Varied Low

Table 2.1 shows the proposed categories of edge devices, we assign levels to categories

as a function of their distance from the cloud infrastructure.

Levels 0 and 1, composed of cloud and edge DCs, offer pools of computational and stor-

age resources which can dynamically scale. Both of these options have high availability

and large amounts of storage and computational power, as such, there is no limitations

on the kinds of computations these devices can perform.

Levels 2 and 3 are composed of networking devices, namely 5G cell towers, routers,
switches, and access points. Devices in both levels have high availability, and can easily

improve the management of the network, for example, by manipulating data flows among

different components of applications (executing in different devices).

Levels 4 and 5 consist of private servers, desktops and laptops, devices in these lev-

els level have medium capacity and medium to low availability. They can perform a

varied amount of tasks on behalf of devices in higher levels (e.g. compute on behalf of

smartphones, act as logical gateways or just cache data).

Levels 6 consists of tablets and mobile devices, which have low capacity, availability,

and short battery life. Given this, they are limited in how they can perform contribute

towards edge applications. Aside from caching user data, they may filter or aggregate of

data generated from devices in level 7.

Finally, level 7 consists of actuators, sensors and things, these devices are the most lim-

ited in their capacity, and enable limited forms of computation in the form of aggregation

and filtering.

2.1.2 Discussion

Coincidently, the levels are correlated to the number of devices and their computational

power, where higher levels tend to have more devices that are closer to the origin of the

data while having lower computational power. Consequently, the higher the level, the

harder it is to employ edge devices to support the execution of edge-enabled applications.

We believe the low availability and potential mobility of devices in higher levels make

them unsuitable, as they could potentially be a source of instability in the system. Con-

sequently, we believe only devices in levels 0-5 are potential candidates to integrate the

system we intend to build, provided the remaining devices tend too low of an availability

to be possible targets to, for example, host a service reliably. It is, however, important
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to mention that employing devices in other levels as gateways for those devices can help

circumvent this limitation. Hence, starting to establish a natural hierarchy on the way

different application components interact and how information (calls or events) flow in

such complex systems.

2.2 Topology Management

Provided with an overview of the taxonomy of the devices materializing edge environ-

ments, we now study the related work towards federating all these devices (that we also

refer to as peers following the peer-to-peer (P2P) literature nomenclature) in an abstrac-

tion layer (an overlay network) that allows intercommunication, cooperation, and efficient

resource discovery [61]. This Section provides context regarding the taxonomy of overlay

networks, followed by a discussion of popular overlay network protocols and what we

believe to be their strengths and limitations.

In a P2P system, peers contribute to the system with a portion of their resources to

accomplish tasks otherwise unfeasible by an individual peer. Typically, this is achieved in

a decentralized way, which means peers must establish neighbouring connections among

themselves to enable information exchange which, in turn, enables progress towards the

system goals.

Participants in a P2P system may know all other peers in the system, which is typically

referred to as full membership knowledge, which is a popular approach in Cloud systems.

However, as the system scales to larger numbers of peers, concurrently entering and

leaving the system (a phenomenon called churn [57]), this information becomes costly to

maintain up-to-date.

In order to circumvent the aforementioned challenges, a common alternative is to

have peers only maintain a view of a subset of all peers in the system, which is called par-

tial membership. This information is maintained by some membership algorithm that

restricts neighbouring relations among peers. Partial membership solutions are attractive

because they offer similar functionality to full membership systems while achieving more

scalability and resiliency to churn. The closure of these neighbouring relations is what

materializes an overlay network, a logical (i.e. at the applicational level) network that is

defined above another network (e.g. the IP network).

2.2.1 Taxonomy of Overlay Networks

Overlay networks are logical networks that operate at the applicational level. These rely

on an existing network (commonly referred to as the underlay) to establish neighbouring

relations, where each participant typically only communicates directly with its overlay

neighbours [61]. Overlays are commonly designed towards specific applicational needs.

As such, their neighbouring relations may or may not follow some established logic. As
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Figure 2.2: Examples Overlay Networks

illustrated in Figure 2.2, there are two main categories of overlays: structured and un-

structured:

Unstructured Overlays

Unstructured overlays usually impose little to no rules in neighbouring relations. Nodes

may pick random peers to be their neighbours or employ strategies to rank neighbours

and selectively pick the best given particular criteria typically entwined with the needs of

applications. A key factor of unstructured overlays is their low maintenance cost, given

that nodes can easily create neighbouring relations, which eases the process of replacing

failed ones. Consequently, this is the type of overlay which offers better resilience to

churn.

In Figure 2.2, we illustrate three examples of unstructured overlay networks: (A) is

a representation of an overlay network where the connections are unidirectional (e.g.

Cyclon [64]), in this type of overlay, peers have no control over the status of incoming con-

nections. Consequently, a peer may become isolated from the network without realizing

it, which is undesirable.

Overlay (B) is similar to (A), however, its neighbouring connections are bidirectional.

This means that a peer with a given number of outgoing connections must also have

the correspondent number of incoming connections, diminishing the risk of the peer

becoming disconnected from the overlay (this is the approach taken by HyParView [31]

to achieve high reliability and fault-tolerance).

Lastly, (C) is a representation of an unstructured overlay where peers establish groups

among themselves (such as Overnesia [36]). Grouping multiple devices into a group

can provide benefits such as (1) failures can be quickly identified and resolved by other
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members of the group; (2) nodes can replicate data within the group, leading to increased

availability of that data; (3) groups can abstract groups of resources and internally manage

their usage by, for example, offloading computational tasks within the group in a localized

way.

Structured Overlays

Structured overlays enforce stronger rules towards neighbour selection (generally based

on the identifiers of peers). As a result, the overlay generally converges to a certain

topology known a priori (e.g., a ring, tree, hypercube, among others).

Figure 2.2 also illustrates three kinds of structured overlay networks: (D) corresponds

to a tree, which are widely used to perform broadcasts (e.g., PlumTree [32]) because of

the smaller message complexity required to deliver a message to all nodes, or to monitor

the system state (if nodes in lower levels of the tree periodically send monitoring informa-

tion [33] to upper levels in the tree, in turn, the root of the node has a global view of the

collected monitoring information (e.g., Astrolabe [47])). However, trees are very fragile

in the presence of faults [32].

Overlay (E) corresponds to an overlay typically expected to define Distributed Hash

Tables (DHTs). These are extremely popular due to their effective applicational-level

routing capabilities. In a DHT, peers employ a global coordination mechanism that

restricts their neighbouring relations such that they can find any peer responsible for any

given key in a limited number of steps (typically the logarithm of the system size). In this

example (Figure E), the topology consists of a ring (which is the strategy employed by

Chord [56]). It is important to mention that not all distributed hash tables rely on rings to

perform effective routing. For example, in Kademlia [41], nodes organize as leaves across

a binary tree.

Finally, the overlay denoted in (C) is similar to overlay (E), however each position

of the DHT is made up of a virtual node composed of multiple physical nodes (which

is the strategy employed by Rollerchain [45]). Because of this, routing procedures are

still limited acording to the logarithm of system size, and also have the potential to be

load-balanced. Furthermore, as the failure of a physical node does necessarily mean the

failure of a virtual node, churn effects are mitigated.

2.2.2 Overlay Network Quality Metrics

If we look at an overlay network where connections between nodes represent edges and

nodes represent vertices in a graph, we obtain a graph from which we may extract direct

metrics to estimate overlay performance [61], we now enumerate some which we believe

to be the most relevant to our goal:

1. Connectivity. This property is usually measured as a percentage, corresponding to

the largest portion of the system that is connected, intuitively, a connected graph is
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one where there is at least one path from each node to all other nodes in the system.

2. Degree Distribution. The degree of a node consists in the number of arcs that are

connected to it. In a directed graph, there is a distinction between in-degree and

out-degree of a node, nodes with a high in-degree value have higher reachability,

while nodes with 0 in-degree cannot be reached. The out-degree of a node represents

a measure of the contribution of that node towards the maintenance of the overlay

topology.

3. Average Shortest Path. A path is composed by the edges of the graph that a message

would have to cross to get from one node to other. The average shortest path consists

in the average of all shorter paths between every pair of peers, to promote efficient

communication patterns, is desirable that this value is as low as possible.

4. Clustering Coefficient. The clustering coefficient provides a measure of the density

of neighbouring relations across the neighbours of links between a given node. It

consists in the number of a node’s neighbours divided by the maximum number

of links that could exist between those neighbours. A high value of clustering

coefficient means that there is a higher amount of redundant communication among

nodes.

5. Overlay Cost. If we assume that a link in the overlay has a cost, (e.g. derived from

latency), then the overlay cost is the sum of all the costs of the links that form the

overlay.

2.2.3 Relevant examples of Overlay Networks

T-MAN [28] is a protocol to manage the topology of overlay networks, it is based on a

gossiping scheme, and proposes to build a wide range of structured overlay networks

(e.g., ring, mesh, tree, among others). To achieve this, T-MAN expects a cost function as

an input to the protocol, then employed as a ranking method, applied iteratively by every

node to compare the preference among possible neighbours.

Nodes periodically exchange their neighbouring sets with peers in the system and

keep the nodes which rank higher according to the ranking method. A limitation of T-Man

is that it does not ensure the stability of the in-degree of nodes during the optimization

of the overlay, and consequently, the overlay may not remain connected.

Management Overlay Network [39] (MON) is an overlay network system aimed at

facilitating the management of large distributed applications. This protocol builds on-

demand overlay structures that allow users to execute instant management commands,

such as query the current status of the application or push software updates to all the

nodes. MON performs these procedures in an on-demand fashion such that it achieves a

low maintenance cost when no commands are running.
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This solution allows the on-demand construction of two types of Overlay Networks:

trees and direct acyclic graphs. These overlays, in turn, can be employed towards aggre-

gating monitoring data related to the status of the devices. Limitations from using MON

are that the resulting overlays are susceptible to topology mismatch, and do not ensure

connectivity. Furthermore, since the topologies are supposed to be short-lived, MON does

not provide mechanisms for dealing with faults.

Hyparview [31] (Hybrid Partial View) gets its name from maintaining two exclusive

views: the active and passive view, which are distinguished by their size and maintenance

strategy.

The passive view is a larger view which consists of a random set of peers in the system,

maintained by a periodic gossip protocol, where each peer sends a message to another

random peer in their active view. This message contains a subset of the neighbours of

the sending node and a time-to-live (TTL). The message is then forwarded randomly

throughout the system until the TTL expires, updating the views of nodes it passes. In

contrast, the active view consists of a smaller view (around log(n) in size), created during

the bootstrap of the protocol. Each peer in the view has an associated TCP connection,

which is then used as a bidirectional connection medium and failure detector. Whenever

a node from the active view is detected as failed, it is replaced with one in the passive

view.

Hyparview is often used as a peer sampling service for other protocols which rely on

the connections from the active view to collaborate (e.g. PlumTree [32]). It achieves high

reliability even in the face of a high percentage of node failures. However, its resulting

topology is flat, which we believe to not be ideal for the taxonomy of edge environments

we are considering. Furthermore, it may suffer from topology mismatch: given the ran-

dom nature of neighbouring connections, the resulting neighbouring connections may be

very distant in the underlying network.

X-BOT [35] is a protocol that constructs an unstructured overlay network where neigh-

bouring relations are biased considering one metric. This metric is provided by an oracle,

which is a component that exports a function, which accepts a pair of peers and attributes

a cost to that neighbouring connection. This cost may take into consideration factors such

as latency, ISP distribution, network stretch, among others.

The rationale X-BOT is as follows: nodes maintain active and passive views similar

to Hyparview [31]. Then, nodes periodically trigger optimization rounds where they

attempt to bias a portion of their connections according to the functions provided by

the oracle. Although this protocol potentially addresses the previous concerns about the

overlay topology mismatching the underlying network, it still proposes a flat topology,

which, as previously mentioned, we believe is not adequate for the edge environment

taxonomy.

Overnesia [36] is a protocol that establishes an overlay composed of fully connected

groups of nodes, where all nodes within a group share the same identifier. Nodes join

the system by sending a request to a bootstrap node, triggering a random walk. The
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requesting node joins the group where its random walk terminates (either because it

finds an underpopulated group or because the TTL expires).

Nodes enforce intra-group membership consistency through an anti-entropy mecha-

nism where nodes within a group periodically exchange messages containing their view

of the group. When a group detects that its size has become too large, it triggers a di-

viding procedure that splits the group in two halves. Conversely, when the group size

has fallen below a certain threshold, nodes trigger a collapsing procedure. During it,

each node takes the initiative to relocate itself to another group, resulting in the graceful

collapse of the group. Finally, inter-group links are acquired by propagating random

walks throughout the overlay.

As previously mentioned, establishing groups of nodes enable load-balancing, effi-

cient dissemination of queries, and fault tolerance. Furthermore, it allows the abstraction

of a set of physical resources into a single, unified, logical resource.

However, in systems with heterogeneous composition, system scalability limitations

may arise as devices may have trouble maintaining the group view up-to-date and the

active connections to all group members. Finally, the overlay may suffer from topology

mismatch, as two nodes within the same group may be distant within the underlay.

Chord [56] is a well known structured overlay network where the protocol builds and

manages a ring topology, similar to overlay (E) in Figure 2.2. Each node is assigned an

m-bit identifier, uniformly distributed across the id space, and takes steps to fill its finger
table. The finger table contains at most m entries, each ith entry of this table corresponds

to the first peer that succeeds a certain peer n by 2ith in the ring. This means that whenever

the finger table is up-to-date, and the system is stable, lookups for any data piece only

take logarithmic time to finish.

Although Chord provides a good trade-off between bandwidth and lookup latency, it

has its limitations: peers do not learn routing information from incoming requests, links

have no correlation to latency or traffic locality, and the overlay is highly susceptible to

churn [38]. Finally, the ring topology is flat, which means that lower capacity nodes in

the ring may become a limitation instead of an asset in the context of routing procedures.

Pastry [50] is another well known DHT which assigns a 128-bit node identifier (nodeId)

to each peer in the system. The nodeIds are randomly generated, and consequently, are

uniformly distributed in the 128-bit nodeId space. Routing procedures are forwarded to

nodes whose nodeId shares a prefix that is at least one bit closer to the key, if there are

no nodes available, nodes route messages towards the numerically closest nodeId. This

routing procedure takes O(log N) routing steps, where N is the number of Pastry nodes

in the system.

This protocol has been widely used as a building block for Pub-Sub applications

such as Scribe [51] and file storage systems like PAST [14]. However, limitations from

using Pastry arise from the use of a numeric distance function towards the end of routing

procedures, which creates discontinuities at some nodeId values and complicates attempts

at formal analysis of worst-case behaviour, in addition to establishing a flat topology that
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mismatches the edge device taxonomy.

Tapestry [67] Is a DHT with similar behaviour to Pastry [50]. In this system, however,

nodeIDs are represented using base b, where b is a parameter specified during configu-

ration. In routing procedures, messages are incrementally forwarded to the destination

digit by digit (e.g. ***8 -> **98 -> *598 -> 4598). Consequently, in stable conditions,

routing procedures theoretically take logbn hops to reach their destination, where b is

the base of the ID space. Because nodes assume that the preceding digits all match the

current node’s suffix, nodes in Tapestry only need to keep a constant size of logN entries

at each route level, consequently, nodes contain entries for a fixed-sized neighbour map

of size b.

Kademlia [41] is a DHT where nodes are considered leaves distributed across a binary

tree. Peers route queries and locate data pieces by employing an XOR-based distance

function which is symmetric and unidirectional. Each node in Kademlia is a router where

its routing tables consist of shortcuts to peers whose XOR distance is between 2i by 2i+1

in the ID space, given the use of the XOR metric, "closer" nodes are those that share a

longer common prefix.

The main benefits that Kademlia draws from this approach are: nodes learn routing

information from receiving messages, there is a single routing algorithm for the whole

routing process (unlike Pastry [50]) which eases formal analysis of worst-case behavior.

Finally, Kademlia exploits the fact that node failures are inversely related to uptime by

prioritizing nodes that are already present in the routing table.

Kelips [21] is a group-based DHT which exploits increased memory usage and con-

stant background communication to achieve reduced lookup time and message complex-

ity. Kelips nodes are split in k affinity groups split in the intervals [0,k−1] of the identifier

space, thus, with n nodes in the system, each affinity group contains n
k peers. Within

a group, nodes store a partial set of nodes contained in the same affinity group and a

small set of nodes lying in foreign affinity groups. With this architecture, Kelips achieves

O(1) time and message complexity in lookups, however, it has limited scalability when

compared to previous DHTs, given the increased memory consumption (O(
√
n).

Rollerchain [45] is a protocol which establishes a group-based DHT by leveraging on

techniques from both structured and unstructured overlays (Chord and Overnesia). In

short, the Overnesia protocol materializes an unstructured overlay composed by logical

groups of physical peers who share the same identifier. Then, the peer with the lowest

identifier within each logical group joins a Chord overlay, obtains the adresses of other

virtual peers, and distributes them among group members.

Rollerchain has the potential to enable a type of replication which has higher robust-

ness to churn events when compared to other other replication strategies, however, there

are limitations to this approach: (1) the load is unbalanced within members of each group,

as only one node is in charge of populating and balancing the inter-group links; (2) simi-

lar to Chord, nodes do not learn from incoming queries, which contrasts with other DHTs

such as Pastry; (3) the protocol has a higher implementation complexity and maintenance
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cost when compared to a regular DHT.

2.2.4 Discussion

Unstructured overlays are an attractive option for federating large amounts of devices in

heavily dynamic environments. They provide a low clustering coefficient, are flexible, and

maintain good connectivity even in the face of churn. However, given their unstructured

nature, they are limited in certain scenarios, for example, when trying to find a specific

peer or resource in the system.

Conversely, distributed hash tables enable efficient routing procedures with very low

message overhead, which makes them suitable for application-level routing. However,

given their strict neighbouring rules, participating nodes cannot replace neighbours eas-

ily, which hinders the fault-tolerance of these types of topologies, in addition, given the

fact that devices in edge environments have varied computational power and connectivity,

they may become a limitation instead of an asset in the context of routing procedures.

2.3 Resource Location and Discovery

Resource location systems are one of the most common applications of the P2P paradigm [61],

in a resource location system, a participant provided with a resource descriptor is able to

query other peers and obtain an answer to the location (or absence) of that resource in the

system within a reasonable amount of time. To do so, resource location systems employ

search strategies, which depend on : (1) the structure the an overlay network (structured

or unstructured). (2) on the characteristics of the resources to search (e.g. if there are

many copies of it or not), and (3) on the desired results (e.g. if a single copy of a resource

satisfies the query, or multiple are required).

In the context of resource management, if a peer wishes to offload computations to

other peers, it must employ an efficient search strategy to find nearby available resources

(e.g., storage capacity, computing power, among others) in order to offload computations.

In this section, we cover resource location and discovery, starting with the taxonomy

of querying techniques for P2P systems, followed by the study of how resources can

be stored or indexed and looked up throughout the topologies studied in the previous

section.

2.3.1 Querying techniques

Querying techniques consist of how peers describe the resources they need, these, accord-

ing to [61], may be classified as: (1) Exact Match queries, these specify the resource to

search by the value of a unique attribute (i.e., an identifier, commonly the hash of the

value of the resource); the second querying methodology type is (2) keyword queries,

that employ one or more keywords (or tags) combined with logical operators to describe

15



CHAPTER 2. RELATED WORK

resources (e.g. "pop", "rock", "pop and rock"...); next, (3) range queries retrieve all re-

sources whose value (or the value of a particular property)is contained within a given

interval (e.g. "movies with 100 to 300 minutes of duration"); finally, (4) arbitrary queries

aim to find a set of nodes or resources that satisfy one or more arbitrary conditions (e.g.

looking for a set of resources encoded in a certain format).

Provided with a way of describing their resource needs, peers need strategies to index

and retrieve the resources in the system, there are three popular techniques: centralized,

distributed over an unstructured overlay, or distributed over a structured overlay.

2.3.2 Centralized Resource Location

Centralized resource location relies on one (or a group of) centralized peers that index

all existing resources. This type of architecture greatly reduces the complexity of systems,

as peers only need to contact a subset of nodes to locate resources.

It is important to notice that in a centralized architecture, while the indexation of

resources is centralized, the resource access may still be distributed (e.g. a centralized

server provides the addresses of peers who have the files, and files are obtained in a pure

P2P fashion), a system which employs this architecture with success is BitTorrent [10].

Although centralized architectures are widely used nowadays, they lack the necessary

scalability to index the large number of dynamic resources we intend to manage, and

have limited fault tolerance to failures, making them unsuited for edge environments.

2.3.3 Resource Location on Unstructured Overlays

When employing an unstructured overlay for resource location, the resources are scat-

tered throughout all peers in the system, consequently, peers need to employ distributed

search strategies to find the intended resources. This is accomplished through disseminat-

ing messages containing these queries throughout the overlay. The dissemination of these

messages can follow multiple strategies, we now cover there two popular approaches:

flooding and random walks [61].

Flooding consists of peers eagerly forwarding queries to others in the system as soon

as they receive them for the first time, the objective of flooding is to contact multiple

distinct peers that may have the queried resource. One approach is complete flooding,

which consists in contacting every node in the system, this guarantees that if the resource

exists, it will be found. However, complete flooding is not scalable and incurs significant

message redundancy. Flooding with limited horizon minimizes the message overhead

by attaching a time to live (TTL) to messages that limit the number of times that messages

can be retransmitted. However, there is a trade-off for efficiency: flooding with limited

horizon does not guarantee that all resources will be found.

Random Walks are a dissemination strategy that attempts to minimize the commu-

nication overhead that is associated with flooding. A random walk consists of a message
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with a TTL that is randomly forwarded one peer at a time throughout the network. Ran-

dom walks may also attempt to bias their path towards peers that are more likely to

have answers to the query [12], this technique is commonly reffered to in the literature

as a random guided walk. A common approach to bias random walks is to use bloom

filters [59], which are space-efficient probabilistic data structures that allow the creation

of imprecise distributed indexes for resources.

First generation of decentralized resource location systems relied on unstructured

overlays (such as Gnutella [20]) and employed simple broadcasts with limited horizon to

query other peers in the system. However, as the size of the system grew, simple flooding

techniques lacked the required scalability for satisfying the rising number of queries,

which triggered the emergence of new techniques to reduce the number of messages per

query, called super-peers.

Super-peers are peers which are assigned special roles in the system (often chosen

in function of their capacity or stability). In the case of resource location systems, super-

peers disseminate queries throughout the system. This technique is at the core of solu-

tions such as Gia [9], employed towards effectively reducing the number of peers that

have to disseminate queries on the second version of Gnutella [20].

SOSP-Net [17] (Self-Organizing Super-Peer Network) proposes a resource location

system composed by regular peers and super-peers that effectively employs feedback

concerning previous queries to improve the overlay network. Weak peers maintain links

to super-peers which are biased based on the success of previous queries, and super-peers

bias the routing of queries by taking into account the semantic content of each query.

However, even with super-peers, one problem that still remains in these systems is

finding very rare resources, which requires flooding the entire overlay. To circumvent

this, the third generation of resource location systems rely on Distributed Hash Tables to

ensure that even rare resources in the system can be found within a limited number of

communication steps.

2.3.4 Resource Location on Distributed Hash Tables

Resource location on structured overlays is often done by relying on the applicational

routing capabilities of distributed Hash Tables (DHTs). In a DHT, peers use hash functions

to generate node identifiers (IDS) often uniformly distributed over the ID space. Then,

by employing the same hash function to generate resource IDs, and assigning a portion

of the ID space to each node, peers are able to map resources to the responsible peers in a

bounded number of steps, which makes them very suitable for (exact match queries) [61].

There are two popular techniques for storing resources in a DHT, the first approach

is to store the resources locally and publish the location of the resource in the DHT. This

way, the node responsible for the resource’s key only stores the locations of other nodes

in the system and the resource may be replicated among distinct nodes composing the

system. The second technique consists of transferring the resource to the responsible node
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in the DHT, although fewer nodes must keep the same value. It is, however, important

to mention that this way the resources are not replicated, provided that with consistent

hashing, all nodes with the same resource will publish the resource in the same location

of the DHT.

2.3.5 Discussion

As mentioned previously, we believe centralized resource location systems are unsuited

for edge environments, given that as previously mentioned in Section 1.1, for our goal,

centralizing the computation (for example in data-centers) will eventually lead to a bot-

tleneck for the system scalability. Furthermore, these types of systems are plagued with

a single point of failure, making them unsuitable for volatile environments.

Unstructured resource location systems are attractive for systems that perform queries

in search for resources with multiple copies or for range queries, however, this approach

is inefficient when performing exact match queries, as a finding the exact resource in an

unstructured resource location system requires flooding the entire system with messages.

Conversely, distributed hash tables are specially tailored towards exact match queries,

but are less robust to churn and are subject to low-capacity nodes being a bottleneck in

routing procedures.

2.4 Resource Monitoring

In this section, we will cover resource monitoring, which consists in tracking the state of

certain aspects of a system, such as the device status, the capacity of links between devices,

the status of available resources within a given geographical zone, among others, which

is paramount for making effective management decisions regarding task allocations and

managing the overlay network. However, if every node were to continuously collect, store

and process the metrics of other nodes, the amount of communication and processing

needed to do this would quickly overload the system. Consequently, there is the need to

reduce the size of the data through a process called aggregation.

2.4.1 Aggregation

Aggregation consists in the determination of important, system-wide properties and it

is an essential building block towards monitoring distributed systems [11] [30]. This

technique can be employed, for example, towards computing the average of available

computing resources in a certain part of the network or towards identifying application

hotspots by aggregating the average resource usage in certain areas, among many other

uses. There are two properties of aggregation functions: decomposability and duplicate
sensitiveness.
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Decomposable Non-Decomposable
Self-decomposable

Duplicate insensitive Min, Max Range Distinct Count
Duplicate sensitive Sum, Count Average Median, Mode

Table 2.2: Decomposability and duplicate sensitiveness of aggregation functions

Decomposability

A decomposable aggregation function is one where a function may be defined as a compo-

sition of other functions. Decomposable functions may be self-decomposable, where the

aggregated value is the same for all possible combinations of all sub-multisets partitioned

in the multiset. This happens whenever the applied function is commutative and associa-

tive (e.g. min, max, sum, count). A canonical example of a decomposable function that

is not self-decomposable is average, which consists of the sum of all pairs divided by the

count of peers that contributed to the aggregation. For non-decomposable aggregations,

we need to involve all elements in the multiset. These are less desirable to perform in

a large scale system, as the number of input values is large, and gathering all the input

values may incur additional networking costs.

Duplicate sensitiveness

The second property of aggregation is duplicate sensitiveness, and it is related to whether

a given value can or cannot occur several times in a multiset, as depending on the aggre-

gation function, the presence of repeated values may influence the result. It is said that

a function is duplicate sensitive if the result of the aggregation function is influenced

by the repeated values (e.g. SUM). Conversely, if the aggregation function is duplicate

insensitive, it can be successfully repeated any number of times to the same multiset

without affecting the result (e.g. MIN and MAX).

Table 2.2 classifies popular aggregation functions in function of decomposability and

duplicate sensitiveness as found in [30].

2.4.2 Aggregation techniques

In the following subsection, we provide context about the taxonomy of aggregation tech-

niques:

Hierarchical aggregation

Tree-based approaches leverage directly on the decomposability of aggregation functions.

Aggregations from this class depend on the existence of a hierarchical communication

structure (e.g. a spanning tree) with one root ( also called the sink node). Aggregations

take place by splitting inputs into groups and aggregating values bottom-up in the hier-

archy. Tree-based architectures also allow efficient multi-tree aggregation, which consists
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of the calculation of an aggregation result through the exchange of partial averages data

among all active nodes in the aggregation process [11].

Cluster-based techniques rely on clustering the nodes in the network according to

a certain criterion (e.g. latency, energy efficiency). Then, within each cluster, a repre-

sentative is responsible for local aggregation and for transmitting the results to other

representatives.

Hierarchical approaches, due to taking advantage of device heterogeneity, are attrac-

tive in edge environments. However, due to the low computational power of devices, not

all nodes may be able to handle the additional overhead of maintaining the hierarchical

topology, furthermore, there are additinal concerns regarding failures when compared to

ad-hoc aggregation.

Ad-hoc aggregation

Ad-hoc aggregation consists of a class of aggregation algorithms that calculate aggrega-

tions through periodic, randomized exchanges of messages. These types of algorithms

allow an estimation of an aggregated value high accuracy while employing unstructured

overlays [29], consequently, these retain the fault tolerancee and resilience to churn from

these overlays.

2.4.3 Monitoring systems

Provided with this overview of aggregation techniques, we now discuss popular moni-

toring systems in the literature. For each system, we discuss what we believe to be their

advantages and drawbacks as solutions for edge settings.

Astrolabe [47] is a distributed information management platform that aims at mon-

itoring the dynamically changing state of a collection of distributed resources. It intro-

duces a hierarchical architecture defined by zones, where a zone is recursively defined to

be either a host or a set of non-overlapping zones. Each zone (minus the root zone) has a

local identifier, which is unique within the zone where it is contained. Zones are globally

identified by their zone name, which consists of the concatenation of all zone identifiers

within the path from the root to the zone in question.

Associated with each zone there is a Management Information Base (MIB) containing

attributes relative to that zone. These attributes are not directly writable, instead, they

are generated by aggregation functions contained in special entries in the MIB. Leaf zones

are the excepted from these restrictions, instead containing virtual child zones which are

directly writable by devices within that virtual child zone.

The aggregation functions which produce the MIBs are contained in aggregation func-
tion certificates (AFCs). These contain a user-programmable SQL function, a timestamp

and a digital signature. In addition to the function code, AFCs may contain other infor-

mation, such as an Information Request AFC, that specifies which information to retrieve
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from each participating host, and how to summarize the retrieved information. Alter-

natively, we may have a configuration AFC, used for specifying runtime parameters that

applications may use for dynamic configuration.

Astrolabe employs gossip exchanges to update the MIBs, which provides an eventual

consistency model: if updates cease to exist for a long enough time, all the elements of the

system converge towards the same state. This is achieved by employing a gossip algorithm

that selects another agent at random and exchanges zone state with it. If the agents are

within the same zone, they exchange information relative to their zone. Conversely, if

agents are in different zones, they exchange information relative to the zone which is their

least common ancestor.

Not all nodes gossip information, within each zone, a node is elected (the authors

do not specify how) to perform gossip on behalf of that zone. Additionally, nodes can

represent nodes from other zones, in this case, nodes run one instance of the gossip

protocol per represented zone, where the maximum number of zones a node can represent

is bounded by the number of levels in the Astrolabe tree.

An agents’ zone is defined by its system administrator, which is a potential limitation

towards scalability, given that configuration errors have the potential of heavily raising

system latency and reducing traffic locality. Additionally, the authors state that the size

of gossip messages scales with the branching factor, often exceeding the maximum size of

a UDP packet. Other limitations which arise from using Astrolabe are the high memory

requirements per participant due to the high degree of replication, and the potential

points of failure of the representatives of zones.

Ganglia [40] is a distributed monitoring system for high performance computing

systems, namely clusters and grids. In short, Ganglia groups nodes in clusters, in each

cluster, there are representative cluster nodes that federate devices and aggregate internal

cluster state. Then, representatives aggregate information in a tree of point-to-point

connections.

Ganglia relies on IP multicast to perform intra-cluster aggregation, it is mainly de-

signed to monitor infrastructure monitoring data about machines in a high-performance

computing cluster. Given this, its applicability is limited towards edge environments: (1)

clusters are assumed to be in stable environments, which contrasts with the edge envi-

ronment; (2) it relies on IP multicast, which has been proven not to hold in a number of

cases; (3) has no mechanism to prevent network congestion; finally, (4) it requires manual

configuration of the tree structure.

SDIMS [66] (Scalable Distributed Information Management System) proposes a com-

bination of techniques employed in Astrolabe [47] and distributed hash tables (in this

case, Pastry [50]). It is based on an abstraction that exposes the underlying aggregation

trees provided by a DHT such as Pastry.

Given a key k, an aggregation tree is defined by the union of the routing paths from

all nodes to the node responsible for key k, where each routing step along the path to

k corresponds to a level in the aggregation tree. Aggregation functions are associated
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with an attribute type and a name and rooted at hash(attribute type, attribute name), which

results in different attributes with the same function being aggregated along trees rooted

in different parts of the DHT, enabling load-balancing.

This achieves communication and memory efficiency when compared to gossip-based

approaches, because MIBs have a lesser degree of replication. However, as each node

belongs to every aggregation tree, this could potentially hinder scalability in edge set-

tings, given that low-capacity nodes may become overloaded if they are intermediate

aggregation points in all aggregation trees.

Prometheus [46] is an open-source monitoring and alerting toolkit originally built for

recording any purely numeric time series. We believe this tool is one of the most popular

tools in the state-of-the-art in regard to querying and collecting multi-dimensional data

collections. This solution uses a “pull” technique to aggregate metrics, which means it

scrapes targets periodically to obtain its metric values. To do so, it requires a configuration

file that dictates many aspects of its behaviour, such as the targets for scraping metric

values, the periodicity at which to perform this scrape, how long to retain metrics in the

database, among other aspects. Furthermore, Prometheus also allows the configuration

of alarms that trigger (configurable) actions whenever a given criterion is met.

Finally, Prometheus also allows federation, which consists of a server scraping se-

lected time-series from another Prometheus server. Federation is split in two categories,

hierarchical federation and cross-service federation. In hierarchical federation, Prometheus

servers are organized into a topology resembling a tree, where each server aggregates

aggregated time-series data from a larger number of subordinated servers. Alternatively,

cross-service federation enables scraping selected data from another service’s Prometheus

server to enable alerting and queries against both datasets within a single server.

2.4.4 Discussion

After the study of the literature related to monitoring systems, we believe there is a lack

of monitoring systems targeted towards edge settings, as popular existing solutions often

have centralized points of failure, rely on manual configuration or depend on techniques

such as IP multicast, which make them unsuited for large-scale dynamic systems such as

the ones found in edge environments.

Furthermore, we argue that large-scale monitoring systems purely based on dis-

tributed hash tables [66] are unsuitable for edge environments, provided these assume

all nodes have an equal capacity, which we believe to mismatch the heterogeneity of edge

environments. Other alternatives that better align with our objectives, such as Astro-

labe [47] (given it can be configured with device heterogeneity in mind), require heavy

amounts of message exchanges to keep information up-to-date and require manual con-

figuration of the hierarchical tree, which is also be undesirable, provided the dynamicity

of these environments.
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2.5 Resource Management

In this section, we study resource management in the context of edge environments.

Resource management consists in providing resources (e.g. computing power, memory,

among others) to tenants (i.e. applications, frameworks, among others), such that these

can perform their computations. In this section, we cover aspects of resource management

solutions and study popular solutions in the literature.

2.5.1 Resource Management Taxonomy

A resource management system aims at controlling the distribution of resources among

tenants. We may classify resource management architectures according to their control
and tenancy.

2.5.1.1 Tenancy

The term tenancy in resource management refers to whether or not underlying hardware

resources are shared among entities [24].

Single tenancy refers to an architecture in which a single instance of a software

application and supporting infrastructure serves one customer. In single-tenancy archi-

tectures, a customer (tenant) has nearly full control over the customization of software

and infrastructure.

Multi-tenancy consists of tenants sharing multiple resources across multiple pro-

cesses and machines. This approach has clear advantages, as sharing the infrastructure

leads to lower costs (e.g. electricity), and companies of all sizes like to share infrastructure

in order to achieve lower operational costs.

However, providing performance guarantees and isolation in multi-tenant systems

is extremely hard, resource management systems must avoid mismatching the resource

allocation, as tenant-generated requests compete with each other and with the system gen-

erated tasks. Furthermore, tenant workload can change in unpredictable ways depending

on the input workload, the workload of other tenants in the system, and the underlying

topology.

2.5.1.2 Control

Control refers to how resource management systems allocates tasks to available resources,

there are two alternatives towards performing resource allocations: either centralized or

decentralized.

Centralized control consists in a centralized component with a global view of the state

of the system making all decisions regarding resource allocations. Intuitively, given that a

centralized component generates manages all the resources in the system, this component

can easily enforce policies to achieve the desired performance guarantees or fairness goals
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by identifying and only throttling the tenants or system activities responsible for resource

bottlenecks [63].

Decentralized control architectures are defined by having the decision-making pro-

cess regarding resource allocations distributed across multiple components [24]. This

topic has yet not been subject to much research, although it is of extreme relevance to-

wards edge environments. For example, if the system is globally distributed, it may take

too long for a centralized controller to identify hotspots in a certain zone and load-balance

them.

One of the key challenges in distributed resource management is ensuring that the

components which perform resource assignments do not conflict with each other. Ad-

ditionally, in a multi-tenant decentralized resource management system, tenants may

request resources to different resource controllers in the system, and if they do not co-

ordinate themselves, the application may be provisioned with too many (or too little)

resources.

2.5.2 Resource Management Systems

Mesos [23] is a multi-tenant centralized resource sharing platform that attempts to pro-

vide fine-grained resource sharing within a data centre. The tenants for this platform

are frameworks such as HDFS [5], MapReduce [13], among others, which in turn sup-

port multiple applications running within a DC. In short, the Mesos resource sharing

system consists of a master process which manages slave daemons running on each clus-

ter node. In order to achieve fault-tolerance for the master component, Mesos employs

Zookeeper [25] to maintain replicas, elect a new master, and transfer state to a new master

in case the active master fails.

The master implements fine-grained sharing of resources across frameworks by em-

ploying resource offers, which consist of lists containing free resources distributed among

slaves. The master makes decisions about how many resources to offer to each framework,

and the decision-making process is based on an arbitrary organizational policy, such as

fair sharing or priority. Each framework that wishes to use Mesos must implement a

scheduler and an executor. The scheduler registers with the Mesos master to receive re-

source offers, and the executor is the process that is launched on slave nodes to run the

framework’s tasks.

A limitation of the Mesos resource sharing platform is that it has limited scalability,

given the central component issuing resource allocations (the original authors mention

the system scales up to 50000 slave daemons on 99 physical machines), which is not

enough for an edge environment. Furthermore, the resource offer model forces frame-

works to employ a specific programming model based on schedulers and executors, which

we believe to be too restrictive.

Yarn (Yet Another Resource Negotiator) [62] is a centralized multi-tenant resource

sharing platform that decouples the programming model from the resource management
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infrastructure and delegates many scheduling functions to per-application components.

The architecture of YARN is composed by: a per-cluster Resource Manager (RM), multiple

Application Masters (AM), and Node Managers (NM). The RM tracks resource usage and

node liveness, enforces allocation invariants and arbitrates contention among tenants.

AMs run arbitrary user code, their duties in the system consist of managing the life-

cycle aspects, including dynamically increasing and decreasing resource consumption,

managing the flow of execution, and handling faults. Node Managers (NM) are worker

daemons, whose responsibilities consist of managing container dependencies, monitoring

their execution, and providing a set of services for them.

AMs send resource requests to the RM, containing the number of containers to re-

quest, the resources per container, locality preferences, and a priority level within the

application. These requests are designed to capture the needs of applications while at the

same time removing application concerns (such as task dependencies) from the sched-

uler. Because the RM is in charge of processing and scheduling all task distributions

for each request made by AMs, it is effectively a monolithic scheduler. By consequence,

there is a unique point of failure, which makes this system inadequate for large scale edge

environments.

Omega [53] is a scheduler designed for grid computing systems composed by sched-

ulers and workers. Each scheduler receives large amounts of jobs composed by either one

or many tasks that have to be scheduled among workers. Contrary to YARN, which is

monolithic, OMEGA uses multiple schedulers per cluster, each with a shared global view

of the cluster state.

Schedulers make task placement decisions according to their view of the cluster state

and their scheduling policy. If two or more schedulers attempt to schedule a task to the

the same worker (i.e., generating a conflict), the worker first tries to accommodate both

tasks, if it cant, it rejects the least important one.

One advantage of OMEGA in relation to MESOS is that MESOS resource attributions

“lock” the resources to the corresponding framework, which means that only one frame-

work is examining a resource at a time. While it achieves higher throughput in allocation

operations, its main limitations are that: (1) in case the grid becomes overloaded, resource

allocations can potentially start interfering with each other; (2) scheduling policies are

harder to ensure; and finally, (3) all schedulers must have global knowledge of the system.

Edge NOde Resource Management [65] (ENORM) is framework aimed at employ-

ing edge resources towards applications by provisioning and auto-scaling edge node

resources. ENORM proposes a three-tier architecture: (1) the Cloud tier, where applica-

tion servers are hosted; (2) the middle tier, where the edge nodes are situated; and (3) the

bottom tier, where user devices (e.g. smartphones, wearables, gadgets) are situated.

To enable the use of edge nodes, ENORM deploys a cloud server manager on each

application server, which communicates with potential edge nodes, requesting computing

services. Using these computing resources, it deploys partitioned servers on the edge

nodes. Edge nodes are maintained in a global view.
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ENORM authors tested the designed system using an online game inspired on Poke-

mon GO (iPokemon)[8]. The ENORM framework partitions the game server and sends

user data to each edge node containing information regarding the users within that geo-

graphical location. Users from the relevant geographical zone then connect to the edge

server and are serviced by a geographically closer edge node as if they were connected

to the data centre. Limitations from this framework are the large size of the required

information to perform the deployments, and similarly to previous solutions, the lack

of fault-tolerance and scalability, from employing a centralized component to perform

monitoring and management of resources.

FogTorch [6] is a service deployment framework aimed at determining eligible de-

ployments for an application over a given Fog infrastructure, modeled by: (1) Cloud

Data Centers, denoted by their location and software capabilities; (2) Fog Nodes, that

consist of tuples containing: the location, hardware, the software capabilities, and the

things directly reachable from the fog node; (3) Things, which are represented by a tuple

denoting the thing (sensor or actuator) location and its type; (4) QoS profiles, that are

sets of QoS profiles composed by the latency and bandwidth of a communication link.

(5) Applications, which are composed of independent sets of components, each with a set

of requirements regarding QoS profiles, hardware and software capabilities, and things.

Then, authors model service deployments as restrictions over the system model and em-

ploy a greedy heuristic, which reduces the search space of devices constituting options

for these service deployments.

FogTorch is also the base for FogTorchPI [7], which is a solution that employs the

system model of FogTorch, however instead of a greedy approach, it uses Monte Carlo

simulations to calculate the best possible deployment configurations.

These solutions provide a comprehensive system model which models many different

types of application requirements, however,similarly to FogTorch, it requires an updated

global view of the system, which requires collecting a large amount of information to a

central entity, limiting system scalability.

2.5.3 Discussion

Although resource management systems have been present for many years, these are often

tailored towards small scale environments composed by homogenous devices in stable

environments, which contrast with the edge of the network, where devices are extremely

numerous, operate on a decentralized fashion, and are highly heterogenous.

We argue that a centralized controller is not an ideal solution for an edge environment,

given the fact that as the number of devices in the system increases, so does the number of

resources to track, and the harder it is for a centralized component to have an up-to-date

global view of the system.

Due to their low capacity, devices at the edge of the network are very susceptible

to workload changes, for example, a 5G tower that is hosting services cannot handle a

26



2.6. SUMMARY

drastic increase in the number of users it is serving. In this scenario, we argue that in

order to maintain pre-established performance criteria, devices must autonomously make

resource management decisions such as scaling an allocation horizontally or vertically in

order to quickly meet the demands of users/tenants.

2.6 Summary

The purpose of this chapter was to provide a brief overview of the studied relevant works

and techniques found in the literature regarding (1) the edge environment and execution

environments for edge environments; (2) construction of overlay networks; (3) resource

monitoring platforms, and (4) resource location systems, with emphasis on analyzing

their applicability toward edge Environments. Firstly, we began by studying the devices

that we believe compose these environments and debated the applicability of popular

execution environments for edge-enabled applications, following we addressed popular

architectures and implementations of both structured and unstructured overlay networks,

and analyzed popular techniques in the literature used towards performing resource

location and discovery in these networks. After this, we examined related work regarding

collecting metrics in a decentralized manner.

In the next chapter, we present the proposed solution, that we named DEMMON,

which draws inspiration from the study of the state-of-the-art to enable the decentral-

ized management and monitoring of resources at both data centres and the edge of the

network.
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DeMMON

DeMMon (Decentralized Management and Monitoring framework) is a monitoring frame-

work that aims to tackle the needs of decentralized resource management tools. These

tools, as previously mentioned, must perform resource management decisions, such as

load balancing or QOS optimizations, supported by partial and localized knowledge of

the system. It is the goal of this framework, through the on-demand decentralized col-

lection, aggregation, and storage of metrics in the form of time-series, to provide this

knowledge base. We now detail what we believe to be the most common requirements of

such tools:

1. Locality, by interacting with a partial set of nodes from the system, optimized

according to a certain proximity heuristic. This set is crucial such that a certain

node has others to interact with to perform the aforementioned localized resource

management decisions. In our framework, we chose latency as the heuristic for the

proximity heuristic. The reasons for this choice were that not only does it does not

rely on external tools, such as traceroute or a reverse IP-to-geolocation service, nor

does it require pre-configuration of geolocation, making it possible for all nodes’

configurations to be similar (thus making the deployment of large quantities of

nodes easier).

2. Storage and querying of metric values. As it is impossible to know ahead of

time what type of information resource management systems and the functions

to aggregate that information would otherwise require, we also believe that it is a

requirement to be as flexible as possible regarding metrics types and aggrega-

tion functions. Furthermore, by allowing resource management systems to create

custom-tailored metric formats tailored for their own needs, we believe it may even

promote higher efficiency, as this feature may prevent inefficient workarounds from

metric type restrictions.

3. Ensure there are ways to obtain the globally aggregate value of a metric dis-

tributed across one or more nodes in the system, for example, the total number
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of nodes, service replicas, among others, without having to rely on a central com-

ponent. This feature is important for resource management tools to, for example,

maintain a (configurable) ratio of service replicas to nodes: by simultaneously col-

lecting both the number of nodes in the system and the number of replicas, nodes

can perform local decisions such as creating or decommissioning replicas, when-

ever the desired ratio of reaches a certain bound. Or alternatively, for example, for

periodically collecting the number of nodes in the system to act as a configuration

parameter for other systems.

4. Have a way to obtain the aggregate value from a set of “nearby” nodes. This

feature is useful for decentralized resource management systems as it allows them

to perform actions in a decentralized manner: by collecting the metrics relative

to the usage of nearby nodes, each node may decide (e.g to improve a service’s

latency through proximity, to or reduce the load on a saturated service) to replicate

or migrate service, motivated by this partial aggregate value.

5. Have a way to collect non-aggregated metric values from a set of “nearby” nodes.

Similar to item 4, resource management frameworks may need to collect non-

aggregated values to perform actions. In a service deployment context, it may

want to collect the geographical positions of some nodes and deploy service replicas

nearer to the current service clients’ location.

6. Provide ways to efficiently propagate information across nodes in the system. This

is useful for resource management systems, as it prevents the overhead of establish-

ing information propagation at the resource management layer.

7. Ensure ways to receive notifications based on issued alerts that trigger whenever

a supplied condition is met. This prevents clients of this system from resorting to

periodically requesting/consulting information and performing the verifications

themselves, saving unnecessary computation. By setting these alarms, resource

management tools can, in turn, trigger resource management actions, for example,

set an alarm that triggers if the mean of the CPU usage over the last N seconds

reaches a certain threshold. When this alarm triggers, perform load-balancing or

service migrations to spread the CPU load throughout nearby nodes. Furthermore,

it is important to note that it is possible to create alerts on aggregated metric values.

Having enumerated what we believe to be the requirements of such tools, we now pro-

vide a brief overview of the devised framework, which aims to fulfill these requirements.
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3.1 Overview

The devised framework (illustrated in Figure 3.1) is coalesced by four main modules: the

overlay network, the aggregation protocol, the API, and the monitoring module. In the

following paragraphs, we describe each module’s role within the framework and how

they contribute to fulfilling the above-mentioned requirements.

Clients (resource 
management)

Monitoring requests

Connection events

Request data dissemination

DeMMon

Aggregation Protocol

Overlay Network

API

Applications

Monitoring Module

Query resolution

Figure 3.1: An overview of the architecture of DeMMon

First, the API exposes the functionality of the framework, its main objectives are to

(1) allow resource management solutions to collect metrics about nodes (or services they

host) in the system; (2) allow those metrics to be queried through the use of a query

language; (3) allow registering alarms which trigger based on conditions which evaluate

the collected information. It is important to notice that the API is not the component

tasked with gathering the information to perform these tasks. Instead, it exposes the

results and mediates the interactions between the clients and the remaining modules.

Second, the monitoring module is tasked with storing metrics, resolving queries

regarding stored metrics, removing expired metrics, periodically evaluating registered

alarms, and triggering callbacks which the API then propagates to the client. This module

satisfies points 2 and 7 of the aforementioned requirements.

The overlay network is responsible for building a latency-aware multi-tree-shaped

network. Nodes in this network use latency, node capacity, and a set of logical rules to

change their location either from one tree to another or within their tree until they have
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an optimized set of nodes (according to latency). The connections resulting from the

operation of this protocol are the basis for the aggregation protocol. In addition, this

module also offers limited horizon flood techniques, exposed through the API, fulfilling

the points 1 and 6 of the requirements presented previously.

Finally, the aggregation protocol is a component that performs on-demand metric

collection based on issued commands from the API. This component takes advantage

of the overlay networks’ established connections and hierarchical structure to perform

efficient distributed aggregations. It allows three types of decentralized aggregation: (1)

tree aggregation, which consists of collecting metrics and merging them using the overlay

protocols’ trees, collecting a globally aggregated value in the tree roots (or a partial view

of the system for nodes that are not the root of the overlay); (2) global aggregation, where

nodes also use their tree connections to efficiently collect a globally aggregated value

(independently of being the root of the tree); and (3) neighbourhood aggregation, where

nodes collect values (non aggregated) of nearby nodes in term of hop proximity. These

three mechanisms satisfy points 3, 4 and 5 of the aforementioned requirements.

In the following sections, we will begin by providing an brief explanation of the design

and implementation of GO-Babel (section 3.2), a framework to build distributed systems’

protocols (inspired in Babel [1]), that we ported to Golang to ease the development of

the overlay network. Following, we will provide a detailed explanation of the second

contribution, composed by four modules. For each, we cover its’ design and implemen-

tation, starting by the overlay network (section 3.3), followed by aggregation protocol

(section 3.4), and lastly, the monitoring module (section 3.5) and API (section 3.6).

3.2 GO-Babel

The first (smaller) contribution of this thesis is an event-based framework called GO-

Babel, available on [43]. This framework is a port in Golang [18] of Babel [1] with addi-

tions focused on fault detection and latency probing. Babel, in turn, is inspired on the

model proposed by Yggdrasil [11].

The decision to build this framework arose from the need to use Babel for building

the distributed protocols and the decision to use Golang during this dissertation (due to

its primitives for building concurrent systems). Given that there was no implementation

of Babel in Golang, and the current Babel implementation lacked some needed features

such as a fault detector and a latency measurement tool, we implemented a new version

in Golang with these additions.

3.2.1 Overview

In summary, this framework has the following main objectives:
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1. Abstract the networking layer, providing channels, which are essentially an abstrac-

tion over TCP connections, providing callbacks whenever outbound or inbound con-

nections are established or terminated and whenever messages or sent or received

from the respective operating system buffers.

2. Execute protocols in a single-threaded environment and provide abstractions inter-

protocol communications, such as request-reply and notification patterns.

3. Provide abstractions for handling and managing time-based events (timers).

4. Provide a layer of abstraction over node latency probing and fault detection.

GO-Babel

Timer queue

Notification hub

Node watcher

Stream Manager

Babel

Protocols

Events

Figure 3.2: An overview of the architecture of GO-Babel

In Figure 3.2 we provide a high-level overview of the architecture of this framework,

composed of five main components that communicate via callbacks. We now summarize

each components’ roles within the framework:

1. Babel is the component tasked with initializing the protocols and all the other

components according to issued configurations. It also acts as a mediator between

the protocols and the remaining components.

2. The Stream Manager is responsible for connecting to new peers, handling incom-

ing/outbound connections, and sending messages through these connections. In-

teractions with this component are done through requests to, for example, dial a

new node, or send a message through an established connection. When these re-

quests are complete, the Stream Manager emits a notification back to the protocol
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that issued the request. The Stream Manager also provides operations for sending

messages in temporary connections (either using TCP or UDP).

3. The Timer Queue allows the creation and cancellation of timers and manages the

lifecycle of timers issued by the protocols, delivering events to protocols whenever

timers reach their expiry time. Two types of timers are allowed, the first are single-

trigger timers, which only trigger once, and then are disposed of, the second type

of timers periodic timers, which trigger at the set periodicity until cancelled.

4. The Notification Hub is responsible for handling notifications and notification sub-

scriptions, allowing protocols to substribe to certain notifications IDS. Any protocol

subscribed to a notification ID always receives an event whenever another protocol

emits that notification.

5. The Node Watcher is the new addition to the framework. It allows for protocols to

collect metrics regarding the latency and the current status (failed or running) of

another node in the system. An explanation of this component in further detail is

provided in the following section.

As previously mentioned, the Node Watcher is the only new addition to the frame-

work, and consequently, it is the component explained in further detail. The remaining

components of this framework were implemented similarly to the equivalent components

of Babel [1] and Yggdrasil [11].

3.2.2 Node Watcher

The motivation to build this component was a lack of tools to measure latency in the

original design of Babel. If, for example, a protocol were to measure the latency to a node

without an active connection, it would need to establish a new TCP connection and use

it to send the probes. In this case, both the fault detector and latency detector logic are

in the protocol, which is sub-optimal since the same logic would have to be replicated by

any protocol that wishes to optimize its active connections using latency as a heuristic.

Alternatively, if a protocol measures latencies in a separate module asynchronously (mak-

ing the code reusable), this would break the single-threaded nature of the execution of

protocols in Babel (which impacts usability), and protocols would have to deal with race

conditions of altering the state concurrently. Due to this, we believe that encapsulating

this logic in an optional component and expose it in a Babel-compatible interface is the

preferred option, which was the one used.

The Node Watcher is an optional component that, if registered, it will listen for probes

in a custom port (specified in the configuration parameters) and send a reply with a copy

of the contents back to the original senders. These probes are sent via UDP and carry a

timestamp used by the original sender to calculate the round-trip time to the target node.
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The main interface for the Node Watcher is composed of two functions, “watch” and

“unwatch”. When a node is “watched”, the Node Watcher starts sending probes to the

target node according to the issued configuration settings and instantiates a PHI-accrual

fault detector [22] together with a rolling-average latency calculator for that node. When

the node receives replies with copies of sent probes, it updates the corresponding rolling

average calculator and fault detector. Conversely, when a node is “unwatched”, the Node

Watcher stops issuing the probes and deletes the fault detector and latency calculator.

When a protocol issues a command to watch a node, if the “watched” node fails

to reply within a time frame, the Node Watcher falls back to TCP. This fallback aims

to overcome cases where the watched node may be dropping UDP packets due to a

constraint in its infrastructure (i.e., a firewall rule). If the watched node also does not

accept the TCP connection, the Node Watcher sends a notification to the issuing protocol

informing it failed to “watch” the node.

In order to prevent protocols from having to set timers to check the nodes’ latency

calculator or fault detector, the Node Watcher also allows the possibility of registering

“observer” functions (or conditions), which return a boolean value based on the current

node information. The Node Watcher then executes these functions periodically, and if

one returns true, a notification gets sent to the issuing protocol. In order to prevent pro-

tocols from getting overloaded with notifications when a condition returns “true”, these

may configure a grace period, which the Node Watcher will wait for until re-evaluating

the condition.

3.2.3 Summary

We believe Go-Babel is a small, yet valuable contribution to the distributed systems

community. It not only as it provides more choice for developers in terms of choice of

programming languages when choosing a distributed systems framework, but it also

provides many abstractions which ease the development of self-improving protocols that

employ latency as an optimization heuristic. Finally, it also offers a secondary fault

detector which may be employed alongside the implicit fault detector granted by TCP

connections. This is useful for cases when the TCP connection has failed yet the nodes

did not receive any errors (e.g. when the ethernet cable is cut). Lastly, as the implemen-

tation is in Golang [18], it allows easier integration with a range of packages already

implemented in the language, many of which are useful for combining with GO-Babel.

3.3 Overlay network

In this section, we discuss the design of the devised overlay network protocol, which

aims to build and maintain a latency and capacity-aware tree-shaped network, where

capacity represents one, or a combination of, values that denote the node’s networking or

computing capacity (in our case, we used only bandwidth as each nodes’ capacity). We
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begin by providing the considered system model, then follow with an overview of the

mechanisms responsible for building and maintaining the tree, and lastly, we conclude

the chapter with a summary and discussion of the protocol.

3.3.1 System Model

The considered system model for this protocol is a distributed scenario composed of nodes

connected to the Internet and set up to enable the reception or emission of messages via

the Internet (either with an external IP or port-forwarding). We also assume that nodes

are spread throughout a large geographical area, have varied capacity values, and are

distributed among both Cloud and Edge settings.

Regarding the fault model, we assume that all but a small portion of nodes (also

known as the landmarks, which in our model represent data centres) can fail, and when

other nodes fail, they do so in a crash-fault manner, stopping the execution of the process

along with all emissions and receptions of messages at the time of failure. We assume

landmarks have additional fault tolerance provided their privileged infrastructure, or

alternatively, we assume that other mechanisms such as replication could be employed to

ensure that faulty landmarks are swiftly replaced in case of failure.

Finally, all nodes must run the same software stack with similar configuration settings,

installed a priori.

3.3.2 Overview

As previously mentioned, the main objective of the devised protocol is to establish a

latency and capacity-aware multi-tree-shaped overlay network, rooted in the previously

mentioned landmarks. The motivations for the choice of a tree structure for our net-

work are the following: (1) to map the cloud-edge environment, by rooting the trees on

nodes running DCs in the cloud, and setting up the remaining nodes with less capacity

in positions where they can be coordinated from the roots (2) to be able to map the het-

erogeneity of each device in the environment: by biasing the placement of nodes in the

tree such that nodes with higher capacity are placed higher in the tree, and nodes with

lower capacity are biased towards lower levels of the tree, nodes are used more or less ac-

cording to their capacity values; (3) the tree structure can be easily employed to perform

efficient aggregations, by propagating and merging values (recursively) from the lower

to the higher levels of the tree, which is the basis for the aggregation protocol presented

in Section 3.4.1; and finally, (4) by leveraging on the tree structure, nodes can propagate

information efficiently, given that, in a network composed of N nodes, broadcasts require

only N-1 message transmissions to reach all nodes in the network.

The type of tree structure our protocol aims to establish and maintain is represented

in Figure 3.3, which, as previously referenced, is composed of multiple interconnected

trees. As the reader can note, every node has attributed an identifier, which is the con-

catenation of the parents’ ID with an assigned ID (this mechanism is explained in further
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/DC2

/DC2/G1/

DC2/G1/G1 DC2/G1/G2

DC1
Edge devices

Cloud devices (landmarks)

/DC3

/DC3/G1/

DC2/G1/G2

/DC1/G1/

Figure 3.3: An example of a network established by the devised protocol (with 3 land-
marks)

detail in Section 3.3.2.3). The nodes connected to the landmarks (which we refer to as

their children) may themselves be the parent of their own children, which would have the

landmark as their grandparent (which is the case of “/DC2/G1/G2” and “/DC2/G1/G1”).

Intuitively, the descendants of a node are all of its children and children’s children, re-

cursively, until the leave nodes. All nodes which share the same parent (siblings) are

connected among themselves, forming a group, whose size is biased (but not guaran-

teed) to be within two configurable upper and lower bounds. Therefore, all nodes have

active connections to their parent, children and siblings. The combination of a node’s

active connections may be called its active view (following the nomenclature introduced

in [31]).

The devised algorithm is composed of three main mechanisms: (1) the join mecha-

nism, which aims to establish the initial tree structures, (2) the active view maintenance,

responsible for biasing the number of connections for each node and optimizing the

connections of each node, (3) and finally passive view maintenance, responsible for col-

lecting information about peers which are not in the active view, which are used for both

fault tolerance and connection optimizations.

3.3.2.1 Join mechanism

The Join mechanism is the mechanism responsible for establishing an initial parent con-

nection. It is the aim of this mechanism (from the joining node standpoint), to establish

a connection with the node with the least cost possible. This mechanism is the first to

be executed by all nodes in the system, and it essentially consists of a depth-first search
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in the established DeMMon trees. The pseudocode for this algorithm can be observed in

Algorithm 1.

The first step of the algorithm (line 4) is to initialize the state of the joining node,

that is materialized by: (1) a map called contactedNodes of type “Node”, containing all

nodes contacted successfully in the join process (indexed by a string representation of

their IP), (2) a collection named nodesToContact of type “Node” containing the nodes to

yet to contact in the join process, (3) a map of timer IDS indexed by strings, containing

the timer IDS for each contacted node, named joinTimeouts, (4) a variable called prevBestP
containing the best (lowest latency) node contacted so far in the join process, (5) a variable

named joinReTimeoutId, containing a timer id for a timer used as a timeout for the chosen

node in the join process, (6) a variable of type “Node” denoting the peer executing the

protocol, and finally (7), a set containing the landmarks of the network, named landmarks.
The type “Node” is a collection of attributes regarding a certain physical node, composed

of: (i) latency measured, (ii) its current parent, (iii) number of children, (iv) whether the

node replied to the message, (v) its IP, (vi) an array of coordinates (denoting its measured

latency to each landmark, used in passive view maintenance mechanism), and finally,

(vii) an array of its childrens’ IP and their respective number of children.

The procedures that are used to join the tree differ regarding if the node is a landmark

or not (which is a configuration parameters provided at the setup of a node): in the case

of landmarks, these attempt to repeatedly establish a connection with other landmarks

through the emission of a special message. Landmarks that receive this message always

send a reply and establish a connection to the sender of the message (line 16). Any joining

landmark only stops sending messages to other landmarks when the respective reply is

received and an outgoing connection is established.

Nodes that are not landmarks begin the process of finding their initial parent in the

DeMMon tree. This process is initiated by measuring the current latency and sending a

JOIN message (via a temporary TCP channel) to the landmarks. For each message sent, a

timer is created, and its ID is stored in the joinTimeouts map (line 17). Whenever a node

receives this JOIN message, it sends a JOINREPLY message back to the original sender

containing: its parent, itself, and its children (line 19).

During the wait process, the joining node waits for either the responses from the

contacted nodes, for any timer in the joinTimeouts map to trigger, or for any failed latency

measurements. In the second and third cases, the contacted node is excluded from the

join process, and it is resumed as normal (line 51). In case there are no nodes left to

resume the join process, or if the excluded node is a landmark, then the node waits a

configurable amount of time until attempting to re-join the overlay again.

If the contacted node has not failed, and the joining node receives the JOINREPLY

(line 22), it checks if it came from a timed-out node or from any node whose parent was

not contacted in the join process (e.g. if the contacted node changed parent during the

join process), if any of these situations occurs, then the message is discarded. If none of

these situations occurs, the message is not discarded, and the information contained in
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Algorithm 1 Join Protocol
1: Types
2: Node : <lat, parentIP, nrChildren, replied, IP, ID, coords, version, children<IP, nrChildren
3:
4: State
5: contactedNodes . collection of all successfully contacted nodes
6: nodesToContact set<Node> . nodes being contacted
7: joinTimeouts : dict<Node, time> . collection of contacted nodes -> timerIDs
8: bestPeerLastLevel : Node . the best peer contacted so far in the join process
9: joinReqTimeoutTid : string . timerID for join messages

10: prevBestP : Node . myself
11: landmarks : set<IP> . landmark nodes
12:
13: Upon Init(landmarks : set<IP>, selfIP, isLandmark) Do
14: landmarks ←− landmarks
15: joinTimeouts, prevBestP ←− {}, nil
16: if isLandmark then addLandmarkUntilSuccess(landmarks)
17: else contactNodes(landmarks)
18:
19: Upon receive(Join<>,sender) Do
20: sendMessageSideChannel(JoinReply<self.parent, self.node, self.children>, sender)
21:
22: Upon receive JoinReply(<parentIP, node, children>, sender) && measuredLatency(lat) Do
23: if node.IP ∈ nodesToContact then
24: if parentIP ∈ Landmarks then
25: self.coordinates[getIdx(landmarks, sender)] = lat
26: nodesToContact[node.IP].lat ←− lat
27: nodesToContact[node.IP].children ←− children
28: nodesToContact[node.IP].parent ←− parentIP
29: nodesToContact[node.IP].replied ←− true
30: cancelTimer(joinTimeouts[sender])
31: delete(joinTimeouts, sender)
32: else
33: nodesToContact.delete(node)
34:
35: Upon (forall n ∈ nodesToContact -> n.replied) Do
36: contactedNodes.appendAll(nodesToContact)
37: for node in sortedByLatency(nodesToContact) do
38: if (node.IP < landmarks) && node.nrChildren == 0 then
39: continue . check if node has enough children
40: if prevBestP != nil && (prevBestP.lat ≤ node.lat || prevBestP.nrChildren < config.minGroupSize) then
41: joinAsChild(prevBestP)
42: else
43: prevBestP ←− node
44: toContact ←− [c ∈ prevBestP.children -> c.nrChildren > 0]
45: contactNodes([c.IP for c in toContact])
46: return
47: if prevBestP != nil then joinAsChild(prevBestP)
48: else abortJoinAndRetryLater()
49: return
50:
51: Upon JoinTimeoutTimer(node) || NodeMeasuringFailed(node) Do
52: if (L in Landmarks) then abortJoinAndRetryLater()
53: else delete(nodesToContact[L])
54:
55: Upon JoinRequestTimer(p : Node) Do
56: if sender == prevBestP then
57: if p.parentIP != nil then
58: prevBestP ←− contactedNodes[p.parentIP]
59: joinAsChild(prevBestP)
60: else
61: abortJoinAndRetryLater()
62:
63: Upon receive(JoinRequest<>, sender) Do
64: childID ←− addChildren(sender) . new chilren is established, and an ID is generated for it
65: sendMessageSideChannel(JoinRequestReply<childID, self>, sender)
66:
67: Upon receive(JoinRequestReply<myID, parent>, sender) Do
68: if sender == prevBestP then
69: parent ←− sender . Adds Parent is established, join complete
70: cancelTimer(joinReqTimeoutTid)
71: self.ID ←− parent.ID + "/"+ myID . Later used in shuffle mechanism
72:
73: Procedure joinAsChild(p : Node)
74: joinReqTimeoutTid ←− setupTimer(JoinRequestTimer<p>, config.JoinTimeout)
75: sendMessageSideChannel(JoinRequest<>, p.IP)
76:
77: Procedure contactNodes(ips : IP[])
78: nodesToContact ←− {}
79: toContact ←− [Node<0,nil,0,false,ip,false,[]> for ip in ips]
80: for n in toContact do
81: nodesToContact[n] ←− n
82: MeasureNode(n)
83: sendMessageSideChannel(JoinMessage<>, n)
84: joinTimeouts[n] ←− ←− setupTimer(JoinTimeoutTimer(n), config.JoinTimeout)
85:
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the JOINREPLY message is stored in the contactedNodes map.

Whenever the joining node has either received the JOINREPLY messages from all

contacted nodes or they have been excluded from the join process, it evaluates all the

successfully contacted nodes attempting to find the contacted node with the lowest la-

tency that is a suitable parent (by suitable, we mean a node that already has children or

is a landmark). This procedure is performed by sorting the nodes in ascending order of

measured latency and performing the following verifications:

1. Verify if the node already has any children or if the node is a landmark (landmarks

can become parents of any node, except other landmarks) (line 38). If it is neither

of these situations, then the node is excluded from the join process.

2. Verify if there was a node already contacted previously which was a suitable parent

and had lower measured latency. In case there was, the joining node sends a Join-

Request message (requesting to be its child), sets up a JoinRequestTimer for the

lower latency node, and stops the join process. (line 40)

3. Verify if the current node has both enough children and has the lower latency when

compared to the best previous last node. If so, then the joining node assigns it as

its best node so far and starts a new recursive step by sending JOIN messages and

measuring the latency to the children of that node which themselves have more

than one children (line 43). Note that if none of the current nodes’ children is a

suitable parent (i.e. have no children themselves), then the condition in line 35 is

triggered, and the joining node requests the current best node to be its parent.

4. If none of the verified peers was suitable to start a new recursive step (either because

it had no children or had higher latency when compared to a previously contacted

node), then the node joining node sends a JoinRequest to the best previously

contacted node (in terms of latency), and sets up a JoinRequestTimer for it (line 48).

The node that receives this JoinRequest message replies with a JoinRequestReply
and adds the node to its children by attempting to establish an outbound connection to it.

Then, the join process is concluded with the reception of the JoinRequestReply and the es-

tablishment of the connections between the two nodes. If, however, the JoinRequestTimer
timer triggers while waiting for the response, the node will fall back to the parent of the

selected node, (and do so recursively, in case the parent of the current node failed as well,

until reaching the landmark of that branch).

3.3.2.2 Active view maintenance

The second mechanism of the devised membership algorithm, called active view main-

tenance, is the mechanism responsible for maintaining the size of the groups and opti-

mizing the nodes’ active connections (when possible). This mechanism is performed by
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each parent periodically when their group size is above a certain threshold size, through

the emission of messages to one (or more) of its children, proposing they should connect

to another provided parent. The nodes chosen to be the new parents are chosen using

latency measurements and node capacity as heuristics, obtained via periodic transmission

from every child to their parent.

The pseudocode for this mechanism is presentend in Algorithm 2, and it starts by

defining the necessary state to execute it, starting by the nodes’ active view (parent,

children, and siblings), and an auxiliary map of sets, named childrenLatencies, which

holds the latencies of each children to every other children. (lines 2-5).

This mechanism starts with the periodic propagation of information from the parent

to its children and vice versa. As denoted in lines 7-16, each parent transmits to its

children a list of its current children (the siblings, from the children’s point of view).

Then, the children nodes measure their latencies to each of their siblings, and propagate

the obtained latency values back to the parent. When this information is received (lines 17

and 25), it is merged into their respective local view for later use.

The second part of this mechanism is responsible for maintaining the group sizes by

creating new parents or by sending children to already created groups (line 30). This

mechanism is triggered periodically but only executes if the number of children of a node

(denoted the proposer node) exceeds the configured maximum number of children per

parent. In this mechanism, a proposer node proposes to one of its children (denoted node

C1) a change of parent to one of the proposers’ children (denoted the C2 node).

When triggered, the proposer node begins by merging all of its received latency pairs

into a single set, where the node with the highest capacity is the first node of each pair.

While doing so, it discards any new edges which would otherwise lower the overall latency

of the system by a larger than configured amount (lines 34-39). Then, the proposer node

iterates over the merged edge pairs set by ascending order of latency cost, performing the

following steps:

1. If the number of current children minus the number of nodes already sent to lower

levels is lower than the configured maximum group size, then the mechanism has

achieved its purpose, and the proposer node concludes the mechanism (line 45)

2. If any of the two nodes were already sent to lower levels of the tree in previous

steps, then the current edge is skipped (line 47).

3. Then, if the node with higher capacity of the edge pair has no children yet, the lower

capacity node is added to its possibleChildren set (line 50). When this set has the

same size as the minimum configured group size, then the node issues Optimiza-

tionPropose messages for each node of the possibleChildren set, and removes each

child from every other node’s potential children (lines 52-57). Alternatively, if the

higher capacity node already is a parent (either because some nodes were already
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Algorithm 2 Membership protocol (Active view Optimization)
1: State
2: parent : Node . defined in join
3: children : dict<string,Node> . defined in join
4: siblings : dict<string,Node>
5: childrenLatencies : dict<string:dict<string:number» . Holds the latencies of each children to every other children
6:
7: Every config.updatePeriodicity Do
8: if parent != nil then
9: sLatencies ←− set()

10: for sibling in siblings do
11: sLatencies.append(<sibling.IP,sibling.measuredLatency)
12: sendMessage(UpdateChildStatus<children, sLatencies>, parent)
13: for child in chidren do
14: sendMessage(UpdateParentStatus<self, chidren
15: child>)
16:
17: Upon receive(UpdateParentStatus<parent, children>, sender) Do
18: if sender == parent.IP then
19: parent ←− parent
20: self.ID ←− parent.ID + "/"+ myID
21: grandParent ←− grandParent
22: siblings ←− siblings
23: measureSiblingLatency(siblings)
24:
25: Upon receive(UpdateChildStatus<child, childSiblingLatencies>, sender) Do
26: if children[sender] != nil then
27: children[sender]←− child
28: childrenLatencies[sender] ←− childSiblingLatencies
29:
30: Every config.evalGroupSize Do
31: if len(children) <= config.maxGroupSize then
32: return
33: childrenLatValues ←− set()
34: for c1 in children do
35: for <c2, lat> in childrenLatencies[c1] do
36: if lat - c1.measuredLatency > d.config.maxLatDowngrade then
37: continue
38: if c1.cap > c2.cap then childrenLatValues.add(<c1,c2,lat>)
39: else childrenLatValues.add(<c2,c1,lat>)
40: kickedNodes, newParents ←− set(), set()
41: pChildren ←− dict<string,set<Node>> . set of potential children for each children
42: sortByLatency(childrenLatValues)
43: idealGroupSize ←− config.maxGroupSize - config.MinGroupSize
44: for <c1,c2,lat> in childrenLatValues do
45: if len(children) - len(kickedNodes) <= config.maxGroupSize then
46: break
47: if c1 ∈ kickedNodes || c2 ∈ kickedNodes || c2 ∈ newParents then
48: continue
49: if c1.nrChildren == 0 && newParents c ∈ 1 then . Node is not yet a parent
50: pChildren[c1] ←− pChildren[c1] ∪ c2
51: if len(pChildren) == config.MinGroupSize then
52: for potentialChild in pChildren[c1] do
53: kickedNodes ←− kickedNodes ∪ potentialChild
54: send(OptimizationPropose<c1>, potentialChild)
55: for <nIP,pontentialChildrenTmp> in pChildren do
56: pontentialChildrenTmp.deleteAll(pChildren[c1])
57: pChildren[c1] ←− set<Node>
58: newParents ←− newParents ∪ c1
59: else
60: kickedNodes ←− kickedNodes ∪ c2
61: for <nIP,pontentialChildren> in pChildren do
62: pontentialChildren.delete(c2)
63: send(OptimizationPropose<c1>, c2)
64:
65: Upon receive(OptimizationPropose<newParent>, sender) Do
66: if sender == parent then
67: send(OptimizationProposeRequest<sender>, newParent)
68:
69: Upon receive(OptimizationProposeRequest<p>, sender) Do
70: if p == parent && sender in siblings then . parent issuing the message is my parent
71: addChildren(sender)
72: send(OptimizationProposeRequestReply<true,p>, sender)
73: else
74: sendMessageSideChannel(OptimizationProposeRequestReply<false,p>, sender)
75:
76: Upon receive(OptimizationProposeRequestReply<reply,p>, sender) Do
77: if parent == p then
78: if reply then
79: sendMessageAndDisconnectFrom(DisconnectMessage<>, parent)
80: addParent(sender)
81: else
82: sendMessageSideChannel(DisconnectMessage<>, p)
83:
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chosen to form its group, or because it was already a parent previously), then the

coordinator node issues an OptimizationPropose message to it (line 59).

When node C1 receives an OptimizationPropose message, containing a new pro-

posed parent (line 65), it verifies that the message was sent by its current parent, dis-

carding it if it is not. After this, it sends an OptimizationProposeRequest message

containing itself and the proposer to the C2 node, indicating it wishes to become its child.

When the proposed parent receives this message (line 69), it verifies that the proposer node

is still its parent and that node C1 is also its sibling, if yes, then it adds the node as its

new child, and replies with an OptimizationProposeRequestReply. This message contains

a boolean flag, signalling if the node was added as a child or not. When this message

is received (line 76) by node C1, it also verifies that the proposer node is still its parent,

aborting the process if it is not, and adds the proposed node as its parent.

After this process is complete, if not aborted, the C2 node becomes the parent of

node C1, and the proposer node has fewer children, reducing its group size towards the

configured maximum (as the proposer node only executes this mechanism if its children

number exceeds the configured amount). Furthermore, when possible, node C1 obtains

a new node with lower latency than its current latency to the proposer node, effectively

improving the overall overlay cost, while maintaining group sizes within bounds.

It is important to note that since the mechanism limits the latency downgrade for each

new parent connection, it does not guarantee that group sizes are bounded. Although

it would be possible to bound the number of nodes per group if this condition were

ignored, then this mechanism would conflict with the third mechanism, described in

Section 3.3.2.3

A final mechanism employed in the management of the active view maintenance

that is omitted from the pseudocode is responsible for ensuring that groups sizes do not

become too small. In summary, every node periodically verifies the number of peers that

are its siblings, if this number is lower than a certain (configurable) bound, the node “rolls

a dice” (essentially generates a random number and verifies if it is lower/above a certain

configurable threshold) to decide if it should abandon the current group in favour of

joining its grandparents’. If the dice roll is positive, then the node sends a message to its

grandparent asking to become its child. When the grandparent receives this message, it

verifies if the exchange causes a loop in the tree and adds the node to its children if it does

not. Then, it notifies the sender of the message by sending a message reply containing a

boolean value representing if the sender node was accepted as a child or not.

It is important to mention that the aforementioned threshold of the “dice roll” (and

consequently the probability of the node remaining in the current group) changes as a

function of the size of the group, decreasing proportionally to the difference between the

configured minimum group size and the current nodes’ group size.
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3.3.2.3 Passive view maintenance & Oportunistic improvement

The third mechanism of the devised membership algorithm is called “Passive view main-

tenance & Oportunistic improvement”, and as its name suggests, it is responsible, in each

node, for creating and maintaining an auxiliary pool of nodes in the overlay which are not

descendants of the local node. This pool serves two purposes: the first is to enable fault

tolerance in the overlay without having to rely on the landmarks, the second is to enable

the self-improvement of the overlay, through parent exchanges toward “closer” parents

(according to latency values).

There are three components of the Node type (the ID, Coordinates and the version

of each node) which were present in the pseudocode of the previous mechanisms, but

their explanation was omitted given they are only relevant to the behaviour of the this

mechanism. We now explain each in detail and how they are obtained:

1. The ID of each node is a collection of string segments, where each node’s ID is the

concatenation of every segment of every ascendant of the node with its own segment.

Each node’s segment is generated by each parent whenever a new node requests to

be its child. An example of the resulting IDS can be observed in Figure 3.3, where,

for example, all nodes that are descendants of the node with ID “DC2”, begin their

ID with “DC2” (e.g. “DC2/G1”). In this case, the ID is made up of the segments:

“DC2” and “G1”. This hierarchical ID structure gives each node enough information

to evaluate if any other node in the overlay is its descendant (by verifying if one of

ID is contained in the other), therefore allowing nodes to evaluate if a change of

parent in the overlay would cause a cycle in the tree. This ID structure also allows

nodes to check the level of any node, as the number of segments of an ID is the same

as the level of that node in the tree (where landmarks are the root of the tree).

2. The coordinates of each node is an array of integers, where each position contains

the obtained latency toward the corresponding landmarks. These coordinates are

used as a heuristic for measuring the distance to new nodes in the passive view (to

be potential parents).

3. The version number of a node is a monotonic integer that is incremented at every

ID change and child addition or removal. The versions number allow nodes to

replace outdated entries in their passive views. For example, if a node switches

parent, it also changes its ID (and increases its version number). In this situation,

other nodes must update their passive views to reflect this change, this is important

as it may prevent them from measuring the latency to a node that could potentially

be an incompatible parent because it would cause a cycle in the tree previously (i.e.,

before the change of its ID).

With these concepts explained, we now present the pseudocode for the mechanism

(Algorithm 3). Similar to previous algorithms, the first lines declare the necessary state

44



3.3. OVERLAY NETWORK

maintained by each node to execute the mechanism, which is composed of a set of nodes

materializing the passive view of the node (line 5). In the following lines, we may observe

the mechanism for filling this set. This mechanism is a periodic procedure triggered

at pre-configured intervals which causes the emission of a new random walk message

(line 7), the created random walk message contains (1) a random sample of nodes from

the emitting node’s passive view and active view, (2) the original sender’s ID, and (3) an

integer representing the messages’ time-to-live (TTL). This message is then sent to a node

that is not a descendant of the sender.

Whenever this message is received (line 12), if it has travelled more than a certain

(configurable) number of hops, then the receiving node removes a (also configurable)

number of nodes from the sample. Conversely, if the message has not yet travelled the

number of hops, the previous step is skipped. After this, the node merges the removed

nodes (if there are any) into his passive view and adds a random sample of nodes from

his own passive and active view to the sample. If the configured maximum sample size

is exceeded, then a number equal to the number of inserted nodes is discarded from the

sample at random (lines 16-25). The intuition behind skipping a certain number of hops

before removing nodes from the sample is to promote nodes collecting information from

nodes further away in number of hops from the source of the random walk. After this, the

message TTL is decreased by one and its value is evaluated: if the TTL of the message is

higher than 0, then the node forwards the message to a random node from its active view

that is not a descendant of the original sender (descendants are excluded by verifying if

their ID is not contained in the original senders’). If there is no valid target to forward the

message to, then the node sends (via a temporary connection) a RandomWalkReply

message to the original sender of the random walk with the sample (lines 27-30).

Whenever a node receives a RandomWalkReply it merges the received sample

with its passive view, excluding all of its descendants and nodes in the active view

(lines 32-36).

As the overlay evolves with time, the passive views of nodes fill with nodes that are not

descendants of the node in question, meaning they are suitable for latency optimizations

and fault recovery (in case a parent dies). The (periodic) procedure responsible for evalu-

ating these nodes can be observed in lines 38, where the node selects two (configurable)

samples from the passive view to evaluate: a random sample and a sample based on the

euclidean distance of the coordinate pair. Each node selected for this sample (candidates)

must satisfy the following conditions (lines 43 and 48):

1. Have more than one direct descendant (i.e. more than one child).

2. If the candidates’ level (obtained from the ID) is lower than the measuring nodes’

and the measuring node has more than 0 children, then the candidate is excluded.

This prevents nodes with multiple children from going down in levels and instead

favours nodes with no children “climbing” to higher levels of the tree.
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Algorithm 3 Membership protocol (Passive view maintenance)
1: State
2: parent : Node . defined in join
3: children : dict<string,Node> . defined in join
4: siblings : dict<string,Node> . defined in join
5: pView : set<Node>
6:
7: Every config.RandWalkPeriodicity Do
8: sample ←− getRandSample([pView + allNeighs + children + parent + siblings], config.NrPeersToMergeRandWalk)
9: target ←− getRand(parent + siblings)

10: sendMessage(RandomWalk<sample + self, config.RandWalkTTL, self.ID, self.IP>, target)
11:
12: Upon receive( RandomWalk<sample, ttl, nID, orig>, sender) Do
13: nrNodesToRemove ←− config.NrPeersToMergeRandWalk
14: if config.RandWalkTTL - ttl < config.NrStepsToIgnore then:
15: nrNodesToRemove ←− 0
16: updateNodesToHigherVersion(sample, pView)
17: ascNeighs ←− set(parent + siblings)
18: allNeighs ←− set(ascNeighs + children)
19: toAdd ←− getRandSample(excludeDescendantsOf(pView + allNeighs / sample,self.ID), config.NrPeersToMergeRandWalk)
20: toRemoveFromSample ←− getRandSample(sample, nrNodesToRemove)
21: sample ←− sample.removeAll(toRemoveFromSample)
22: pView ←− excludeDescendantsOf(toRemoveFromSample + pView, self.ID)
23: pView ←− pView.removeAll(allNeighs)
24: pView ←− trimSetToSize(pView, config.MaxEViewSize)
25: sample ←− trimSetToSize(sample + toAdd + self, config.config.MaxRndWalkSampleSize)
26: target ←− getRand(excludeDescendantsOf(allNeighs, nID)
27: if target == nil || ttl == 0 then
28: sendMessageSideChannel(RandomWalkReply<sample>, orig)
29: else
30: sendMessage(RandomWalk<sample, ttl-1, nID, orig>, target)
31:
32: Upon receive(RandomWalkReply<sample>, sender) Do:
33: sample ←− excludeDescendantsOf(sample, self.ID)
34: updateNodesToHigherVersion(sample, pView)
35: sample ←− excludeNodesInActiveView(sample)
36: pView ←− trimSetToSize(pView + sample, config.MaxEViewSize)
37:
38: Every config.OportunisticOptimizationTimeout Do
39: toMeasureRand ←− getRandSample(pView, len(pView)) // shuffle sample
40: toMeasureBiased ←− sortByEuclideanDist(pView / toMeasureRand)
41: measuredNr ←− 0
42: for i=0; i < len(toMeasureRand) && measuredNr < config.ToMeasureRand ; i++ do
43: if canBecomeChildrenOf(p) then
44: measuredNr++
45: measurePeer(p)
46: measuredNr ←− 0
47: for i=0; i < len(toMeasureRand) && measuredNr < config.toMeasureBiased ; i++ do
48: if canBecomeChildrenOf(p) then
49: measuredNr++
50: measurePeer(p)
51:
52: Upon peerMeasured(p, measuredLatency) Do
53: latencyImprovement := parent.currentLatency() - measuredLatency
54: if latencyImprovement >= config.MinLatencyForImprovement then
55: sendMessageSideChannel(OportunisticImprovementReq<self>,p)
56:
57: Upon receive(OportunisticImprovementReq<p>,sender) Do
58: if isDescendant(p.ID,self) then
59: sendMessageSideChannel(OportunisticImprovementReqReply<false>,sender)
60: else
61: addChildren(sender)
62: sendMessageSideChannel(OportunisticImprovementReqReply<true>,sender)
63:
64: Upon receive(OportunisticImprovementReqReply<answer>,sender) Do
65: if answer then
66: disconnectFromCurrentParent(parent)
67: addParent(sender)
68:
69: Procedure canBecomeChildrenOf(c, parent)
70: if (c.nrChildren > 0 && parent.ID.level() >= c.ID.level()) then
71: return false
72: return parent.nrChildren > 0 && !isDescendantOf(parent.ID, c) && !isDescendantOf(c, parent.ID)
73:
74: Procedure isDescendantOf(nodeID, PotentialDescID)
75: return PotentialDescID.Contains(nodeID)
76:
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After the measurements are issued, whenever a peerMeasured event is triggered

(line 52), the node compares the current latency of its parent with the measured nodes’

latency: if that latency is lower than the current parents’ latency by a configurable thresh-

old, then the measuring node will send an OportunisticImprovementReq message

to the measured node. When the measured node receives this message (line 57), it checks

that the receiving node is not a descendant of the sender (to prevent the creation of loops

in the tree) and replies with an OportunisticImprovementReqReply message con-

taining a boolean value representing whether the node was accepted as a child or not.

When this message is received, (line 64), if the exchange was accepted, the node

disconnects from the parent node (via a special message), establishes a connection to the

new parent, and updates its own ID and version.

3.3.2.4 Fault tolerance

Fault tolerance in this protocol is triggered whenever a node detects its parent has failed.

This can be achieved either by the PHI-accrual failure detector provided by the Node

Watcher (Section 3.2.2) or by the failure of a TCP connection that triggers a notification to

the protocol. Whenever this occurs, the node first attempts to fall back to its grandparent

(provided via the periodic information in Section 3.3.2.2), if this fails, it falls back to any

node in its passive view that is not a descendant.

When a node falls back to another node, it sends a FaultRecovery message con-

taining its ID and sets up a timeout timer for each fault recovery attempt. Nodes that do

not reply to FaultRecovery messages within the specified timeout are considered to

be failed and are removed from the passive view. If this view becomes empty, then the

node starts the join mechanism again (Section 3.3.2.1).

3.3.3 Summary

In this section, we provided a detailed explanation of the behaviour of the membership

protocol. We began by explaining how nodes join the network using a greedy depth-first

search to find a suitable low-latency node in the network with more than zero children.

Then, after this low-latency parent is established, we described how information between

nodes and their parents is exchanged over time and how the parent node coordinates with

its children in an attempt to maintain the group size within a certain bound and (when

possible) reduce the systems’ latency.

Lastly, we explained how nodes obtain information about other random nodes in the

network and how that information is employed to perform both latency optimizations

that reduce the total overlay network latency. Lastly, we covered fault recovery in the

protocol, which occurs whenever the parent of a certain node crashes.

47



CHAPTER 3. DEMMON

3.4 Aggregation protocol

Provided with a membership protocol capable of coordinating nodes into building an

efficient tree structure, we now discuss how we leveraged it to provide efficient abstrac-

tions for performing aggregation/collection of metrics about the execution of nodes (or

services) executing in the system in a decentralized manner. In this section, we cover

the three implemented aggregation primitives: (1) tree aggregation, (2) neighbourhood

aggregation, and (3) global aggregation, starting with tree aggregation.

3.4.1 Tree aggregation

Tree aggregation is a mechanism that embeds an aggregation tree into the overlay proto-

cols’ to collect an aggregated value for all nodes which are descendants of the node per-

forming this mechanism (also denoted the root of the aggregation tree). This mechanism

can be performed by any node in the system, and if two different nodes are aggregating

the same values and a node is a descendant of the other, then the descendant node will

(when possible) reuse the values of the already existing aggregation tree by embedding

its tree into the ascendants’.

The pseudocode for this mechanism can is provided in Algorithm 4. The first lines

define the necessary state to execute this aggregation mechanism (line 1), starting by the

active view, composed by: the parent, children, and siblings of the node (maintained by

the overlay protocol with changes to it propagated through notifications). In addition, the

state also contains three maps, the first map, called tIds, contains the necessary metadata

for each aggregation tree. Each value of this map is composed of: (1) the height of the tree,

(2) the merge function, (3) the query to generate local values, (4) the periodicity to export

values, (5) the output metric name, (6) the ID of the corresponding timer, (6) a boolean

value representing if the value should be exported locally, (7) a boolean representing if

the parent is also in the tree (and the node must propagate values to it or not), and finally,

(8) the ID of the tree from the parent’s perspective (or nil, if the node has no parent).

The second map (denominated lastSeen) contains a timestamp for each tree, representing

the last time the parent has sent a message refreshing the existence for that tree. Finally,

the childValues map contains, for each tree, the values emitted by the children and the

timestamp of their reception.

Nodes begin executing this mechanism whenever the API sends a StartTreeAg-

gregationRequest request to the protocol, which contains the maximum height of

the tree, the merge function, the query to obtain the local value, the periodicity at which

to execute the aggregation procedure, and the resulting metric name. Upon the recep-

tion of this request (line 9), the node creates the ID for the aggregation tree by hashing

the concatenation of: (1) the tree height, (2) the merge function, (3) the query, (4) the

mechanism periodicity, and (5) the resulting metric name. By using this combination of

parameters for the hash, nodes guarantee that aggregation trees with the same height
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Algorithm 4 Tree aggregation
1: State
2: parent : Node . Defined by the overlay protocol
3: children : dict<string,Node> . Defined by the overlay protocol
4: siblings : dict<string,Node> . Defined by the overlay protocol
5: tIds ←−map()
6: lastSeen ←− dict<string,>
7: childValues : dict<string,dict<string,<value, timeStamp»> ←− dict()
8:
9: Upon StartTreeAggregationRequest(tHeight, mergeF, query, periodicity ,outmName) Do

10: tId ←− hash(tHeight + mergeF + query + periodicity + outmName)
11: if tId in tIds then
12: <tHeight, mergeF, query, periodicity, outmName, timerId, isLocal, isParentSub, ptId> ←− tIds[tId]
13: tIds[tId] ←− <tHeight, mergeF, query, periodicity, outmName, timerId, true, isParentSub, ptId>
14: else:
15: timerId ←− registerPeriodicTimer(ExportTreeAggTimer(tId), periodicity)
16: tIds[tId] ←− <tHeight, mergeF, query, periodicity, outmName, timerId, true, false, nil>
17:
18: Upon ExportTreeAggTimer(tId) Do
19: <tHeight, mergeF, query, periodicity, outmName, timerId, isLocal, isParentSub, ptId> ←− tIds[tId]
20: if isParentSub && timeSince(lastSeen[tId]) > config.treeAggExpiration then
21: if !isLocal then
22: tIds.delete(tId)
23: lastSeen.delete(tId)
24: cancelTimer(timerId)
25: return
26: removeOldChildrenValues(childValues[tId])
27: res ←− aggregateValues(mergeF, resolveQuery(query), childValues[tId])
28: if isLocal then
29: storeLocalVal(res, outmName)
30: if isParentSub then
31: sendMessage(PropagateTAggValues<ptId, res>, parent)
32:
33: Upon receive(PropagateTAggValues<tId, res>, sender) Do
34: if tId in tIds and sender in children then
35: if tId not in childValues then
36: childValues[tId] = map()
37: childValues[tId][sender] = res, time.Now()
38:
39: Every config.PropagateTAggTimeout seconds Do
40: toSendArr ←− set
41: for tId in tIds do
42: <tHeight, mergeF, query, periodicity, outmName, timerId, isLocal, isParentSub, ptId> ←− tIds[tId]
43: if isLocal then
44: toSendArr.append(<max(tHeight -1, -1), mergeF, query, periodicity ,outmName, tId>)
45: for c in chilren do
46: sendMessage(RefreshTreeAggFunc<toSendArr>, c)
47:
48: Upon receive(RefreshTreeAggFunc<tAggs>, sender) Do
49: if parent == sender then
50: toSendArr ←− set
51: for <tHeight, mergeF, query, periodicity, outmName, ptId> in tAggs do
52: tId ←− hash(tHeight + mergeF + query + periodicity + outmName)
53: if id in tIds then
54: <tHeight, mergeF, query, periodicity, outmName, timerId, isLocal, isParentSub, ptId> ←− tIds[tId]
55: lastSeen[id] ←− time.Now()
56: tIds[tId] ←− <tHeight, mergeF, query, periodicity, outmName, timerId, isLocal, true, ptId>
57: if !isLocal && <max(tHeight -1, -1) == -1 || <max(tHeight -1, -1) > 0 then
58: toSendArr.append(<max(tHeight -1, -1), mergeF, query, periodicity ,outmName, timerId, tId>)
59: else
60: toSendArr.append(<max(tHeight -1, -1), mergeF, query, periodicity ,outmName, timerId, tId>)
61: tIds[tId] ←− <tHeight, mergeF, query, periodicity, outmName, timerId, false, true, ptId>
62: registerPeriodicTimer(HandleTreeAggTimer(tId), periodicity)
63: for c in chilren do
64: sendMessage(RefreshTreeAggFunc<toSendArr>, c)
65:
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(from the hashing nodes’ perspective) have the same ID. Whenever two trees have the

same ID, the node that detects this may reuse the already existing trees’ aggregation

results, thus not increasing the necessary messages to collect the metric values.

After this, the node adds the tree ID to its local aggregation tIds map, first checking

if there was already an existing tree with the same ID (meaning it may reuse the existing

tree for obtaining the requested values). If there is, then it sets a flag signalling it should

also save the values for that tree locally. Otherwise, it adds a new entry to the tIds map

and sets up a periodic timer for that aggregation tree (lines 10-16).

In order to federate nodes into their aggregation trees, nodes periodically (using con-

figured intervals) broadcast to their children a Subscription message containing the

metadata (including the ID) of the aggregation trees they are the root of (line 39). When-

ever this message is received (line 48), for each received ID, if it was previously present

in the tIds map, the child marks the parent as a subscriber to that tree, and refreshes the

timestamp associated with the tree in the LastSeen map. Conversely, for each received

aggregation tree that was not previously in the tIds map, it sets a new periodic timer

called ExportTreeAggTimer, and adds the ID to the tIds map along with the tree

metadata. Lastly, the node subtracts by one each of the received tree TTLs and sends

a Subscription containing the ones with TTL higher than zero (or equal to -1) to its

children. This means that if a tree has a single root node, and that node crashes or stops

propagating Subscription messages, all other nodes belonging to that tree will stop

sending any more Subscription messages.

Whenever the aforementioned periodic timer called ExportTreeAggTimer trig-

gers for a certain aggregation tree, (line 18), the node checks if it has expired (i.e. if the

parent stopped refreshing the tree), if it has, and the node is not a root of that tree, then

it cancels the timer and deletes any related metadata. Conversely, if the node is a root

of the tree, it sets the flag representing whether the node should propagate to the parent

as “false”. If the tree has not expired, the node evaluates the trees’ query (this procedure

will be explained in further detail in Section 3.5), obtaining its local value and merging it

(using the supplied aggregation function) with all the values sent by its children, produc-

ing the final aggregated result (before merging the values, the node excludes all values

with a timestamp older than a configurable duration). Afterwards, if the node is a root

of the tree, it stores the value locally, and if the flag signalling it should propagate to the

parent has the value “true”, it sends a PropagateTAggValues message to the parent

containing the obtained value. Upon the reception of this PropagateTAggValues

message by the parent, (line 33), it verifies if it has the corresponding aggregation tree

in its local tIds map, discarding the message if it is not present, and, stores the received

value into its childValues map.

Although it is omitted from the pseudocode, it is essential to mention that for nodes

that are roots of the aggregation trees, it is also possible (according to a configuration

parameter) to store the neighbours’ values locally (without merging with the local or any

other neighbours’ values). We believe this feature is useful for resource management
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applications, for example, in the case of an application that needs to deploy service

replicas according to geographical proximity to a certain target, this feature can be useful

for obtaining a histogram of latitudes and longitudes for all nodes “behind” a certain

node in the active view. Using this information, a resource management application can

have a sense of which direction to send messages to in order to find nodes located in a

given geographical region (by recursively sending messages to nodes in the active view

that have frequencies closer to the desired geographical region).

3.4.2 Neighbourhood aggregation

Neighbourhood aggregation is the mechanism responsible for collecting metrics from

neighbouring nodes. This feature is useful in resource management scenarios such as:

whenever a node needs to perform service replication/migration, it may collect metrics re-

lated to the capacity and resource consumption of nearby nodes (in terms of hop distance)

and evaluate which peer is the best candidate before performing such actions.

In essence, this mechanism behaves similarly to a hop-based Pub-Sub system. Al-

though the designated name for this protocol is neighbourhood aggregation, the nodes

actually do not perform aggregation of the values. Instead, nodes collect all the values

provided by their nodes within a (configurable) hop range. Similarly to tree aggregation

(Section 3.4.1), a node performing this mechanism creates an aggregation tree rooted

on itself by broadcasting Subscription messages periodically with a configurable hop-

based range (or TTL) for all its neighbours. Nodes that receive this message become

federated in the aggregation tree, decrease the message TTL, and if the TTL is more than

zero, and rebroadcast it to peers in the active view in a way that creates an acyclical

graph. Afterwards, for each tree, all federated nodes periodically propagate their locally

obtained values (from evaluating the supplied query) towards the root of each tree using

the reverse path established by the Subscription messages.

Trees have associated IDs, generated using hashing in a similar manner to the tree

algorithm defined in Section 3.4.1 (without using the level in the hash process), and con-

sequently, all nodes collecting the values from the same query using this mechanism will

have trees with equal IDs. Nodes belonging to overlapping trees (i.e. in the hop range of

two different nodes collecting values in this manner) only generate values periodically for

one of the trees and propagate the generated value towards the direction of the multiple

tree roots, preventing unnecessary query evaluations. In addition, nodes in overlapping

trees, when possible, also deduplicate the Subscription messages (maintaining the

federation of these trees).

This mechanism, similarly to Tree Aggregation (Section 3.4.1), is triggered via a re-

quest from the API containing, among other parameters, the query to obtain the local

values, the hop range, and the target periodicity to collect the values. The receiver of the

request, denoted the root of the aggregation tree,(illustrated by node A in Figure 3.4)

creates the ID for that aggregation tree by hashing a combination of the metric name
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and the periodicity. This process makes nodes with equal parameters have equal IDs and

become federated to the same tree. After the ID generation, the node begins propagating

a Subscription message periodically to its immediate neighbours (illustrated in step 2

of Figure 3.4) containing the ID of the tree, the TTL, the query to obtain their local values,

and the mechanism periodicity.

A AA A

step 1 step 2 step 3 step 4

Metric flowSubscription messagesActive connectionFederated nodeRoot node

Figure 3.4: Neighbourhood aggregation subscription process (TTL=2)

Whenever a node receives this Subscription message, it performs the following

steps:

1. Verifies the message came from a node contained in the active view, if it did not, the

message is discarded.

2. Stores, for that sender, the ID of the tree, the TTL of the message and a timestamp

of the current time. If there is already such an entry, instead, its timestamp is

refreshed.

3. Decreases the TTL of the message by one.

4. If the message TTL is 0, the node returns from this procedure.

5. Following, the node performs the following steps to decide where to broadcast to:

a) If the message came from a parent or a sibling, the node broadcasts the message

to its children.

b) If it came from a child, then the node broadcasts the message to the parent and

its siblings.

c) Before broadcasting to any node, the sender verifies if it has sent a Subscrip-

tion message with a higher or equal TTL than the TTL from the received one

to these nodes in the last (configurable) time window. If it has, the sender skips

the message emission for that node.

With this, in case two different nodes in the system are collecting the same metrics

and using the same periodicity, the Subscription messages are not sent unnecessarily

to nodes already subscribed to that tree. This process is illustrated by node A in Figure 3.5,

where it receives the Subscription message and does not propagate it to its siblings
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nor parent, as it is already federated to the tree (rooted on itself with TTL= 2) and has

sent a Subscription message to its siblings and parent in the previous step.

Metric flowSubscription messagesActive connectionFederated nodeRoot node

step 1 step 2 step 3

A A

B C

A

B C

Figure 3.5: Neighbourhood aggregation second subscribe (TTL=2)

Metric flowActive connectionFederated nodeRoot node

step 1 step 2 step 3

A

B

A

B

A

B

Figure 3.6: Neighbourhood unsubscribe (TTL=2)

After nodes become federated in the trees, they begin to periodically evaluate the

supplied query and obtain their local metric values (storing them locally if they are a

root of that tree). When a node obtains its local metric value, it propagates a message

containing the metric value and a hop counter to every other node in its active view that

has sent a Subscription message within a configurable time frame with a TTL lower

or equal than the messages’. Nodes that receive the propagation of these values increase

the hop counter and repeat this process. This process is illustrated in Figures 3.4, 3.5,

and 3.6.

Lastly, nodes periodically verify, for each tree, the time passed since the reception of

the last Subscription message. If it exceeds a configurable time frame, the entry is

removed, and that node will stop receiving the propagation of metric values. When nodes

remove the expired entry, if there is no other entry for that tree ID and the node is not a

root of that tree, they delete all metadata related to that tree and stop propagating metric

values (illustrated in Figure 3.6).
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3.4.3 Global aggregation

Global aggregation is the mechanism executed whenever a certain client wishes to obtain

a summarized global view of the system (e.g. the total number of nodes in the system).

This process, similarly to the ones described in Sections 3.4.1 and 3.4.2, is started via a

request from the API and functions by federating nodes of the system into aggregation

trees, rooted on the nodes that are collecting the aggregate values. In global aggregation,

all nodes participate in all aggregation trees, either as a root (if they wish to collect the

globally aggregated value), or alternatively as aggregator nodes. Additionally, if a tree

has multiple root nodes, then nodes, when possible, reuse the metric values from the first

tree root towards the other roots, and deduplicate the maintenance mechanisms of the

aggregator trees.

This mechanism is inspired in the work from Mirage protocol [11], which employs

an aggregation technique that leverages a tree-shaped overlay to allow the computation

of a globally aggregated value in a decentralized and efficient manner by every node in

the system. This is achieved by having every node periodically broadcasting to every

neighbouring peer their aggregated value minus the neighbours’ contribution. Nodes

that receive this broadcast merge all received contributions with the locally generated

one. The continuous execution of this procedure results in all nodes obtaining the global

aggregated value without resorting to aggregating the values toward a single node in the

system.

In this mechanism, we leverage the same aggregation technique to collect globally

aggregated values in multiple (but not necessarily all) nodes of the system in a decentral-

ized manner. However, unlike the original Mirage protocol, instead of only performing

aggregation of a single metric value, we generalize the approach to allow the on-demand

creation and teardown of aggregation trees, rooted in one or more nodes, with all roots

collecting the globally aggregated value in a decentralized manner. The relaxation of

these constraints creates additional challenges regarding the transmission of redundant

messages to maintain the multiple aggregation trees and the decommissioning of the

trees, which we attempt to solve in this work. It is important to mention that, in a sce-

nario where all nodes of the system are roots of the aggregation tree, this mechanism

behaves similarly to the originally proposed in [11], with the only difference being of

allowing the on-demand start and decommission of the aggregation process.

The state necessary for the execution of this mechanism (presented in Algorithm 5

lines 1 to 6) starts with the active view of the node executing the mechanism, composed

by the parent, children and siblings of the node in question. Changes in this view are

propagated by notifications emitted by the overlay protocol (these are omitted from the

pseudocode for readability). In addition, the state contains a map denominated last-
TimeSent that contains for each tree ID, and for each neighbouring node, a timestamp

corresponding to the last time that node has refreshed the existence of the tree with that

ID. Additionally, each node also maintains a neighValues map, which stores, for each
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Algorithm 5 Global aggregation
1: State
2: parent : Node . Defined by the overlay protocol
3: children : dict<string,Node> . Defined by the overlay protocol
4: siblings : dict<string,Node> . Defined by the overlay protocol
5: lastTimeSent : dict<string, dict<string, timeStamp» ←− dict()
6: neighValues : dict<string, dict<value, timeStamp» ←− dict()
7: tIds : dict<string, <string, string, timeDuration, string, string, boolean, dict< string, timeStamp» ←− dict()
8:
9: Upon StartGlobalAggregationRequest(diffF, mergeF, query, periodicity ,outmName) Do

10: tId ←− hash(diffF + mergeF + query + periodicity)
11: if tId in tIds then
12: <diffF, mergeF, query, periodicity, outmName, timerId, isLocal, aggNeighs> ←− tIds[tId]
13: tIds[tId] ←− <mergeF, query, periodicity, outmName, timerId, true, aggNeighs>
14: else
15: timerID ←− registerPeriodicTimer(ExportGlobalAggTimer(tId), periodicity)
16: tIds[tId] ←− <mergeF, query, periodicity, outmName, timerId, true, dict()>
17: neighValues[tId] = dict()
18:
19:
20: Every config.PropagateGAggTimeout seconds Do
21: toSendArr ←− set
22: for tId in tIds do
23: <diffF, mergeF, query, periodicity, outmName, timerId, isLocal, aggNeighs> ←− tIds[tId]
24: for <node, timestamp> in aggNeighs do
25: if timeSince(timestamp) > config.SubExpirationDuration then
26: aggNeighs.remove(node)
27: if aggNeighs.length == 0 && !isLocal then
28: tIds.remove(tId)
29: continue
30: if isLocal then
31: toSendArr ←− toSendArr + <diffF, mergeF, query, periodicity, outmName, tId>
32: PropagateGAggTrees(toSendArr, parent + children)
33:
34: Upon receive(RefreshGaggTree<gAggs>, sender) Do
35: gAggTreeArr ←− set
36: for <diffF, mergeF, query, periodicity, outmName, tId> in gAggs do
37: if id in tIds then
38: gAggTreeArr.append(<diffF, mergeF, query, periodicity ,outmName, timerId, tId>)
39: neighValues[tId] = dict()
40: tIds[tId] ←− <diffF, mergeF, query, periodicity ,outmName, timerId, false, <sender: time.Now()»
41: registerPeriodicTimer(HandleTreeAggTimer(tId), periodicity)
42: else
43: <diffF, mergeF, query, periodicity ,outmName, timerId, isLocal, aggNeighs> ←− tIds[tId]
44: aggNeighs[sender] ←− time.Now()
45: tIds[tId] ←− <diffF, mergeF, query, periodicity ,outmName, timerId, isLocal, aggNeighs>
46: if isLocal then
47: continue
48: if sender == parent then
49: PropagateGAggTrees(gAggTreeArr, children)
50: if sender in children then
51: PropagateGAggTrees(gAggTreeArr, children - sender + parent)
52:
53: Upon ExportGlobalAggTimer(tId) Do
54: <diffF, mergeF, query, periodicity, outmName, timerId, isLocal, aggNeighs> ←− tIds[tId]
55: removeOldNeighValues(neighValues[tId])
56: localVal ←− resolveQuery(query)
57: res ←− evalFunc(mergeF, localVal, neighValues[tId])
58: if isLocal then
59: storeValLocally(res, outmName)
60: for <node, timestamp> in aggNeighs do
61: sendMessage(PropagateGAggValues<tId, evalFunc(diffF, res, neighValues[tId][node]>, node)
62:
63: Upon receive(PropagateGAggValues<tId, res>, sender) Do
64: if tId in tIds and sender in children || sender == parent then
65: neighValues[tId][sender] = res, time.Now()
66:
67: Procedure UnknownPropagateGAggTrees(gAggTreeArr, nodeList)
68: for node in nodeList do
69: toSendToNode ←− set()
70: for <diffF, mergeF, query, periodicity ,outmName, timerId, tId> in gAggTreeArr do
71: if lastTimeSent[node][tId] == nil || time.Since(lastTimeSent[node][tId]) > config.RefreshMessageBackoff then
72: toSendToNode ←− toSendToNode + <diffF, mergeF, query, periodicity ,outmName, timerId, tId>
73: lastTimeSent[node][tId] ←− time.Now()
74: sendMessage(RefreshGaggTree<toSendToNode>,node)
75:
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tree, the propagated neighbour values and a timestamp of the reception of these values.

Finally, each node owns a map denominated tIds, which holds the metadata needed to

manage the aggregation trees, composed by: (1) a difference function, used to remove the

contributions of a certain node from an aggregated value, (2) the merge function, used

for merging two or more values into an aggregated value, (3) the query to obtain the local

values, (4) the resulting output name for the aggregated metric, (5) the periodicity at

which to collect the aggregated value, (6) a boolean representing if the node executing the

protocol is a root of the aggregation tree, and finally, (7) a map called aggNeighs which

contains the peers that are interested in receiving values for that tree (previously referred

to as the aggregator nodes).

This mechanism is initiated with the reception of a request from the API (line 9),

which contains multiple parameters: (1) the difference function, (2) the merge function,

(3) the query to obtain the local value (4) the periodicity to perform this mechanism, and

(5) the resulting metric name (to label the output values). Upon reception of this request,

the node hashes the concatenation of the difference function, the merge function, the

query, and the periodicity of the request, obtaining the tree ID, which will be common

to every node in the tree. After the ID generation, the node checks if there already is a

tree with that ID present in its local tIds map, setting as true the variable named isLocal
which denotes if the node should save the aggregated value locally. If there is no tree with

such ID previously present, the node sets up a new ExportGlobalAggTimer with

the provided periodicity and creates a new entry in the neighValues map for that tree.

As previously mentioned, global aggregation allows the on-demand creation and de-

commission of aggregation trees. This process is defined in Algorithm 5 lines 21 to 32),

where, as previously mentioned, nodes periodically send messages named Refresh-

GaggTree containing the aggregation trees they are the roots of to their children and

parent and clear all entries in the aggNeighs that are older than a configured time frame.

If a tree has no more entries in this map, and the isLocal flag is not set to true, then that

tree is decommissioned.

Whenever the RefreshGaggTree message is received (Algorithm 5 line 34), the

receiver adds the previously unknown trees into its local tIds map and sets up a periodic

ExportGlobalAggTimer for each added tree (lines 37 to 42). Alternatively, if the tree

was previously in the tIds map, the node refreshes the sender’s entry in the aggNeighs map.

Finally, the node forwards the information regarding the remaining trees to every node in

its active view, excluding the sender. Before transmitting the trees to each node, the node

checks, for each tree, if it has transmitted a RefreshGaggTree message containing the

same tree in the last (configurable) time frame. If it has, then it does not propagate that

tree to that node. These verifications are performed to prevent trees from being refreshed

multiple times unnecessarily.
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3.4.3.1 Metric propagation

With the aggregation tree established, we now explain how the values are propagated and

aggregated by each tree in the system. As previously mentioned, nodes set up an Export-

GlobalAggTimer for each registered tree, whenever this timer triggers (Algorithm 5

line 53), the node first removes all out-of-date neighbour values for the corresponding

tree (according to a configurable timeout) and evaluates the query, obtaining its local

value. Then, using the neighbour values and the locally obtained value, it applies the

merge function and obtains the globally aggregated value, which it stores locally if config-

ured by the isLocal flag (lines 54 to 59). Then, for each entry previously in the aggNeighs
map, it sends a PropagateGAggValues message with the aggregated value minus the

node’s contribution and the tree ID. (lines 60 to 61).

Finally, whenever nodes receive the PropagateGAggValues message (Algorithm 5

line 53) containing the aggregated value and the tree ID, they verify that it was sent from

either the parent or the children and that the tree ID is in their local tIds map, discarding

the message any one of these conditions is observed. Finally, they store the propagated

value locally in their neighValues map for later use in computing the aggregated value.

In sum, nodes that are roots of their aggregation trees will, over time, receive aggre-

gated values from their nodes, which are essentially sent and aggregated by all other

nodes using the reverse path taken by theRefreshGaggTree messages. Given the fact

that nodes only use their parents and children of the tree topology to forward messages

(thus ensuring the tree has no cycles, as there is only a single path from any node to each

other node in the system), by propagating to a neighbour the resulting aggregated value

without the effects of its contribution [11], multiple nodes in the system can simultane-

ously obtain the aggregated value efficiently and in a decentralized manner.

3.4.4 Summary

In this section, we presented the devised aggregation protocol. This protocol leverages

the devised overlay protocol’s tree structure to perform efficient propagation/aggregation

of information in a decentralized manner. This protocol is coalesced by three decentral-

ized information aggregation/collection primitives, which we believe to be useful for

gathering partial or complete system information to perform decentralized resource man-

agement actions.

The first primitive is tree aggregation, where nodes, when requested, form aggrega-

tion trees (with configurable range) rooted upon themselves. These trees extend only to

their descendants in the original overlay protocol tree, and nodes federated in these trees

periodically merge their local value with their childrens’ and send a message containing

it to their parents. In case one descendant is executing the same primitive with a tree

with the same range (from the descendants’ perspective), it simply reuses the parent’s

tree to obtain the intended aggregated value.
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The second primitive is neighbourhood aggregation, where nodes collect, on-demand

and in a decentralized manner, the metrics of nodes in a hop-defined range. This mech-

anism behaves similarly to a pub-sub system, where nodes periodically propagate mes-

sages which federate other nodes in trees rooted upon themselves. Nodes in these trees

propagate their local values periodically using the reverse paths taken by the federation

messages. In this primitive, nodes (when possible) deduplicate federation messages and

multiplex metric propagations.

Lastly, the third primitive called global aggregation is a primitive where nodes collect

and aggregate, also on-demand and in a decentralized manner, a value that corresponds

to the globally aggregated value of the system. This primitive is inspired by work from

the state-of-the-art, however, it relaxes constraints imposed by the original work, such

as performing the mechanism with only a partial set of the nodes being tree roots, in

addition to allowing the technique to be performed in an on-demand fashion (based on

API requests).

We believe these primitives are useful for resource management decisions such as, for

example, maintaining a proportion of replicas to nodes, by employing tree aggregation

collecting all the descendants’ number of replicas and number of nodes, the tree roots

can, in a decentralized and independent manner, perform replication or decommission of

replicas to maintain the target value. The same applies to global aggregation, which al-

lows nodes to, for example, collect the total number of replicas in the system and perform

replication actions if they reach a lower than configured number. Lastly, neighbourhood

aggregation allows nodes to collect information about nearby nodes, which can also be

used to improve system QOS by, for example, deploying a server closer to a client in terms

of geographical distance.

It is important to mention that while in this work we present the protocol leveraging

the overlay protocol defined in Section 3.3, the protocol is agnostic to which overlay

protocol is executing underneath it, as long as it has the following characteristics: (1)

forms one or more tree-shaped networks, whose roots are interconnected; (2) Nodes in

these trees must be connected to their parents, children and siblings (also denoted by

their active view) with bidirectional connections; and finally (3) the overlay protocol must

also provide events for each node that is added or removed from the protocols’ active

view.

As previously mentioned, these decentralized aggregation primitives make use of both

queries and aggregation functions to obtain the data and to summarize it (respectively).

In this next section, we cover the monitoring module that, along with other features,

interprets and processes the aforementioned queries and aggregation functions.
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3.5 Monitoring module

The monitoring module is responsible for storing metrics, resolving queries regarding

stored metrics, removing expired metrics, periodically evaluating registered alarms, trig-

gering callbacks which the API then propagates to the client, among other features which

we will discuss now in more detail.

We believe it is, however, important to remember that the focus of this work is to

provide a usable proof-of-concept of a decentralized monitoring framework, targeted for

decentralized resource management solutions. Consequently, the focus of this module is

to provide just enough functionality for a proof of concept, namely in aspects such as the

storage of metrics in disk or the efficiency of the query language, which are interesting

research challenges by themselves, however, are orthogonal to the work presented here.

This module is composed by three different components (illustrated in Figure 3.7):

the query engine, the time-series database (TSDB), and the alert manager, whose roles

in the system we now briefly explain:

Monitoring module

Alarm manager

Requests time-series

TSDB

Time-series index

Time-series sandbox

Queries

Query engine

Sandbox manager

API 

Adds alarms

Queries

Figure 3.7: An overview of the monitoring module

1. The time-series database allows the insertion and retrieval of time-series data

from the framework. This time-series database employs an in-memory index to

retrieve one or more time-series according to a set of parameters. This component
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is responsible for storing and managing the information (e.g., expiring outdated

entries) supplied by the applications and the decentralized aggregation protocol.

2. The query engine is the component tasked with resolving queries made to the time-

series database. This component maintains a set of sandboxes that evaluate user-

provisioned queries that both extract data from the database and apply aggregation

functions to it.

3. Finally, the alert manager manages the alarms registered through the API. In

sum, this component periodically verifies the issued alarms’ query using the query

engine and propagates an event to the client whenever the condition is verified.

In order to ease the explanation of these components, we first detail the structure of

the metrics used in this framework, which has a similar structure to the metric types

provided by InfluxDB [26].

3.5.1 Metric structure

In DeMMon, a metric is composed of four elements: first, the name, which is a string

denoting the name of the stored information, the name should be a human-readable name

which is self-describing (e.g. “CPU-USAGE”). The second element are the metric tags,

which are a set of string pairs denoting attributes related to the metric that is stored, (e.g.

the hostname or cluster name of the node that emitted it), next, we have the value, which

contains the data associated with the observed metric, and finally, we have the timestamp,

that contains the time at which the observation was taken. A typical example of a metric

in the devised framework would be: name: “CPU-Usage”; tags: <host:nodeX>, value: 0.3,

timestamp: “1609960731”.

We believe it is important to mention that in order to remain as flexible as possible, the

metric values do not have a defined type. In this system, clients may use custom types (as

long as they are serializable using the JSON package provided by the Golang [18] package).

This allows the devised framework to represent a multitude of different information types,

such as histograms, strings, string maps, among others, which offers a higher degree of

flexibility for using this framework. For example, a decentralized service management

system aimed at deploying service replicas in close proximity to the clients may use, for

example, a histogram with pre-determined geographical classes. This way, this system

would have a data structure that would ease finding a node in the desired geographical

area.

Provided with the metric structure, we now explain how these are stored in the system.

3.5.2 Time-series database

In DeMMon, time-series are sequences taken at successive equally spaced points in time.

In this system, time-series are stored only in memory and are indexed as a function of
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their name and tags.

In order for a certain metric (composed by: name, tags, and periodicity) to be inserted

into the database, a bucket must first be created. A bucket is essentially a component that

holds all time-series data with a certain name, periodicity and capacity. The periodicity

denotes the interval at which the sequences of points are spaced (in time) and the capacity

denotes the number of points stored in each sequence. For example, a time-series with a

5-second periodicity and a capacity of 12 holds all points from the last minute. Limiting

the number of points per series allows the system to pre-allocate the memory necessary

(using an array) for each time-series at the time of its creation.

Within a bucket, metrics are stored in a map and indexed by their tags. This is done by

generating keys that are equal for each similar tag set, independent of its order: whenever

a metric is inserted, the tag pairs are sorted alphabetically (by their key) and concatenated

into a single string, producing the resulting metric key. Then, using the metric key, the

metric value is inserted into the corresponding time-series (a new time-series is created

for that tag set if there was none previously in the system).

Time-series advance time in an on-demand manner, meaning that, before returning

values for any read or write request from a time-series, the system first verifies if its’

oldest value has a timestamp outside of the time-series window (as time has passed since

the last check). If it has, the system iterates the time-series’ points from its oldest to the

newest point and removes all points outside its time window. In order to remove unused

time-series from the system, and decrease DeMMons’ memory footprint, the time-series

database component also periodically advances the time-series in time and removes any

time-series that has become empty.

Concurrency is handled by using locking mechanisms, where operations that do not

affect the state of the time-series are executed concurrently, and operations that would

otherwise change the time-series status are executed sequentially.

3.5.3 Query engine

The query engine is a sub-component of the monitoring module, and it is responsible for

evaluating the supplied text-based queries, transforming them into sets of instructions,

and determining the final query result by executing the instructions. Keeping in mind

the fact that the focus of this work is not the performance of the metric storage or the

query language and that it is still a focal point of this work to be as flexible as possible in

the query language, we opted for using javascript-based sandboxes to perform this work.

This means that user-provided queries are essentially javascript code, and consequently,

users have infinite control over the behaviour of their queries, provided these do not

exceed the query timeout.

To provide this functionality, we opted for using the package Otto [49]. This package

provides access to javascript “virtual machines” that essentially parse a string containing

javascript code, and produce an AST from the parsed code. The produced ASTs are then
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executed and their result is returned by the VM. In order to allow users to access the

time-series stored in the TSDB, the query engine provides every Otto virtual machine

access to the following functions, which return time-series from the database:

1. Select(Bucket_Name, <Tag_set_regex), this function returns the time-series that are

in the supplied bucket matching the provided tag set regex. The way the tag set

regex matching works is: for every time series present in the specified bucket, if all

of the tag keys in the supplied regex match all of the time series tags, then the time

series is returned. An example of the usage of this function would be, for example:

“select(CPU_USAGE, <host:.*, cluster:cluster1>)”

2. SelectLast(Bucket_Name, <Tag_set_regex>), this function behaves similarly to Se-

lect, however, it only returns the last inserted point in all matched time series.

3. SelectRange(Bucket_Name, <Tag_set_regex>, startDate, endDate), this function

behaves similarly to “Select” and “SelectLast”, however, it allows users to only

extract a certain time-window from the matching time-series. To do so, it takes an

additional argument, consisting of a time range, used to filter the points to return

to the client.

We believe these functions cover the most common use cases for metric selection.

These metrics, upon selection, can then be aggregated in any way the user specifies in

the query (since they are composed of user-defined code). In order to ease the design of

queries and prevent developers from rewriting the same aggregation functions, the query

engine also provides some aggregation primitives which can be applied to one or more

time-series such as: Max, Min, and Average.

After the selection asnd aggregation of metrics, the resulting values are returned

by placing them in a variable denoted “result” (in the user-defined code). Any query

executed in DeMMon can only result in one of two types: a single time series or an

array of time series (following an interface defined by DeMMon). Given this, in order to

allow the creation of new time series that follow this interface during the query process,

there are two additional functions supplied to the virtual machines: the first is called

“NewTimeSeries”, which creates a new time series, this function takes as arguments the

name, tags and values which will integrate the time series; second, we have the function

called “NewObservable” which takes a value of any type and a timestamp, and creates a

new metric point which can be added to time series.

With this, we now provide some examples of possible queries along with a brief

description of what they do:

1. “Avg(SelectLast(CPU_USAGE, <host:.*, cluster:cluster1>))” this query selects the

metrics with the name “CPU_USAGE” for all hosts which belong to cluster with

name “cluster1” and returns the average of all the points.
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2. “SelectLast(Nr_services, <tenant:tenant10>, startDate, endDate)” this query re-

turns the timeseries for the metric called “Nr_services” for the tenant with name

“tentant10” during the provided time range.

3. “SelectLast(Nr_replicas, <tenant:tenant10,service:service10>)” this query returns

the timeseries for the metric called “Nr_replicas” for the tenant with name “ten-

tant10” and service named “service10” during the provided time range.

With this, clients are able to obtain and manipulate data from the time series database

using text-based queries. Furthermore, as the type of the value of each metric is not

enforced, clients may store their metrics in custom data structures, tailored for their

specific use-cases.

3.5.4 Alarm manager

The alert manager is the last component of the monitoring module, it is responsible for

managing the alarms issued to the monitoring module. Alarms are essentially sets of

parameters that contain, among other parameters, a condition to observe (e.g. the percent-

age of CPU usage) and a periodicity to observe this condition. Alarms are paramount to

prevent applications from having to periodically query DeMMon to verify the condition

themselves, effectively saving bandwidth. This component is essentially responsible for

periodically verifying these alarms and issuing notifications to the client whenever their

conditions are verified.

In DeMMon, an alarm contains the following parameters:

1. Condition. This is essentially a query (explained in Section 3.5.3) that must return

a boolean value.

2. Periodicity. The periodicity denotes how often the condition is evaluated and how

often notifications are sent to the client that issued the alarm

3. Backoff time. The backoff time is a time duration that bounds the rate at which

the monitoring module emits notifications, which would otherwise happen at the

alarm periodicity every time the alarm is verified (e.g. if the supplied periodicity is

low).

4. Watch list. The watch list is a set that, for every item, contains both a name and

a set of tag filters. Whenever the alarm manager receives an alarm containing a

watch list, in addition to performing the verification at the specified periodicity, it

also performs the verification whenever any time series matching the watch list is

changed. The rates at which the alarm is verified in this manner also respects the

backoff time.
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5. CheckPeriodic. CheckPeriodic is a boolean variable denoting if the alarm should be

verified periodically. When false, the alarm manager does not check the metrics at

every “periodicity” seconds (defined previously), effectively saving CPU time. This

option is meant to be used together with the watch list, for example, for checking a

parameter that is rarely altered.

The monitoring module, whenever it receives the registration of a new alarm, essen-

tially adds it to a priority queue containing all the alarms. This priority queue uses the

time of reception of the alarms plus their periodicity as their key to the queue. With this,

alarms are sorted by the time at which they need to be verified. The monitoring module

continuously obtains and removes the first item of the queue, containing the next alarm

to verify out of all issued alarms and waits until it is time of verification of that alarm

(i.e. the time of reception of the alarm plus its periodicity). Ater this, it evaluates the

condition (emitting a notification to the client if the condition is verified), and re-adds

the alarm to the queue with a key corresponding to the current time plus the alarms’

periodicity. Whenever an alarm is verified, and the result of its condition returns “true”,

the alarm manager first verifies if it has emitted a notification for that alarm in the last

“Backoff time” duration, and issues a notification to the client if it has not.

3.6 API

The API is the last module of the devised framework. As previously mentioned at the

beginning of this chapter, the purpose of this module is to expose the functionality of

the remaining components of the framework by mediating the interactions between the

clients and the remaining modules via well-defined operations. In this section, we provide

a brief overview of the API implementation and summarise its most relevant operations.

3.6.1 Overview

This API is coalesced by a message-based protocol performed via WebSockets [48]. The

choice of using a message-based protocol is motivated by the fact that, contrary to tradi-

tional HTTP APIs, messages enable clients to receive events sent by the DeMMon servers

(without requiring an explicit request). This feature is essential for both alerting (as trig-

gered alarms need to be propagated to the clients that registered these alarms) and for

issuing events such as active view changes (from the overlay protocol, defined in Sec-

tion 3.3) to subscribed clients. Consequently, in this API, the client must first establish

a connection with the server in order to perform operations. This is done via an HTTP

request, used for establishing the WebSockets connection. In order to test the provided

API and the capabilities of the framework, we also devised a client which performs the

operations, available on [42].

When connected, clients and servers exchange JSON formatted messages that contain

messages that trigger two types of operations: the first is a request, which is similar to
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an HTTP request, where the client creates a request and assigns it an ID which it sends

to the DeMMon server via a WebSockets message. When the server receives the message,

it processes it and sends back to the client a reply message containing the ID and the

reply contents using the same established connection. Requests are used, for example,

for querying metrics. The second type of operation is a subscription, which initially

performs similarly to a request, hovever, in this operation, the server, posterior to the

initial request, may send messages to the client (without requiring a request) containing

events related to the issued subscription. This type of operation is used by clients for

receiving events, for example, for both clients wanting to receive active view changes or

for clients installing alarms and then receiving updates to changes in these alarms.

With this, we now provide a brief overview of the more relevant operations exposed

by the DeMMon API.

3.6.2 API operations

1. Install or remove buckets These operations, as their name indicates, insert or re-

move buckets from the time series database. As previously mentioned in subsec-

tion 3.5.2, buckets are containers for all time-series data with a certain name, peri-

odicity and capacity. Whenever a “create bucket” operation is issued for a bucket

with a name that collides with a pre-existing bucket (with a different periodicity),

an error message is returned to the client. This feature allows resource management

applications to specify the periodicity at which a certain metric value is stored, and

allows the TSDB to evict stale values from the stored time-series.

2. Retrieve and insert metric values. These two operations, performed via requests,

add or extract values from the time series database. When these requests are re-

ceived, the values are inserted directly in the corresponding time series. The re-

trieval of metric values is also performed via a request containing a query in the

query language. This query is passed to the monitoring module (specifically the

metric engine) for processing. When the query has finished being processed by the

metric engine, the result is sent back to the client via a message.

3. Subscription to active view updates. This operation, as the name denotes, is

performed via a subscription, where the initial reply contains the current view

of the server. Then, whenever there is a change in the active view of the DeMMon

server’s overlay protocol, the client is sent a message containing the changes in the

active view. This feature is useful for resource management systems as it provides

them with a set of nodes to cooperate with that have low latency values.

4. Install continuous query. This operation allows the installation of a continuous

query. Continuous queries is a feature that, when installed, evaluates a query at

a specified periodicity and inserts the return values into the time series database

under a specified name. This operation is useful for applications that wish to, for
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example, resample their data (i.e. to longer periodicities) or wish to calculate a

certain aggregated value at specific intervals.

5. Send and receive broadcast messages. As the name indicates, these two operations

refer to issuing and receiving broadcast messages. The emission of new broadcast

messages is done via a request containing the message contents, the message TTL

and the message ID (a text-based field). Whenever this request is received, the API

sends a request containing the supplied message to the overlay protocol, which, in

turn, propagates the message contents via its active connections (until the message

TTL is 0). Broadcast messages are propagated and forwarded to peers in the active

view in a similar manner to the subscription messages (described in Section 3.4.2).

Finally, nodes can perform Subscriptions to broadcast message receptions, which

are subscription operations for clients that wish to receive all messages with a cer-

tain ID that are received by the DeMMon overlay protocol. This is useful in case

resource management systems wish to propagate information to other nodes in the

system without incurring the additional overhead of establishing new connections.

6. Install Alarm. This operation is performed via a subscription containing the pa-

rameters described in Section 3.5.4, whenever a client issues this operation, the

API assigns a new ID to the alarm and adds it to the alarm manager, where it is

periodically verified. After this, if in any verification of the alarm fires, the alarm

manager notifies the API, which correspondingly sends a message to the client with

the firing alarm’s ID.

7. Install and removal of neighbourhood aggregation sets. These operations manage

the operation of the neighbourhood aggregation algorithm defined in Section 3.4.2.

Whenever a neighbourhood aggregation set is installed, it is assigned an ID and a

reply is sent to the client with the generated ID. When the client wishes to stop

the collection of these values, it issues a removal request containing the originally

assigned ID.

8. Install and removal of global aggregation function. These operations initiate and

stop the global aggregation procedure (described in Section 3.4.3), the behaviour

of this operation, in regard to the interaction between the client and the server, is

similar to the neighbourhood aggregation set.

9. Install and remove tree aggregation function. This is the last detailed operation

of the DeMMOn API, and triggers the operation of the protocol presented in Sec-

tion 3.4.1 which, in terms of interaction between the client and the server, also

behaves similarly to both the neighbourhood and global aggregation requests.
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3.6.3 Summary

In this section, we have presented an overview of the operations exposed by the DeMMon

API. We began by providing a brief explanation behind the choice of WebSockets [48] as

a way to enable message-based communication between the API and the client. Next, we

enumerated what we believe to be the most relevant operations of the API, and for each

enumerated operation, we provided a brief explanation of its behaviour regarding both

the effect on the remaining components and the model of interaction between the client

and the server.

3.7 Summary

In this chapter, we covered the implementation of the DeMMon framework, a decentral-

ized management and monitoring framework targeted for the operation of decentralized

resource management systems. We began by covering what we believe to be the require-

ments of this solution (beggining of chapter 3). Then, we detailed the implementation

and design of Go-Babel (Section 3.2), which we used to develop the overlay network. Fol-

lowing, we provided a brief overview of the four modules which compose this framework,

beginning with the overlay network (Section 3.3), which is responsible for creating and

maintaining a multi-tree shaped network, optimized using latencies and node capacity.

Following, in Section 3.4 we covered the aggregation protocol, which provides multiple

primitives for collecting and aggregating metrics in a decentralized and efficient manner,

using in-transit aggregation, from a partial (or complete) set of nodes in the tree-shaped

network. Next, we covered the monitoring module (Section 3.5), which is the module re-

sponsible for enabling the storage and retrieval of metrics, parsing and processing queries

and managing alarm lifecycles. Finally, we finished the DeMMon implementation by cov-

ering the API (Section 3.6), which essentially is the module responsible for mediating, via

a WebSockets interface, the aforementioned interactions between the external clients and

the other modules.
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4

PouchBeasts: A Benchmark

Application

In this chapter, we present the third contribution from this dissertation, named “Pouch-

Beasts”. PouchBeasts consists of a benchmark application, for a backend of an edge-

enabled interactive multiplayer game, with the functionality inspired by the popular

game PokemonGO [8]. This contribution arose from the suggestion presented in [34],

and it aims to present the materialization of a benchmark with a focus on real-time in-

teractions between users. The importance of this contribution is on its usage for testing

service deployment systems, given the user interactions can be dramatically influenced,

in terms of quality of service, as a function of the proximity to its’ services (i.e., users

performing real-time battles mediated by a server in a different continent will have a poor

user experience).

PouchBeasts was designed and developed with the combined efforts of another mas-

ters student (Bruno Anjos), with the goal of being a proof-of-concept for the realization

of a fully decentralized resource management system. The intention is to use this bench-

mark with DeMMon as the solution for managing the nodes in an overlay network and

for monitoring the execution of the PouchBeasts microservices. Then, this monitoring in-

formation is used by a decentralized service deployment solution to optimize the services

supporting the execution of “PouchBeasts”, via heuristics based on geographical position,

the latter being our colleagues’ work.

In this application, registered users own a set of beasts, which they can expand

by catching more beasts in certain geographical areas or by acquiring new ones in a

shop. Beasts are collectable items with different properties (such as attack value, health

points, experience, among other properties) that may be used to both battle against other

users (and their beasts) and join other users in a cooperative battle against a computer-

controlled beast. During these battles, users must command their beasts to either attack

or defend and can also use items on their beasts, which can have multiple effects, such as:

reviving dead beasts, healing a certain amount of health of a beast, among others. These

items may be traded with other users or acquired from a shop using coins, which in turn

are acquired through microtransactions.
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4.0.1 Overview

Figure 4.1: An illustration of the dependencies between services of PouchBeasts

The interactions between the services in this benchmark are illustrated in Figure I.4.

There are nine microservices in total and a client to access them. The motivation for

leveraging microservices is that it allows fine deployment management of the system,

namely allowing individual components to be independently migrated or replicated. We

now provide a brief overview of each microservice and its role within the system:

1. The first and most used microservice of the system is called Trainers, and it essen-

tially stores all the data related to the users and their owned beasts. In addition, the

service verifies the tokens issued by the Authentication microservice in regard to

the recency of the information carried by the tokens. This service makes use of a

MongoDB [60] database to store these records in permanent storage and to maintain

data consistency across microservices.

2. The next microservice is called Authentication, which only has the purpose of

generating new authentication tokens for the users to use when interacting with

other services. These tokens contain a hash of the owned beasts, so other servers

can verify their authenticity and recency without having to fetch the users’ beasts

on each interaction.

3. Following, we have the Gyms and Battles services and these allow players to per-

form combats with their obtained beasts. In the case of the Gym’s service, it manages

entities in the system denominated gymnasiums, which have a pre-assigned geo-

graphical location. In this service, if a user is within a geographical distance of a
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gymnasium, it may perform battles alongside other trainers against a single beast

controlled by the computer. The Battles service is a service that allows users to use

their beasts to perform battles against other users’ beasts. Battles can either start via

a queueing system, where players wait for another random user to start the battle

or by challenging other known users (which requires sending a notification to that

user). Whenever a user is in a battle, it issues commands (based on the observed

battle status) and receives updates regarding the status of the battle. As commands

depend on the observed status of the battle, it is paramount (for the quality of

service of the users) that both the players’ commands and the information passed

from the Battles / Gyms service to the player suffer the least latency possible. The

information regarding the issued commands and battle status is propagated to the

user using WebSockets. Whenever a battle finishes, the Battles / Gyms server stores

the battle result and update the users’ beasts and items in the Trainers service.

4. The Store and Microtransactions services provide ways for users to obtain currency

via small value transactions, which can, in turn, be used in the store to buy new

items. These items then have effects on the beasts (e.g. or reviving a dead beast or

healing a beast with low health).

5. Users may also exchange their items among them via the Trades service. In order

to use this service, a user must invite another currently active user via a notification

(which can optionally be accepted by the target user). Whenever this notification

is accepted, the two users connect to the server via a WebSockets connection and

begin to submit the items they wish to trade. Whenever a player adds an item to

the trade, this information is propagated by the server to the other player through

a WebSockets connection. Whenever the users finish adding or removing items

to the trade agreement, they accept the trade, and the Trades server commits the

transaction result to the Trainers server.

6. The service responsible for handling all of the previously mentioned notifications is

called Notifications. This service is essentially tasked with receiving notifications

from connected users and propagating them towards the target user. As there may

be multiple Notification services executing concurrently and users may connect to

any of the available servers, a notification may be emitted for a user not connected

to the same server. To prevent these notifications from being lost, this service makes

use of a Kafka [2] backend, which it uses to propagate messages targeting users that

are connected to different notification servers.

7. The last implemented microservice is called Location service, responsible for track-

ing the following entities contained within a geographical area: the geographical

locations of users, the generation and management of the generated beasts (for users
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to catch), and the locations of gymnasiums. Essentially, location servers commu-

nicate with the users through a Websockets API, where users periodically receive

locations of the nearby beasts and gyms.

In order to prevent multiple location services from managing overlapping geograph-

ical areas and to facilitate the insertion and decommission of new location servers, we

assign portions of the geographical area to certain servers using S2 cells [52]. S2 cells

provide a framework for decomposing a sphere (in our case, the earth) into a hierarchy

of cells, where each S2 cell is quadrilateral bounded by four geodesics. The top-level

of the hierarchy is obtained by projecting the six faces (the topmost six cells) of a cube

onto the earth, and lower levels are obtained by subdividing each cell into four children

recursively. An example of two of the six face cells (one of which has been subdivided

multiple times) can be observed in Figure 4.2. This service makes use of S2 cells to (1)

assign portions of the earth to servers in a way that does not create geographical disconti-

nuities, (2) to index efficiently the locations of trainers, gyms and generated beasts, which

allows the service to, based on the intersection of a cell centred on the user’s location with

the cells indexing the gyms and beasts, determine the set of beasts and gyms to return

to emit to a certain user, (3) in the case a user’s location is in the boundary of two (or

more) location servers, S2 cells are also used to decide to which server(s) the user should

connect. Similarly to before, this is also performed based on the intersection of a cell

centred on the user’s location with the cells indexing the gyms and beasts.

Figure 4.2: Example of S2 cell hierarchy, taken from “https://s2geometry.io/”

Provided with the high-level overview of each of the implemented microservices of

the benchmark, it is important to notice that the latency requirements regarding the

interactions with the users and services are varied. For example, services such as the

Trainers, Store, or Microtransactions services are more tolerant when it comes to latency
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requirements when compared to services like the Gyms, Battles or Trades, as these have

an interactive nature where a high latency value leads to a worse user experience.

To test these interactions, the benchmark also contains a client which allows the

execution of actions such as: battling other users, catching beasts, acquiring and spending

tokens, among others. Then, through the instrumentation of both the client and the

services, we provide metrics to quantify some aspects regarding these interactions, such

as the delays in the interactions between users and servers in both Trades and Battles

services, among other interactions. Provided with these indicators, then the performance

of service deployment and maintenance systems can be assessed.

To enable automated client testing, we provide ways for clients to simulate user be-

haviour. This is configurable by setting values on a configurable stochastic matrix, that

contains a line and a row for each possible action to perform with the client, and each ma-

trix position (given by a certain line and row) contains the probability of performing any

of the other possible actions, provided the user just performed the action in the current

line.

Given the objective of this benchmark is to test service deployment systems, we also

provide a deployment configuration of this benchmark for Kubernetes. With this baseline

deployment system, commonly employed in the state-of-the-art, users who develop their

service deployment systems have a baseline that can assist in identifying the benefits and

limitations of their proposals.

4.0.2 Summary

In this chapter, we covered the third contribution from this dissertation, named “Pouch-

Beasts”. This contribution takes the shape of a benchmark that aims to simplify the

evaluation process of decentralized management and monitoring solutions, particularly

those aimed at improving service deployments. It does so by providing both a client and a

set of services (implemented by microservices) that offer a wide range of interaction types,

from request-reply based interactions to real-time interactions, with varied demands in

regard to server and client latency.

Although this benchmark was not employed to test the performance of DeMMon

directly, it is important to mention that the previously mentioned colleague, that con-

tributed the implementation of this benchmark has successfully built a system (for his

dissertation) that, through the metrics obtained by the decentralized aggregation primi-

tives provided by the DeMMon framework, improves the QoS of clients using the “Pouch-

Beasts” services by placing the services geographically closer to clients.
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Evaluation

In this chapter, it is our goal to demonstrate the applicability of the devised solution

through the comparison of multiple aspects of the framework against popular baseline

solutions from the literature. To this end, Section 5.1 covers the experimental setting

and configuration in which these comparisons were conducted, namely the execution

environment, the specifications of the nodes executing the tests, among other aspects

of the experimental setting. Following, in Section 5.2, we provide the obtained results

from the conducted experiments testing the applicability of the devised protocol against

state-of-the-art baselines. We compare these baselines with our protocol both in their

capacity to create and establish the network and in their capacity to perform information

dissemination. Lastly, Section 5.3 covers the experimental evaluation of the implemented

aggregation protocol, notably, which solutions composed the baseline for comparison,

which experiments were carried, and the obtained results.

5.1 Experimental Setting

To conduct the experimental evaluation of the devised solution against state-of-the-art

baselines, instead of resorting to simulation, we implemented those solutions and tested

them in an emulated network that aims to be as similar as possible to real-world scenar-

ios. Provided that scalability is one of the components we aimed to test, and there is a

limited pool of individual machines in our testbed to conduct the experiments, we re-

sorted to using containerization. Containers allowed us to execute multiple independent

processes in a single physical node while still being an isolated environment that allowed

the manipulation of the networking conditions of each process.

As containers are running in different machines, without any additional software, a

container from a machine would not be able to communicate with containers executing

in a different machine. To overcome this, we made use of Docker [15] containers and

employed a tool called docker swarm [58]. This tool allows users to coordinate sets of

nodes running Docker. Nodes in a swarm, among many other features, may perform

Multi-host networking, which consists in integrating the containers executing among
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nodes running into a unified network. In this network, containers are automatically

assigned IP addresses and can communicate with each other, regardless of the physycal

machine each container is executing on. To bootstrap the experimental scenario, we

developed a set of scripts in both BASH, Python, and GO to create, orchestrate, and

decommission containers to run the experiments.

5.1.1 Node capacity and connection delays

As previously mentioned, in order to emulate a real-world scenario where nodes have

limited capacity and their communication suffers from delays, there was the need to

apply these constraints. Furthermore, it is important to set up these delays realistically.

To do so, we used data from real-world readings of real-world scenarios obtained from

WonderNetwork [44], which consists in a network composed of 252 nodes spread across

88 countries in 6 continents. This network provides, in addition to node metadata (city,

country, among others), a set of latency measurements from each node to every other in

the network (including themselves), which we used to setup the latency delays between

the containers. As there was the need to test the framework with larger network sizes (of

up to 750 nodes), the data points from this network were multiplied by five times.

Then, as the obtained data from this network did not contain bandwidth information

for each node, we used the metadata provided by WonderNetwork, namely the country,

to assign bandwidth values according to the list of bandwidth per country provided by

speedtest.net [27]. Provided the purpose of this framework is to perform on cloud-edge

scenarios, composed by nodes inside and outside of the data-centre (DC), where nodes

outside the DC have lower networking capacity comparatively to nodes running inside

the DC, we divided each data point by 12x (to represent the edge nodes running outside

of the DC), and divided the first N nodes by 2.5x, (corresponding to the number of data

centres).

To limit the networking capacity and inject latency in the containers executing the

protocols for the experiments, we used a tool called Traffic Control (TC) [3]. This tool is a

traffic shaping tool that performs shaping, scheduling, policing and dropping of network

packets through the configuration of the kernel packet scheduler.

In our case, we used this tool to limit both the available inbound/outbound band-

width on the container interfaces and to inject delays in all connection pairs. In order

to limit the available bandwidth, we used hierarchical token buckets (HTB), which are

classful queueing disciplines that employ a complex token-borrowing system to ensure

the shaping of traffic according to a (configurable) rate. HTB requires programmers to

set up a hierarchical class structure, where child classes, attached to a queue (or qdisc),

manipulate packet order and apply rate limiting policies according to configuration.

For our benchmark, we made use of rate-limiting policies, which employ a token

borrowing mechanism that functions in the following manner: whenever a certain child

class reaches the maximum of its rate, it borrows tokens (up to its ceiling value) from the
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parent class (if there is a parent class, and that class has available tokens). If the parent

class is also limited, then the sum of its child classes will be limited to the parent rate.

For our experimental configuration, each container creates two default qdiscs, at-

tached to the inbound and outbound networking interfaces. Then, two HTBs are attached

to these qdiscs and set up with the respective inbound and outbound bandwidth rate.

After this, for both the outbound and inbound classes, two child classes are installed:

one intended for latency measurements and keepalive traffic (specific UDP traffic on a

pre-configured port); and the other for the remaining traffic. The inbound and outbound

classes responsible for measurement traffic are assigned a fixed rate of 500kb/s, and the

inbound and outbound default traffic classes are assigned the remaining rate for the con-

tainer (according to speedtest.net) minus the 500kb/s rate for the measurements class.

Then, for all the outbound classes (measurement and default traffic), we set up another

set of HTB classes for each other container with a very low rate of 6kb/s and ceiling rate

corresponding to the parents’ class. This setup forces child classes to borrow tokens from

the parent class and be limited by its bandwidth rate.

For each of these leaf classes, we attached a netem qdisc. This qdisc applies a delay to

each packet according to the latency measurements taken from WonderNetwork. To route

packets from one qdisc to the other, we use filters: in the case of the measurement traffic,

the filtering was performed via installing a high-priority filter that verifies the source and

destination ports of the packets and sends it to the measurement classes. The remaining

traffic is forwarded to the default traffic class via a lower priority filter with no restrictions.

After this, the routing from these two outbound classes to the leaf classes is performed

via filters observing the destination IP address of the packets and redirecting them to

their corresponding netem qdiscs. The objective of separating the traffic into two distinct

classes with their own bandwidth values is to prevent cases where the applicational traffic

is high (i.e. testing information dissemination) and the delay caused by the high usage

of the data channels would interfere with the measurement packets, leading to incorrect

latency measurements and consequent instability during experiments for both DeMMon

and the baseline overlay protocols that strive to optimize the overlay topology.

Experiments presented in this work were carried out using the Grid’5000 testbed,

supported by a scientific interest group hosted by Inria and including CNRS, RENATER

and several Universities as well as other organizations (see https://www.grid5000.fr). The

hardware from this testbed used to carry the experiments consisted in sets of 10 physical

nodes for the experiments with 50 and 250 logical nodes and sets of 30 physical nodes

for experiments with both 500 and 750 logical nodes. Each of these physical machines

is equipped with 2 x Intel Xeon E5-2630 v3 and 128 GiB of RAM and is executing Linux

Debian version 4.19.104-2 and Docker version 20.10.7. The results were obtained through

logging the relevant aspects of the experiment to disk and then processing the obtained

logs to extract the intended information posterior to the end of the experiments.

Provided with the experimental setup, we now explain the steps taken and the results

obtained for the DeMMon framework evaluation.
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5.2 Overlay Protocol

In this section, we present the results obtained from the multiple conducted experiments

on our proposal for the overlay protocol against state-of-the-art baselines. These exper-

iments aimed at testing: (1) the cost of establishing/maintaining the overlay networks

for each protocol; (2) testing the established networks’ efficiency (according to latency);

and (3) finally, testing DeMMons’ message dissemination capabilities against that same

set of baseline protocols. In this last test, the baseline membership protocols are paired

with two distinct dissemination protocols to perform the message dissemination. We now

begin by providing a brief discussion of the protocols and parameters used for conducting

the experiments.

5.2.1 Baselines and configuration parameters

The chosen protocols to perform the overlay protocol network comparison were Hy-

parview [31], X-Bot [35], Cyclon [64] and T-Man [28]. We now provide a brief description

of each (further discussion is provided in Section 2.2).

Hyparview is a protocol that builds a non-structured overlay network using a fixed-

sized view materialized by active bidirectional TCP connections (these connections also

serve as fault detectors).

The second baseline protocol is X-Bot [35], which is a protocol that essentially behaves

similarly to Hyparview in terms of establishing the initial network structure but takes

iterative steps to optimize the overlay network (according to a configurable heuristic).

These steps are performed via gossip mechanisms to improve the nodes’ active connec-

tions’ costs. In X-Bot, nodes perform optimizations in such a way that maintains the in

and out-degree established initially.

The third implemented baseline protocol was Cyclon [64], which is an overlay proto-

col that materializes a network composed of asymmetric links via periodic exchanges of

node pointers with a configurable age.

The last implemented baseline was T-Man [28], which is a protocol that iteratively

builds on an existing set of nodes to build a new, more optimized set of nodes. These

optimizations are performed iteratively by each node in the system such that a config-

urable cost function (defined a priori) gets minimized. In order to feed the initial node

sample for T-man to optimize, we employed the Cyclon protocol, and consequently, the

evaluation results for this protocol are labelled as “Cyclon T-Man”. All of the described

baseline protocols were, for comparativeness, implemented using the GO-Babel frame-

work (described in Section 3.2.2). As Go-Babel only provides unidirectional connections,

protocols that require bidirectional connections, namely Hyparview, X-Bot and DeMMon,

were enriched with added mechanisms to ensure that the bidirectional connections were

established for each node contained in nodes’ active views.
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Table 5.1: Membership evaluation: protocol configuration parameters

VSizeMax VSizeMin PVSizeMax Shuffle δT (s) PRWL ARWL ka kp improvement δT (ms) UN PSL
Hyparview 5 - 25 5 6 3 2 3 - - -
X-Bot 5 - 25 5 6 3 2 3 50 1 2
Cyclon 7 - - 5 - - - - - - -
Cyclon T-Man 5 - 7 5 - - - - - - -
DeMMon 5 2 25 5 6 - - - 50 -

The utilized parameters used to configure the different protocols were tuned to en-

sure a fair comparison. These are provided in Table 5.1, we now describe each of the

columns. The first is called “VSizeMax”, and represents the maximum size of the active

view, which in most protocols was set to 5, except for Cyclon, where it was set to 7 as it is

the only protocol without a secondary backup view. In the case of DeMMon, “VSizeMax”

represents the maximum number of children per node.

The second column, named “VSizeMin”, corresponds to the minimum number of chil-

dren for each node in DeMMon. The third parameter, titled “PVSizeMax”, corresponds

to the maximum size of the passive view, which is set to 25 for DeMMon, Hyparview and

X-BOT, and set as 7 for the case of Cyclon T-Man. In the case of T-man, this parameter

corresponds to the size of the Cyclon view (running to provide its initial view). The next

parameter, labelled “Shuffle”, corresponds to the periodicity of each protocols’ shuffle

mechanism. This parameter is set to 5 seconds for all protocols. Following, we have

the “PWRL” parameter, which corresponds to the TTL of the random walks (for each

protocol that has a random walk mechanism). The last-mentioned parameter is the “δT”

parameter, which corresponds to the minimum latency improvement for both X-Bot to

perform active view exchanges and for DeMMon to make opportunistic improvements.

Some parameters such as timeouts and the duration of some periodic procedures were

omitted, however, all timeouts, e.g. timeouts for establishing connections to nodes, re-

ceiving message responses, among others, are set to 5 seconds. Furthermore, all periodic

mechanisms are executed with a frequency lower than 15 seconds.

5.2.2 Overlay construction and maintenance

The first conducted experiment, aimed at evaluating how protocols establish and maintain

the overlay network, consists of an experiment where different numbers of nodes join

the system and remain for 25 minutes. In this experiment, we evaluate the properties

of the built overlay networks (costs, degree distribution, among other properties) and

how fast the protocol converges towards an optimized network. Finally, to compare

the scalability, performance and fault-tolerance at multiple scales, we performed the

previously mentioned experiment using network sizes of 50, 250, 500 and 750 nodes

along with two failure rates of 0 and 50%.

In the plots presented in Figures 5.1 and 5.2, we can observe the results pertaining

to the average latency of a connection in the overlay and the total cost of the established

overlay networks for the experiment with no failures, respectively. For both of these
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Figure 5.1: Average latency per node in established networks

0 500 1000 1500
Time (s)

0

10000

20000

30000

40000

To
ta

l o
ve

rla
y 

co
st

 (m
s)

50 nodes

0 500 1000 1500
Time (s)

0

25000

50000

75000

100000

125000

150000

175000

To
ta

l o
ve

rla
y 

co
st

 (m
s)

250 nodes

0 500 1000 1500
Time (s)

0

50000

100000

150000

200000

250000

300000

350000

To
ta

l o
ve

rla
y 

co
st

 (m
s)

500 nodes

0 500 1000 1500
Time (s)

0

100000

200000

300000

400000

500000

600000

To
ta

l o
ve

rla
y 

co
st

 (m
s)

750 nodes

Overlay comparison (0% failures): Total overlay cost

Cyclon
X-Bot

DeMMon
DeMMon tree

Cyclon w/ T-Man
Hyparview
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graphs, we show the results obtained from both the baseline protocols and the DeMMon

protocol. In the case of DeMMon, we make a distinction between two latency values,

the first (represented by a blue, continuous, line) represents the results relative to all

connections of all nodes, the second value (represented by a blue dashed line) represents

the cost of the “vertical” connections of the DeMMon tree (the parent and children of

each node), essentially excluding the siblings of each node from the results. We made this

distinction for two reasons: first, as the DeMMon protocol only performs optimizations to

improve the parent connection, we believe it is important to see the correlation between

improving the parent connections to the sibling latencies. The second reason to make

this distinction is that these connections are more used when compared with the sibling

connections, namely for network maintenance, information dissemination and in-transit

aggregation. The results displayed in these plots (Figures 5.1 and 5.2) show that both

Hyparview and Cyclon converge to a similar average latency value, which corresponds to

the average of all connections of the latency matrix. This is expected, as these protocols

do not attempt to perform optimizations in regard to the network latency. The results

also show that the devised protocol is the fastest to converge to its lowest latency value

and that X-Bot is the slowest, not converging to a final value in a test of 25 minutes. We

believe this occurs because X-Bots’ overlay improvements are performed using 7 mes-

sages, contrasting heavily with DeMMons’ 2 required messages, and T-Mans’ 0 required

messages. While the total and average latency of the DeMMon overlay is not the lowest

in any of the presented results, when comparing only the parent and children connec-

tions, DeMMon reaches a total latency cost lower than any other tested protocol. This is

important given that, as previously mentioned, these connections are the ones most used

when performing overlay improvements and maintenance, information dissemination

and in-transit aggregation.

It is important to mention that, while T-Man is the protocol that reaches the lowest

overall average latency in the conducted experiments, it does so disregarding the fact that

nodes may become disconnected from the overlay, which as we will observe further, pre-

vents this protocol from being suitable for reliable message dissemination. This may be

observed in Figure 5.3, which shows the in-degree (the number of incoming connections

for each node) for all nodes participating in the network, these results pertain to the last

observed configuration of the network before the experiment finished. They show that

T-Man, at multiple node counts, possesses nodes with 0 incoming connections, which

are effectively isolated from the network. While still analyzing the in-degree results,

we observe that both X-Bot and Hyparview have a fixed number of incoming connec-

tions, which stems from the use of bidirectional connections, while Cyclon has varied

numbers of incoming connections ranging from 10 to 1, which occurs due to the shuffle

mechanisms of the active connections. In the case of DeMMon, the values range from 2

to 10 incoming connections, which is expected given the configuration parameters of a

minimum number of children of 2, and a maximum number of children of 5.

Finally, still regarding the experiments without node failures, we show, in Figure 5.4,
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Figure 5.3: Node in-degree
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Figure 5.4: Protocol bandwidth cost
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Figure 5.5: Node in-degree (50% failures)

the average network cost (in kbit/5s) incurred by each node running the experiments.

This graph shows that DeMMons’ overlay protocol, on average, spends more bandwidth

to build and maintain the network structure, we believe this is because DeMMon ex-

changes more information periodically with peers in the active view to maintain and

improve the network structure when compared to the other protocols. Conversely, the

protocol which uses the least amount of bandwidth is Cyclon, as its shuffle mechanism is

relatively inexpensive, and the protocol has no other mechanisms that incur networking

costs. Although protocols have varied networking costs, we believe that even DeMMon,

which uses the most bandwidth, is relatively inexpensive when compared with the band-

width standards at the time of the writing of this work.

Provided with the result analysis for the experiments with no failures, we now provide

the results for the in-degree distribution of the protocol in a scenario with failures. This

experiment attempts to test the fault tolerance of the protocols by first establishing the

network, and during the middle of the experiment, induce a failure of 50% of the nodes.

The objective of this experiment was to test if any node became isolated from the network

after the failures. Results from this experiment may be observed in Figure 5.5. For all

tested protocols except T-Man, no nodes became isolated, allowing us to conclude that

both the devised protocol and the tested baselines can recover from faults effectively.

As previously mentioned, the applicability of our solution was tested in two different

aspects: the first was the process of building and maintaining the overlay network, which

was covered in the previous paragraphs. The second evaluated aspect is information

dissemination (via message broadcasting), which we will now cover in the following

subsection.
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5.2.3 Information dissemination

The second set of conducted experiments, as mentioned previously, intends to test the ap-

plicability of the devised membership protocol in an information dissemination scenario.

To do so, we tested it against the same set of baseline protocols used in the previous

experiments enriched with two message dissemination protocols: the first is a simple

flood protocol, where if a node wishes to broadcast a message, it sends that message to

every peer in its active view, then, nodes that receive this message, propagate it to every

neighbour if they have not done so previously (excluding the sender). The second used

dissemination protocol was PlumTree [32], which is a dissemination protocol that builds

a dissemination tree based on the paths taken by previously broadcast messages that were

not redundant.

The reasoning behind this choice of dissemination protocols was to provide a more

comprehensive comparison of DeMMon with the remaining protocols. As the simple

flood generates redundant messages when compared to dissemination primitives tree

structures, we included a dissemination protocol that (similarly to DeMMon) also em-

ploys a tree for the dissemination of messages. It is important to mention that, when

testing the PlumTree protocol, in order to establish the initial tree structure, a single

node first starts the dissemination of its messages a minute earlier than other nodes. For

both of these comparisons, DeMMon is set up with a dissemination protocol similar to the

simple flood protocol, however only using its vertical connections (parent and children).

Similarly to the first set of experiments, we conducted multiple tests with 50, 250,

500, and 750 nodes during 15 minute periods. For all these system sizes, we also tested

failure rates of 0% and 50%. For each of these combinations, we varied the number of

messages each node emitted until all protocols reach their saturation point. While doing

the tests, we extracted the following metrics: (1) the reliability of the messages, i.e. what

is the average percentage of nodes that receive the emitted broadcast messages ; (2) the

maximum message throughput reached by every protocol in a 30-second window, (3) the

average latency taken by messages until they reach other nodes, and (4) the bandwidth

usage of each of the protocols.

Figures 5.6 and 5.7 report the obtained results regarding the message reliability dur-

ing the experiments for both the simple flood and PlumTree experiments with 0% failures.

As we may observe, in general, the saturation point for all protocols using PlumTree tends

to be earlier (in terms of emitted messages per node) than the simple flood protocol. We

believe this occurs because the PlumTree protocols’ tree becomes unstable whenever cer-

tain nodes become a bottleneck to the messages being propagated using the tree (because

their bandwidth capacity is exceeded). Whenever this occurs, as certain messages get

delayed, the tree structure becomes unstable (as the order of delivery of messages is what

defines the dissemination tree structure). Whenever this occurs, the tree repair procedure

is triggered, however as multiple nodes emit new messages and other nodes can become

saturated while performing this mechanism, the tree structure may never reconverge
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Figure 5.6: Average message reliability in simple flood scenario (0% failures)
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Figure 5.7: Average message reliability in PlumTree scenario (0% failures)
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until all messages are delivered (and nodes stop being saturated). Until this occurs, the

protocol essentially becomes a push-pull gossip protocol, which has lower performance

in our experiments in terms of reliability because message delivery requires 2 messages,

incurring additional networking costs (and the tests end before the protocol has delivered

all emitted messages).

In addition to the previously mentioned reasons, in an occasion where a node has

received an IHAVE message for a certain message and at that moment happens to have

available upload bandwidth, but its download capacity is all taken up by incoming traffic,

this node will periodically emit GRAFT messages to the sender of the IHAVE message,

which, in turn, will reply with the broadcast messages that will only be received after

a large amount of time. During this period, there may be multiple redundant GRAFT

and IHAVE messages being emitted, which results in the system possibly becoming even

more saturated, which causes the tree to become even more unstable. When considering

our solution, although it also uses a tree structure, its tree is not defined by the prop-

agations of broadcast messages and consequently is not as susceptible to instability in

conditions where the network is saturated, consequently achieving higher reliability in

higher message counts.

We may observe that both the Cyclon and T-Man tend to perform worse in general

regarding reliability when compared to X-Bot, Hyparview and DeMMon, which we be-

lieve, in the case of T-Man, to occur because there are nodes with 0 incoming connections

and consequently do not receive any broadcast messages from other nodes. In the case of

Cyclon, we believe the lower reliability value is attributed to the use of UDP as its com-

munication medium, which means that whenever the data channels become saturated,

many of the broadcast messages are dropped, contrary to DeMMon, Hyparview, and X-

BOT, that use TCP and consequently do not drop messages in congestion periods. Finally,

we believe that both Cyclon and T-MAN, when paired with PlumTree, also have lower

reliability because this protocol requires bidirectional connections to perform optimally,

which are not guaranteed by neither of these protocols.

In regard to the simple flood experiment (Figure 5.6), DeMMon tends to perform

exceptionally well with fewer node counts, particularly with 50 nodes. We believe this

may be due to the height of the DeMMon tree being lower, as when the tree height is

smaller, the number of descendants for each node is also very scarse, which in turn means

that when a certain node becomes saturated, fewer nodes are impacted by it. In higher

node counts, DeMMon performs in line with both Hyparview and X-Bot. We believe

this happens because the tradeoffs of having a tree (a single node possibly becoming a

bottleneck for many other nodes in the system) tend to impact the system in a similar

way to sending multiple redundant messages.

In the case of scenarios with induced failures (Figures 5.8 and 5.9), we observe a simi-

lar trend regarding the PlumTree experiments, with DeMMon achieving higher reliability

values. However, in the simple flood experiments, we observe that DeMMon achieves

a lower reliability value when under congestion, we believe this occurs because as the
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Figure 5.8: Average message reliability in simple flood scenario (50% failures)
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failures are occurring, if the nodes are saturated, the failure recovery mechanisms may

take a long time to be able to recover the tree topology, and during this period nodes

are disconnected from the remaining overlay and consequently do not receive or send

message to or from any node which is not their descendant, leading to a lower reliability

value.

Provided the results from the combination of the baseline protocols with PlumTree

consistently performs worse in terms of reliability (when the network is saturated) when

compared to employing only a simple flood protocol, we now focus on the comparison be-

tween DeMMon and the baseline protocols executing the simple flood protocol, however

for completeness, all obtained results are available in annex I.
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Figure 5.10: Average message latency (in ms) in simple flood scenario (0% failures)

In Figure 5.10, we can observe the obtained results from collecting the latency between

the emission and reception of broadcast messages for each node. The first takeaway from

these results is that all protocols plateau at the same latency value, we believe this is

due to the fact the the test times are limited to 15 minutes, and whenever the system is

saturated, all messages tend to take a similarly long time to be delivered, those which

are not delivered are only reflected in the previously discussed reliability graphs (Fig-

ures 5.6, 5.7, 5.8, and 5.9). However, for lower message counts, the latency results show

that DeMMon tends to achieve lower latency values when compared with the baseline

protocols on certain workloads (e.g. low numbers of messages emitted on both the 50 and

750 node graphs) where we believe the simple flood protocol becomes saturated due to

the number of redundant messages sent.

In Figure 5.11, we report the obtained throughput across the message dissemina-

tion experiments for the simple flood protocol with 0% failures. As we can observe, in

lower node counts (i.e. 50 nodes), the throughput achieved by DeMMon surpasses the

throughput achieved by the remaining protocols, which also explains the higher values of
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Figure 5.11: Maximum message throughput during experiment (30 second window) in
simple flood scenario (0% failures)

reliability achieved by DeMMon in these node counts (see Figure 5.8). However, at higher

node counts, all protocols tend to plateau at the same throughput, which we believe to be

attributed to the fact that, as previously mentioned, the tradeoffs of using a tree (a single

node possibly becoming a bottleneck for many other nodes in the system) tends to impact

the system the same amount that sending multiple redundant messages does.

In Figure 5.12 we compare the baseline protocols with DeMMon in regard to the mes-

sage latency. These results show the average latency distribution for the tests conducted

with 250 nodes and one message emitted per node. On the left graph, we can observe

the results obtained by the execution of PlumTree with the baseline protocols, while on

the right graph, we report the results for the simple flood tests. As we can observe, in

general, the message latency obtained by combining simple flood with the baseline proto-

cols tends to be lower in latency when compared with protocols that employ shared trees

to disseminate the messages, such as PlumTree and DeMMon. We believe this can be

explained by the fact that, when employing a single shared tree to disseminate the mes-

sages, as the messages must take specific routes in order to reach all nodes with decreased

message redundancy, messages have to take more hops to get to their destination, and

consequently achieve higher latency values. This behaviour is observable in Figure 5.13,

which shows the hop distribution of the delivered messages in the same scenario of 250

nodes and on message emitted per node.

It is important to mention that, while Cyclon with T-Man achieves lower latency values

in both tests, it does so at the cost of reliability, making it less applicable for a reliable

broadcasting solution (as observed previously in the results displayed in Figures 5.6

and 5.7. In fact, as pointed out in [61], in this type of protocol, latency is not comparable

when the solutions have differing reliability since lower latency can easily be achieved by
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Figure 5.12: Message latency distribution in scenario with low network saturation

Figure 5.13: Message hop distribution in scenario with low network saturation
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never delivering the message at any node other than the original sender.

5.2.4 Summary

In this section, we covered the experimental results from the conducted evaluation of the

devised membership protocol against multiple popular baseline protocols obtained from

the study of the state-of-the-art. Two main aspects of the devised protocol were tested

(at multiple scales): the first aspect was the ability to establish and maintain the overlay

connections, where obtained results show that the devised protocol is consistently one of

the fastest protocols to converge to a final topology. Furthermore, in regard to the latency

values of the vertical connections of the established tree (excluding connections between

nodes sharing the same parent in the tree, which are less used in general), DeMMon also

achieves both the lowest average and total latency cost.

The second tested aspect of the devised protocol was their message dissemination

capacity, where the devised protocol was evaluated against the previously mentioned

benchmarks paired with two epidemic dissemination protocols: a simple flood and the

PlumTree protocol. We conducted tests at both multiple scales and multiple failure

rates and observed that while DeMMon tends to perform particularly well in regard to

throughput at lower scales (50 nodes) when compared with any other tested protocol,

while at larger node counts, its throughput tends to plateau at around the values as both

X-Bot and Hyparview when paired with a simple flood. We also observed that, while tree

topologies (both DeMMon and PlumTree) incur lower message redundancy, the use of a

single shared tree for scenarios with multiple senders causes higher delays in messages

when compared to simple flood alternatives, as messages take more hops to reach their

destination.

To conclude, we believe the devised overlay performs competitively with popular

state-of-the-art solutions for both creating and establishing an overlay network and for

performing information dissemination. Conducted tests suggest that DeMMon performs

better in saturation tests at lower node counts, indicating it as the most performant so-

lution for these scenarios. However, for scenarios where message latency is a concern,

results show that any tree approach (including DeMMon), although incurs lower network-

ing costs, performs worse when compared to simple flood protocols.

5.3 Aggregation Protocol

In this section, we present and analyze the obtained results from the experimental evalu-

ation of the devised decentralized aggregation protocol when compared with a popular

monitoring solution from the state-of-the-art: named Prometheus [46]. We begin by

providing the experimental setting and configuration settings used across the conducted

experiments, then we present and discuss the obtained results from these experiments,
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and finish the Section by providing a summary along with the drawn conclusions from

the evaluation of our solution in its monitoring and aggregation capacity.

The experimental setting in which the evaluation of our aggregation protocol was

conducted on is the same as the one defined in 5.1, where each solution is tested using

containers to multiplex the physical nodes, isolate the running processes, and apply both

bandwidth capacity constraints and latency delays between nodes.

As previously mentioned in Section 3.4, the devised aggregation protocol offers three

decentralized information collection primitives: neighbourhood, tree and global aggrega-

tion. In this section, we provide the obtained results regarding the evaluation of the tree

and global aggregation features with comparable setups running Prometheus. Neighbour-

hood aggregation results are not shown as Prometheus does not provide a comparable

feature (which we believe is already a result in itself). For all the conducted experiments,

we tested the systems by collecting a certain aggregated value, calculated through the

aggregation of a variable number of metrics, emitted at configurable intervals by dummy

applications running in all the nodes of the system. The main criteria used to test the ap-

plicability of our solution was its error over time: obtained by comparing the aggregated

value obtained by each node against their “supposed” value, according to the following

formula:

Error(t) =
|
∑
localV ali(t)− aggV al(t)|∑

localV ali(t)

Where localV ali corresponds to the emitted value of each node locally,
∑
localV ali

corresponds to the “real” value, and aggV al corresponds to the obtained aggregated value

during the experiment. In addition to the error over time, we collected other metrics

to measure the performance of our solutions, such as the consumption of networking

and computing resources. All tests were conducted with network sizes of 750 logical

nodes, and for each experiment, we varied the number of metrics emitted by the dummy

applications. Finally, for each of these experiment combinations, we conducted tests with

failure rates of 0 and 50% of the nodes in the system, excluding the configurated tree

roots.

The designed features were compared against Prometheus configured in two, distinct,

tree-shaped setups: the first setup, which we named centralized Prometheus, corre-

sponds to the most typical configuration of a Prometheus server, where a single server

collects and aggregates the metrics correspondent to all the nodes in the system. The sec-

ond experimental setup, named Prometheus tree, corresponds to a more sophisticated

setup where instead of having a single aggregating node, there is an intermediate layer of

nodes aggregating the metric values of the leaf nodes. This intermediate layer, in turn, is

aggregated by the root node (effectively splitting the load among the aggregator nodes).

The root node, in this configuration, makes use of “federation” to scrape the partially

aggregated value from the Prometheus servers in the intermediate layer.
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I = 2O = 3

Prometheus centralized

Aggregator/Exporter node Exporter node

Prometheus tree (I=2, O=3) (aggregator leaves)Prometheus centralized (aggregator leaves)

Prometheus tree (I=2, O=3)

Figure 5.14: Exemplification (at smaller scale) the of tested prometheus setups

In the following reported experiments, there are two parameters displayed for the

Prometheus results, the first, denoted by i, corresponds to the size of the intermediate

layer, the second parameter, denoted by o, corresponds to the number of servers to ag-

gregate for each node in the intermediate layer (essentially, o corresponds to maximum

number of leaf nodes in the Prometheus deployment). In addition, for both of the cen-

tralized and tree configurations, we also test setup a variation where every node in the

system is an aggregator node (with the name aggregator leaves), which aggregates the

metrics provided by their local dummy application and only export the aggregated value.

It is important to mention that only the first two setups (centralized and tree) are, to our

knowledge, the most representative of common Prometheus configurations, however, we

include the aggregator leaves scenarios to study the impact in terms of network cost of

performing in-transit aggregation by every node which emits metrics when compared to

performing the aggregation process of metrics extracted from multiple nodes by a single

node. An illustration of these setups can be found in Figure 5.14.

5.3.1 Tree aggregation

For the tree aggregation evaluation, we configured DeMMon with a single tree aggre-

gation function, which triggers the algorithm defined in Section 3.4 that, in summary,

collects an aggregated value of the metrics of its descendants in the DeMMon tree. This

feature was designed for decentralized resource management applications that follow the

DeMMon hierarchical structure to perform decentralized resource management decisions.
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Figure 5.15: Error over time obtained in tree aggregation (centralized scenario)

For example, a certain application that wishes to maintain a certain ratio of two service

replicas (because one depends on the other), can do so by having each node monitor

its descendants and perform resource management actions (possibly coordinated with

other nodes) to replenish or decommission a service replica such that the desired ratio is

maintained.

To test this feature, we set up both Prometheus and DeMMon collecting an aggregated

value of the whole system in a single node, providing an aggregated view of the system

(in our case, we used the sum to produce the aggregated value), and collected the error

of the obtained aggregated value against the correct value over time. In addition to the

error, we also collected the total network cost over the duration of the experiments.

We begin this comparison by discussing the obtained results regarding the centralized

version of Prometheus against DeMMon (Figure 5.15), where we may observe that both

DeMMon and Prometheus reach the 0% error values across all conducted tests, which

means the systems are working correctly. Furthermore, we may observe that, in the

regular Prometheus setup (non-aggregator leaves), as the number of metrics increases,

Prometheus cannot obtain the metrics to calculate the aggregated value. We believe this

occurs because the root node exceeds its allocated bandwidth. This contrasts with the

Prometheus “aggregator leaves” results, which obtain 0% error value across all conducted

experiments, which happens because every node is aggregating their emitted metrics and

only propagating an aggregated value, which does not saturate the system bandwidth. It

is important to notice that as the number of series increases, the DeMMon error tends

to fluctuate between 0 and low error values. We believe this occurs due to the DeMMon

nodes saturating their CPU when parsing the metrics. Although we realize this may be a

limitation of the developed system, we argue this limitation is an engineering problem

that may be easily addressed by employing a more efficient metric transmission and

parsing protocol (similar to Prometheus’ or InfluxDBs’ [26]).

As the centralized Prometheus setup saturates at higher metric counts, we now com-

pare the performance of our solution against a more scalable Prometheus setup, the

Prometheus tree setup. The results of this comparison may be observed in Figure 5.16,

which contains the error over time obtained for the experiments with 0% and 50% failure
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Figure 5.16: Error over time obtained in tree aggregation (tree scenario)

Figure 5.17: Average network cost incurred during tree aggregation experiments

rates. As we can observe, Prometheus (in the non-aggregator leaves scenario) now splits

the load of aggregating the metrics throughout multiple nodes and consequently can

obtain the correct aggregated value. This configuration, however, is plagued by multiple

unrecoverable points of failure, this is shown in the scenarios with 50% failures (bottom

half of the graph), where Prometheus setups do not recover from the induced failures, as

servers require manual intervention to change their configuration to surpass the effect of

such failures.

Finally, in Figure 5.17, we can observe the average network cost for the previously

shown experiments. In this graph, we can observe that the “aggregator leaves” incur

a constant cost number, which is also the lowest obtained result when compared with

other setups. This is expected because these setups perform aggregation of their metrics

locally before emitting them towards the root node. In the case of DeMMon, the incurred

networking cost is also constant, as DeMMon also performs local aggregation before

emitting the results. In the case that we believe to be the most representative Prometheus

deployments, the network costs tend to increase linearly with the number of metrics,
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Figure 5.18: Error over time obtained in global aggregation (centralized scenario)

Figure 5.19: Error over time obtained in global aggregation (tree scenario)

which is less desirable when compared to a constant networking cost.

5.3.2 Global aggregation

Global aggregation in DeMMon (as further explained in Section 3.4.3) is a feature where

each node in the system calculates the result of the aggregation in a decentralized man-

ner. To test the applicability of this feature, we also employed Prometheus as a baseline

comparison, also configured in the same way as described at the beginning of this section.

However, for fairness in the comparison, we configured each Prometheus server to node

periodically query the root node for obtaining the aggregated value (effectively providing

the same results as DeMMon).

The experiments conducted for this feature are similar, in terms of duration and

failure rate, to the ones conducted for tree aggregation. Their results can be observed

in Figures 5.18 and 5.19. In these, we note a similar pattern to the one observed by

the tree aggregation results, namely: the centralized Prometheus configurations cannot

scale when the number of metrics emitted per node increases, and the tree Prometheus

configurations, while they mitigate the scaling problem, are subjected to multiple points
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Figure 5.20: Average network cost incurred during global aggregation

of failure that, in the case of a failure, require manual configuration to recover.

Finally, in these results, we may observe that DeMMon can correctly obtain the ag-

gregated value even when the number of metrics increases, even the presence of failures,

making it a more versatile option for scenarios where failures are common, such as those

found at the edge of the network.

The final experimental result, showing the average network cost incurred during

these experiments, can be observed in Figure 5.20, where similarly to tree aggregation,

both DeMMon and the two Prometheus configurations with “aggregator leaves” obtain

constant network costs during the experiments (because these setups perform local ag-

gregation before emitting their metrics). Furthermore, these Prometheus setups incur

less networking costs, given they do not have to maintain the overlay network, unlike

DeMMon.

The remaining configurations (Prometheus tree and Prometheus centralized), as they

do not perform in-transit aggregation of the metrics, incur networking costs that scale

with the number of metrics emitted by the nodes. Consequently, from the standpoint of

scalability, this means the scalability of such deployment will be limited by the number

of series emitted per node, that contrary to DeMMon or configurations with “aggrega-

tor leaves” (which as previously mentioned, are not representative of most Prometheus

setups), achieve linear networking costs with the number of emitted metrics.

5.4 Summary

In this chapter, we studied, through experimentation, the applicability of the devised de-

centralized aggregation and information dissemination framework, named DeMMon. We

began by providing the system model in which we tested our solution (Section 5.1), which

aims to emulate a realistic cloud-edge scenario composed of nodes with heterogenous

networking capacity and distributed among multiple places of the globe. Following, in
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Section 5.2, we provide the obtained results from the experimental evaluation of the de-

veloped membership protocol. In this section, we tested the applicability of this protocol

in its capacity to build a latency-optimized network by comparing it with implementa-

tions of state-of-the-art baselines in realistic scenarios with multiple node counts and

failures. We showed that the implemented protocol is fault-tolerant (within its system

model), and although its latency total is not the lowest, if only accounting for its most

heavily used connections (the parent connections in the tree), then its total cost is the low-

est. While still in this section, we evaluated the information dissemination capabilities

of the devised protocol against the same baseline protocols, paired with two epidemic

broadcast protocols: a simple flood protocol and PlumTree. Overall, we showed that our

protocol is a competitive alternative in this regard, as in our tests, it performed better

than PlumTree when paired with any baseline membership protocols in all conditions

and performed better in lower node counts across all conducted scenarios.

Finally, we concluded the chapter with Section 5.3, where we validated the imple-

mented monitoring primitives and compared the obtained results against multiple config-

urations of a popular baseline solution: Prometheus. We showed that the devised decen-

tralized monitoring solution obtains results comparable to those obtained by Prometheus,

and that it provides a higher degree of fault-tolerance, as it does not require manual

configuration to recover from failures.
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Conlusions and future work

6.1 Conclusion

The edge computing paradigm has surged as the new up-and-coming solution to the

limitations imposed by the cloud. The popularity of Edge Computing has grown as it

allows applications to be enriched with new features, made possible by having available

hardware closer to end users. Furthermore, we believe this popularity is growing due to

the size of the information produced outside the data centre, which following the current

trend, will reach a point where the cloud infrastructure will start to become a bottleneck

when performing timely and accurate management decisions.

For this reason, we argue in favour of performing decentralized resource management

decisions, supported by partial knowledge of the system state, and enabled by devices

within and outside the data centres. This thesis is focused on enabling this behaviour,

through the development of a decentralized resource monitoring and management ser-

vice, targeted for performing decentralized resource management actions in cloud-edge

environments.

We studied not only the-state-of-the-art regarding these systems, but also the multiple

areas which we believe to be crucial for building them: (1) the types of devices composing

the cloud-edge environment, (2) how to federate these devices in self-optimizing overlay

networks, and (3) how to perform in-transit aggregation using these overlay networks.

Through this study, we built a Decentralized Management and Monitoring (DeMMon)

service, which at its’ root uses a devised overlay network protocol which employs the

nodes’ configured bandwidth, together with latency measurements to create and optimize

a hierarchical tree-shaped network.

This overlay network was built using the first contribution of this thesis, named GO-

Babel, which consists in an event-based framework designed to ease the building of

distributed systems protocols. This framework is a port in Golang of Babel [1], how-

ever enriched with a fault detector and abstractions to perform latency measurements,

which were a requirement for our protocol. Go-Babel’s implementation has been vali-

dated through the conducted experimental work for the devised protocol and the baseline
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protocols used in the overlay protocols’ evaluation. This overlay was tested in realistic

testbeds, focusing on its’ capacity to establish and maintain the network even with node

failures, and in its’ capacity to propagate information (through broadcasting messages).

The obtained results from the conducted experimental work not only show the protocols’

validity, but also that the protocol can achieve higher throughput values when compared

with state-of-the-art baselines in certain node counts, while remaining equal in through-

put at other node counts.

Using this tree-shaped network, we implemented decentralized aggregation primi-

tives that allow the collection of metrics across DeMMon nodes in three distinct manners:

hierarchical aggregation (using the overlay tree), aggregation using a hop-based range,

and global aggregation, which collects a globally aggregated value of the entire system.

In our implementation, we took steps to ensure that the collection of metrics is possible

to perform in an on-demand fashion and that whenever possible, nodes aggregating the

same metrics reuse each others’ values.

Similarly to before, we tested these features in a realistic testbed and compared their

validity and applicability against a popular state of the art solution named Prometheus,

which was configured with multiple tree-shaped setups. The obtained results show the

validity of our solution, both with or without the presence of node failures, through

achieving the correct aggregated values across multiple scenarios. Results also show that,

as Prometheus configurations do not have to pay the price of maintaining the overlay net-

work, these configurations incur lower networking costs when aggregating lower metric

counts. However, as the number of metrics increases, results show that typical central-

ized Prometheus approaches cannot scale as the numbers of metrics emitted increase,

and Prometheus setups that do so by decentralizing the aggregation procedure become

plagued with multiple points of failure which require manual configuration to recover,

unlike DeMMon.

DeMMon provides access to these primitives through an API built (and a correspond-

ing client) in WebSockets. In addition, this API allows resource management systems

and other services, executing alongside DeMMon, to insert/retrieve metrics from a Time-

Series database, and to request (potentially aggregated) metrics (through the previously

mentioned decentralized aggregation primitives) from other nodes in the system, in

which the DeMMon service is inserted into.

A goal of this work is to provide flexibility, consequently, aggregation functions which

are employed to aggregate the metric values consist of user defined scripts. Furthermore,

the metric values do not have a defined type (as long as they are serializable), which

allows resource management applications to tailor these types to their needs, and to

perform complex computations without resorting to a fixed set of aggregation functions,

however at a cost of performance, when compared with better engineered state-of-the-art

alternatives. In addition to this flexibility, the API also permits the execution of periodic

functions to, for example, resample a time-series, or produce an aggregated value. The

final presented API functionality is the ability for clients to install alarms. These allow
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clients to get notified whenever an issued condition is verified and prevent clients from

spending resources performing periodic verifications.

Finally, as the initial vision of this thesis was of pairing DeMMon with a decentralized

service deployment system built by a colleague, we contributed to this vision through the

collaborative creation of a benchmark edge-enabled application, intended to test the com-

plete stack. This benchmark application aims to provide a decentralized implementation,

through microservices, of an interactive multiplayer game with, functionality inspired

from the popular game PokemonGO. We believe this contribution helps tackle what is

currently an obstacle for the development of these systems, given that, to our knowledge,

there were no free and open-source realistic implementations of edge-enabled interactive

applications that we could use to test the complete envisioned software stack.

6.2 Future work

As future work, there are ideas prevenient from both the initial thesis vision and the

development of our work. Regarding the overlay protocol, we believe there are multiple

venues that may be taken, either to improve the existing protocol or to devise a new one

based on the current presented work. First, we believe there are possible improvements

to be had regarding reducing the necessary messages for performing maintenance of the

established logical connections. This can be achieved through, for example, stopping the

periodic emission of certain messages whenever the logical connections are established,

consequently reducing the networking cost of maintaining the overlay. Second, we believe

that it may be possible to insert additional mechanisms as an attempt to balance the

overlay tree, aiming to decrease the number of hops and increase the latency incurred

by messages sent in information dissemination scenarios. Finally, we believe there is the

need to address the need for manual configuration and fault-recovery of the bootstrap

nodes, this can be overcome either by creating a new specialized protocol to perform this

function, or by embedding this feature into the protocol.

We also believe there is interesting future work regarding the devised aggregation

primitives, from adding new efficient aggregation primitives that rely on the abstrac-

tions provided by the tree to, similarly to the overlay protocol, reduce the overhead of

maintaining the aggregation mechanisms. This can be realized, for example, by maintain-

ing established aggregation trees by sending messages solely when nodes switch parent,

nodes crash, or links fail by not periodically emitting messages to maintain the aggrega-

tion trees, instead of doing so with a periodic mechanism.

We believe another venue worth pursuing is to optimize the query evaluation process,

namely experimenting with alternative libraries that allow the execution of user-defined

code, or creating our own, tailored for our needs. In addition, we believe it would be

valuable to replace the metric propagation protocol with a more efficient serialization

protocol (possibly not JSON-based).
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Finally, as future work we plan to improve the stability of the built components

by creating unit and integration tests, and to further separate the components through

interfaces which materialize this solution, such that each individual component can be

replaced with another that satisfies the same interface. We believe our solution can be

improved in this regard through, for example, separating the offered broadcast primitives

from the membership protocol.
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Annex 1 - Extra figures

This annex is used to present the extra figures that were mentioned during the discussion

of results in Section 5.2.3. These figures contain a summarized view of the obtained

results regarding the conducted information dissemination experiments.
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Figure I.1: Obtained results in simple flood scenario (0% failures)
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Figure I.2: Obtained results in simple flood scenario (50% failures)
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Figure I.3: Obtained results in PlumTree scenario (0% failures)
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Figure I.4: Obtained results in PlumTree scenario (50% failures)

113




	Front Matter
	Cover
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Contributions
	1.4 Document structure

	2 Related Work
	2.1 Edge Environment
	2.1.1 Edge Environment Taxonomy
	2.1.2 Discussion

	2.2 Topology Management
	2.2.1 Taxonomy of Overlay Networks
	2.2.2 Overlay Network Quality Metrics
	2.2.3 Relevant examples of Overlay Networks
	2.2.4 Discussion

	2.3 Resource Location and Discovery
	2.3.1 Querying techniques
	2.3.2 Centralized Resource Location
	2.3.3 Resource Location on Unstructured Overlays
	2.3.4 Resource Location on Distributed Hash Tables
	2.3.5 Discussion

	2.4 Resource Monitoring
	2.4.1 Aggregation
	2.4.2 Aggregation techniques
	2.4.3 Monitoring systems
	2.4.4 Discussion

	2.5 Resource Management
	2.5.1 Resource Management Taxonomy
	2.5.2 Resource Management Systems
	2.5.3 Discussion

	2.6 Summary

	3 DeMMON
	3.1 Overview
	3.2 GO-Babel
	3.2.1 Overview
	3.2.2 Node Watcher
	3.2.3 Summary

	3.3 Overlay network
	3.3.1 System Model
	3.3.2 Overview
	3.3.3 Summary

	3.4 Aggregation protocol
	3.4.1 Tree aggregation
	3.4.2 Neighbourhood aggregation
	3.4.3 Global aggregation
	3.4.4 Summary

	3.5 Monitoring module
	3.5.1 Metric structure
	3.5.2 Time-series database
	3.5.3 Query engine
	3.5.4 Alarm manager

	3.6 API
	3.6.1 Overview
	3.6.2 API operations
	3.6.3 Summary

	3.7 Summary

	4 PouchBeasts: A Benchmark Application
	4.0.1 Overview
	4.0.2 Summary

	5 Evaluation
	5.1 Experimental Setting
	5.1.1 Node capacity and connection delays

	5.2 Overlay Protocol
	5.2.1 Baselines and configuration parameters
	5.2.2 Overlay construction and maintenance
	5.2.3 Information dissemination
	5.2.4 Summary

	5.3 Aggregation Protocol
	5.3.1 Tree aggregation
	5.3.2 Global aggregation

	5.4 Summary

	6 Conlusions and future work
	6.1 Conclusion
	6.2 Future work

	Bibliography
	I Annex 1 - Extra figures

