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Abstract

Artificial neural networks are widely used in all sorts of applications, many of which di-

rectly impact the public’s lives. For all of their qualities, these systems have a major flaw:

their black-box nature impedes us from interpreting their behavior, which harms public

trust and their overall applicability. Explainable AI is a field that focuses on developing

interpretable AI systems. However, the current solutions for black-box models do not

provide fully accurate or easy-to-understand explanations. Concept mapping, proposed

by Sousa Ribeiro and Leite [60], promises to do both. In this method, classifiers - dubbed

mapping networks - are used to map a black-box model’s sub-symbolic internal repre-

sentations into symbolic, human-understandable ontology concepts, opening the way to

explainability. However, little investigation was done in the original work on consistently

designing quality architectures for concept mapping. In this dissertation, we fill the

existing knowledge gaps by conducting extensive empirical evaluation of architectures

for concept mapping. We create a custom-made image classification dataset designed

to facilitate observing how the black-box model’s task affects concept mapping. Further,

we employ a custom adaption of differentiable architecture search (DARTS [33]) to auto-

matically find good architectures. Our adaption of DARTS for concept mapping proves

capable of consistently learning exemplary architectures and shows more resilience to

context changes than manual trial-and-error.

Keywords: Artificial Intelligence, Machine Learning, Auto ML, Neural Architecture

Search, Explainable AI, Ontology, Description Logics
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Resumo

A rede neuronal artificial tem tido vasto uso em todo o tipo de aplicações, muitas das

quais têm um impacto direto na vida pública. Apesar de todas as suas qualidades, es-

tes sistemas têm uma fraqueza crucial: a sua natureza opaca impede-nos de interpretar

o seu comportamento, algo que tem um impacto negativo na sua aceitação publica e

aplicabilidade. Explainable AI é uma área que se foca em desenvolver sistemas de inte-

ligência artificial interpretáveis, mas muitas das soluções atuais para modelos opacos

não providenciam justificações acertadas ou fáceis de entender. Mapeamento de concei-

tos, proposto por Sousa Ribeiro e Leite, promete ambos. Neste método, classificadores

adicionais - chamados de redes mapeadoras - são criados para mapear as representa-

ções internas subsimbólicas de um modelo em conceitos pertencentes a uma ontologia:

simbólicos e passíveis de compreensão humana. Todavia, pouca investigação foi feita no

trabalho original sobre as arquitecturas destas peças instrumentais, as redes mapeadoras.

Nesta dissertação, preenchemos as atuais brechas de conhecimento realizando extensos

testes empíricos sobre arquitecturas para mapeamento de conceitos. Usamos um dataset

de classificação de imagens, gerado por nós especificamente para facilitar a observação

de como o mapeamento de conceitos é afetado pela tarefa do modelo original. Para além

disso, usamos uma versão de procura de arquiteturas diferencial (DARTS [33]), adaptada

para aprender automaticamente boas arquitecturas mapeadoras. Essa nossa adaptação

prova ser capaz de consistentemente encontrar arquitecturas competentes, e demonstra

uma maior resiliência a mudanças de contexto do que o método original de tentativa e

erro.

Palavras-chave: Inteligência Artificial, Aprendizagem Automática, Neural Architecture

Search, AI explicável, Ontologia, Lógica de descrição
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1

Introduction

1.1 Context and Motivation

Machine Learning (ML) systems are AI systems that learn from provided data and use it to

make non-trivial inferences. The state-of-the-art of ML requires that these systems focus

on highly specific tasks to achieve good results. Nonetheless, they are extremely useful.

Today, ML is applied to web search results [56], image [62] and video [28] classification,

virtual assistants [73], recommendation algorithms for social media websites like Youtube

[11], autonomous vehicles [72], and finance [17]. Crucially, ML is used in decision support

systems, which inform human decisions such as loan granting [66], job recruitment [12]

and university application processing [68].

The more we rely on ML, the more considerable impact it has on our individual

lives, and thus the more urgent it is that we guarantee the quality and fairness of ML-

powered systems. Unfortunately, some of the most popular ML systems, namely Artificial

Neural Networks (ANNs), do not justify their behavior: only the inputs and outputs

are known, not the inner workings, making them opaque - black-box - models. They

provide a result but no indication they produced it. The quality of such a model must be

evaluated via indirect measurements, such as the accuracy of its predictions on pre-solved

inputs. Amazon learned the dangers of black-box models when they discovered that the

recruitment system they used showed a strong bias against women. Amazon used the

system to extract the top candidates from a provided set of applications. However, it

was trained on the previous ten years of the company’s recruitment data, which featured

a majority of males. Consequently, the system inferred that female candidates were

undesirable and penalized applications for including the word “women’s” and further

penalized candidates from two all-women colleges [12]. It is not easy, however, to assess

whether an outcome disparity is caused by system flaws or extraneous factors that would

have resulted in disparities in even an entirely fair system. The black-box nature of some

Machine Learning Algorithms prevents us from simply “peeking” inside a system to look

for answers.

This ethics question is but one of many concerns over black-box models. Knowing

1



CHAPTER 1. INTRODUCTION

exactly why a network reached a particular conclusion is also helpful during develop-

ment for diagnosing problems. In many cases, it is not enough to measure a network’s

accuracy, as they can produce mostly correct results by using incorrect methods. This

is poignantly illustrated by how several machine learning models, including neural net-

works, consistently misclassify adversarial examples - inputs formed by applying small

but intentionally worst-case perturbations to examples from the dataset, such that the

perturbed input results in the model outputting an incorrect answer with high confidence

[38]. In these cases, the network has extracted incorrect secondary features that happen

to be statistically correlated to relevant ones in the dataset and mistakenly used them to

achieve good performance without actually learning valuable representations of the data.

For example, let us imagine a dataset for image classification where the vast majority of

images containing dogs feature the animal laying on a green lawn, while pictures that do

not include dogs rarely include a green lawn. Given this dataset, a model will likely learn

to classify any image featuring a green lawn as one containing a dog. By looking at the

model’s accuracy, the developer would be oblivious to the problem, and would only later

discover it when he asked the model to classify, for example, an image of a cat laying on

a lawn and received an incorrect output.

Explainability - the ability of a system to justify its behavior - is also a big concern

when deploying AI systems in a public setting. A survey of 6054 citizens from the United

States, Canada, Germany, the United Kingdom, and Australia showed that only about

a quarter of citizens are willing to trust AI systems [21]. In the healthcare field, when

it comes to diagnosis systems, explainability does not solely increase trust but is also

highly useful when deciding treatment routes [30]. Indeed, years ago, physicians ranked

explainability as the most desirable feature for a clinical decision support system [30, 64].

All of these concerns gave rise to Explainable AI (XAI), a field that focuses on devel-

oping human-interpretable AI systems - i.e., systems whose behavior is capable of being

understood by humans [14]. However, state-of-the-art XAI solutions for interpreting

black-box models fall short of the promise of a fully interpretable ANN. Some provide

a simpler, usually interpretable model that, presumably, behaves in a similar way to the

original one [47]. Others are limited to outlining which parts of the input were most rele-

vant to the model’s decision [40], still failing to indicate why. Evidently, these methods

merely provide a means by which a human expert can acquire, at best, a partial under-

standing of a model’s behavior. This dependence on a human interpreter makes them

unsuitable for non-expert users, which is why they have not seen much use outside ML

research itself.

1.1.1 Explainability via Concept Mapping

Given the shortcomings of the current Explainable AI solutions, Sousa Ribeiro and Leite

[60] proposed a novel method aimed at producing symbolic justifications for the output

of an ANN.

2



1.1. CONTEXT AND MOTIVATION

Let us informally illustrate the logic behind this method with an example: Alice is

trying to teach her son Bob to correctly identify the animals in a children’s picture book.

When Alice points at an animal, Bob blurts out which one he thinks it is and eagerly sees

his mother’s reaction to know whether his guess is correct. After some time, Bob has

become rather good at this task, but because he is still young, he can not yet explain the

reasoning behind his guesses. However, when he identifies them in the picture, Bob has a

habit of pointing out other words he has learned - like ‘ears’, ‘tail’, or ‘whiskers’. Paying

attention to this, Alice can easily infer Bob’s reasoning. For example, when prompted

with an image of a cat, Bob says ‘whiskers... ears... Cat!’, and Alice is able to infer that

Bob knows that any animal with whiskers and ears must be a cat (Bob has not learned the

Lince yet).

The same logic can be applied to black-box image classification models. If one gets

an indication of what secondary features the model found for a given example, one can

infer a possible reasoning that the model may have followed. Sound as that logic may be,

there were two missing pieces. Firstly, note that Alice is only able to make reasonable

inferences about Bob’s reasoning because she is knowledgeable about the animals - i.e.,

the domain of the problem. Secondly, unlike Bob, black-box models don’t output any of

their intermediary findings.

Sousa Ribeiro and Leite solve the first missing piece with ontologies, sets of formal-

ized articles of knowledge (axioms) pertaining to a given domain. Ontologies describe

concepts, their properties, and the relations between them. For example, an ontology

could define the concept ‘woman’ using the concepts ‘human’ and ‘female’. The use of

an ontology is fitting for this application, as there exist highly well-made, accessible, and

off-the-shelf software pieces called reasoners that can infer non-trivial knowledge from

ontologies and, like Alice does, automatically produce justifications for the model’s be-

havior. As a bonus, the explanations produced by a reasoner can easily be translated into

natural language, allowing laypersons to directly understand a produced justification

without an expert’s help.

To understand how to solve the second missing piece (knowing what intermediary

attributes the model found in an input), one needs to understand the basics of how ANNs

perform classification. After receiving an input, such a model applies sequential transfor-

mations to the input until a final one results in a classification. These transformations are

optimized during training to maximize the model’s performance. While the final trans-

formation outputs something humans can understand, the intermediary representations

of the input are incomprehensible. That is not to mean, however, that they are random.

For the model to correctly classify most of the inputs, those representations must con-

tain information that is somehow relevant to the task. Knowing this, Sousa Ribeiro and

Leite employ additional classifier models - the mapping networks - which they train to

translate those incomprehensible internal representations into the relevant concepts that

were previously defined in the ontology. In practice, each mapping network specializes

in mapping a single concept.

3



CHAPTER 1. INTRODUCTION

Finally, by leveraging the knowledge contained in the ontology with the knowledge of

what relevant concepts the main network found in an input, a reasoner can automatically

generate plausible justifications for the main network’s behavior. In our example scenario

from before, a justification might tell us something like “The main network found that the

input contained the concepts ‘human’ and ‘female’; therefore, the main network classified

the input as ‘woman’. Note how the reasoning indeed depends on both the concepts found

in the input and the axioms established in the ontology.

The mapping networks are the central piece of the method, extracting symbolic

meaning from a subsymbolic network and opening the way to explainability. There-

fore, whether their architecture is optimal heavily influences the method’s usefulness.

For example, it is a well-known issue that neural networks can achieve high accuracy

while training by learning incorrect features that, by chance, are statistically correlated

in the training set (overfitting). The result is that the network will perform much worse

when faced with examples outside the training set; a worrisome prospect when deploying

such a system for real-world use. One of the uses for explanatory methods is to diagnose

these types of mistakes that are not evidenced by observable metrics such as accuracy. In

the concept mapping method, if a mapping network is unable to learn to map a particular

concept, one may conclude the main network is not using that concept in the classifica-

tion task, which could be an indication of incorrect learning or incorrect assessment of

what concepts are relevant to the task. However, if the architecture of the mapping net-

work is not optimal, then that, and not one of those other factors, might be the reason for

its inability to map the concept. This ambiguity severely hinders the usefulness of the

explanatory method. In order to make sure that all other variables are as controlled as

possible and that no observed phenomenon is of ambiguous origin, it is paramount to

optimize the architecture of the mapping networks. To further emphasize this point, let

us note that since the produced justifications can depend on all the identified concepts,

it is enough for one of the mapping networks to produce an inaccurate output for wrong

justifications to be produced. As Sousa Ribeiro and Leite [60] point out, if one were to

use 21 mapping networks, each producing accurate results 90% of the time, the proba-

bility of all being simultaneously correct would be 0.921 ≈ 10.9% . Indeed, in one of the

tests carried out in [60], for one of the outputs, only in 54.7% of the examples were all

justifications with the highest degree of confidence correct, and for 10% of the examples,

all produced justifications were incorrect.

During the work carried out in [60], two architectures were considered for the map-

ping networks: one with a single output neuron and one with two dense layers with ten

and five neurons before the output neuron. These very simple architectures were found

to be the best performing experimentally. However, that does not mean that this will

always be the case, as the nature of the main network’s task and its architecture can signif-

icantly affect the concept mapping task. Further, the original work’s main network’s task

was image classification on images of train drawings over an abstract background (Fig.

1.1). The main network’s task is to output which type of train is present in a given input,

4



1.1. CONTEXT AND MOTIVATION

Figure 1.1: Sample images from the XTRAINS dataset [60].

Each drawing is imposed on top of a random image to increase the complexity of the
classification task. The used ontology describes three types of trains - Type A, Type
B, and Type C. For example, in plain English, a train of type A is defined as: “trains
having either a wagon with at least a circle inside and a wagon with double walls on
each side or no wagons with geometric figures inside them” [60]. Types B and C are
defined in similar terms.

which is defined according to the types of wagons it tows, and the geometric figures in-

side of them. The XTRAINS dataset is not representative of standard image classification

datasets such as CIFAR10 and ImageNet. Firstly, the same features always have the same

appearance: circles, triangles, and types of wagons always use the same sprite. This is

not the case in other image classification datasets, which contain thousands of variants of

the same class, distinguished by different shapes and colors despite their common defin-

ing attributes. Further, the train is always fully contained inside the frame. Finally, the

trains do not exist in a 3D environment, making it impossible for features to appear from

different angles and perspectives. Sousa Ribeiro and Leite [60] also tested the concept

mapping framework on a traffic sign dataset, to which all previous criticisms equally

apply. Evidently, the results obtained by the mapping networks in [60] are insufficiently

generalizable, making further research imperative.
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1.2 Problem Statement and Contributions

For the Concept Mapping framework to be usable and applicable to real-world scenar-

ios, a deeper analysis must be conducted on how to build exemplary concept mapping

architectures. That is what we achieve in this dissertation. Accordingly, here are the core

aspects of our methodology:

• The Main Task: We deploy the explanatory method on a set of datasets for the same

classification task, which vary only in how hard they are to classify. Doing this

permits a deeper analysis of the concept mapping task: how it changes based on the

complexity of the main task and how the optimal architecture of the mapping net-

works itself changes. This flexibility allows a better understanding of what mapping

architectures to use in different scenarios. The datasets consist of synthetic data

generated by us to ensure control of all variables. The images consist of snapshots of

a 3D environment generated using the software Blender [18]. Similar to XTRAINS,

each image is not solely labeled with its respective main class but also with other

relevant concepts given by an accompanying ontology. Additionally, the dataset

generator supports custom ontologies, generating images and labels in accordance

with any provided valid ontology.

• The Architecture Search: Methodically finding what neural architecture best suits

each concept mapping task involves combing through a search space that is too large

to fully explore by trial and error, and limiting ourselves to a set of pre-determined

architectures introduces our own biases and severely limits the exploration. This

is why we propose Neural Architecture Search (NAS). NAS systems are able to

autonomously discover and test novel neural architectures, adapting until they find

the best performing one for a given task. Notably, concept mapping is not a typical

machine learning problem. So there is not much research work and knowledge be-

hind the optimal architecture for it, in contrast to image classification, for example.

Using NAS provides a way to search more effectively and efficiently than the usual

trial-and-error method used by a human researcher. NAS is also more likely to find

an out-of-the-box solution, as it is not affected by the human bias of doing things in

known ways. We work to test the hypothesis that NAS will prove to be useful for

automatically fine-tuning the mapping networks for each particular explanation

task, thus improving the applicability of Concept Mapping in real-world scenarios.

The main goal of this dissertation is to pave a road to consistently good concept

mappers; computational artifacts capable of translating from a language that no human

speaks. These models are our eyes into the exciting workings of the Deep Neural Network.

They represent a necessary step on the path to a world where that technology is put to the

betterment of our individual and public lives. We saw that Neural Architecture Search
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represents a promising candidate for achieving that goal, and we set out to test that

hypothesis.

Accordingly, here are the main contributions made in this dissertation:

• Empirical evaluation of concept mapping architectures, using systematic automated

search methods and applied to varying scenarios.

• A NAS implementation, custom-fit for learning concept mapping architectures.

In addition, we make the following contributions:

• Variable-complexity image classification dataset, ideal for research on how the task’s

complexity affects computer vision.

• Ontology-independent generator for the dataset above.

1.3 Document Structure

This dissertation is divided into seven chapters. We are currently in the introductory

chapter. Chapter 2, “Background”, introduces the prior knowledge needed to read the

rest of the document. We discuss the basics of artificial neural networks, gradient descent,

and authoring ontologies with description logics. Chapter 3, “State of the art”, goes into

deeper detail on the current literature on the specific technologies this dissertation fo-

cuses on. We detail how concept mapping works and our chosen NAS algorithm, DARTS.

Chapter 4, “The VCB dataset” centers on the dataset that was created for this dissertation.

We discuss how we introduce more complexity into the classification task, the underlying

ontology we used for our experimentation, and the practical details surrounding gener-

ating the images and labels. Chapter 5, “Empirical evaluation” details the methodology

used in the experiments carried out in this dissertation. We discuss how we met the

pre-conditions for running the experiments - adapting DARTS, generating the datasets,

training the main models - and provide detailed descriptions of the experiments we ran.

Chapter 6, “Results” contains a thorough discussion of our findings. We visualize the

gathered data along different axes and aggregate the insights gained. Chapter 7, “Conclu-

sion”, summarizes the results and contributions made in this dissertation, and contains a

discussion of possible future research avenues.

In addition, Appendix A contains the raw data from our experiments, in table form.
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Background

This chapter presents a review of the prior knowledge relevant to the project.

2.1 Machine Learning

An Artificial Intelligence system is a system that leverages computational power in order

to mimic human capabilities such as learning, decision making, and problem-solving [15].

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are often

used interchangeably, so it is important to distinguish between them here. DL is a sub-

field of ML, which is a sub-field of AI. While AI is the umbrella term for the concept of a

computer mimicking human cognitive abilities, ML describes AI algorithms that improve

with data and learn to perform tasks without having to be given explicit instructions.

DL describes the subset of ML algorithms powered by models with multiple layers of

non-linear transformations, almost always Deep Neural Networks (DNNs). These neural

networks can extract relevant features from unstructured data, making them less reliant

on prior human intervention than other ML algorithms.

Common problems in ML include Classification, Regression, Clustering, Association

Rule learning, and Ranking [9]. Classification is the attribution of one (or more, in the

case of Multilabel Classfication) out of N labels (such as dog, horse, or human) to a given

input. Regression is the prediction of a numerical value, for example, House Price, given

an input, for example, Size, Location. Clustering is the automatic grouping of inputs, for

example, grouping similar retail customers by their profiles. Association rule learning

is the formulation of rules that can be used to infer knowledge, for example, rules that

associate a customer’s purchases with products they are likely interested in. Ranking

is a regression problem that returns the position of a given input on a given scale, for

example, ranking search results on relevance upon a web search. When it comes to

the Classification, Regression, and Ranking problems, the models require pre-solved

examples to learn from. For example, in an image classification problem, each example

consists of an image and its respective class. This sort of approach is called supervised

learning. The usefulness of supervised learning models comes from their ability to, after
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training, generalize and produce accurate results for unseen, unsolved examples. As for

Clustering and Association Rule Learning, the models learn solely from the input data.

This is because no particular answer is known or expected beforehand. In contrast to

supervised learning models, the usefulness of these models comes from what they learn

from the training set itself (Clusters, Association Rules). This is called unsupervised

learning. The models focused on in this dissertation are supervised learning models;

therefore, we will mainly elaborate on that particular paradigm.

2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by the human brain, where hundreds

of billions of interconnected neurons process information in parallel [69]. For a long

time, these models have been popular solutions for classification, clustering, pattern

recognition, and prediction in many disciplines. They distinguish themselves from other

ML algorithms (such as support vector machines, logistic regression, decision trees, and

naïve Bayes) by their ability to learn complex non-linear representations of unstructured

data.

ANNs are built from smaller units called neurons (or nodes). A conventional ANN

contains neurons organized in layers: Neurons in a given layer receive data from the

neurons of the prior layer and output data to neurons in the following one. The first layer,

which receives the data from the user, is called the input layer. The last layer, which

outputs a human-understandable result (A classification, prediction, clustering, etc.), is

called the output layer. The layers between the input and output layers are called hidden

layers. An ANN, however, can be as simple as a single neuron.

Figure 2.1: Model of a Neuron, showing the weighted sum of the inputs and the Activation
Function.

Biological neurons can receive stimuli from multiple other cells, including other neu-

rons. If a given stimulus is higher than a certain threshold, the neuron fires an impulse
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that propagates to connected cells and neurons. Artificial Neurons function similarly, in

a broad sense. A neuron receives several inputs, which can either be provided by the user,

in the case of the neurons in the input layer, or otherwise by other neurons. Then, the

neuron performs a linear combination of the input via a weighted sum, to which a bias

value is added. The neuron’s output is a function of that sum, which only activates above

a certain threshold. This function is called the Activation Function. To illustrate, a model

of a neuron is presented in Figure 2.1.

2.1.1.1 Training a Neuron with gradient descent

To start this section, let us review some definitions and notation here. We will be dis-

cussing the gradients of scalar-valued differentiable functions. Scalar-valued denotes a

function with n variables that returns a scalar value for every point in n-dimensional

space. Differentiable represents a function whose derivative exists at each point. So, the

gradient of a scalar-valued differentiable function f with n variables is itself a function

that, for any given point p in n-dimensional space, returns a vector with the partial deriva-

tives of all of f’s variables at p. The vector returned by the gradient for a point p can be

relied upon to point to the direction of steepest ascent for f. For the sake of brevity, we

will not prove that, but, as we will discuss briefly, this property is the basis for gradient

descent. The partial derivative of a function f with respect to one of its variables is the

result of treating all other variables as constants and calculating the derivative. The gra-

dient of a function f is denoted with ∇f , and the gradient’s component that corresponds

to a variable x is denoted ∇xf . Notably, that component is the partial derivative of f

with respect to x, which can also be written like ∂f
∂x . The full derivative of a function f

with only one variable x can be written like df
dx . The latter notation is primarily used to

formalize mathematical rules. As a summary, we can write the gradient of a function f

with n variables at point p as:

∇f (p) =



∂f
∂x1 (p)

∂f
∂x2 (p)

...

∂f
∂xn (p)


=



∇x1f (p)

∇x2f (p)

...

∇xnf (p)


(2.1)

A Neuron is trained by adjusting the weights of the linear combination of its inputs

and the bias value in order to approximate the desired outcome [1]. Examples are pre-

sented to the neuron randomly, and the weights are iteratively adjusted to minimize a

given loss function.

Since the loss is a scalar-valued differentiable function of the weights, it is possible

to compute its gradient with respect to the weights. If we consider a set of weights a
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Figure 2.2: A visual representation of Gradient Descent for a two-variable function.

The two variables exist in the horizontal plane, and the graph’s height represents the value of the
function. The black arrow shows the possible trajectory of a Gradient Descent algorithm. Note
how the algorithm stops at a local minimum and whether it finds the global minimum depends
heavily on the starting point.

point in n-dimensional space, the gradient of the loss at that point is the direction of

steepest ascent for that function. Thus, each weight is adjusted in order to take a step

in the opposite direction, effectively minimizing the loss function. This process is called

Stochastic Gradient Descent. One can intuitively visualize this process by imagining

a hiker on a mountain who wants to go to its lowest point. However, it is very foggy,

and the hiker can only see a few meters in every direction. The hiker might devise the

following plan: look around, take a couple of steps in whichever direction has the steepest

downward slope, reassess, and repeat. Notably, following this protocol, the hiker would

not be guaranteed to find the absolute lowest point in the mountain. It will suffice to

imagine that he follows a downward slope that leads into a vale, which, despite being

surrounded by steep inclines on every side, is nonetheless quite high up in the mountain.

At that point, the hiker, realizing that a step in any direction would mean an increase

in altitude, would have no protocol to progress. Gradient descent, just like the hiker’s

strategy, does not guarantee that it finds a global minimum, but only a local one (Fig. 2.2).

The Learning Rate determines the step Gradient Descent takes, and it must be small

for the process to work. After taking even a small step in some direction, the gradient

changes and must be re-calculated to accurately assess the optimal direction to head in.

While a large learning rate leads to faster progress in the early stages of learning, it can

severely hinder convergence in the latter by ‘overshooting’ the local minimum (Fig. 2.3).

Since each neuron performs a linear combination of the inputs, a single Neuron net-

work can only learn (i.e., approximate) a linear function. In other words, a single Neuron
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Figure 2.3: A simplified visual representation of the negative effects a large learning rate
can have on gradient descent.

Figure 2.4: Linearly separable classes [32]

is only capable of learning to distinguish between linearly separable classes. Two classes

are linearly separable if there exists at least one line (plane in 3 dimensions and hyper-

plane above that) which contains all elements of each class on different sides (Fig. 2.4).

2.1.1.2 Multilayer Perceptron

To create a model capable of distinguishing between classes that are not linearly sepa-

rable, we need to have at least one non-linear transformation of the data before a linear

classification. This way, the model learns a transformation of the input that makes the

classes linearly separable, and able to be correctly classified by a linear classifier.

This nonlinearity is achieved by passing the output of a neuron through a non-linear

activation function before feeding it to the next neuron. In more complex ANNs, neurons

are often organized in a sequence of layers, where each layer outputs to the one in front

through an activation function. When a network exhibits this unidirectional flow of

information, it is called a Feed-forward Neural Network.

A commonly used Feed-forward Neural Network is the Multilayer Perceptron (MLP).

12
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The MLP is a fully-connected network (also referred to as Dense), which means any given

neuron receives, as input, the output of every neuron in the previous layer (Fig 2.5).

Figure 2.5: Model of an MLP, showing five fully connected layers [71]

2.1.1.3 Backpropagation Algorithm

Stacking multiple layers of neurons, however, introduces the interesting question of

how to train the network. We have seen that a single neuron is trained by adjusting its

weights according to its output to minimize the loss function. In a multi-layer network,

only the neurons in the last layer output values that can be compared to a target, so a

protocol for updating the rest of the network has to be developed. The updating process

starts at the output layer, and the weights of each of its neurons are updated just as

before. Regarding the second to last layer, its neurons are connected to neurons in the

output layer, meaning that they influence their computation. Thus, we can transfer - or

propagate - the loss from each output neuron to the neurons in the previous layer which

are connected to it. The loss of a neuron in a hidden layer is given by the sum of the losses

of all the neurons to which it outputs. In this sum, the losses are weighted according

to the coefficients of the respective neurons in the following layer (i.e the weight they

attribute to the neuron’s input). After computing the loss value of a neuron, its weights

can be updated as usual. This method is iteratively used to update the network’s weights

from the neurons in the output layer all the way back to the ones in the input layer. This

is called the Backpropagation Algorithm.

And so we arrive at the Feed-Forward Backpropagation Algorithm, a protocol for

training a neural network. To execute this algorithm, one starts by presenting a random

example to the network and passing the output of each layer to the next until reaching

the output layer, which produces the desired result (Feed-Forward). Then, this result

is compared to the target result for the given input, and the loss value is computed for

the output layer and propagated back through the network (Backpropagation). Finally,

the weights are adjusted in such a way that it minimizes the loss using Gradient Descent.

This process can be repeated indefinitely.
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2.1.1.4 Activation functions

Despite the popularization of the backpropagation algorithm in 1989[51], ANNs did not

see widespread use for a long time, in large part due to the formerly widely used Logistic

(Sigmoid) and Hyperbolic Tangent (Tanh) activation functions. Notably, these functions

saturate at high and low enough values (Fig. 2.6). This means that the gradient tends

towards zero outside of a small area near zero, making it hard to use gradient descent to

discern which neurons contain valuable information (and adjust the weights accordingly).

(a) (b)

Figure 2.6: The Logistic (Sigmoid) a) and Hyperbolic Tangent (Tanh) b) activation func-
tions.

The Sigmoid function tends towards zero for negative values and one for positive values,
while the Tanh tends towards minus one for negative values and one for positive values.
In both cases, the gradient tends towards zero at the edges.

This vanishing gradient problem, as it is called, was solved by the Rectified Linear

Unit (ReLU). Despite making its first appearance back in 1975 [19], recent interest in the

use of ReLU in neural networks was only spurred in 2010 when Nair and Hinton [34] used

it to improve Boltzmann Machines. The ReLU function is constant at zero for negative

inputs, and is an identity function for positive inputs (Fig. 2.7). Despite its simplicity,

the ReLU solves the vanishing gradient problem as its gradient is constant and greater

than zero for all active neurons. Further, it is cheap to compute both the function and

its gradient. The Sigmoid and Tanh functions, for example, use the exponential function,

while ReLu, as shown, only requires the max function. The Leaky ReLU (Also shown in

Fig. 2.7) is a ReLU variant that ensures a non-zero gradient for both positive and negative

values. This is meant to solve a problem with the original ReLU, where weights that turn

to negative values during training stop being updated since their gradient becomes zero

(the ‘Dead Neuron’ problem).

The Sigmoid function, despite no longer being present in the hidden layers of ANNs,

is still often used in their output layer. This is due to the desirability that an ANN output

a value between zero and one so that it can be interpreted as the probability that the

input belongs to a given class. Thus, the Sigmoid function is commonly used for binary
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(a) (b)

Figure 2.7: The ReLU a) and Leaky ReLU b) activation functions.

Two piece-wise linear functions. The ReLU is constant at zero for negative values, while
the Leaky ReLu exhibits a slight slope. Both are an identity function for positive values.
The ReLU can be written as f (x) = max(0,x) and the Leaky ReLy as f (x) = max(ax,x)
where a is positive and lesser than 1 (a = 0.2 in this particular representation).

classification - i.e., a classification task with two classes - and multilabel classification -

i.e., a classification task with n classes and no restriction on the number of classes that a

given input may belong to. However, the Sigmoid function is not adequate for single-label

classification - i.e., a classification task with n classes, each input necessarily belonging

to a single one - because, in those instances, one wants a probability distribution of the

membership of the input over all possible classes. So, single-label classification tasks use

the Softmax function at the output layer. The Softmax function converts a vector of K

real numbers into a vector of the same size with positive numbers between zero and one

that add to one, i.e., a probability distribution over K possible outcomes. The following

formula gives the Softmax function:

σ (z)i =
ezi∑K
j=1 e

zj
(2.2)

2.1.1.5 Convolutional Neural Networks

Other than the MLP, there are numerous types of neural networks, defined by the type

of layers that compose them. Convolutional Neural Networks (CNN) are one such type

worth mentioning since they excel at Computer Vision, a field of AI that focuses on

extracting useful information from images. Images are unstructured data, which, sum-

marily, means that between different images, the same pixel can not be interpreted as

containing the same information. Two pictures of dogs, for example, can feature their

subjects in entirely different positions in the frame. This is in contrast to structured data,

such as a table of values, in which the same column in two separate rows contains values

pertaining to the same feature or concept. For that reason, the MLP is inept at computer

vision. It could only learn to distinguish between very uniform images where the subjects
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Figure 2.8: Representation of the filter operation of a Convolutional Layer [10]

are always featured in the same place. The MLP also has no sense of locality: how a

pixel in a row is a neighbor of a pixel in the row below. For the MLP, the image is a

one-dimensional vector, and those two pixels would be vastly separated. Convolutional

Layers, on the other hand, can process two-dimensional data and preserve information

about the distance between pixels. These layers apply filters to the input by sliding a

kernel - a matrix of weights of a much smaller size than the image itself (e.g., three by

three pixels) - across all of its pixels. Computing the value of a pixel in the output of a

convolutional layer consists of centering the kernel on the same pixel on the input image,

multiplying the values of the covered pixels by the corresponding kernel weight, and

adding the resulting values (See Fig. 2.8). Applying the same kernel to all the input

image’s pixels allows for features to be extracted irrespective of where they are in the

input. The weights of the kernels are the trainable parameters of convolutional layers. A

typical convolutional layer comprises tens, hundreds, or even thousands of filters.

Convolutional Layers are great at extracting features from images, but it is usually

still advantageous to use fully-connected layers to learn a classification from those fea-

tures. Thus, a typical CNN consists of a stack of convolutional layers followed by a fully

connected classifier. The first convolutional layers learn to extract basic features such

as contrast, straight lines, and basic shapes. The deeper convolutional layers are able to

learn more complex features by leveraging the previously extracted ones. Finally, all the

information that the convolutional layers learned about the input is handed to the dense

section to produce a result. Since each filter extracts a feature from the input, irrespective

of its position, it is desirable to progressively reduce the resolution of the filters so as to

end up with unit indicators of whether a particular feature was found anywhere in the

input. To that end, Pooling layers are often used between convolutional ones. Pooling

layers do not contain any trainable parameters, and their only function is to reduce the

resolution of the feature maps, which they do by merging - pooling - a neighborhood of

pixels into a single value. The two most common pooling methods are average pooling
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Figure 2.9: Overview of the architecture of a typical Convolutional Neural Network [10]

- replacing a neighborhood of pixels by the average of its member’s values - and max

pooling - replacing them with the member with the highest value. Before feeding the

data to the dense section, the two-dimensional feature maps of the convolutional section

of the network are flattened - i.e., transformed into a one-dimensional array of values.

2.1.2 Reinforcement Learning

In addition to supervised and unsupervised learning problems, there is a class of prob-

lems - Reinforcement Learning (RL) - that consists of optimizing the decisions taken by

an agent in a given environment. A popular use case of reinforcement learning is software

for self-driving vehicles. Reinforcement learning models, like supervised ones, receive

feedback for their output and change accordingly. However, there is a fundamental differ-

ence: in RL, there is not a static set of data. Instead, the agent’s observations of the effect

of its actions in the environment are the data. Further, there is no known correct action

to take in any given circumstance. Instead, after performing an action, the agent may

receive a reward, which can be negative if the action produced an undesirable outcome

(e.g., hit a wall) or positive if it completed, or at least advanced towards, a stipulated

goal (e.g., reached destination successfully). This reward is produced by an interpreter

responsible for providing feedback to the agent according to the environment’s state. The

training of a reinforcement learning model consists of repeating an action-response cycle,

from which the agent slowly learns. This cycle can be summarized as follows:

1. The agent performs an action.

2. The action affects the environment.

3. The agent observes the environment and may receive a reward that reflects the

quality of that action with respect to a goal stipulated by the user.

4. The agent adjusts its decision-making algorithm based on the received feedback.

We provide a visual representation of this framework in Figure 2.10.
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Figure 2.10: The general framework of Reinforcement Learning

Two core concepts of RL are exploration and exploitation. In the early stages of train-

ing, it is desirable that a RL algorithm experiment with different actions and strategies -

Exploration - while in the latter stages, it should use what it has learned to become pro-

gressively better at the task - Exploitation. For this reason, RL algorithms often include

exploration-stimulating mechanisms that gradually weaken as the training progresses.

For example, some algorithms make the agent perform a random action with a certain

probability, which is slowly decayed to zero.

2.2 Description Logics

Another notable area of AI is knowledge representation and reasoning (KRR) - the study

of representing information in a way that a computer can use to perform complex infer-

ence and reasoning tasks. Ontologies - formal representations of a domain of knowledge

- are integral parts of KRR. To conceptualize a given domain of interest, ontologies make

use of individuals (singular entities), concepts (sets of individuals), and roles that indi-

viduals can occupy. Ontologies are sets of assertions describing these building blocks and

how they relate to each other.

In the field of KRR, formal languages for authoring ontologies - Description Logics

- are used. To represent the knowledge present in a given domain of interest, Descrip-

tion Logics first define the concepts of that domain (its terminology) and then use those

concepts to specify the properties of individuals present in that domain [3]. These lan-

guages build on formal, logic-based semantics and ensure that implicit knowledge about

concepts and individuals in the domain can be automatically inferred by reasoners from

the knowledge provided explicitly. These properties are why Description Logics see wide
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use in the field of Artificial Intelligence. Description Logics vary in their expressiveness,

i.e., what constructors can be used to write axioms. More expressive Description Logics

require more resources to reason over than simpler ones, so when choosing a Description

Logic, one should avoid choosing one with more expressiveness than one needs.

Description Logics are derived from First-Order Logic (FOL), a set of formal systems

commonly used in mathematics and other fields. FOL includes logical symbols such as

universal , ∀, and existential, ∃, quantifiers, disjunction, ∨, conjunction, ∧, implication,

→, equivalence, ↔, negation, ¬, variables, e.g. x,y,z, and equality, =. Further, FOL

offers predicate symbols to denote a property of a variable (Woman(x) meaning that x is a

woman), and function symbols (f ather(x) returning the father of x). First-Order Logic, for

how expressive it is, is not decidable, meaning that no algorithm is guaranteed to solve

any true-false decision problem written in FOL in a finite number of steps. Description

Logics, by supporting only fragments of FOL, are usually decidable. This characteristic

is paramount if we wish to reason automatically over an ontology.

2.2.1 The ALC description logic

ALC - Attributive Concept Language with Complements - is a description Logic intro-

duced by Schmidt-Schauß and Smolka [54], and it has served as a basis for many sub-

sequent and more expressive description logics. For that reason, it includes all of the

standard and most common constructs - and indeed all of the ones relevant to this disser-

tation - so let us review it here, according to the definitions provided in the “Handbook

of Knowledge Representation” by Santiago [52].

A description logic is defined by its syntax (i.e., the set of legal symbols and expres-

sions) and its semantics (i.e., the meaning of each symbol).

Let us start with the syntax: Let NC be the set of concept names, NR be the set of role

names, NO be the set of individual names, R be a role name (R ∈NR) and C and D be ALC
concept expressions. The following are all valid ALC concepts:

⊤ top (universal)

⊥ bottom (contradiction)

A ∈NC all atomic concepts

C ⊓D the intersection of two concepts

C ⊔D the union of two concepts

¬C the complement of a concept

∃R.C the existential restriction of a concept by a role

∀R.C the universal restriction of a concept by a role

19



CHAPTER 2. BACKGROUND

The two major elements present in all Description Logics are the TBox and ABox. The

TBox introduces the domain’s concepts, their properties, constraints, and how they relate

to each other. The ABox contains assertions about individuals. Thus, the TBox describes

a model of a world (i.e., the ground rules), and the ABox an instantiation of that model.

The TBox is a finite set of general concept inclusions (CGI), which can take the follow-

ing forms:

C ⊑D inclusion

C ≡D equivalence (pair of symmetrical inclusions)

For example, the TBox may contain the expression:

Mother ≡Woman⊓∃hasChild.P erson

“All individuals that are women and have a child are mothers (and vice-versa)”

The ABox is a finite set of assertional axioms, which can take the following forms:

C(a) concept assertion (a is a C)

R(a,b) role assertion (a is R-related to b)

where a and b are individual’s names (a,b ∈NO). Continuing the example, the ABox may

contain the following expressions:

Woman(Alice) “The individual named Alice is a Woman”

Person(Bob) “The individual named Bob is a Person”

hasChild(Alice,Bob) “Bob is Alice’s child”

A knowledge base (KB) consists of a pair (T ,A), where T is a TBox and A is an ABox.

Intuitively, we can see that, given a KB composed of our example TBox and ABox, an apt

reasoner would be able to infer that:

Mother(Alice) “The individual named Alice is a Mother”

For us humans, it is relatively easy to see how this axiom follows from the previously

established ones. Computers, however, do not have any knowledge but that which is given

to them and so require a formalization of the meaning of each symbol in a description

logic’s syntax. To encode that meaning, semantics relies on pre-established set-theory.

Accordingly, semantics are given by interpreting concepts as sets of individuals and roles
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as sets of ordered pairs of individuals. Logical constructs called interpretations are used

to encode how ontology axioms can be interpreted as set-theoretical expressions. An

interpretation I = (∆I , ·I) consists of domain ∆I , which is an arbitrary non-empty set of

individuals, and a interpretation function ·I that maps:

• every concept to a subset of ∆I

• every role to a subset of ∆I ×∆I

Such that, for all concepts C, D, and all role names R:

⊤I = ∆I

⊥I = ∅

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

¬CI = ∆I \CI

(∃R.C)I = {x ∈ ∆I | There is some y ∈ ∆I with (x,y) ∈ RI and y ∈ CI}

(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if (x,y) ∈ RI then y ∈ CI}

To say that an interpretation is a model of (denoted with |=) a given axiom is to say

that the interpretation reflects the correct meaning of the symbols used in that axiom. For

that reason, establishing rules for whether an interpretation is a model of a given axiom

is a formal way of defining the meaning of those very symbols. An interpretation I is

said to be a model of CGIs and assertional axioms according to the following rules:

I |= C ⊑D if and only if CI ⊆DI

I |= C(a) if and only if aI ∈ CI

I |= R(a,b) if and only if (aI ,bI) ∈ RI

An interpretation I is said to be a model of a TBox if it is a model of every CGI in it

and is said to be a model of a ABox if it is a model of every assertional axiom in it:

I |= T if and only if I |= Φ for every Φ ∈ T

I |= A if and only if I |= Φ for every Φ ∈A
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Finally, an interpretation I is said to be a model of a knowledge base K = (T ,A) if it

is a model of both its TBox and ABox:

I |= K if and only if I |= T and I |= A

One knows that one’s perception of a given axiom or set of axioms is congruent with

their actual meaning if the interpretation corresponding to that perception is a model of

the axiom or set of axioms. Given this formalization of a description logic’s semantics,

reasoners use set-theory principles to infer an individual’s membership to a concept (i.e.,

a set of individuals) as a consequence of its membership to other concepts.

Another critical notion to introduce here is entailment. Entailment means that an

axiom Φ follows from a set of axioms KB. Entailment is also denoted with |=. Formally,

we say that KB |= Φ if and only if Φ is true in all worlds where KB is true. In other words,

it is impossible to instantiate a model that entails all axioms in KB but not Φ .

2.2.2 Current Description Logics and Reasoners

Web Ontology Language (OWL) is a family of knowledge representation languages built

on the World Wide Web Consortium’s (W3C) XML standard RDF [37]. The W3C cur-

rently endorses multiple profiles of OWL, which vary in their expressiveness. OWL 2 DL

offers the highest possible expressiveness while remaining decidable. It features all OWL

constructs but has constraints on how they can be used. OWL 2 Full is OWL 2 without

any limitations; however, it is undecidable. Thus no reasoner exists for it that can always

return a yes/no answer. OWL 2 EL, OWL 2 QL, and OWL 2 RL are all less expressive than

OWL 2 DL and aimed at specific applications - large bio-health ontologies, integration

with database management systems, and scalable reasoning, respectively [36].

Popular reasoners for OWL include Fact++ [16] by the University of Manchester, Her-

mit [24] by Oxford University Computing Laboratory, Pellet [39] by Clark & Parsia, LLC,

and RacerPro [43] by Racer Systems. However, some of these reasoners have not, at the

time of writing, fully implemented OWL 2 conformance.

A notable extension of OWL-DL is DISPONTE [50] semantics, which introduces the

ability to represent uncertainty in an ontology’s axioms by annotating each axiom with

the probability that it is true. DISPONTE creators, Riguzzi et al., also presented the

BUNDLE reasoner, which performs inference over probabilistic ontologies, and produces

explanations with an attached probability that can be interpreted as a confidence value.
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State of the art

In this chapter, we review the current literature on the areas relevant to this dissertation.

We include a general overview of two fields - Explainable AI and Neural Architecture

Search - and go into deeper detail on the technologies that will be directly involved in

our work - Concept Mapping and DARTS, respectively.

3.1 Existing Explainable AI Solutions for black-box models

Multiple solutions to the Explainable AI problem have been proposed. One category of

such solutions is proxy-based methods, in which, given a complex uninterpretable model,

a simpler model is created and trained to behave similarly to the first. This simpler model

can then presumably be interpreted [47]. However, these methods do not directly provide

any explanation for the original model’s behavior, only a means of finding one. Often,

proxy-based methods produce either over-simplified versions of the original model or

ones too complex to be easily interpretable. Additionally, since some of these methods

only use the input-to-output relation of the original model to build the proxy one, it is

possible to build unfaithful proxies.

Other Explainable AI solutions focus on outlining which parts of a given input were

most relevant to a model’s decision. This is done via the creation of Attribution maps,

which assign a contribution value to each input, corresponding to how important that

input was to the model’s decision. Attribution maps can be generated by using the

internal parameters of the model to compute relevancy metrics [4, 57], or by selectively

occluding parts of the input and measuring how that affects the produced output [74]

[40]. Figure 3.1 shows an overview of how one of these methods (RISE [40]) functions,

and Figure 3.2 shows examples of the attribution maps obtained using that same method.

Attribution maps, while providing information about what parts of the input were most

relevant to a produced output, provide no information as to why that is the case [47]. The

task of leveraging the knowledge into an understanding of the model’s inner workings

still falls on the user.
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Figure 3.1: Overview of RISE [40].

Parts of an image are occluded using randomized masks. The outputs of a black-box
model are recorded for each masked input. A final saliency map is generated using a
weighted function on those outputs.

(a) Sheep - 26%, Cow - 17% (b) Importance map of ‘sheep’ (c) Importance map of ‘cow’

(d) Bird - 100%, Person - 39% (e) Importance map of ‘bird’ (f) Importance map of ‘person’

Figure 3.2: Pixel importance maps generated using RISE [40] for a ResNET50 (black-box)
model.

(b) and (c) show that the model only recognized the white sheep while confusing the
black one for a cow. (e) shows that the model mainly recognized the bird on the right-
hand side, and (f) shows that the model misinterpreted parts of the birds as a person.
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3.2 Concept Mapping

Sousa Ribeiro and Leite [60] developed a method to produce justifications for a neural

network’s output. This method, concept mapping, leverages an ontology that provides the

necessary knowledge about the task’s domain to produce justifications for a given output.

This ontology includes concepts equivalent to the ones extracted by the main network

(i.e., the classes in the classification task) and others relevant to the definition of the main

concepts. In order to leverage that knowledge, a mapping between the network’s internal

representations of the input and each relevant concept is established. In other words,

a mapping is established between each relevant concept and what internal behavior it

triggers in the main network when it appears in the input.

3.2.1 The Mapping Networks

In order to establish this mapping, Sousa Ribeiro and Leite [60] proposed the use of

classifiers, dubbed mapping networks, each trained to detect a single concept in the net-

work’s latent activations. These mapping networks are trained via a supervised learning

approach, meaning labeled examples must be produced beforehand to train them. To

do this, examples from the dataset of the main network are additionally labeled with

the selected ontology concepts present in them. For example, an image of a turtle may

contain the concepts describing “individuals having four legs” and “individuals having

a shell”. Since this is a manual and expensive process, it is only done for a subset of ex-

amples of the size needed to train the mapping networks. After acquiring the labels, the

mapping networks are fed the activations of the hidden layers in the main network, and

given whether their respective ontology concept was present in the input that produced

those activations as targets, .

The reader might wonder whether all of the main network’s activations need be fed

to the mapping network. After all, conventionally sized CNNs can have tens of millions

of trainable parameters, and given that all the data is fed forward through the network,

we should expect the same information to be found at multiple levels, albeit not always

in the same format. We previously saw that Convolutional Neural Networks are apt

at extracting complex features from unstructured image data. This is due to how the

stacking of multiple layers allows for simple patterns (e.g., lines and basic shapes) to be

detected in the first layers and more complex ones (e.g., ears, tail, wheels) to be extracted

in the latter ones. So, if a concept in the ontology describes “All animals with a tail”

and that concept is relevant to classification task, it should be easily extracted from the

activations of one of the latter layers. As was detailed in Section 2.1.1.5, at the end of the

convolutional part of a CNN, the features extracted from the image have been identified

and largely abstracted from their position in the input. Therefore, the representations of

the dense part of the network are viable candidates for input for the mapping task.
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3.2.2 Producing justifications

A justification for a given fact Φ , given a set of axioms KB is the minimal subset of KB

that entails Φ . It is a minimal subset in the sense that removing any one of the facts

will result in the entailment no longer holding. So a justification for Φ , given a KB is

J ⊆ KB, such that J |= Φ and for all J ′ ⊂ J , J ̸|= Φ . This ensures that no unnecessary

axioms are presented in the justification. Having trained the mapping networks, we can

assess what concepts the main network found in a given input and subsequently produce

a justification for its output by leveraging those concepts along with the ontology. In

essence, we form a knowledge base in which the TBox is the knowledge contained in the

ontology, and the ABox contains the observations of the mapping networks. Then, we

produce a justification for an axiom that represents the output of the main model, given

that KB. For example, consider a KB = (T ,A) where:

T = {Woman ≡Human⊓Female, Mother ≡Woman⊓∃hasChild.P erson, (...)},
A = {}

Now, let us imagine that the main network classified a given input as Woman and that the

concept mappers found the concepts Human and Female in its internal representations.

First, we add the concept mappers’ findings to the ABox in the KB:

T = {Woman ≡Human⊓Female, Mother ≡Woman⊓∃hasChild.P erson, (...)},
A = {Human(input),Female(input)}

Then, producing a justification for the axiom Woman(input), which represents the output

of the main network, we would get the axioms:

Human(input)

Female(input)

Woman ≡Human⊓Female

From which by necessity follows that Woman(input), giving us the likely reasoning the

main network took.

A further problem arises when producing these justifications in a real - more com-

plex - scenario: often, large numbers of plausible justifications are generated for a single

output. This is not helpful to the human user, who likely wants to be given only a few,

if not a single explanation. For this reason, Sousa Ribeiro and Leite[60] interpreted the

values output by the mapping networks as a degree of belief in their prediction. Then,

they used DISPONTE [50] - a semantics for representing probabilistic knowledge bases

- to represent that degree of belief and the BUNDLE reasoner [49] - a Pellet-based [59]

reasoner that supports DISPONTE - to calculate the degree of belief for each justification.

Then, the justifications with the highest degree of belief are selected to be shown to the

user.
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When interpreting the output of the mapping networks as their degree of confidence,

calibration becomes a consideration. Calibration is a notion that describes how close the

probability given by the main network for the membership of an input to a class is to the

actual probability of that input belonging to that class. In other words, for a perfectly

calibrated model, predictions with probability p ∈ [0,1] are correct 100p percent of the

time. Plotting the model’s degree of confidence against its accuracy, then, should yield

the identity function.

Calibration can be visually evaluated with reliability diagrams. Because there are

finite samples, predictions are partitioned into equally-shaped bins, and accuracy is com-

puted jointly for each bin (Figure 3.3). Deviation from the identity represents miscalibra-

tion.

Figure 3.3: Confidence histograms (top) and reliability diagrams (bottom) for a 5-layer
LeNet (left) and a 110-layer ResNet (right) on CIFAR-100. Taken from [22].

Further, calibration can also be summarized in a single scalar value. Expected Calibra-

tion Error (ECE) is one of several ways of doing so. ECE approximates calibration error by

taking the weighted average of the accuracy/confidence difference of M bins, containing

a total of n samples, like this:

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf (Bm)| (3.1)

where Bm is the mth bin. An ECE value of zero means perfect calibration (accuracy equals

confidence).
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3.2.3 The protocol

Let us summarize the protocol for employing the Concept Mapping explanatory method.

Firstly, meet the following pre-requisites:

• Have a dataset and a classification task for that dataset.

• Have a deep neural model (the main network) that was trained for that task and

whose behavior you want to justify.

Then, acquire the tools required for the method:

• Write an ontology - in a decidable description logic - that describes concepts analo-

gous to the classes in the classification task and their relations to other, more specific

concepts that you deem relevant.

• Label a subset of examples in the dataset with respect to the relevant concepts.

• Build and train classifiers (the mapping networks) to map the network’s internal

representations to each relevant concept.

• Acquire a reasoner that is compatible with your chosen description logic.

Finally, it is possible to produce justifications for the main network’s output for a given

example by:

• Providing the main network with the example and having it produce a classification.

• Using the mapping networks to identify the concepts that the main network found

in that example.

• Using the reasoner to produce a justification for the network’s output.

Optionally, use a probabilistic reasoner to rank the produced justifications. Fig. 3.4 shows

an overview of the Concept Mapping method.

3.2.4 Discussion

This method relies on the hypothesis that if the selected concepts are indeed relevant to

the task, they will be extractable from the trained network’s internal representations of

the input at a high level of accuracy. This hypothesis was tested and confirmed. Naturally,

a situation can happen when the human-defined and thought-to-be-relevant concepts can

not be effectively extracted from the main network’s internal representations. This would

be an early sign that the network is extracting the wrong features. This could happen

if the dataset contained irrelevant features that were strongly statistically correlated to

the relevant ones (e.g., all the pictures of dogs also feature green grass). If the irrelevant

features are easier to learn than the relevant ones, the network will likely learn incor-

rectly and overfit. Similarly, the selected ontology concepts should also be as statistically
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TypeB(input)

TypeB(input)

PassengerTrain LongTrain FreightTrain

Train ≡ ∃has.(Wagon ⊔ Locomotive)
TypeA ≡ WarTrain ⊔ EmptyTrain

TypeB ≡ PassengerTrain ⊔ LongFreightTrain
TypeC ≡ RuralTrain ⊔MixedTrain

≥ 2 has.FreightWagon ⊑ FreightTrain
LongFreightTrain ≡ LongTrain ⊓ FreightTrain

. . .

LongTrain(input)
FreightTrain(input)

LongFreightTrain ≡ LongTrain ⊓ FreightTrain

TypeB ≡ PassengerTrain ⊔ LongFreightTrain

Input Main Network Output

JustificationOntology

Mapping Networks

J

Figure 3.4: Overview of the Concept Mapping Method, sourced from [60]

independent of each other as possible. Otherwise, a mapping network could erroneously

learn to detect a concept by “looking for” representations produced by a different one. If

a strong correlation between two concepts is present in the actual domain and not just

a consequence of biased sampling, then it should be considered that only one need be

extracted.

Another consideration for this method is the input received by the mapping networks.

Providing them with the whole set of activations can be considered inefficient, and it may

be thought that filtering the input may result in performance gains. Sousa Ribeiro and

Leite [60] experiment with using a procedure called input Reduce, which by selectively

hiding some of the features from the mapping network, training it with those features,

and comparing results with different configurations, manages to reduce the input size

of the mapping networks while maintaining similar accuracy. While InputReduce did

manage to provide similar to slightly better performance with fewer parameters, the

computational cost of running the procedure is very high. This, coupled with the fact

that ANNs are already quite apt at extracting the relevant sections from a larger input

makes using InputReduce unnecessarily expensive.
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3.3 Neural Architecture Search

Due to its ability to perform feature extraction, deep learning has led to large strides in

many fields of research. However, creating a Neural Network for a particular problem is

far from straightforward, as it heavily relies on the researcher’s prior experience, making

it hard for beginners to make valuable contributions. In fact, discovering state-of-the-art

neural network architectures requires substantial effort from even human experts.

The field of Neural Architecture Search (NAS) stems from the interest in streamlining

and automating the process of neural architecture design. NAS-RL [76] and META-QNN

[5], two early NAS systems that were based on Reinforcement Learning (Section 2.1.2),

can create architectures capable of state-of-the-art performance in image classification

tasks [45]. While these systems were important proofs-of-concept for NAS, they require

huge amounts of computational power by the standards of most ML researchers, effec-

tively locking them from using NAS in a meaningful way. Since we are optimizing the

architecture of relatively simple models - the mapping networks - this does not outright

disqualify it as a viable tool. Nevertheless, in recent years, the NAS research community

has placed significant emphasis on finding approaches for speeding up the process.

As a relatively young field, NAS research is rather exploratory in nature, meaning

that different NAS systems diverge significantly in their methodology. So, to better under-

stand and compare the different alternatives, it is important to know the main defining

attributes of a NAS system:

• Search Space: The domain of architectures that are considered as candidates. This

attribute poses a trade-off between convergence time and the quality of the final

model. Having a more extensive search space may lead to finding higher-quality

architectures, but it will also increase the time it takes to find them.

• Search Strategy: The method by which the Search Space is traversed. Common

search strategies employed by early NAS systems are random search (RS) [55],

reinforcement learning (RL) [5, 76], evolutionary algorithms (EA) [44], bayesian

optimization (BO) [27], monte carlo tree search (MCTS) [35], and sequential model-

based optimization (SMBO) [25].

• Evaluation Strategy: The method used to benchmark the candidate architectures.

In order to find an optimal architecture, we need a protocol to obtain at least a

comparative ranking between different candidates.

In sum, a NAS system traverses its search space using its search strategy while using

its evaluation strategy to decide the direction in which to head. Fig. 3.5 shows a diagram

of this general framework.
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Search 
Strategy

Search Space

Candidate 
Architecture

Optimal 
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Training & Rank

Select
Performance 
EvaluationEvaluation 
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Figure 3.5: The general framework of NAS [45]

Here we summarize the main ways in which these core aspects have changed from the

very first implementations of NAS to modern and much more efficient NAS solutions:

• Modular Search Space: Early NAS work utilized a global search space, which means

the system had to optimize the entire architecture at once. Recently, a popular

approach has been to adopt a Modular search space. This commonly entails trans-

forming the search space into a few small computational structures, often called

cells or blocks. A final architecture is built by repeatedly stacking these cells. This

method effectively reduces the complexity of the NAS search because optimizing

a single cell is a much simpler problem than optimizing a whole architecture. Fur-

ther, this approach offers versatility since the same learned cells can be arranged

in different ways to allow for good performance in different dataset tasks, which is

much less feasible with a global search space. This concept is further supported by

the fact that state-of-the-art human-made architectures often consist of repeating

architectural patterns, such as the VGG [58], and ResNet [23] architectures.

• Continuous Search Strategy: The initial approaches to NAS, based on Reinforce-

ment Learning, Evolutionary algorithms, and such, treat NAS as a discrete opti-

mization problem. This is the intuitive approach, given the modular nature of

deep neural networks. However, adopting a continuous search strategy, and thus

allowing for the use of gradient optimization techniques, can provide significant

efficiency benefits. Earlier works adopting a continuous search strategy focused on

fine-tuning existing architectures (e.g., optimizing the hyperparameters of convolu-

tional layers [48]). DARTS [33], a later work, formulates the complete NAS problem

in a differentiable manner, allowing for efficient search of the architecture using

gradient descent.

• Neural Architecture Recycling Searching a Neural Architecture from scratch has

its advantages. The higher degree of freedom makes it more likely for an “out-of-

the-box” network structure to be found. However, this comes with a significant

efficiency cost. To make NAS algorithms more time-efficient, we can leverage prior

knowledge and high-performance networks as a starting point for further opti-

mization. To this effect, multiple NAS works have focused on making incremental

transformations to an existing man-made network [6, 8].
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• Incomplete Training At the core of the NAS problem is the benchmarking and com-

parison of multiple candidate networks. The value being optimized is the loss of the

fully trained architecture on a validation set. So, the intuitive way to compare the

networks is to simply train each one and measure their performance. Although this

is the most accurate way to compare candidate networks, it is also the slowest, once

again introducing a trade-off between performance and efficiency. Furthermore, the

learned parameters of each candidate network are simply discarded after training,

which is an under-utilization of that learning. To target this issue, ENAS [41] pio-

neered the concept of parameter sharing by regarding each candidate network as

a computing subgraph of a supercomputing graph - the search space. With this

paradigm, multiple candidate networks containing the same section of the super-

computing graph can share the optimized weights for that section (Fig. 3.6). This

removes the need to train each candidate network from scratch, significantly re-

ducing time complexity. Another popular method to reduce time spent evaluating

candidate networks is early stopping. This simply entails training each candidate

network for only a few epochs and extrapolating from there their relative perfor-

mance. In fact, Zheng et al. [75] showed that the relative performance rankings of

candidate networks largely remain the same between early and late training. Hut-

ter, Hoos, and Leyton-Brown [25] propose a new ranking framework: Sequential

Model-Based Optimization (SMBO), which tackles the problem differently by con-

tinuously training a performance predictor network (called the surrogate model).

Only the candidate cells that are most highly rated by the surrogate model are actu-

ally trained, after which the surrogate model’s weights are optimized to reflect the

observed performance. As the search progresses, the surrogate gets progressively

better at selecting the most promising architectures.

The main factors in making a choice of NAS framework for use in concept mapping

are efficiency and performance. These two attributes are often inversely proportional,

thus offering a trade-off. However, due to the extensive work done in optimizing NAS

methods, it is today possible to obtain state-of-the-art results without investing thousands

of GPU days. In the extensive performance comparison presented in [45] of current NAS

methods on the CIFAR-10 dataset, it was found that NAS-RL, requiring 22400 GPU days

to converge, found a network with a 3.65 error rate, while DARTS, requiring 4 GPU

days to converge, found one with 2.76 error rate. This is partly due to how DARTS

uses a modular search space, continuous search strategy, and incomplete training, while

NAS-RL features none of the above. Given its state-of-the-art results and diminished

computational requirements, DARTS was selected as the basis for a NAS algorithm to

use for this dissertations’ experiments and concept mapping as a whole. Thus, we will

discuss it in more detail here.
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Figure 3.6: Diagram of the parameter sharing mechanism in ENAS [41]

The nodes in the graphs represent data transformations and the edges represent data
flow. Different candidate networks sample different subgraphs of the supercomputing
graph, but the weights are shared for intersection regions. Sourced from [45].

3.3.1 DARTS

3.3.1.1 Search Space

DARTS uses a modular search space, which means that, instead of designing a whole ar-

chitecture, it designs a cell that can be duplicated and stacked to build a final architecture.

In the original DARTS work, copies of the learned cell can be arranged to form convolu-

tional or recursive neural networks, depending on the configuration. A cell is regarded as

a Directed Acyclic Graph (DAG), in which each node x(i) is an internal representation of

the input and each edge (i, j) is an operation o(i,j) that further transforms x(i). The content

of each node x(i) is computed based on all of its incoming edges:

x(i) =
∑
i<j

o(i,j)(x(i)) (3.2)

Each cell is set to have two inputs and one output. The inputs represent the outputs

from its two closest preceding cells. In the case of the first cell, its two inputs are the

same and equal to the input of the network. The second cell’s inputs are the input of the

network and the output of the first one, and so forth. The output of a cell is given by a

concatenation of the output of each of its nodes.

Learning the optimal cell consists of learning the optimal operation to place on each

of its edges. In addition to other candidate operations, a Zero operation is used to indicate

a non-existing connection between two nodes.
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During training, to continuously relax the search space, each edge of the cell, rather

than a particular operation, represents a Softmax over all candidate operations:

ō(i,j)(x) =
∑
o∈O

exp(α(i,j)
o )∑

o′∈O exp(α(i,j)
o )

o(x) (3.3)

where O is the set of all candidate operations and α a set of vectors α(i,j) containing

mixing weights associated to each operation of each edge between two nodes. Essentially,

rather than an edge representing a single transformation to the data, it represents, during

the architecture search, a weighted sum of all candidate transformations, weighted by

the likelihood that each is the optimal one. This likelihood is given by α, the trainable

parameters via which DARTS learns an architecture. Going further, we will refer to the

set of these mixing weights α as the arch weights - since they encode the architecture -

and to the trainable parameters of the candidate operations as the model weights.

Once the optimal cell has been learned, the discrete architecture can be obtained by

replacing the mixed operations with the most likely operation:

o(i,j) = argmaxo∈O α
(i,j)
o (3.4)

The validation-set loss value depends on both the arch weights and model weights, so,

in order to minimize it, both are jointly optimized. This implies a bilevel optimization

problem, a kind of hierarchical optimization where an optimization task contains another

optimization task as a constraint. We refer to the former as the upper-level task and the

latter as the lower-level task. Informally, the upper level’s task outcome is a function of

its own decision (the upper-level variable) and the lower-level task’s decision (the lower-

level variable). For any given decision made by the upper-level task, there is a lower-level

optimization problem that provides the optimal “response” to that decision. In our case,

we want to optimize the arch weights α, such that when the weights w of the resulting

architecture are optimized to minimize the training-set loss (denoted with w∗(α) ), the

validation-set loss is minimized. The resulting bilevel optimization problem is one with

α as the upper-level variable and w as the lower-level variable:

minα Lval(w
∗(α),α)) (3.5)

s.t.1 w∗(α) = argminw Ltrain(w,α) (3.6)

where Lval is the validation loss and Ltrain is the training loss. To solve this problem, the

arch weights α are first optimized by descending the validation loss. Then the model

weights are optimized by descending the training loss of the architecture found in the

upper-level optimization. This process is repeated until convergence, at which point the

final architecture is derived. Figure 3.7 contains a summary of the DARTS process for

Neural Architecture Search. It is important to note that this diagram is slightly simplified.

1a short-hand for “subject to”

34



3.3. NEURAL ARCHITECTURE SEARCH

In practice, there are two additional incoming edges to each of the nodes, one for each

of the cell’s inputs (recall that a cell has two inputs from its two closest preceding cells).

These additional edges act just like the others: they represent a set of candidate data

transformations that are optimized during training.

Figure 3.7: An overview of DARTS [33].

(a) The problem, find the optimal cell. (b) Continuous relaxation of the problem by
replacing each edge with a set of mixed operations. (c) Joint optimization of architecture
and network weights. (d) Derivation of final architecture by replacing mixed operations
with the learned most likely operation

3.3.2 Approximating the Architecture Gradient 2

Optimizing the upper-level task (equation 3.5) with gradient descent entails computing

the gradient of the validation loss for a model with the current arch weights and fully

trained model weights (Lval(w∗(α),α)). However, that would involve training the model

to convergence at each step of the architecture search, and that would be prohibitively

expensive. This computation is at the core of DARTS, and indeed was implemented in

the course of this dissertation, so we will discuss it in detail here. DARTS proposes the

following approximation:

∇αLval(w
∗(α),α) (3.7)

≈ ∇αLval(w − ξ∇wLtrain(w,α),α) (3.8)

where w∗(α) denotes the fully optimized model weights for the current arch weights,

w denotes the current model weights, and ξ is the learning rate for the model weights

optimization. This avoids having to compute w∗(α) (i.e., optimize the model weights until

convergence) by approximating it using a single training step on w. Now, we must simply

compute the approximate gradient in expression 3.8.

2Note that the background on the notation surrounding gradients and partials derivatives from Section
2.1.1.1 is relevant to this section.
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To begin solving the expression let us use w′ as a short-hand for w − ξ∇wLtrain(w,α) .

Using this abbreviation, we get the following expression:

∇αLval(w
′ ,α) (3.9)

Here, essentially, we have to compute the gradient of a multivariate function Lval whose

variables are both functions of α. The first term w’ is a function x(α) = w−ξ∇wLtrain(w,α)

and the second term α can be viewed as the identity function y(α) = α. To solve such a

gradient, we use the multivariate chain rule, which states that given two functions x(t)

and y(t), both differentiable at t, then a function z = f(x(t), y(t)) is differentiable at t and:

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy

dt
(3.10)

In our case:

• t is α

• x(t) is x(α) = w − ξ∇wLtrain(w,α) = w′

• y(t) is y(α) = α

• z = Lval(w′ ,α)

Thus, following equation 3.10 and starting with the first term, we need to compute:

∂z
∂x

dy

dt
=∧ 3∂Lval

∂w′
dw′

dα
(3.11)

The left-hand side of the product is the partial derivative of Lval with respect to w’ (i.e.

∇w′Lval(w′ ,α)) and the right-hand side is the derivative of w’ (i.e. ∇α(w′)). So, we can now

write the first term of equation 3.10 for our case:

∂Lval

∂w′
dw′

dα
= ∇w′Lval(w

′ ,α)∇α(w′) (3.12)

Given that w’ is a known function, we can further solve∇α(w′). Since w′ = w−ξ∇wLtrain(w,α)

and ∇wLtrain(w,α) is a function of α, this is a derivative of a function composition, so we

can use the chain rule, which states that, given a function g(x) differentiable at x, then a

function f(g(x)) is differentiable at x and:

df

dx
=
df

dg

dg

dx
(3.13)

In our case:

• f is w’

• g is g(α) = ∇wLtrain(w,α)

3The =∧ symbol simply means “corresponds to”
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• x is α

And thus, we need to compute:

df

dg

dg

dx
=∧

dw′

d∇wLtrain

d∇wLtrain

dα
(3.14)

The left-hand side of the product is the derivative of w’ with respect to the function

∇wLtrain, so, we treat ∇wLtrain as a variable and solve the derivative, which yields −ξ.

The right-hand side is the derivative of ∇wLtrain with respect to α, i.e ∇α(∇wLtrain(w,α)),

which can be written as ∇2
α,w(Ltrain(w,α)). So we solve ∇α(w′) as such:

dw′

d∇wLtrain

d∇wLtrain

dα
= −ξ∇2

α,w(Ltrain(w,α)) (3.15)

Replacing ∇α(w′) in expression 3.12, we get:

−ξ∇2
α,w(Ltrain(w,α))∇w′Lval(w

′ ,α) (3.16)

And so we arrive at the first term in equation 3.10. Turning our attention to the second

term, we need to compute:

∂z
∂y

dy

dt
=∧
∂Lval

∂y

dy

dα
(3.17)

Since y is the identity function of α, the right-hand side of the product equals 1, and we

get the following:

∂Lval

∂y

dy

dα
=
∂Lval

∂α
= ∇αLval(w

′ ,α) (3.18)

Finally, plugging the solved terms into expression 3.10, we get the following approximate

gradient for the arch weights:

∇αLval(w
′ ,α)− ξ∇2

α,w(Ltrain(w,α))∇w′Lval(w
′ ,α) (3.19)

This expression contains an expensive matrix-vector product in the second term, so

DARTS reduces the complexity significantly by using the finite difference approximation.

To understand this principle, let us write the formal definition of a partial derivative:

∂f (x,z)
∂x

= lim
e→0

f (x+ ϵ,z)− f (x − ϵ,z)
2ϵ

(3.20)

The finite difference method approximates this limit by choosing a fixed and very small

value for ϵ:

∂f (x,z)
∂x

≈
f (x+ ϵ,z)− f (x − ϵ,z)

2ϵ
(3.21)

Since ϵ is an arbitrarily small number, we can multiply it by a constant k, which yields:
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∂f (x,z)
∂x

≈
f (x+ kϵ,z)− f (x − kϵ,z)

2kϵ
(3.22)

Then, multiplying both sides of the equation by k we get:

∂f (x,z)
∂x

k ≈
f (x+ kϵ,z)− f (x+ kϵ,z)

2ϵ
(3.23)

We can use this equation to approximate the product of a partial derivative by a constant

k. Notably, that is what we have in equation’s 3.19 second term:

∇2
α,w(Ltrain(w,α))∇w′Lval(w

′ ,α) (3.24)

= ∇α(∇w(Ltrain(w,α)))∇w′Lval(w
′ ,α) (3.25)

Given the principle of the equality of mixed partials (Schwarz’s theorem), which states

that it is possible to interchange the order of taking partial derivatives of a function

without changing the result, we get:

∇w(∇α(Ltrain(w,α)))∇w′Lval(w
′ ,α) (3.26)

Writing this is in the notation of equation 3.23, we get:

∂∇αLtrain(w,α)
∂w

∇w′Lval(w
′ ,α) (3.27)

And so we can approximate this expression. Let ϵ be a small scalar and w± = w ±
ϵ∇w′Lval(w′ ,α), we consider ∇w′Lval(w′ ,α) to be the constant k and get:

∇2
α,w(Ltrain(w,α))∇w′Lval(w

′ ,α) ≈ ∇αLtrain(w+,α)−∇αLtrain(w−,α)
2ϵ

(3.28)

With this approximation, the expression no longer contains a matrix-vector product, re-

quiring only two forward passes for the weights and two backward passes for α, which re-

duces the complexity from O(|α| |w|) to O(|α|+|w|) [33]. DARTS uses ϵ = 0.01/ ∥∇w′Lval(w′ ,α)∥.
Using ξ = 0, the approximate gradient (equation 3.8) reduces to:

∇αLval(w) (3.29)

Which simply entails computing the gradient of the validation loss with the current model

weights. This leads to a speedup, but worse performance [33]. Liu, Simonyan, and Yang

call this simplification ‘First-Order approximation’ and ‘Second-order approximation’ to

the original version (with ξ > 0).
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3.3.2.1 Discrete Architecture Derivation

DARTS derives a node in the discreet architecture by retaining the top-k strongest op-

erations (from distinct nodes), excluding zero operations. If a Zero operation is given

the strongest in a given edge, DARTS considers the second-strongest one instead. The

strength of an operation is given by a softmax along all candidate operations:

exp(α(i,j)
o )∑

o′∈O exp(α(i,j)
o′ )

(3.30)

DARTS uses k=2 for convolutional cells and k=1 for recurrent cells. As previously

mentioned, an arbitrary number of cells can be stacked to form the final architecture.

In practice, the final architecture further performs data transformations before feeding

its input to the first cell and after receiving the output from the last. In the case of

the algorithm for finding convolutional architectures, the input is passed through two

separate Convolutional - ReLu - Batch Normalization stacks (one for each input of the

first cell), and the output of the last cell is passed through a final Convolutional layer

before exiting the network (Fig. 3.8).
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Input
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Figure 3.8: A diagram of a DARTS network composed of four cells.

The diagram shows the transformations applied to the input before feeding it to the
first cell (top) and the final transformation applied to the output of the last cell (bottom).
Each cell receives the output of the two preceding ones. Each node in the cell receives
the two cell inputs and the output of all preceding nodes. Blue edges denote a mix of
candidate operations (or, in the case of the discrete network, the learned operation),
and gray edges simply denote data flow.
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The VCB dataset

The variable-complexity buildings (VCB) dataset is a set of image classification datasets

with an identical underlying ontology and labels that differ only in how difficult each

one is to classify. This configuration is ideal for experiments that aim to understand how

dataset complexity affects image classification, since that is the only changing variable.

Additionally, each image of every dataset is labeled with 77 labels containing detailed

information about its low-level features, the position of the camera, and present ontology

concepts in addition to its respective class.

VCB is made up of synthetic data. Apart from the significant resources required for

compiling and labeling real image data into an image classification dataset, that approach

would not give us the level of control we needed for our purposes. Locking all variables

other than complexity with real image data would be impossible.

The images contain depictions of buildings that vary in their surroundings and visual

attributes. On the building itself, there may be a door, windows, awnings, billboards,

porches, wall signs, roof statues, tiled roofs, chimneys, and pipes. Surrounding the build-

ing, there may be eating areas, pole signs, vending machines, construction machinery,

trucks, and cars. Excluding the tiled roof and roof statues, the features can appear in

one of multiple locations, and windows and awnings can also appear in varying quanti-

ties. Different combinations of these features are mapped to one of three main classes -

Residential, Commercial, and Industrial - by an accompanying ontology.

4.1 Varying complexity

The term “Complexity” denotes how “hard to learn” a given dataset is. All other factors

being the same, a classifier should converge faster and perform better on lower-complexity

datasets (excluding overfitting).

Multiple methods are used to increase the complexity of the images: Alternating

the appearance of each feature by using a model from a set of alternatives, varying the

textures of surfaces such as the ground and walls, varying the camera’s position, adding

varying background elements and randomizing the contrast (the difference in brightness
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between dark and light parts of the image) and overall brightness of each image. Here

we create six levels of complexity by progressively introducing more of these complexity-

adding methods:

1 2 3 4 5 6
Models
Textures
Camera - Small variance
Background elements
Camera - Large variance
Contrast
Brightness

4.1.1 Models

There are five alternative models of each feature (e.g., Window, Door). While all variant

models contain the representative traits of their respective types, they vary in shape, size,

and color. This forces the classifier to learn the more nuanced defining attributes of the

features rather than simply “memorizing” the appearance of an arbitrary instantiation of

that feature.

4.1.2 Textures

Similarly to the models, textures are varied by sampling from a set of textures with

contrasting shapes and colors. There are three sets of textures, each used for one of three

- floor, overhang, and wall - sections and each containing five, three, and ten different

textures, respectively. Fig 4.1 shows each object color-coded according to their section.

Figure 4.1: Texture sections in the VCB 3D environment.

The floor section is shown in blue, the overhang section is shown in green, and the wall
section is shown in red.
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4.1.3 Camera

Note that we further divide the camera category into two sub-categories: small and large

variance, as this allows for a smoother increase in complexity through the levels. The

camera variance entails varying the distance at which the camera is placed from the

subject, the coordinates of the camera on the sphere with a radius equal to that distance,

and the point to which the camera is pointed. By default, the camera points to (x,y,z) =

(0,0,0) and is placed at the Cartesian coordinates (x,y,z) = (40.6, 71.2, 17.7), deemed to

be fitting for a centered view of all features. The parameters that vary between the small

and large variance categories are the range of allowed distances, the section of the sphere

that the camera is allowed to be placed in, and the maximum deviation from (x,y,z) =

(0,0,0) for the coordinates that the camera points to.

Figure 4.2: Spherical coordinates

With the axes shown in the image, the point with coordinates (0,0,0) is where the camera
is pointed. R is the length of the vector that originates at that point and ends at the
camera’s location (radius vector). φ is the angle between the radius vector and the
positive z-axis. θ is the angle between the x-axis and the vertical plane defined by the
radius vector.

In the following, we use spherical coordinates to denote the valid section of the sphere,

according to the notation in Fig. 4.2:

• Small variance:

– 60 < Distance (or r) < 80

– Point of focus = (±5,±5,±5)

– θ = 45± 10

– 40 < φ < 80

• Large variance:
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– 60 < Distance (or r) < 120

– Point of focus = (±15,±15,±15)

– θ = 45± 35

– 15 < φ < 90

4.1.4 Background elements

Background elements add additional noise (i.e., a random signal; irrelevant to the task) to

the data. Learning to separate the signal from the noise adds complexity to the classifica-

tion task. Five alternative elements can be placed randomly in the background, including

mountains, forests, and urban skylines.

4.1.5 Contrast and Brightness

Contrast and brightness are randomly altered in each image, adding further noise and

complexity. This is achieved after rendering by applying a filter to the image, using the

ImageEnhance module from the PIL library. The values are set randomly between 0.5 and

1.5, given that 1 corresponds to the original image.

4.2 The ontology

4.2.1 Being ontology-independent

The VCB dataset was built specifically for running experiments, and thus, being able to

make tweaks and alterations quickly and easily is a key requirement. For that reason, the

generator for VCB was made independent of the ontology used to generate the images.

The user need only provide a valid ontology (saved in the .owl format) that encodes what

combination of features describes each class, and the generator will output an equal

amount of examples for each class, according to the provided “recipes”.

The ontology may also contain “ground rules” - restrictions applicable to all buildings,

irrespective of class. These rules can define combinations of features that are not allowed

or even some that are obligatory. For example, in the ontology used during this disserta-

tion, no building of any class is allowed to feature awnings if it does not feature either a

door or a window. In cases where a new ontology contains the same ground rules as the

one used to generate an existing set of images, one could skip regenerating the images

and simply re-label the existing ones. Indeed, that functionality was also implemented.

4.2.2 Ontology Expressions

In the following, we show the ontology used in the experiments carried out in this disser-

tation.
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Firstly, the axioms that every ontology must have to be valid:

owl_thing ≡ Building ⊔Feature

“All individuals are either a Building or a Feature.”

Building ≡ Industrial ⊔Residential ⊔Commercial

“Buildings are at least one of these: (...), and all of them are Buildings.”

Feature ≡ Awning ⊔ Billboard ⊔Car ⊔Chimney ⊔
Door ⊔Machine ⊔ P ipe ⊔ P orch⊔ Sign⊔
Statue ⊔ T able ⊔ T iledRoof ⊔ T ruck ⊔
V endingMachine⊔WallSign⊔Window

“Features are at least one of these: (...), and all of them are Features.”

Secondly, axioms that, if changed, can alter what combinations of features are “allowed”

to happen:

Building ⊑ ¬((∃has.Car ⊔ ∃has.T ruck) ⊓
(∃has.Machine))

“A Building can not have both a vehicle and a machine.”

Building ⊓¬(∃has.Door ⊔
∃has.W indow)

⊑ ¬∃has.Awning

“A Building with no doors orwindows can not have awnings.”

Building ⊑ ¬(∃has.Car ⊓∃has.T ruck)

“A Building can nothave botha car anda truck”

Building ⊑ ¬(∃has.Chimney ⊓∃has.Statue)

“A Building can nothave botha car anda truck”

Thirdly, the remaining axioms: changing these would merely result in some changes in

higher-level labels:
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Commercial ≡ Caf e ⊔ Hotel ⊔MiscCommercial ⊔
Restaurant ⊔ Store

“Commercial Buildings are at leas one of these: (...), and all of them are commercial buildings”

Industrial ≡ ConstructionSite ⊔MiscIndustrial ⊔
P owerP lant ⊔WaterT reatment

“Industrial Buildings are at leas one of these: (...), and all of them are industrial buildings”

Residential ≡ CountryHouse ⊔MiscResidential ⊔
Suburban

“Residential Buildings are at leas one of these: (...), and all of them are residential buildings”

Cafe ≡ ∃has.Statue⊔∃has.V endingMachine)

“Any Building that has a statue and a vending machine is a Cafe (and vice-versa)”

Hotel ≡ ∃has.WallSign

“Any Building that has a wall-sign is a Hotel (and vice-versa)”

MiscCommercial ≡ ∃has.Awning ⊓∃has.T able

“Any Building that has Awnings and a table is a MiscCommercial (and vice-versa)”

Restaurant ≡ (∃has.Car ⊔∃has.T ruck)⊓∃has.Sign

“Any Building that has a vehicle (Car or Truck) and a Sign is a Restaurant (and vice-versa)”

Store ≡ ∃has.Billboard

“Any Building that has a Billboard is a Store (and vice-versa)”

Industrial ⊑ ¬∃has.T able

“No IndustrialBuilding has a table (andvice-versa)”

ConstructionSite ≡ ∃has.Machine

“Any Building that has a Machine is a ConstructionSite (and vice-versa)”

MiscIndustrial ≡ ¬∃has.Awning ⊓∃has.T ruck

“Any Building that has no Awnings and a Truck is a MiscIndustrial (and vice-versa)”

PowerPlant ≡ ∃has.Chimney ⊓∃has.P ipe

“Any Building that has a Chimney and a Pipe is a PowerPlant (and vice-versa)”

WaterTreatment ≡ ∃has.P ipe⊓∃has.T ruck
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“Any Building that has a Pipe and a Truck is a WaterTreatment (and vice-versa)”

Residential ⊑ ¬(∃has.Chimney ⊔∃has.P ipe)

“Residential Buildings do not have Chimneys norPipes”

CountryHouse ≡ ∃has.Car ⊓∃has.T iledRoof

“Any Building that has a Car and a TiledRoof is a CountryHouse (and vice-versa)”

MiscResidential ≡ ¬(∃has.Awning ⊓ ∃has.T able) ⊓
∃has.T iledRoof

“Any Building that has a TiledRoof and does not have both
an Awning and a Table is a MiscResidential (and vice-versa)”

Suburban ≡ ∃has.P orch

“Any Building thathas a Porchis a Suburban”

Figures 4.3, 4.4, 4.5 4.6, 4.7 and 4.8 show examples of each main class (Commercial,

Industrial and Residential) in the VCB dataset, for each level of complexity.

(a) Commercial (b) Industrial (c) Residential

Figure 4.3: Examples from VCB - Complexity 1.

The textures and camera position are static; only the models are varied.
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(a) Commercial (b) Industrial (c) Residential

Figure 4.4: Examples from VCB - Complexity 2

Introduces texture variation, the camera remains static.

(a) Commercial (b) Industrial (c) Residential

Figure 4.5: Examples from VCB - Complexity 3

Introduces small camera variations.

(a) Commercial (b) Industrial (c) Residential

Figure 4.6: Examples from VCB - Complexity 4

Introduces background elements.
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(a) Commercial (b) Industrial (c) Residential

Figure 4.7: Examples from VCB - Complexity 5

Introduces large camera variance.

(a) Commercial (b) Industrial (c) Residential

Figure 4.8: Examples from VCB - Complexity 6

Introduces contrast and brightness variance.
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4.3 How the datasets were generated

The VCB dataset was generated using the open source 3D creation suite Blender [18].

Blender includes an API that offers most of the operations available via its GUI in a

Python [67] context. We created a script that uses that API to render images and store

their respective labels. While it is possible to run python scripts on Blender from the

built-in text editor, we ran the script from the console by providing a python script to

the blender command because that allows Blender to run in the background, without the

GUI.

The python script has several command-line arguments, namely the number of ex-

amples to generate (-n), the complexity-level to use (–complexity or -c), the (path to the)

ontology to be followed (–ontology), the desired resolution of the pictures (–resolution)

and whether to keep all, none or a specific number of the images in the .png format. All

the generated images are stored in a .npz file for practicality and faster imports into other

applications.

The script starts by loading the blender project containing all relevant assets. Then,

after setting the render options, the script stores pointers to the data blocks containing the

camera object, all of the various models (windows, signs, doors, walls, floor, background,

etc.), and all of the various textures. The models, in particular, are wrapped in a custom

‘Model’ class that abstracts the most common model-related operations behind its various

methods. Objects can be shown or hidden from the render, moved, rotated, or snapped

back to their original location.

Then the script instantiates a custom ‘OwlClass’ object for each of the child concepts

of the main classes - Residential, Commercial, Industrial - in the ontology. When instan-

tiated, an object of this class collects all of the information about this class present in the

ontology and simplifies it into the disjunctive normal form (DNF), a disjunction of con-

junctions of literals representing low-level ontology concepts (i.e., ∃has.[someFeature]).

This expression acts as a set (disjunction) of different combinations of features (conjunc-

tions) that can be used to create examples of the respective class. After being instantiated,

an ‘OwlClass’ can be asked to generate a random feature-set that describes an individ-

ual of this class. Additionally, this class can be asked to evaluate whether an existing

feature-set describes an individual of its class.

Then the script starts generating the images. For each of the images, 77 labels are

saved. Some contain ontology-related data, while others contain details about the genera-

tion of the images. There are three for the three main classes, twelve for the subclasses

in the ontology (e.g. ‘Cafe’), eighteen for the low-level features (TiledRoof is divided into

TiledRoof, TiledRoofBottom, and TiledRoofTop, as those are independent), seventeen

for the position of the features (TiledRoof is not included in the position, only the top,

and bottom variants), seventeen for the model variants used for each feature, two for the

number of windows and awnings, three for storing the wall, overhang and floor textures,

two for the camera’s position and orientation, one for the background model and two for
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the contrast and brightness values. The labels of an image could be used to generate an

exact copy of that image, as they describe it completely.

To populate the labels for a given image, the script starts by selecting a subclass of

the three main classes for the current example and asking its respective ‘OwlClass’ object

for a random feature-set that describes that class. Then, the script checks whether the

chosen feature-set describes any of the other high-level classes (using the above described

‘OwlClass’ method) and adjusts the labels accordingly. Notably, the script generates an

equal amount of examples of each class. The script then randomizes the textures, camera,

and background object according to the chosen complexity level.

Then, the script starts placing the actual models on the building. It is important to

note here that the script includes collections of pre-set positions that each feature adheres

to. There are two main classes of objects in this phase: those that share that collection

with other objects and those that don’t. Objects that don’t share space (e.g., Billboards,

wall signs, chimneys, etc.) can be placed in a random position from their respective

collection. Models that do share space are placed sequentially, and each one has to select

from the positions left free by the previous ones. The windows and awnings are special

cases, as they can also vary in quantity. A random amount of windows is selected from

the available wall spaces (A door may be occupying one of the spaces), and the selected

amount is placed at random positions. The awnings can only be placed on top of either a

door or a window, so that sets the upper limit for their amount. At this stage, the needed

models, which are normally not visible in the render, are made visible and moved to

position according to the decisions made.

Finally, the image is rendered and saved, and a new row of labels is added to the table

containing the data from all previously generated examples. We used Blender’s built-in

image rendering engine Eeve for the generation because it is very optimized and provides

the fastest render times. After this, all objects are hidden from the render, and the process

starts again for the next picture.
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Empirical evaluation

This section contains details about the empirical tests conducted in this dissertation. We

detail the used datasets, the implementation of DARTS for use in concept mapping, how

the main networks were built and trained, and the methodology used in the experiments.

5.1 Specifications of the hardware used

All the computation carried out in the course of this dissertation - generating the VCB

dataset, training the main networks, running the modified DARTS algorithm, etc. - was

done on a single desktop computer with the following specifications:

• Operating System: Windows 11 Pro

• Processor: Intel(R) Core(TM) i9-9900K CPU

• Graphics Card: NVIDIA GeForce RTX 2080

• Memory: 48.0 GB

5.2 Specifications of the used datasets

Rendering thousands of images, each possibly containing dozens of complex models,

requires significant computational resources. Indeed, using the hardware described in

Section 5.1, while the logic of the generator script takes about 50ms per image, the render-

ing takes five to upwards of ten seconds, depending on the complexity level. So, a dataset

with twenty thousand examples takes around one-and-a-half days to generate for lower

complexities and two-and-a-half days for higher ones, which is a considerable amount of

time. Further emphasizing this point is the fact that we aimed to generate six separate

datasets. This motivates us to choose the number of examples per dataset carefully; so

as not to waste time and resources. In the course of this dissertation, the datasets are

required for two tasks: training the main networks and training the mapping networks.

Regarding the mapping networks, we use four thousand examples across the training,
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validation, and test sets. That may seem like a low number, but note that the examples

used for concept mapping have to be additionally labeled with the desired secondary

labels, which is an expensive and time-consuming process. Further, if the concepts are

chosen adequately, and the main network has learned useful representations of the data,

we should expect that not many examples be needed to learn a mapping of said concepts.

Indeed, Sousa Ribeiro and Leite[60] only used two thousand total examples in their exper-

iments. The lower bound of needed examples then falls on the number of images required

for the main network to converge and generalize well, which we define by an accuracy of

around ninety-five percent on the test set. In the end, the datasets of complexities one,

two, and three contain twenty thousand images each, and the datasets of complexities

four, five, and six contain forty thousand images each.

5.3 Adapting DARTS for concept mapping architecture search

DARTS is mainly geared toward developing Convolutional Architectures for image clas-

sification tasks.

For DARTS to be a viable tool for our purposes, some modifications must be made. We

want to use DARTS to develop networks that interpret the feature maps of another model.

Since the feature maps of a trained model are structured data in which the proximity of

data points is irrelevant, using a convolutional neural network to interpret them would

be inadequate. To tackle this, we modify the set of candidate operations in the original

DARTS algorithm to contain more adequate ones. This does not compromise the prin-

ciples and methodology of DARTS. After all, the concept of optimizing an architecture

with respect to its validation set loss does not mention, and thus, does not depend on

what set of candidate operations are used [33].

Additionally, DARTS has the advantage that it does not assume the size of the final

model; the same learned cell can be copied any number of times to build a final model,

which is desirable both because we do not have to conform to sizes chosen for different

types of tasks, but also because this allows us to conduct experiments with models of

varying depths, for the same learned architecture. Moving forward, we will refer to our

adaption of DARTS for learning concept mapping architectures as DARTS-CM.

5.3.1 Including linear architectures in the search space

The original DARTS implementation does not allow linear networks to be found. Indeed,

the transformations applied to the data before it is even fed to the first cell include non-

linear activation functions, as seen in Fig. 3.8. Additionally, all candidate operations

excluding the skip_connect, zero, and the pooling operations also use non-linear activation

functions. However, the search space of the NAS algorithm we use should include linear

networks, so as to increase confidence in the fact that, when the algorithm converges

to a non-linear architecture, that is truly because there are performance advantages in
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doing so. After all, we should expect the algorithm to “prefer” simpler architectures since

those with fewer parameters converge faster, and so, if they are sufficient for the task,

should be expected to provide better early performance than more complex alternatives.

To this end, we remove the non-linear activation functions from the pre-processing and

post-processing operations of the network, leaving only Dense layers that resize the data.

Additionally, our set of candidate operations includes a Dense operation without an

activation function. In fact, most of the candidate operations used do not include a

non-linear activation function.

5.3.2 Set of candidate operations

The set of candidate operations defines the data transformations available to our algo-

rithm for “coming up” with an architecture. They define what the search space actually

is. In the experiments carried out in this dissertation, the set of candidate operations is

as follows:

• The Skip Connect operation encodes the identity operation. This means that no

transformation is applied to incoming data and that it is simply forwarded to the

subsequent nodes.

• The Batch Normalization [26] operation makes normalization a part of the archi-

tecture by normalizing each input mini-batch during training. This allows for the

use of much higher learning rates and makes the model less responsive to changes

in the initial weights.

• The Layer Normalization [2] is similar to Batch Normalization, but it normalizes

all neurons in each layer equally, regardless of the current mini-batch.

• The Dropout [61] is a regularizing operation that randomly drops certain units

during training. This prevents units from forming complex co-adaptations - i.e., ex-

tensively learning very complex patterns that are only applicable to the training set

and do not generalize well - which prevents overfitting and improves performance.

• The Gaussian Dropout [46] achieves the regularizing effect of Dropout by applying

Gaussian noise to the inputs. This was proposed as a way to mitigate the original

Dropout’s slow-down of training.

• The ReLU [34] is a non-linear function f (x) = max(0,x), which returns the input if

it is positive and zero otherwise. This is the default activation function for many

deep learning applications because it is easy to train (i.e., cheap to compute its

derivative), and it achieves better performance than alternatives.

• The LeakyReLU [65] is a variant of the ReLU function that has a slight slope for

negative values, instead of being constant at zero, which avoids the ‘Dead Neuron’

problem (Section 2.1.1.4).
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• The Dense operation encodes a fully connected layer without an activation func-

tion. This operation is included to continue ensuring that linear architectures are

included in the algorithm’s search space. Two additional operations are used with

activation functions (one with ReLU and the other with LeakyReLU) after the dense

layer.

The attentive reader might notice that this list does not include the Zero operation

(mentioned in Section 3.3.1) used in the original DARTS paper. This is due to the fact

that DARTS never selects the Zero operation in the discretization step, removing any

advantage that the inclusion of this operation might pose. This decision further came as

a result of the observation that the Zero operation dominates most of the edges during

training, often leaving the other operations to share a small fraction of the “attention”,

and thus receive less optimization. This hinders the method’s stability, as the model may

simply ignore the optimal operation. Indeed, some subsequent DARTS-based works [31,

53, 70] have similarly noticed how the Zero operation disrupts the architecture search

and removed it.

5.3.3 The cell structure

Similarly to the candidate operations, DARTS [33] is not specific to one type of cell struc-

ture. In the original work, Liu, Simonyan, and Yang employed two different cell structures

for convolutional and recurrent architectures, according to what is optimal for either, as

well as what would allow for comparison with existing NAS systems. Given that our

goals are markedly different, we must analyze and choose the cell structure that best

fits our purposes; optimizing architectures for concept mapping. Modern convolutional

architectures [23, 63] use skip connections and branching layers, so the convolutional cell

in DARTS accommodates those types of connections. However, given that the concept

mapping task is much simpler than image classification tasks, a sequential architecture -

one where the output of each node is simply fed to the next - is most likely sufficient. To

emphasize this point, note that Sousa Ribeiro and Leite [60] managed to get satisfactory

results from a single neuron, for some of the concepts. Allowing non-sequential architec-

tures would simply hinder architecture optimization by over-expanding the search space.

We adopt a cell with four nodes (i.e., four learned operations per architecture). Fig. 5.1

shows a diagram of a whole network in DARTS-CM, different from the original DARTS

(Fig. 3.8) in the core aspects described above. Given that concept mapping is a binary

classification task, a sigmoid operation can be applied to the network’s output to obtain

a probability value that the input contained a given concept.

5.3.4 Implementation details

While DARTS-CM was virtually all implemented from scratch, the original code accom-

panying the paper [42] (Implemented in PyTorch) and a Tensorflow 1.0 version adapted
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Figure 5.1: A diagram of a DARTS-CM network composed of four cells.

The diagram shows the changed linear transformations on the top and bottom of the net-
work. Each cell receives the output of the preceding one. Each of the four nodes in the
cell receives the output of the preceding node. Blue edges denote a mix of candidate op-
erations (or, in the case of the discrete network, the learned operation), and gray edges
simply denote data flow.)

from the original code [13] were used as a basis for the structure and other implementa-

tion details. Our version is implemented in Tensorflow 2, which discarded Tensorflow 1’s

focus on computational graphs and lazy execution for an eager execution mode.

The models used were implemented using the Keras subclassing API. The continuous

and discrete model classes are subclasses of the tensorflow.keras.Model class, and the cells

and mixed edges are subclasses of the tensorflow.keras.layer.Layer class. With this API,

one can overwrite the methods that build the models, initialize the weights, compute

a forward pass of the model, and create custom training loops, while Keras’ existing

implementation handles the rest. The GradientTape class from TensorFlow was used to

perform automatic differentiation (GradientTape records all operations made to Tensor-

Flow variables inside a certain context to allow for the computation of their gradient).

When built, the continuous model initializes the arch weights and feeds them to each of

the cells, which in turn feed them to each of their mixed edges, which use them to weight

the outputs of their operations. Of note is also the fact that DARTS-CM implements the

Second-order approximation version of the gradient for the arch weights, as described in
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Section 3.3.2.

5.3.5 Use of feature extractors

The mapping networks receive internal activations of a main network as input. One

might think that the activations must be extracted and stored in a dataset beforehand

to be used for training the concept mappers. However, these internal activations are

of relatively high dimensionality, meaning that it would be inefficient to store them on

disk. Indeed, each mapping network may receive a different combination of the internal

activations, and thus multiple of these “internal activation datasets” would have to be

created and stored. To avoid doing that, we extract the activations online, as they are

needed during training. This is done with code implemented by Sousa Ribeiro and Leite

[60], used with permission. This code provides objects, called Feature Extractors, that

can be used to - provided an image - return the main network’s internal activations that

result from being presented with that image. Thus, no additional data need be stored on

disk; the algorithm’s training data consists of the images, which are converted to their

respective activations as needed.

5.4 The Main Networks

In the following experiments, we use DARTS to search mapping architectures for a set

of Main Networks. These networks were trained on the VCB dataset, and there is one

for each of the three main classes, for each of the six complexity levels, totaling eighteen

networks. The template shown in Fig. 5.2 represents the architectures that were used,

where c and d are variables that determine the number of times the respective block is

stacked. Convolutional layers in the same block share the same amount of filters, which

increases from block to block with the network’s depth. The first Convolutional block

always has thirty-two filters, and that number doubles for each subsequent one. In the

Dense section, the number of neurons per layer progressively decreases into a single

binary classification. The layer that directly precedes the output layer is set to have

sixteen neurons, and every preceding layer has double the amount of its successor. A rate

of 0.3 was used in the Dropout layers. Each model was trained for a maximum of fifty

epochs, stopping earlier if no improvement to the validation loss is observed for twenty

epochs, and the weights from the epoch with the lowest validation-set loss were reloaded.

The weights were optimized using a Binary Cross-entropy loss function and the Adam

[29] Optimizer with a learning rate 1e−3, momentum β = (0.9,0.999). The models for

complexities one to three were trained with eight thousand examples in the training set

and around twenty-seventwenty-seven hundred in each of the validation and test sets.

The models for complexities four to six were trained with twelve thousand examples in

the training set and four thousand examples in each of the validation and test sets. Table

5.1 shows, for each main network, the values for c and d as well as the obtained loss and
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accuracy on the test-set. Ideally, the main networks for complexities five and six would

have received further optimization. However, time constraints impeded that possibility.
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input

classification
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Figure 5.2: The architecture template used for the main networks.

5.5 Preliminary testing of the system on the XTRAINS dataset

This initial experiment was done as a test run of the system, and it is presented here

as a proof of concept for the idea that NAS can be used to find exemplary mapping

architectures. The experiment entails learning mapping architectures for the XTRAINS

dataset. We can then quickly compare the results with those obtained by Sousa Ribeiro

and Leite [60] to assess whether our methodology appears sound.

5.5.1 Implementation

Some aspects of the algorithm’s implementation were different in this experiment than

described above. Namely, the changes outlined in section 5.3.1 had not yet been imple-

mented. Additionally, the Zero was still included in the set of candidate operations.
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Complexity Class c d Loss Acc
Commercial 3 2 0.036 0.9904
Industrial 3 2 0.026 0.9921
Residential 3 2 0.051 0.9865
Commercial 3 2 0.0526 0.9814
Industrial 3 2 0.055 0.98232
Residential 3 2 0.0362 0.9883
Commercial 6 2 0.0721 0.9805
Industrial 3 2 0.0973 0.97613
Residential 3 2 0.0879 0.9817
Commercial 2 3 0.143 0.958
Industrial 2 3 0.0743 0.97734
Residential 2 3 0.0778 0.9827
Commercial 6 2 0.1545 0.9453
Industrial 6 2 0.1325 0.9555
Residential 6 2 0.1209 0.9562
Commercial 6 2 0.1487 0.9456
Industrial 6 2 0.0953 0.97416
Residential 6 2 0.1193 0.9591

Table 5.1: Test-set performance for each main network.

5.5.2 Experiment

In this experiment, we had our DARTS algorithm learn mapping architectures for map-

ping a single concept from the activations of one of the three main networks. Each of

the main networks has been trained to map one of the three main classes in the XTRAIN

dataset: typeA, typeB, and typeC. These models are the same as those used in [60], so we

can draw a direct comparison between the performance of mapping architectures for the

same main network and concept.

The same amount of examples contained in the training, validation, and test sets

is eight hundred, two hundred, and a thousand, respectively. These values were used

because they match the ones used in [60], further facilitating comparisons.

5.5.3 Results

This experiment provided promising results. After training the automatically-found

mapping networks, we find that they are, at worst, equivalent to the linear models used

in [60], with some cases of a significant gain in performance. Tables 5.2, 5.3 and 5.4

show the comparisons of the test-set performance between the mapping networks that

our DARTS algorithm found and the linear ones used in [60]. We can see that the best

improvement we got was in mapping FreightWagon from the typeA network, where there

was a 3.6 percentage point increase in accuracy. The worst result was a decrease of 0.4

percentage points when mapping MixedTrain from the typeC network. This was the only

case where the DARTS algorithm did not perform better than the linear networks. This
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could be a situation where the linear model was indeed enough to map the concept fully,

and introducing more complexity just slowed convergence, albeit not by much. Across

all concepts, there was an average of about one percentage point increase in accuracy.

Type A

DARTS-CM Sousa Ribeiro and Leite
Empty Train 99.8 99.4
Freight Wagon 96.2 92.6
Reinforced Car 99.8 99.2
War Train 99.5 99.3

Table 5.2: Comparison of accuracy on the test set between mapping architectures for
Type-A’s relevant concepts.

Type B

DARTS-CM Sousa Ribeiro and Leite
Freight Train 96.6 95.2
Freight Wagon 97.6 96.2
Long Train 98.4 97
Passenger Train 96.1 94.8

Table 5.3: Comparison of accuracy on the test set between mapping architectures for
Type-B’s relevant concepts.

Type C

DARTS-CM Sousa Ribeiro and Leite
Freight Wagon 95.3 95
Long Wagon 98.9 98.1
Mixed Train 97.1 97.5
Rural Train 99.4 99.1

Table 5.4: Comparison of accuracy on the test set between mapping architectures for
Type-C’s relevant concepts.

These preliminary results confirm that our DARTS algorithm is succeeding at opti-

mizing the mapping architectures. Further, it indicates that non-linear architectures can

indeed provide a performance gain for the concept mapping task.

5.6 Extensive architecture comparison

In this section, we describe the extensive comparison of concept mapping architectures

that was carried out. To allow for direct comparison, the same set of concepts was mapped

for each main class of examples. Specifically, three concepts were selected for each main

class - Residential, Commercial, and Industrial - to be mapped from the activations of
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the respective main networks of all six complexities. The three concepts were chosen so

that, for each main class, there is:

• A High-level concept, which are the complex, intermediary concepts that are de-

fined in terms of other, lower-level ones but that, in turn, are used to define the

main classes. For example, the concept ‘Restaurant’ is defined as a building having

either a Car or a Truck and a sign.

• A Trivial low-level concept, which is a concept of the form ∃has.[someFeature] (low-

level) that can be mapped directly to a main class (trivial). For example, the concept

‘∃has.Billboard′ is equivalent to the concept ‘Store’, which, in turn, is included by

the main class ‘Commercial’.

• A Non-trivial low-level concept, which is a low-level concept that can not be di-

rectly mapped to a main class. For example, the concept ∃has.T iledRoof does not

offer any certainty of an individual belonging to a particular main class.

In the following, for the sake of readability, we use someFeature as a short-hand for

the trivial concept ∃has.[someFeature]. The concepts selected for use in the learning and

testing of concept mapping architectures in the experiments carried out in the course of

this dissertation are the following:

Main Class High-level Trivial low-level Non-trivial low-level
Commercial Restaurant Billboard Statue
Residential MiscResidential Porch TiledRoof
Industrial MiscIndustrial Machine Chimney

Testing concept mapping networks for each of the nine selected concepts for each of

the six complexities yields fifty-four models per architecture.

All the architectures received as input the same set of activations from the main net-

works: the outputs of the flatten layers and of all subsequent batch normalization layers.

The flatten layer directly follows the convolutional part of the main network, where rele-

vant features in the image have been extracted and abstracted from their positions in the

input. Similarly, the output of the batch normalization layers may contain other useful

representations of those features, produced by the preceding dense layers and respective

activation functions. We use the output of the batch normalization layers instead of di-

rectly using the output of the dense layers because normalized data is generally better for

machine learning algorithms.

Regarding the size of the data used, sixteen hundred examples were used in each of

the training and validation sets, and eight hundred were used in the test set. We use the

same amount of examples for training and validation because neural architecture search

uses the validation data to learn optimal architectures, and having enough examples is

required for it to do so well. Further, we ensured that an even amount of positive and

negative examples were used for each concept being mapped.
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5.6.1 Learning architectures with DARTS-CM

This experiment entails running DARTS-CM to learn architectures for the fifty-four pre-

viously described configurations. For each configuration, the model and architecture

weights of the continuous model are jointly optimized for a maximum of fifty epochs,

stopping earlier if no improvement to the validation-set loss is observed for twenty suc-

cessive epochs. Both the model and architecture weights from the epoch with the lowest

validation-set loss value are reloaded.

The continuous model is discretized by picking the strongest operation for each edge

in the cell according to the corresponding architecture weights. Following this, discrete

models composed of one, two, three, and four cells are built and trained from scratch

on the same data for a maximum of fifty epochs, stopping earlier if no improvement to

the validation-set loss is observed for fifteen epochs with similar reloading of the best

weights. This process is repeated five times for each of the four discrete models, and

results are averaged to make them less dependent on weight initialization. After training,

each model is evaluated on the test set, and the observed loss and accuracy values are

recorded.

The model weights, in both the architecture search phase and the training of the

discrete model, are optimized using a Binary Cross-entropy loss function and the Adam

[29] Optimizer with a learning rate 1e−3, momentum β = (0.9,0.999). The architecture

weights are optimized using the Adam Optimizer, with initial learning rate of 3e−4,

momentum β = (0.5,0.999). These were used as they were the values used in the original

DARTS work.

As a reminder, DARTS finds an optimal cell architecture and builds the final network

by vertically stacking a configurable amount of these cells. Note that while the cells share

the arch weights, the particular parameters of their operations - namely, the number of

neurons in the dense layers - are subject to variation. We use a continuous model with

two cells with 64 neurons in the first cell and thirty-two neurons in the second. For the

discrete models, the last cell in the model is set to have an output size of sixty-four, with

each previous cell having two times the size of its successor.

The continuous model is trained with a batch size of sixty-four, while a batch size of

thirty-two is used for the discrete models.

5.6.2 Manually created architectures

To measure the usefulness of DARTS-CM, we tested a suite of manually created archi-

tectures on the previously described fifty-four configurations. Firstly, as a baseline, we

include a model with a single output neuron (a fully connected layer with one neuron,

followed by a sigmoid activation function), as is used in the current literature [60]. We

then add a set of architectures that a user might try to the suite.

For the sake of brevity and readability, we use the following abbreviations:
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• Dense(n, a): Dense layer with n neurons and a activation function.

• BN: A Batch Normalization layer

• DO: A Dropout layer with a rate of 0.3

Further, layers are shown from left to right and separated by hyphens. The following is a

list of the manual architectures that were tested:

1. Dense(1, sigmoid) (Baseline)

2. Dense(128, ReLU) - Dense(1, sigmoid)

3. Dense(128, ReLU) - BN - DO - Dense(1, sigmoid)

4. BN - Dense(1, sigmoid)

5. DO - Dense(1, sigmoid)

6. BN - DO - Dense(1, sigmoid)

7. BN - Dense(128, ReLU) - BN - Dense(1, sigmoid)

8. DO - Dense(128, ReLU) - DO - Dense(1, sigmoid)

9. BN - DO - Dense(128, ReLU) - BN - DO - Dense(1, sigmoid)

Notably, DARTS-CM always has a Dense layer before the first cell. Therefore, the archi-

tectures that feature either a Batch Normalization or Dropout layer before the first Dense

layer (4-9) are not included in DARTS-CM’s search space.

The chosen architectures were inspired by the work of Chen et al. [7] on independent

component layers. Summarily, this work proposes combining the Batch Normalization

and Dropout - which they call an independent component (IC) layer - before the first

weight layer. The IC layer was proposed as a computationally cheap way of whitening the

data; to transform the input into a set of uncorrelated variables with unit variances. This

process was experimentally shown to result in a more stable training process, faster con-

vergence speed, and better convergence limit on CIFAR10/100 and ILSVRC2012 datasets

[7].

Each model is trained for a maximum of fifty epochs, stopping earlier if there is no

improvement to the validation loss for fifteen epochs. The model uses a Binary Cross-

entropy loss function and the Adam [29] Optimizer with a learning rate 1e−3, momentum

β = (0.9,0.999).
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Results and discussion

In this chapter, we show and discuss the results of the empirical evaluation described

in Chapter 5. In total, four thousand and fifty individual networks were trained, five

trials for each of the eight hundred and ten different (architecture, complexity, concept)

combinations. We will compare the loss value obtained by these architectures in the test

set after convergence. To aggregate the data, we separate the models into four categories:

• Architectures found by DARTS-CM

• Manual architectures that are included in DARTS-CM’s search space (Inc.)

• Manual architectures that are not included in DARTS-CM’s search space (Not Inc.)

• 1 Neuron

Doing a simple tallying of the times that each category obtains the best results out of

the four, we get the following scoreboard:

Category Times best performing
DARTS-CM 21
Not Inc. 17
Inc. 15
1 Neuron 1

Table 6.1: Number of times each category obtained the best performing architecture

DARTS-CM obtained the best performing architecture the most times out of any cat-

egory. Not Inc. and Inc. share a similar amount of victories, and the 1 Neuron wins

only once. Table 6.2 shows these scores divided per complexity level. We can see that

DARTS-CM has the biggest advantage on the lower complexities. However, it is also the

only category that does not have zero wins on any complexity, demonstrating a higher

resilience to change. Immediately, the results present a case for DARTS-CM, even if not

an outright disqualification of the trial-and-error method. Notably, we can see that in the

higher complexities the Inc. proves insufficient, with only the Not Inc. category, made up

of models more complex than any that DARTS-CM can learn, getting better results than
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DARTS-CM. This indicates that DARTS-CM is the right approach and could obtain even

better results with some improvement. In the following sections, we will go into deeper

detail to help weigh each solution’s advantages and disadvantages for different scenarios.

Complexity Category Times best peforming

1

DARTS-CM 6
Not Inc. 2
Inc. 1
1 Neuron 0

2

DARTS-CM 4
Not Inc. 3
Inc. 2
1 Neuron 0

3

DARTS-CM 3
Not Inc. 2
Inc. 4
1 Neuron 0

4

DARTS-CM 2
Not Inc. 0
Inc. 7
1 Neuron 0

5

DARTS-CM 3
Not Inc. 5
Inc. 1
1 Neuron 0

6

DARTS-CM 3
Not Inc. 5
Inc. 0
1 Neuron 1

Table 6.2: Number of times each category obtained the best performing architecture per
complexity

6.1 Comparison without selection

Figure 6.1 shows the distribution of the test-set loss value obtained by the models in each

category. The density of the values in a given range is given by the width of the graph

in that range. The values shown include the results obtained by all of the architectures

in each category prior to selecting the best performing model for each one. Note that

the scale differs from graphic to graphic. The significant changes in the ranges of values

between complexities make a fixed scale impractical. The same applies to the other sets

of graphics in this section.

The first thing of note is that, while there are significant differences and visible pat-

terns along the multiple categories for complexities one to four, complexities five and six

show much more homogeneous results. If this was simply a consequence of the increase
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Figure 6.1: The distribution of the loss values obtained by the tested architectures,
grouped by category, and with no selection of the best out of each category.

in complexity, we should expect to see a smooth transition, not a sudden change at com-

plexity five. We believe this phenomenon owes itself to the fact that the main networks

for complexities five and six did not learn the main task to the same level as the ones

for lower complexities (Table 5.1), effectively setting a bottleneck on concept-mapping

performance, and eliminating the advantage that more apt architectures have over lesser

ones. After all, note that the labels used for concept mapping are not ground truth. They

represent assumptions that if a certain concept is present in the input, the main network

will have identified it. If the main network only correctly identifies a certain concept 80%

of the time, then a perfect mapping network - which always correctly predicts whether

the main network found the concept - would obtain 80% accuracy. For the 20% of ex-

amples for which the main network does not correctly extract the concept, the mapping
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network’s correct predictions would not correspond to the labels - which simply describe

whether a concept is present in the input. This illustrates an interesting point: Concept

Mapping, as a methodology for explainable AI, is only ever as good as the model being

interpreted, and thus, it is most useful when applied to a well-trained high-performing

main network.

Another pattern that begs attention is that the loss values obtained across the board

for complexities three and four are significantly higher than for complexities one and

two. In this case, however, the respective main networks obtained similar performance.

This seems to support the hypothesis that the complexity of the main classification task

affects concept mapping. Further, there is a significant jump in loss from complexity two

to three, whereas the increase from one to two and three to four is much less pronounced.

This is likely a consequence of camera variation being first introduced in complexity three.

This affects a change in the filters learned by the convolutional layers, as they now have

to accommodate for the same features appearing from different angles. Our results show

that this change significantly impacts the concept mapping task, further supporting the

argument for a case-by-case evaluation of architectures for concept mapping in lieu of a

one-size-fits-all solution.

Let us now consider the relative performance of the candidate architectures on com-

plexities one to four. DARTS-CM exhibits lower variance in the loss values, providing

more consistent and predictably good performance. As a matter of fact, it exhibits the

lowest upper bound for three out of the four complexities, having a slightly larger range

than the Inc. category for complexity 3. The architectures in the Not Inc. and Inc. show

relatively similar distributions, with the highest density at low loss values. Both these cat-

egories, tough, display, seemingly at random, outliers with much higher loss values than

the other candidates, which evidence a high instability of performance across concepts.

The 1 Neuron category exhibits a more so even distribution of values and a relatively large

variance. This is to be expected: the 1-neuron architecture assumes that the presence of

the concepts in the input is a linear function of the main network’s activations. When

that assumption holds, the 1-neuron model achieves equal performance to the other can-

didates, but when it does not, the same model does not manage to compete and achieves

much worse results. Nevertheless, the 1-neuron model’s loss distribution shows a slightly

higher density at lower values, indicating that a significant portion of concepts can be

linearly mapped to at least some capacity.

In Figure 6.2 we plot the distribution of the difference between the loss value of

each architecture and the one from the best performing model for the same (complexity,

concept) combination. The difference is zero for the best performing architecture, so a

high density near or at zero means that that category is often the best or close to the best.

The lines are cut-off at the minimum and maximum observed values, to allow for accurate

visualization of their range.

DARTS-CM is the clear winner in complexities one to four, exhibiting a much higher

density of values at or near zero and a smaller range of values. For complexities five and
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Figure 6.2: The distribution of difference of loss to the best performing architecture,
before selection of the best performing for architecture.

six, we see a sharp reversal, with the Not Inc. category showing the better distribution.

DARTS-CM seems to suffer significantly with the sub-optimally trained main networks

of complexities five and six, just as the concept mappers do. With complexities five and

six, DARTS-CM seems hampered in its previously demonstrated ability to optimize the

architecture, producing sub-par results. This provides a critical insight. Automated

search methods for architectures do not conform to architecture design standards, which

have evolved through extensive empirical experimentation and evaluation of what gen-

erally works well. That added freedom has the advantage of removing upper limits on

performance that the standards can place, but it also removes the lower ones. Free from

pre-established standards, DARTS-CM relies instead on the information provided by the

main network: how its internal activations map to relevant concepts in the input and how
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those mappings can best be learned. The quintessential information-technologies maxim

neatly summarizes this point: “Garbage in, garbage out”. One can imagine the following

edge case: If asked to learn an architecture for a truly random function, DARTS-CM,

computing the gradient of the validation loss with respect to the arch weights, would

get random results that depend solely on whatever train batch it is processing at that

point. The gradient would contain no useful information whatsoever, and the resulting

architectures would contain similarly random assortments of operations, only by chance

resembling a sensible design.

6.2 Comparison with selection

For this comparison, for each category and each of the fifty-four (complexity, concept)

combinations, we kept the model with the lowest loss value obtained by any model in that

category. This, essentially, represents doing manually, for the Inc. and Not Inc. categories,

what DARTS-CM does automatically by discarding non-optimal architectures. Besides

the fact that one is done automatically and the other manually, the difference is that

DARTS-CM does not have to train its candidate networks fully to evaluate them and that

DARTS-CM’s search space is much larger.

Fig. 6.3 shows the distribution of the best test-set loss value for each category and com-

plexity. As expected, DART-CM’S distribution suffered the most minor change compared

to Fig. 6.1. In contrast, the Inc. and Not Inc. categories observed a sizeable reduction

in the range of values after pruning the sub-optimal architectures. While DARTS-CM

still shows clearly better results for complexity one, the other candidates now have lower

upper bounds in complexities two and three. When it comes to the distribution of the

difference to the best performing architecture (Fig. 6.5), we see the manual pruning of

sub-optimal architectures being more reliably low than DARTS-CM for higher complexi-

ties.
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Figure 6.3: The distribution of the lowest loss values obtained by the best performing
architectures, grouped by category.
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Figure 6.4: The distribution of the lowest loss values obtained by the best performing
architectures, grouped by label type and category.
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6.3 Comparison between concept types

One of the things we wanted to assess with the empirical tests was the degree to which it

is possible to predict the optimal architecture from the concept being mapped. Even if no

one architecture is optimal for all concepts, there might be one for each type of concept.

Thus, for each main class, we selected a concept from each of three types: high-level,

low-level trivial, and low-level non-trivial. The meaning of each type is described in

detail in Section 5.6, but here is a reminder: high-level concepts describe combinations

of lower-level ones, like the high-level concept Hotel is defined by the lower-level one

∃has.WallSign. The trivial category describes low-level concepts that, if true, are enough

to infer that a main class is also True, like ∃has.WallSign, if true, means Hotel, which

means Commercial. Non-trivial, in contrast, are concepts that, even if true, are not enough

to infer that any main class is true. This is not the only way one could subdivide the

concepts, but it represents precisely the sort of intuitive categorization that a possible

user might draw.

Figure 6.4 shows, for each complexity, the loss distribution per category and label type.

It is hard to discern any patterns in these results. The 1 Neuron category, for example,

seems to perform better on non-trivial concepts for complexities one and two. However,

in complexity three, non-trivial concepts are where the same architecture gets the worst

results. DARTS-CM shows the smallest variance on high-level concepts for complexity

one, but high-levels have the highest variance in complexity two. All categories show

higher or lower-bounds for high-level concepts in complexities one to four, but in five

and six, the opposite is true. These results show that it is not feasible to predict what

type of architecture will be best for a given concept, further emphasizing the advantage

of automated search methods such as DARTS-CM.
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Figure 6.5: The distribution of the lowest loss values obtained by the best performing
architectures, grouped by category.

6.4 The learned architectures

While we have placed more focus on the performance of the architectures learned by

DARTS-CM, it is also worthwhile to take a brief look at their particular composition.

Because the algorithm learns a four-node computational cell, the resulting architecture

encoding consists of a sequence of four neural operations, belonging to the list of candi-

date operations used. Figures 6.6, 6.7, and 6.8 contain graphical representations of the

learned cell for particular configurations. The first node, labeled “C(k-1)”, denotes the

previous cell’s output, and the last node, labeled “C(k)”, denotes the current cell’s output.

The most commonly chosen operation overall is the layer normalization operation,

seemingly used by DARTS-CM as a default in instances where parametric operations are
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Figure 6.6: Learned cell for complexity 1, main class Residential, concept MiscResidential

Figure 6.7: Learned cell for complexity 2, main class Industrial, concept MiscIndustrial

Figure 6.8: Learned cell for complexity 4, main class Industrial, concept MiscIndustrial

not required. However, the use of this operation is more common on low complexities,

whereas the higher ones see an increased use of the dense operation with non-linear

activation functions. This indicates that DARTS-CM reacted to the increased difficulty

of concept mapping for higher complexities. Nonetheless, operations without trainable

parameters form the majority of selected operations for all complexities. Dropout was the

least used class of operations, and only the Gaussian Dropout alternative was selected.

6.5 Discussion

DARTS-CM showed an especially large advantage over the manual models for complexity

one. After selection, DARTS-CM’s advantage slowly diminishes for each progressive com-

plexity as it becomes more similar to the other categories. At first glance, this may seem

unintuitive. If DARTS-CM can create custom-tailored architectures that beat the pre-set

ones for one dataset, why can it not do it for the others to the same degree? We believe

the answer is that DARTS-CM requires further optimization to find the optimal archi-

tecture unfailingly. We saw that the loss increased with the complexity across the board,

meaning that concepts from more complex classification tasks are also more complex to

map. However, DARTS-CM was trained on a maximum of fifty epochs with a relatively

strict early stopping policy with a patience of twenty epochs. DARTS-CM optimizes

the arch weights at the same time as the model weights, meaning that operations with
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fewer parameters are favored in the beginning. That has the advantage that DARTS-CM

does not tend to over-complicate; if a simple architecture is good enough, it is likely to

choose it over more complex, even if similarly performing, ones. However, this initial

bias towards operations with fewer parameters also means that optimal operations with

high parameter counts require more time to surface. The fact that the majority of the

candidate operations used were non-parametric further reduces the attention received

by the others, reducing the probability that they are ‘noticed’ by the algorithm. For low

complexities - and better trained main networks - DARTS-CM manages to fully optimize

the architecture, distinguishing itself from the pre-set architectures, but at high ones, it

is not able to learn the optimal architecture fast enough. However, this was the first time

Neural Architecture Search was applied to the concept mapping problem. Optimizing

the search space further would likely enable DARTS-CM to more reliably get an advan-

tage over trial-and-error. We have learned from these results that, while blindly using

the same architecture for every concept leads to sub-optimal results, testing a set of ten

architectures and picking the best one out of the bunch is a viable solution. This means

that the search space of a Concept Mapping NAS system need not be that large. Our

results indicate that optimizing DARTS-CM’s search space to become faster at learning

the optimal cell while retaining the ability to emulate the individual testing of thousands

of architectures is a highly promising route.

As a matter of fact, we tested this intuition by running DARTS-CM for a maximum of

two hundred epochs and with an early stopping policy with a patience of thirty epochs.

The concept ∃has.P orch was mapped from the main network for the complexity four

dataset and main class Residential. Additionally, we shortened the search space by leaving

only the skip_connect, dropout, batch normalization, and the dense (with and without

an activation function) operations. Previously DARTS-CM had achieved a test-set loss

value of 0.0546 for this same configuration, being surpassed by a manual architecture

that achieved a loss value of 0.0262. After these changes, DARTS-CM managed to find an

architecture that obtained a loss value of 0.0243, not only obtaining a better result than

before but a better one than any of the manual architectures. Unfortunately, time did not

allow for the whole test suite to be re-run with the new implementation.

Let us evaluate, though, the different options as they exist now. If trying to perform

concept mapping on a well-trained main network with a task of low-to-medium complex-

ity, DARTS-CM is an obvious choice. In that scenario, it can reliably achieve better results

than trial-and-error. Interestingly, that is also the scenario in which we find concept

mapping as a whole to be most applicable. In a scenario where the main network has

been trained on a more complex task to a satisfactory degree, the question becomes about

priorities. In this scenario, DARTS-CM’s advantage over trial-and-error reduces, reaching

mostly equivalent but, at times, inferior results. If the one-and-only consideration is per-

formance, then manual trial-and-error will likely beat DARTS-CM as it currently stands,

given enough tries. The question then becomes, though, what set of architectures to try.

As we saw in the charts with no selection, trial-and-error performance is unpredictable
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and has a high variance. In this scenario, deciding on the architectures to use would fall

on a human expert, which takes time and other resources. As a matter of fact, how much

time is needed is also somewhat unpredictable. If using a set of pre-defined architec-

tures, the size of that set would dictate the time that the trial-and-error process takes. If

one uses too large a set, the time to explore it could become much larger than the time

DARTS-CM takes to explore countless more options. If one does not use a pre-defined set,

then there is no indication of how long it will be before an architecture considered good

enough is found. In contrast, DARTS-CM takes a more predictable and even amount of

time, given that the same amount of examples are used. Further, the work done by that

expert would only be usable for the specific task: as we saw, concept mapping is sensitive

to the main task, and the set of architectures needed to arrive at good results would also

likely change. With its ample search space, DARTS-CM is more resilient to those types

of changes. This is to say that DARTS-CM is a more resource-efficient method, despite

the relatively large initial investment of implementing it. The time and resources saved

by using automated search scale with the number of concepts being mapped and the

number of different models being interpreted. If other than performance, efficiency is

also a consideration, DARTS-CM presents a way to get above-average concept mappers

for a large number of applications, with little human intervention.

Let us here summarize the main insights gained in the course of this dissertation.

Firstly, we find that the one-size-fits-all solution offered by the 1-neuron model is cate-

gorically insufficient. There is no reliable way to predict whether a given concept is a

linear function of the inputs. Using non-linear models with regularization techniques

offers better results in the vast majority of the cases. When it comes to the other candi-

dates, while results show that the concept mapping task is not altogether random (it is

possible to arrive at good results through manual experimentation of a set of candidate

architectures), we find our hypothesis confirmed in the fact that it is extremely sensitive

to the main task and the degree to which the main network has learned it. This fact

brings into question how applicable even a fixed set of architectures is to other models

one may want to interpret. Indeed, we saw the performance of the manual architectures

vary significantly from dataset to dataset and main network to main network, even in our

relatively controlled setting. In contrast, we find that DARTS-CM is able to use its larger

search space efficiently to produce consistently good, and in fact, the best results more

often than any of the other categories.
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Conclusion

In this dissertation, we empirically demonstrate the merits of employing neural archi-

tecture search in the design of concept mapping architectures. We conduct extensive

empirical tests, training thousands of models to analyze how different axes - the main

task’s complexity, the main network’s quality, the concept, and the type of architecture

- affect the concept mapping task. We show that our proposed system, DARTS-CM, can

reliably obtain comparable to better results than trial-and-error while requiring less hu-

man intervention and remaining more resilient to context changes. We also find that

DARTS-CM offers the biggest advantage for scenarios where concept mapping is most

applicable. This represents a significant step in making concept mapping applicable in

real use cases at a low cost to the user. To further support this point, the isolated test

we conducted - with a more prolonged architecture search and a reduced search space -

shows that DARTS-CM can be significantly improved with minor changes to the method-

ology. Adding to that the fact that in higher-complexity datasets, only the architectures

not included in DARTS-CM’s search space - i.e., more complex than any DARTS-CM

could learn - manage to out-perform it, it is clear that the idea of using DARTS-CM is the

right one, and with slight modifications to its search-space, it can even further distinguish

itself as the optimal way to find exemplary concept mapping architectures.

As another contribution of this dissertation, we deliver the VCB dataset: a set of image

classification datasets for the same task, but that differ in how difficult they are to classify.

As opposed to simply adding noise to an existing dataset, different VCB complexities

change in fundamental ways (such as whether the subjects are always seen from the

same angle), which fundamentally changes the classification task. Furthermore, the

generator for the VCB dataset is ontology-independent, allowing the user to customize

the underlying logic of the images and their labels. The VCB dataset is unique in its

versatility and it is a powerful tool for research and pedagogic environments alike.
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CHAPTER 7. CONCLUSION

7.1 Future work

This work done in this dissertation is a first step in introducing neural architecture search

into a potential concept-mapping pipeline. As we successfully demonstrate the merits of

that idea, avenues for further improvement come to mind.

7.1.1 Optimizing DARTS-CM’s search-space

With the current implementation of DARTS-CM, it is straightforward to change the set

of candidate operations, as well as the basic structure of the cell. So, work can be done

on optimizing the search space of DARTS-CM to get faster convergence while remaining

flexible enough to adapt to different use cases. DARTS shows an early bias for operations

with fewer trainable parameters, so introducing a majority of those types of operations

into the search space can be dangerous. One possible solution is to have composite

candidate operations, with multiple sub-operations each. For example, one candidate

operation could be a batch normalization layer followed by a dense layer followed by a

ReLU activation function. By keeping the skip-connect operation, the search algorithm

would remain able to find simple designs, but the operations with high parameter counts

would be awarded more attention by the algorithm.

Another route would be to experiment with different cell structures. In this work, we

used a linear cell structure with four nodes (Fig. 5.1). Experimentation can be done by

increasing the number of nodes, or making the cell non-linear, with each node receiv-

ing multiple inputs from preceding structures. In the discretization phase, one could

experiment with keeping differing amounts of edges per node.

7.1.2 Optimizing the concept mapper’s input

One variable that remained static in our experiments was the set of activations from the

main network that were fed to the concept mappers. Experiments with extracting differ-

ent sets of the main network’s activation could yield interesting results. Different types

of concepts can likely be best extracted at different stages of the network, so optimizing

the inputs could increase the upper bound on mapping performance. Sousa Ribeiro and

Leite proposed the InputReduce procedure, which already does this optimization, but it is

prohibitively expensive to run it for multiple concepts. Instead, more general guidelines

may exist to get better performing and smaller mapping models. In our experiments,

we fed the mapping networks the output of the flatten layer and all subsequent batch

normalization layers. The batch normalization layers, however, simply contain different

representations of the flatten layer’s output, which inherently makes the input data highly

correlated, something that is not generally desirable. Having established that, the output

of the batch normalization layers does benefit from the learning performed by the main

network’s dense layers. Using the feature maps of the convolutional layers may also prove
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helpful to map lower-level concepts that are identified early in the network. Regarding

this, we believe a few questions are worthy of investigation:

• Is it possible to map every concept at the highest possible performance from the

flatten layer alone?

• If not, is there a benefit in using the feature maps of the convolutional layers?

• What is the best way to mitigate the downsides of highly correlated data?

• Is it possible to accurately predict the optimal input to map a concept, given that

concept’s role in the ontology?

7.1.3 Optimizing the mapping network’s labels

As we previously touched upon, training concept mapping models with a supervised

learning approach is only possible using likely labels. We do not have access to the

ground truth about what the black-box model did or did not identify in an input. The

target labels given to the concept mapper represent whether the concept is in the input,

not if it was identified. One simple thing that could help in this regard would be to

only feed the mapping networks the activations from the inputs that the main network

classified correctly. That way, there is a higher chance that the main network has indeed

extracted the relevant concept, which would increase the likelihood that the target label

given to the mapping network matches reality. While this may increase the performance

of the mapping models for those types of examples, the mappings for an example that

the main network misclassified could become even less reliable.

Another option could entail using an unsupervised learning approach. A protocol can

be imagined that starts by learning a clustering of the activations, where presumably the

activations corresponding to the same concepts would be in the same cluster (perhaps

crops of the original image could be used to isolate different concepts better). Then, the

original images that produced the activations could be shown to a user who is asked to

label each cluster with the common concept among the pictures in that cluster. At this

point, the user could build an ontology, using those concepts, that describes the domain

of the task. This way, the user would not have to guess what concepts are relevant to

the main network. Possibly, association rule learning [20] could be used to suggest likely

ontology axioms to the user. After the writing of the ontology, the clustering could be

used for concept mapping, by seeing what cluster a new example is placed in. This is only

an example and would require significant work to assess its feasibility. Nevertheless, if

possible, this would provide two key advantages: a more informed choice of concepts to

use in the ontology and a removal of the need to manually label examples with secondary

labels.
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A

Complete experimental results

This appendix contains the raw results of the conducted experiments in table form. The

‘Architecture’ column contains information about the architecture in question. DARTS_nLayers

is the architecture learned by DARTS-CM with the learned cell stacked n times. The re-

maining pertain to the list of manual architectures defined in Section 5.6.2:

Code Architecture
1_NEURON Dense(1, sigmoid)
BN BN - Dense(1, sigmoid)
BN_DO BN - DO - Dense(1, sigmoid)
DO DO - Dense(1, sigmoid)
RELU Dense(128, ReLU) - Dense(1, sigmoid)
RELU_BN BN - Dense(128, ReLU) - BN - Dense(1, sigmoid)
RELU_BN_DO Dense(128, ReLU) - BN - DO - Dense(1, sigmoid)
RELU_DO DO - Dense(128, ReLU) - DO - Dense(1, sigmoid)
NOIC_RELU_BN_DO Dense(128, ReLU) - BN - DO - Dense(1, sigmoid)

The ‘C’ column refers to the complexity level of the dataset, ‘Class’ to the class that the

main network in question was trained to extract, ‘Concept’ to the concept being mapped

and ‘Loss’ and ‘Acc’ to the test-set metrics obtained by each row’s concept mapper.

Architecture C Class Concept Loss Acc

DARTS_1Layers 1 Commercial Billboard 0.034635 0.98725

DARTS_2Layers 1 Commercial Billboard 0.043129 0.98475

DARTS_3Layers 1 Commercial Billboard 0.026884 0.98925

DARTS_4Layers 1 Commercial Billboard 0.048303 0.9875

1_NEURON 1 Commercial Billboard 0.154525 0.983125

BN 1 Commercial Billboard 0.154727 0.983

BN_DO 1 Commercial Billboard 0.122577 0.984375

DO 1 Commercial Billboard 0.137334 0.987125

RELU 1 Commercial Billboard 0.332267 0.988375

RELU_BN 1 Commercial Billboard 0.037446 0.986125

RELU_BN_DO 1 Commercial Billboard 0.036438 0.98725
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RELU_DO 1 Commercial Billboard 0.034715 0.9885

NOIC_RELU_BN_DO 1 Commercial Billboard 0.030828 0.99

DARTS_1Layers 1 Commercial Restaurant 0.027216 0.98475

DARTS_2Layers 1 Commercial Restaurant 0.041541 0.9885

DARTS_3Layers 1 Commercial Restaurant 0.03295 0.98625

DARTS_4Layers 1 Commercial Restaurant 0.045162 0.98125

1_NEURON 1 Commercial Restaurant 0.243018 0.975125

BN 1 Commercial Restaurant 0.152522 0.98425

BN_DO 1 Commercial Restaurant 0.178136 0.979125

DO 1 Commercial Restaurant 0.215559 0.976375

RELU 1 Commercial Restaurant 0.681733 0.783875

RELU_BN 1 Commercial Restaurant 0.042987 0.9835

RELU_BN_DO 1 Commercial Restaurant 0.047541 0.983375

RELU_DO 1 Commercial Restaurant 0.09631 0.974875

NOIC_RELU_BN_DO 1 Commercial Restaurant 0.036569 0.98575

DARTS_1Layers 1 Commercial Statue 5.21E-19 1

DARTS_2Layers 1 Commercial Statue 0 1

DARTS_3Layers 1 Commercial Statue 5.75E-21 1

DARTS_4Layers 1 Commercial Statue 6.55E-24 1

1_NEURON 1 Commercial Statue 0.002142 0.9995

BN 1 Commercial Statue 2.75E-12 1

BN_DO 1 Commercial Statue 0.000663 0.999875

DO 1 Commercial Statue 0.000859 0.999625

RELU 1 Commercial Statue 0.004729 0.999625

RELU_BN 1 Commercial Statue 9.16E-06 1

RELU_BN_DO 1 Commercial Statue 3.47E-06 1

RELU_DO 1 Commercial Statue 1.82E-05 1

NOIC_RELU_BN_DO 1 Commercial Statue 4.59E-06 1

DARTS_1Layers 1 Industrial Chimney 0.034139 0.9905

DARTS_2Layers 1 Industrial Chimney 0.027576 0.99025

DARTS_3Layers 1 Industrial Chimney 0.031749 0.9915

DARTS_4Layers 1 Industrial Chimney 0.029468 0.991

1_NEURON 1 Industrial Chimney 0.04011 0.994125

BN 1 Industrial Chimney 0.067096 0.989

BN_DO 1 Industrial Chimney 0.053648 0.992125

DO 1 Industrial Chimney 0.056469 0.990875

RELU 1 Industrial Chimney 0.192321 0.89625

RELU_BN 1 Industrial Chimney 0.006131 0.998375

RELU_BN_DO 1 Industrial Chimney 0.007693 0.997875

RELU_DO 1 Industrial Chimney 0.019619 0.9945
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NOIC_RELU_BN_DO 1 Industrial Chimney 0.020608 0.992875

DARTS_1Layers 1 Industrial Machine 0.015723 0.997

DARTS_2Layers 1 Industrial Machine 0.011913 0.996

DARTS_3Layers 1 Industrial Machine 0.008353 0.99575

DARTS_4Layers 1 Industrial Machine 0.019088 0.99375

1_NEURON 1 Industrial Machine 0.041957 0.994

BN 1 Industrial Machine 0.007332 0.9995

BN_DO 1 Industrial Machine 0.000719 0.999875

DO 1 Industrial Machine 0.025702 0.996125

RELU 1 Industrial Machine 0.110065 0.995625

RELU_BN 1 Industrial Machine 0.000614 0.99975

RELU_BN_DO 1 Industrial Machine 0.000883 0.999625

RELU_DO 1 Industrial Machine 0.011556 0.997

NOIC_RELU_BN_DO 1 Industrial Machine 0.000654 0.999875

DARTS_1Layers 1 Industrial MiscIndustrial 0.042943 0.989

DARTS_2Layers 1 Industrial MiscIndustrial 0.025794 0.98825

DARTS_3Layers 1 Industrial MiscIndustrial 0.029553 0.99075

DARTS_4Layers 1 Industrial MiscIndustrial 0.032734 0.992

1_NEURON 1 Industrial MiscIndustrial 0.100059 0.9865

BN 1 Industrial MiscIndustrial 0.085164 0.988375

BN_DO 1 Industrial MiscIndustrial 0.091239 0.986625

DO 1 Industrial MiscIndustrial 0.07831 0.98525

RELU 1 Industrial MiscIndustrial 0.100115 0.990625

RELU_BN 1 Industrial MiscIndustrial 0.038717 0.98925

RELU_BN_DO 1 Industrial MiscIndustrial 0.040969 0.987875

RELU_DO 1 Industrial MiscIndustrial 0.050159 0.986875

NOIC_RELU_BN_DO 1 Industrial MiscIndustrial 0.043288 0.986875

DARTS_1Layers 1 Residential MiscResidential 0.027737 0.9915

DARTS_2Layers 1 Residential MiscResidential 0.028357 0.9905

DARTS_3Layers 1 Residential MiscResidential 0.033262 0.9915

DARTS_4Layers 1 Residential MiscResidential 0.039956 0.99025

1_NEURON 1 Residential MiscResidential 0.088908 0.98925

BN 1 Residential MiscResidential 0.189517 0.98775

BN_DO 1 Residential MiscResidential 0.135576 0.9875

DO 1 Residential MiscResidential 0.078543 0.986

RELU 1 Residential MiscResidential 0.33277 0.984875

RELU_BN 1 Residential MiscResidential 0.038209 0.98625

RELU_BN_DO 1 Residential MiscResidential 0.034956 0.98625

RELU_DO 1 Residential MiscResidential 0.033506 0.99025

NOIC_RELU_BN_DO 1 Residential MiscResidential 0.031817 0.989875
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DARTS_1Layers 1 Residential Porch 6.49E-10 0.9995

DARTS_2Layers 1 Residential Porch 0.016033 0.99875

DARTS_3Layers 1 Residential Porch 0.004543 0.99925

DARTS_4Layers 1 Residential Porch 0.008913 0.9995

1_NEURON 1 Residential Porch 0.000672 0.999625

BN 1 Residential Porch 0.000743 0.99975

BN_DO 1 Residential Porch 0.000834 0.99975

DO 1 Residential Porch 0.000116 1

RELU 1 Residential Porch 0.001433 0.99975

RELU_BN 1 Residential Porch 0.000319 1

RELU_BN_DO 1 Residential Porch 0.000183 1

RELU_DO 1 Residential Porch 0.00012 1

NOIC_RELU_BN_DO 1 Residential Porch 2.83E-05 1

DARTS_1Layers 1 Residential TiledRoof 0.017247 0.9905

DARTS_2Layers 1 Residential TiledRoof 0.025883 0.9905

DARTS_3Layers 1 Residential TiledRoof 0.028057 0.991

DARTS_4Layers 1 Residential TiledRoof 0.035327 0.99125

1_NEURON 1 Residential TiledRoof 0.062236 0.9925

BN 1 Residential TiledRoof 0.053932 0.993125

BN_DO 1 Residential TiledRoof 0.042283 0.9955

DO 1 Residential TiledRoof 0.05128 0.994625

RELU 1 Residential TiledRoof 0.298242 0.992625

RELU_BN 1 Residential TiledRoof 0.022647 0.991

RELU_BN_DO 1 Residential TiledRoof 0.014325 0.994625

RELU_DO 1 Residential TiledRoof 0.021408 0.995625

NOIC_RELU_BN_DO 1 Residential TiledRoof 0.014028 0.99575

DARTS_1Layers 2 Commercial Billboard 0.080991 0.97975

DARTS_2Layers 2 Commercial Billboard 0.06354 0.97925

DARTS_3Layers 2 Commercial Billboard 0.102286 0.97875

DARTS_4Layers 2 Commercial Billboard 0.117288 0.97925

1_NEURON 2 Commercial Billboard 0.300098 0.96825

BN 2 Commercial Billboard 0.216526 0.9685

BN_DO 2 Commercial Billboard 0.204419 0.968625

DO 2 Commercial Billboard 0.293504 0.963125

RELU 2 Commercial Billboard 0.430979 0.878

RELU_BN 2 Commercial Billboard 0.069055 0.975

RELU_BN_DO 2 Commercial Billboard 0.073147 0.974

RELU_DO 2 Commercial Billboard 0.084399 0.974375

NOIC_RELU_BN_DO 2 Commercial Billboard 0.056689 0.982125

DARTS_1Layers 2 Commercial Restaurant 0.132394 0.9655
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DARTS_2Layers 2 Commercial Restaurant 0.110074 0.9625

DARTS_3Layers 2 Commercial Restaurant 0.115115 0.9625

DARTS_4Layers 2 Commercial Restaurant 0.147397 0.958437

1_NEURON 2 Commercial Restaurant 0.32245 0.965

BN 2 Commercial Restaurant 0.298 0.95975

BN_DO 2 Commercial Restaurant 0.233448 0.965375

DO 2 Commercial Restaurant 0.295857 0.965

RELU 2 Commercial Restaurant 0.234135 0.87975

RELU_BN 2 Commercial Restaurant 0.074937 0.97425

RELU_BN_DO 2 Commercial Restaurant 0.062071 0.97775

RELU_DO 2 Commercial Restaurant 0.096571 0.9665

NOIC_RELU_BN_DO 2 Commercial Restaurant 0.062994 0.9765

DARTS_1Layers 2 Commercial Statue 0.006258 0.99875

DARTS_2Layers 2 Commercial Statue 0.000183 1

DARTS_3Layers 2 Commercial Statue 1.48E-07 0.99975

DARTS_4Layers 2 Commercial Statue 3.19E-07 1

1_NEURON 2 Commercial Statue 0.002471 0.99975

BN 2 Commercial Statue 2.13E-10 1

BN_DO 2 Commercial Statue 0.000362 0.99975

DO 2 Commercial Statue 0.004115 0.998875

RELU 2 Commercial Statue 0.06481 0.997875

RELU_BN 2 Commercial Statue 4.16E-05 1

RELU_BN_DO 2 Commercial Statue 1.00E-05 1

RELU_DO 2 Commercial Statue 4.72E-05 1

NOIC_RELU_BN_DO 2 Commercial Statue 0.005001 0.999375

DARTS_1Layers 2 Industrial Chimney 0.016088 0.99825

DARTS_2Layers 2 Industrial Chimney 0.01064 0.998

DARTS_3Layers 2 Industrial Chimney 0.004999 0.99875

DARTS_4Layers 2 Industrial Chimney 0.000441 1

1_NEURON 2 Industrial Chimney 0.005988 0.998

BN 2 Industrial Chimney 0.003857 0.999125

BN_DO 2 Industrial Chimney 0.003292 0.9995

DO 2 Industrial Chimney 0.002377 0.999

RELU 2 Industrial Chimney 0.011921 0.9985

RELU_BN 2 Industrial Chimney 0.000253 1

RELU_BN_DO 2 Industrial Chimney 0.000216 1

RELU_DO 2 Industrial Chimney 0.002074 0.9995

NOIC_RELU_BN_DO 2 Industrial Chimney 0.006244 0.998375

DARTS_1Layers 2 Industrial Machine 0.003977 0.99875

DARTS_2Layers 2 Industrial Machine 0.003197 0.99875
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DARTS_3Layers 2 Industrial Machine 0.005148 0.998

DARTS_4Layers 2 Industrial Machine 0.005344 0.9975

1_NEURON 2 Industrial Machine 0.017896 0.9945

BN 2 Industrial Machine 0.017882 0.997125

BN_DO 2 Industrial Machine 0.009896 0.9985

DO 2 Industrial Machine 0.014647 0.99625

RELU 2 Industrial Machine 0.02269 0.996

RELU_BN 2 Industrial Machine 0.003324 0.99875

RELU_BN_DO 2 Industrial Machine 0.003318 0.999125

RELU_DO 2 Industrial Machine 0.005268 0.99725

NOIC_RELU_BN_DO 2 Industrial Machine 0.010454 0.997375

DARTS_1Layers 2 Industrial MiscIndustrial 0.047201 0.98625

DARTS_2Layers 2 Industrial MiscIndustrial 0.047567 0.98625

DARTS_3Layers 2 Industrial MiscIndustrial 0.055695 0.98625

DARTS_4Layers 2 Industrial MiscIndustrial 0.053847 0.9825

1_NEURON 2 Industrial MiscIndustrial 0.104986 0.98375

BN 2 Industrial MiscIndustrial 0.177743 0.98075

BN_DO 2 Industrial MiscIndustrial 0.147553 0.9785

DO 2 Industrial MiscIndustrial 0.114986 0.9825

RELU 2 Industrial MiscIndustrial 0.384528 0.8855

RELU_BN 2 Industrial MiscIndustrial 0.058783 0.98325

RELU_BN_DO 2 Industrial MiscIndustrial 0.058069 0.984

RELU_DO 2 Industrial MiscIndustrial 0.051349 0.9855

NOIC_RELU_BN_DO 2 Industrial MiscIndustrial 0.053438 0.98725

DARTS_1Layers 2 Residential MiscResidential 0.019817 0.9925

DARTS_2Layers 2 Residential MiscResidential 0.018698 0.992

DARTS_3Layers 2 Residential MiscResidential 0.021944 0.9935

DARTS_4Layers 2 Residential MiscResidential 0.02235 0.98975

1_NEURON 2 Residential MiscResidential 0.067925 0.9915

BN 2 Residential MiscResidential 0.096572 0.989875

BN_DO 2 Residential MiscResidential 0.080193 0.990875

DO 2 Residential MiscResidential 0.051811 0.992125

RELU 2 Residential MiscResidential 0.175321 0.9935

RELU_BN 2 Residential MiscResidential 0.021235 0.99425

RELU_BN_DO 2 Residential MiscResidential 0.022158 0.993625

RELU_DO 2 Residential MiscResidential 0.165257 0.89375

NOIC_RELU_BN_DO 2 Residential MiscResidential 0.017338 0.994875

DARTS_1Layers 2 Residential Porch 0.008246 0.9985

DARTS_2Layers 2 Residential Porch 0.000783 0.99875

DARTS_3Layers 2 Residential Porch 0.005948 0.9985
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DARTS_4Layers 2 Residential Porch 0.000469 0.997

1_NEURON 2 Residential Porch 0.011488 0.997375

BN 2 Residential Porch 0.016089 0.9975

BN_DO 2 Residential Porch 0.012151 0.998625

DO 2 Residential Porch 0.004388 0.9985

RELU 2 Residential Porch 0.022501 0.998125

RELU_BN 2 Residential Porch 0.003584 0.998875

RELU_BN_DO 2 Residential Porch 0.003639 0.998125

RELU_DO 2 Residential Porch 0.005298 0.998625

NOIC_RELU_BN_DO 2 Residential Porch 0.008197 0.998125

DARTS_1Layers 2 Residential TiledRoof 0.010808 0.993

DARTS_2Layers 2 Residential TiledRoof 0.016501 0.99425

DARTS_3Layers 2 Residential TiledRoof 0.018537 0.99325

DARTS_4Layers 2 Residential TiledRoof 0.015856 0.99125

1_NEURON 2 Residential TiledRoof 0.081245 0.99

BN 2 Residential TiledRoof 0.141931 0.986625

BN_DO 2 Residential TiledRoof 0.133639 0.986375

DO 2 Residential TiledRoof 0.089968 0.9915

RELU 2 Residential TiledRoof 0.194491 0.990125

RELU_BN 2 Residential TiledRoof 0.048093 0.9835

RELU_BN_DO 2 Residential TiledRoof 0.045717 0.98525

RELU_DO 2 Residential TiledRoof 0.067044 0.9915

NOIC_RELU_BN_DO 2 Residential TiledRoof 0.023819 0.992625

DARTS_1Layers 3 Commercial Billboard 0.23412 0.91825

DARTS_2Layers 3 Commercial Billboard 0.241164 0.91725

DARTS_3Layers 3 Commercial Billboard 0.220329 0.918

DARTS_4Layers 3 Commercial Billboard 0.2334 0.9175

1_NEURON 3 Commercial Billboard 0.196565 0.927

BN 3 Commercial Billboard 0.198177 0.924125

BN_DO 3 Commercial Billboard 0.195193 0.926875

DO 3 Commercial Billboard 0.205076 0.924875

RELU 3 Commercial Billboard 0.202533 0.923125

RELU_BN 3 Commercial Billboard 0.192548 0.927875

RELU_BN_DO 3 Commercial Billboard 0.190116 0.92625

RELU_DO 3 Commercial Billboard 0.199525 0.9255

NOIC_RELU_BN_DO 3 Commercial Billboard 0.188328 0.928

DARTS_1Layers 3 Commercial Restaurant 0.462906 0.85525

DARTS_2Layers 3 Commercial Restaurant 0.377012 0.85525

DARTS_3Layers 3 Commercial Restaurant 0.367987 0.8555

DARTS_4Layers 3 Commercial Restaurant 0.416071 0.85625
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1_NEURON 3 Commercial Restaurant 0.306461 0.874

BN 3 Commercial Restaurant 0.307656 0.873125

BN_DO 3 Commercial Restaurant 0.305109 0.872625

DO 3 Commercial Restaurant 0.313092 0.86875

RELU 3 Commercial Restaurant 0.330843 0.86825

RELU_BN 3 Commercial Restaurant 0.306828 0.869375

RELU_BN_DO 3 Commercial Restaurant 0.301967 0.875125

RELU_DO 3 Commercial Restaurant 0.328772 0.872875

NOIC_RELU_BN_DO 3 Commercial Restaurant 0.3027 0.8735

DARTS_1Layers 3 Commercial Statue 0.368382 0.87325

DARTS_2Layers 3 Commercial Statue 0.367081 0.87875

DARTS_3Layers 3 Commercial Statue 0.56823 0.8735

DARTS_4Layers 3 Commercial Statue 0.336663 0.883

1_NEURON 3 Commercial Statue 0.249738 0.890125

BN 3 Commercial Statue 0.240111 0.89125

BN_DO 3 Commercial Statue 0.248702 0.88975

DO 3 Commercial Statue 0.256303 0.885375

RELU 3 Commercial Statue 0.26803 0.883

RELU_BN 3 Commercial Statue 0.24732 0.888625

RELU_BN_DO 3 Commercial Statue 0.249322 0.88625

RELU_DO 3 Commercial Statue 0.28198 0.879375

NOIC_RELU_BN_DO 3 Commercial Statue 0.255114 0.885

DARTS_1Layers 3 Industrial Chimney 0.330398 0.8855

DARTS_2Layers 3 Industrial Chimney 0.299241 0.8735

DARTS_3Layers 3 Industrial Chimney 0.392369 0.88575

DARTS_4Layers 3 Industrial Chimney 0.313106 0.8795

1_NEURON 3 Industrial Chimney 1.493 0.89525

BN 3 Industrial Chimney 0.979134 0.88175

BN_DO 3 Industrial Chimney 0.897081 0.88575

DO 3 Industrial Chimney 1.16711 0.890625

RELU 3 Industrial Chimney 0.401535 0.909375

RELU_BN 3 Industrial Chimney 0.299063 0.89375

RELU_BN_DO 3 Industrial Chimney 0.289383 0.89975

RELU_DO 3 Industrial Chimney 0.941992 0.893875

NOIC_RELU_BN_DO 3 Industrial Chimney 0.219195 0.928125

DARTS_1Layers 3 Industrial Machine 0.06185 0.97425

DARTS_2Layers 3 Industrial Machine 0.104464 0.9735

DARTS_3Layers 3 Industrial Machine 0.10661 0.96625

DARTS_4Layers 3 Industrial Machine 0.102435 0.9695

1_NEURON 3 Industrial Machine 0.245202 0.97025
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BN 3 Industrial Machine 0.196134 0.968

BN_DO 3 Industrial Machine 0.21643 0.96475

DO 3 Industrial Machine 0.177974 0.973875

RELU 3 Industrial Machine 0.21676 0.9685

RELU_BN 3 Industrial Machine 0.07981 0.973

RELU_BN_DO 3 Industrial Machine 0.073553 0.976625

RELU_DO 3 Industrial Machine 0.547907 0.964875

NOIC_RELU_BN_DO 3 Industrial Machine 0.072696 0.97525

DARTS_1Layers 3 Industrial MiscIndustrial 0.184444 0.9305

DARTS_2Layers 3 Industrial MiscIndustrial 0.200325 0.9305

DARTS_3Layers 3 Industrial MiscIndustrial 0.192119 0.92325

DARTS_4Layers 3 Industrial MiscIndustrial 0.204283 0.9265

1_NEURON 3 Industrial MiscIndustrial 0.482659 0.933875

BN 3 Industrial MiscIndustrial 0.515587 0.919875

BN_DO 3 Industrial MiscIndustrial 0.436471 0.9205

DO 3 Industrial MiscIndustrial 0.417683 0.927625

RELU 3 Industrial MiscIndustrial 0.440944 0.94125

RELU_BN 3 Industrial MiscIndustrial 0.174083 0.940375

RELU_BN_DO 3 Industrial MiscIndustrial 0.160221 0.943875

RELU_DO 3 Industrial MiscIndustrial 0.455741 0.941625

NOIC_RELU_BN_DO 3 Industrial MiscIndustrial 0.153403 0.9425

DARTS_1Layers 3 Residential MiscResidential 0.069627 0.97425

DARTS_2Layers 3 Residential MiscResidential 0.074597 0.97375

DARTS_3Layers 3 Residential MiscResidential 0.075248 0.97475

DARTS_4Layers 3 Residential MiscResidential 0.090414 0.97325

1_NEURON 3 Residential MiscResidential 0.285749 0.97375

BN 3 Residential MiscResidential 0.46005 0.969625

BN_DO 3 Residential MiscResidential 0.388134 0.970375

DO 3 Residential MiscResidential 0.260378 0.971625

RELU 3 Residential MiscResidential 0.254864 0.9755

RELU_BN 3 Residential MiscResidential 0.088228 0.974875

RELU_BN_DO 3 Residential MiscResidential 0.080224 0.975

RELU_DO 3 Residential MiscResidential 0.468214 0.976375

NOIC_RELU_BN_DO 3 Residential MiscResidential 0.073838 0.976125

DARTS_1Layers 3 Residential Porch 0.093939 0.979

DARTS_2Layers 3 Residential Porch 0.107129 0.9715

DARTS_3Layers 3 Residential Porch 0.078114 0.9705

DARTS_4Layers 3 Residential Porch 0.107807 0.9695

1_NEURON 3 Residential Porch 0.185191 0.975875

BN 3 Residential Porch 0.267141 0.96375
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BN_DO 3 Residential Porch 0.201324 0.969375

DO 3 Residential Porch 0.186293 0.972875

RELU 3 Residential Porch 0.181241 0.975625

RELU_BN 3 Residential Porch 0.073617 0.973125

RELU_BN_DO 3 Residential Porch 0.067839 0.97575

RELU_DO 3 Residential Porch 0.447259 0.974375

NOIC_RELU_BN_DO 3 Residential Porch 0.041287 0.98675

DARTS_1Layers 3 Residential TiledRoof 0.049236 0.98575

DARTS_2Layers 3 Residential TiledRoof 0.036171 0.98425

DARTS_3Layers 3 Residential TiledRoof 0.044582 0.983

DARTS_4Layers 3 Residential TiledRoof 0.076843 0.9805

1_NEURON 3 Residential TiledRoof 0.23915 0.982875

BN 3 Residential TiledRoof 0.2145 0.985

BN_DO 3 Residential TiledRoof 0.173966 0.984875

DO 3 Residential TiledRoof 0.177395 0.983375

RELU 3 Residential TiledRoof 0.188262 0.984625

RELU_BN 3 Residential TiledRoof 0.055507 0.984

RELU_BN_DO 3 Residential TiledRoof 0.050832 0.986875

RELU_DO 3 Residential TiledRoof 0.67711 0.986

NOIC_RELU_BN_DO 3 Residential TiledRoof 0.049086 0.987875

DARTS_1Layers 4 Commercial Billboard 0.219685 0.9095

DARTS_2Layers 4 Commercial Billboard 0.236745 0.9115

DARTS_3Layers 4 Commercial Billboard 0.251736 0.914

DARTS_4Layers 4 Commercial Billboard 0.28373 0.91125

1_NEURON 4 Commercial Billboard 1.362873 0.903625

BN 4 Commercial Billboard 0.924122 0.902

BN_DO 4 Commercial Billboard 0.807652 0.89775

DO 4 Commercial Billboard 1.151355 0.900125

RELU 4 Commercial Billboard 0.424394 0.90725

RELU_BN 4 Commercial Billboard 0.270118 0.909875

RELU_BN_DO 4 Commercial Billboard 0.264148 0.91175

RELU_DO 4 Commercial Billboard 0.467942 0.905125

NOIC_RELU_BN_DO 4 Commercial Billboard 0.245888 0.91725

DARTS_1Layers 4 Commercial Restaurant 0.403877 0.833

DARTS_2Layers 4 Commercial Restaurant 0.376365 0.85575

DARTS_3Layers 4 Commercial Restaurant 0.427812 0.84625

DARTS_4Layers 4 Commercial Restaurant 0.368568 0.82925

1_NEURON 4 Commercial Restaurant 2.003647 0.84125

BN 4 Commercial Restaurant 1.426182 0.853625

BN_DO 4 Commercial Restaurant 1.161304 0.862375
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DO 4 Commercial Restaurant 1.57004 0.851125

RELU 4 Commercial Restaurant 0.444941 0.858875

RELU_BN 4 Commercial Restaurant 0.383581 0.87575

RELU_BN_DO 4 Commercial Restaurant 0.375664 0.8765

RELU_DO 4 Commercial Restaurant 0.613303 0.8605

NOIC_RELU_BN_DO 4 Commercial Restaurant 0.366633 0.880875

DARTS_1Layers 4 Commercial Statue 0.205257 0.925

DARTS_2Layers 4 Commercial Statue 0.23701 0.91825

DARTS_3Layers 4 Commercial Statue 0.29899 0.92075

DARTS_4Layers 4 Commercial Statue 0.205383 0.93125

1_NEURON 4 Commercial Statue 0.705306 0.9325

BN 4 Commercial Statue 0.510108 0.937125

BN_DO 4 Commercial Statue 0.469029 0.93625

DO 4 Commercial Statue 0.560469 0.937

RELU 4 Commercial Statue 0.21454 0.936625

RELU_BN 4 Commercial Statue 0.168795 0.9375

RELU_BN_DO 4 Commercial Statue 0.1594 0.942375

RELU_DO 4 Commercial Statue 0.351978 0.938125

NOIC_RELU_BN_DO 4 Commercial Statue 0.124977 0.954375

DARTS_1Layers 4 Industrial Chimney 0.260287 0.9055

DARTS_2Layers 4 Industrial Chimney 0.309942 0.90925

DARTS_3Layers 4 Industrial Chimney 0.28489 0.90175

DARTS_4Layers 4 Industrial Chimney 0.265788 0.9055

1_NEURON 4 Industrial Chimney 1.113035 0.91725

BN 4 Industrial Chimney 0.639159 0.90475

BN_DO 4 Industrial Chimney 0.565593 0.9095

DO 4 Industrial Chimney 0.943181 0.913125

RELU 4 Industrial Chimney 0.385498 0.918375

RELU_BN 4 Industrial Chimney 0.217317 0.918625

RELU_BN_DO 4 Industrial Chimney 0.197984 0.926875

RELU_DO 4 Industrial Chimney 0.781115 0.916375

NOIC_RELU_BN_DO 4 Industrial Chimney 0.171672 0.938125

DARTS_1Layers 4 Industrial Machine 0.167378 0.95625

DARTS_2Layers 4 Industrial Machine 0.167829 0.9575

DARTS_3Layers 4 Industrial Machine 0.171529 0.9515

DARTS_4Layers 4 Industrial Machine 0.140253 0.95125

1_NEURON 4 Industrial Machine 0.363364 0.957125

BN 4 Industrial Machine 0.32335 0.941875

BN_DO 4 Industrial Machine 0.247304 0.950375

DO 4 Industrial Machine 0.35623 0.95475
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RELU 4 Industrial Machine 0.27136 0.95925

RELU_BN 4 Industrial Machine 0.108147 0.96225

RELU_BN_DO 4 Industrial Machine 0.099579 0.96275

RELU_DO 4 Industrial Machine 0.312185 0.956375

NOIC_RELU_BN_DO 4 Industrial Machine 0.093719 0.965375

DARTS_1Layers 4 Industrial MiscIndustrial 0.183862 0.9495

DARTS_2Layers 4 Industrial MiscIndustrial 0.198016 0.948

DARTS_3Layers 4 Industrial MiscIndustrial 0.221502 0.95025

DARTS_4Layers 4 Industrial MiscIndustrial 0.195269 0.94525

1_NEURON 4 Industrial MiscIndustrial 0.549094 0.934875

BN 4 Industrial MiscIndustrial 0.494457 0.92525

BN_DO 4 Industrial MiscIndustrial 0.393269 0.926

DO 4 Industrial MiscIndustrial 0.517896 0.92675

RELU 4 Industrial MiscIndustrial 0.428148 0.937375

RELU_BN 4 Industrial MiscIndustrial 0.187486 0.9385

RELU_BN_DO 4 Industrial MiscIndustrial 0.18474 0.93875

RELU_DO 4 Industrial MiscIndustrial 0.409268 0.934875

NOIC_RELU_BN_DO 4 Industrial MiscIndustrial 0.164474 0.94575

DARTS_1Layers 4 Residential MiscResidential 0.071764 0.984

DARTS_2Layers 4 Residential MiscResidential 0.054094 0.97925

DARTS_3Layers 4 Residential MiscResidential 0.083853 0.97975

DARTS_4Layers 4 Residential MiscResidential 0.072343 0.98025

1_NEURON 4 Residential MiscResidential 0.358403 0.96725

BN 4 Residential MiscResidential 0.39834 0.969875

BN_DO 4 Residential MiscResidential 0.328076 0.971

DO 4 Residential MiscResidential 0.364619 0.966

RELU 4 Residential MiscResidential 0.272415 0.969375

RELU_BN 4 Residential MiscResidential 0.089624 0.97325

RELU_BN_DO 4 Residential MiscResidential 0.082458 0.976

RELU_DO 4 Residential MiscResidential 0.537835 0.971375

NOIC_RELU_BN_DO 4 Residential MiscResidential 0.079075 0.98175

DARTS_1Layers 4 Residential Porch 0.068831 0.973

DARTS_2Layers 4 Residential Porch 0.07415 0.973

DARTS_3Layers 4 Residential Porch 0.131897 0.977

DARTS_4Layers 4 Residential Porch 0.054645 0.976

1_NEURON 4 Residential Porch 0.156972 0.975

BN 4 Residential Porch 0.21445 0.9605

BN_DO 4 Residential Porch 0.191613 0.964625

DO 4 Residential Porch 0.133424 0.98225

RELU 4 Residential Porch 0.09861 0.981875
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RELU_BN 4 Residential Porch 0.079927 0.96725

RELU_BN_DO 4 Residential Porch 0.070749 0.972625

RELU_DO 4 Residential Porch 0.215422 0.977125

NOIC_RELU_BN_DO 4 Residential Porch 0.026204 0.990625

DARTS_1Layers 4 Residential TiledRoof 0.073157 0.984

DARTS_2Layers 4 Residential TiledRoof 0.053292 0.98125

DARTS_3Layers 4 Residential TiledRoof 0.067465 0.98225

DARTS_4Layers 4 Residential TiledRoof 0.053243 0.97875

1_NEURON 4 Residential TiledRoof 0.145742 0.98575

BN 4 Residential TiledRoof 0.159986 0.986

BN_DO 4 Residential TiledRoof 0.123015 0.986375

DO 4 Residential TiledRoof 0.142771 0.9865

RELU 4 Residential TiledRoof 0.273104 0.980375

RELU_BN 4 Residential TiledRoof 0.048136 0.9875

RELU_BN_DO 4 Residential TiledRoof 0.044555 0.988375

RELU_DO 4 Residential TiledRoof 0.267344 0.984

NOIC_RELU_BN_DO 4 Residential TiledRoof 0.029267 0.992

DARTS_1Layers 5 Commercial Billboard 0.263071 0.89625

DARTS_2Layers 5 Commercial Billboard 0.269954 0.89775

DARTS_3Layers 5 Commercial Billboard 0.262851 0.90075

DARTS_4Layers 5 Commercial Billboard 0.267564 0.90625

1_NEURON 5 Commercial Billboard 0.295987 0.8845

BN 5 Commercial Billboard 0.294536 0.88725

BN_DO 5 Commercial Billboard 0.294782 0.884625

DO 5 Commercial Billboard 0.299694 0.883625

RELU 5 Commercial Billboard 0.303973 0.882625

RELU_BN 5 Commercial Billboard 0.290025 0.88875

RELU_BN_DO 5 Commercial Billboard 0.290802 0.888375

RELU_DO 5 Commercial Billboard 0.296022 0.883375

NOIC_RELU_BN_DO 5 Commercial Billboard 0.288953 0.888

DARTS_1Layers 5 Commercial Restaurant 0.409261 0.81825

DARTS_2Layers 5 Commercial Restaurant 0.594763 0.81475

DARTS_3Layers 5 Commercial Restaurant 0.406538 0.82425

DARTS_4Layers 5 Commercial Restaurant 0.414898 0.824

1_NEURON 5 Commercial Restaurant 0.434742 0.820875

BN 5 Commercial Restaurant 0.414328 0.82475

BN_DO 5 Commercial Restaurant 0.410753 0.826375

DO 5 Commercial Restaurant 0.438079 0.825

RELU 5 Commercial Restaurant 0.432963 0.83225

RELU_BN 5 Commercial Restaurant 0.409718 0.8295
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RELU_BN_DO 5 Commercial Restaurant 0.409405 0.832875

RELU_DO 5 Commercial Restaurant 0.443892 0.834625

NOIC_RELU_BN_DO 5 Commercial Restaurant 0.409784 0.830125

DARTS_1Layers 5 Commercial Statue 0.297124 0.875

DARTS_2Layers 5 Commercial Statue 0.292849 0.87575

DARTS_3Layers 5 Commercial Statue 0.30031 0.878

DARTS_4Layers 5 Commercial Statue 0.289821 0.88025

1_NEURON 5 Commercial Statue 0.270219 0.893375

BN 5 Commercial Statue 0.256248 0.892125

BN_DO 5 Commercial Statue 0.261563 0.890875

DO 5 Commercial Statue 0.276887 0.89075

RELU 5 Commercial Statue 0.32727 0.88925

RELU_BN 5 Commercial Statue 0.265886 0.8915

RELU_BN_DO 5 Commercial Statue 0.272977 0.89225

RELU_DO 5 Commercial Statue 0.321118 0.889875

NOIC_RELU_BN_DO 5 Commercial Statue 0.273895 0.8915

DARTS_1Layers 5 Industrial Chimney 0.520729 0.75375

DARTS_2Layers 5 Industrial Chimney 0.528812 0.754

DARTS_3Layers 5 Industrial Chimney 0.555521 0.75225

DARTS_4Layers 5 Industrial Chimney 0.557624 0.745

1_NEURON 5 Industrial Chimney 0.513225 0.754625

BN 5 Industrial Chimney 0.510879 0.755375

BN_DO 5 Industrial Chimney 0.508681 0.758625

DO 5 Industrial Chimney 0.517733 0.75425

RELU 5 Industrial Chimney 0.512798 0.755625

RELU_BN 5 Industrial Chimney 0.508893 0.7595

RELU_BN_DO 5 Industrial Chimney 0.506552 0.763125

RELU_DO 5 Industrial Chimney 0.507517 0.759375

NOIC_RELU_BN_DO 5 Industrial Chimney 0.509203 0.75975

DARTS_1Layers 5 Industrial Machine 0.380907 0.83125

DARTS_2Layers 5 Industrial Machine 0.382478 0.8295

DARTS_3Layers 5 Industrial Machine 0.381227 0.8305

DARTS_4Layers 5 Industrial Machine 0.390785 0.82925

1_NEURON 5 Industrial Machine 0.374034 0.836875

BN 5 Industrial Machine 0.377733 0.836125

BN_DO 5 Industrial Machine 0.377433 0.8355

DO 5 Industrial Machine 0.374498 0.83725

RELU 5 Industrial Machine 0.376687 0.83625

RELU_BN 5 Industrial Machine 0.374112 0.835625

RELU_BN_DO 5 Industrial Machine 0.374558 0.837
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RELU_DO 5 Industrial Machine 0.37493 0.836

NOIC_RELU_BN_DO 5 Industrial Machine 0.373251 0.836125

DARTS_1Layers 5 Industrial MiscIndustrial 0.362913 0.859

DARTS_2Layers 5 Industrial MiscIndustrial 0.308554 0.86525

DARTS_3Layers 5 Industrial MiscIndustrial 0.316981 0.871

DARTS_4Layers 5 Industrial MiscIndustrial 0.305741 0.867

1_NEURON 5 Industrial MiscIndustrial 0.311337 0.861625

BN 5 Industrial MiscIndustrial 0.312888 0.8625

BN_DO 5 Industrial MiscIndustrial 0.312649 0.86175

DO 5 Industrial MiscIndustrial 0.313069 0.862375

RELU 5 Industrial MiscIndustrial 0.31537 0.86225

RELU_BN 5 Industrial MiscIndustrial 0.311368 0.8615

RELU_BN_DO 5 Industrial MiscIndustrial 0.312585 0.86225

RELU_DO 5 Industrial MiscIndustrial 0.315377 0.864625

NOIC_RELU_BN_DO 5 Industrial MiscIndustrial 0.312781 0.86225

DARTS_1Layers 5 Residential MiscResidential 0.18465 0.9345

DARTS_2Layers 5 Residential MiscResidential 0.177286 0.934

DARTS_3Layers 5 Residential MiscResidential 0.198692 0.93525

DARTS_4Layers 5 Residential MiscResidential 0.180567 0.9365

1_NEURON 5 Residential MiscResidential 0.14834 0.9505

BN 5 Residential MiscResidential 0.146829 0.949

BN_DO 5 Residential MiscResidential 0.150009 0.94775

DO 5 Residential MiscResidential 0.149404 0.948

RELU 5 Residential MiscResidential 0.15862 0.945

RELU_BN 5 Residential MiscResidential 0.147765 0.949125

RELU_BN_DO 5 Residential MiscResidential 0.14805 0.944375

RELU_DO 5 Residential MiscResidential 0.159472 0.945875

NOIC_RELU_BN_DO 5 Residential MiscResidential 0.148503 0.94675

DARTS_1Layers 5 Residential Porch 0.29509 0.8805

DARTS_2Layers 5 Residential Porch 0.301459 0.8795

DARTS_3Layers 5 Residential Porch 0.29005 0.87875

DARTS_4Layers 5 Residential Porch 0.31476 0.87975

1_NEURON 5 Residential Porch 0.252487 0.901125

BN 5 Residential Porch 0.248631 0.901375

BN_DO 5 Residential Porch 0.2497 0.902

DO 5 Residential Porch 0.254575 0.90175

RELU 5 Residential Porch 0.255724 0.901

RELU_BN 5 Residential Porch 0.249184 0.897625

RELU_BN_DO 5 Residential Porch 0.256188 0.90025

RELU_DO 5 Residential Porch 0.258335 0.89975
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NOIC_RELU_BN_DO 5 Residential Porch 0.252131 0.900875

DARTS_1Layers 5 Residential TiledRoof 0.282141 0.9035

DARTS_2Layers 5 Residential TiledRoof 0.285773 0.9035

DARTS_3Layers 5 Residential TiledRoof 0.364977 0.89

DARTS_4Layers 5 Residential TiledRoof 0.391176 0.88775

1_NEURON 5 Residential TiledRoof 0.267358 0.9005

BN 5 Residential TiledRoof 0.264404 0.901

BN_DO 5 Residential TiledRoof 0.276791 0.8975

DO 5 Residential TiledRoof 0.285917 0.895

RELU 5 Residential TiledRoof 0.266905 0.89975

RELU_BN 5 Residential TiledRoof 0.256959 0.903

RELU_BN_DO 5 Residential TiledRoof 0.270218 0.8975

RELU_DO 5 Residential TiledRoof 0.286512 0.893125

NOIC_RELU_BN_DO 5 Residential TiledRoof 0.273575 0.898625

DARTS_1Layers 6 Commercial Billboard 0.267498 0.89325

DARTS_2Layers 6 Commercial Billboard 0.267237 0.892

DARTS_3Layers 6 Commercial Billboard 0.267441 0.8895

DARTS_4Layers 6 Commercial Billboard 0.268592 0.8925

1_NEURON 6 Commercial Billboard 0.279169 0.899125

BN 6 Commercial Billboard 0.276769 0.899625

BN_DO 6 Commercial Billboard 0.276018 0.900625

DO 6 Commercial Billboard 0.278323 0.898875

RELU 6 Commercial Billboard 0.280548 0.895125

RELU_BN 6 Commercial Billboard 0.276951 0.900875

RELU_BN_DO 6 Commercial Billboard 0.277433 0.900125

RELU_DO 6 Commercial Billboard 0.277738 0.896875

NOIC_RELU_BN_DO 6 Commercial Billboard 0.275573 0.899125

DARTS_1Layers 6 Commercial Restaurant 0.376386 0.83475

DARTS_2Layers 6 Commercial Restaurant 0.381562 0.83675

DARTS_3Layers 6 Commercial Restaurant 0.38033 0.83325

DARTS_4Layers 6 Commercial Restaurant 0.379033 0.8305

1_NEURON 6 Commercial Restaurant 0.395535 0.83725

BN 6 Commercial Restaurant 0.397233 0.83025

BN_DO 6 Commercial Restaurant 0.394505 0.8345

DO 6 Commercial Restaurant 0.398283 0.836

RELU 6 Commercial Restaurant 0.409278 0.834375

RELU_BN 6 Commercial Restaurant 0.390757 0.836875

RELU_BN_DO 6 Commercial Restaurant 0.392336 0.836

RELU_DO 6 Commercial Restaurant 0.401897 0.838

NOIC_RELU_BN_DO 6 Commercial Restaurant 0.391522 0.837
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DARTS_1Layers 6 Commercial Statue 0.315139 0.8725

DARTS_2Layers 6 Commercial Statue 0.348942 0.86425

DARTS_3Layers 6 Commercial Statue 0.299886 0.87375

DARTS_4Layers 6 Commercial Statue 0.303491 0.87275

1_NEURON 6 Commercial Statue 0.290317 0.87525

BN 6 Commercial Statue 0.293261 0.874125

BN_DO 6 Commercial Statue 0.294456 0.874

DO 6 Commercial Statue 0.294665 0.875375

RELU 6 Commercial Statue 0.309186 0.8735

RELU_BN 6 Commercial Statue 0.294756 0.87425

RELU_BN_DO 6 Commercial Statue 0.296169 0.8735

RELU_DO 6 Commercial Statue 0.310354 0.8705

NOIC_RELU_BN_DO 6 Commercial Statue 0.293264 0.874

DARTS_1Layers 6 Industrial Chimney 0.529594 0.76025

DARTS_2Layers 6 Industrial Chimney 0.527586 0.75875

DARTS_3Layers 6 Industrial Chimney 0.526065 0.7595

DARTS_4Layers 6 Industrial Chimney 0.522618 0.75625

1_NEURON 6 Industrial Chimney 0.49571 0.779

BN 6 Industrial Chimney 0.496315 0.7805

BN_DO 6 Industrial Chimney 0.493083 0.784125

DO 6 Industrial Chimney 0.497088 0.783125

RELU 6 Industrial Chimney 0.492917 0.786625

RELU_BN 6 Industrial Chimney 0.49875 0.78225

RELU_BN_DO 6 Industrial Chimney 0.491921 0.784875

RELU_DO 6 Industrial Chimney 0.495085 0.785

NOIC_RELU_BN_DO 6 Industrial Chimney 0.491961 0.78625

DARTS_1Layers 6 Industrial Machine 0.380153 0.8545

DARTS_2Layers 6 Industrial Machine 0.351567 0.851

DARTS_3Layers 6 Industrial Machine 0.367986 0.8485

DARTS_4Layers 6 Industrial Machine 0.391988 0.85075

1_NEURON 6 Industrial Machine 0.339255 0.850125

BN 6 Industrial Machine 0.322138 0.85175

BN_DO 6 Industrial Machine 0.332169 0.849875

DO 6 Industrial Machine 0.339457 0.84875

RELU 6 Industrial Machine 0.336378 0.85075

RELU_BN 6 Industrial Machine 0.33126 0.851375

RELU_BN_DO 6 Industrial Machine 0.334265 0.851625

RELU_DO 6 Industrial Machine 0.349024 0.851375

NOIC_RELU_BN_DO 6 Industrial Machine 0.340128 0.85025

DARTS_1Layers 6 Industrial MiscIndustrial 0.311788 0.87675
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DARTS_2Layers 6 Industrial MiscIndustrial 0.319045 0.87375

DARTS_3Layers 6 Industrial MiscIndustrial 0.368815 0.8675

DARTS_4Layers 6 Industrial MiscIndustrial 0.356621 0.86825

1_NEURON 6 Industrial MiscIndustrial 0.307315 0.877875

BN 6 Industrial MiscIndustrial 0.306694 0.875625

BN_DO 6 Industrial MiscIndustrial 0.308575 0.877375

DO 6 Industrial MiscIndustrial 0.308807 0.877375

RELU 6 Industrial MiscIndustrial 0.310176 0.875625

RELU_BN 6 Industrial MiscIndustrial 0.308541 0.876875

RELU_BN_DO 6 Industrial MiscIndustrial 0.309602 0.876125

RELU_DO 6 Industrial MiscIndustrial 0.312264 0.876625

NOIC_RELU_BN_DO 6 Industrial MiscIndustrial 0.3101 0.878

DARTS_1Layers 6 Residential MiscResidential 0.161987 0.95275

DARTS_2Layers 6 Residential MiscResidential 0.15336 0.952

DARTS_3Layers 6 Residential MiscResidential 0.194413 0.95075

DARTS_4Layers 6 Residential MiscResidential 0.20885 0.949

1_NEURON 6 Residential MiscResidential 0.153142 0.949625

BN 6 Residential MiscResidential 0.153138 0.947625

BN_DO 6 Residential MiscResidential 0.159779 0.945875

DO 6 Residential MiscResidential 0.164632 0.948125

RELU 6 Residential MiscResidential 0.16927 0.94825

RELU_BN 6 Residential MiscResidential 0.14888 0.9485

RELU_BN_DO 6 Residential MiscResidential 0.160753 0.947375

RELU_DO 6 Residential MiscResidential 0.171588 0.94325

NOIC_RELU_BN_DO 6 Residential MiscResidential 0.151888 0.948625

DARTS_1Layers 6 Residential Porch 0.275287 0.873

DARTS_2Layers 6 Residential Porch 0.280778 0.87675

DARTS_3Layers 6 Residential Porch 0.391286 0.8755

DARTS_4Layers 6 Residential Porch 0.348825 0.8775

1_NEURON 6 Residential Porch 0.248339 0.884625

BN 6 Residential Porch 0.247223 0.887625

BN_DO 6 Residential Porch 0.248541 0.89075

DO 6 Residential Porch 0.251814 0.886875

RELU 6 Residential Porch 0.25627 0.887375

RELU_BN 6 Residential Porch 0.25286 0.89

RELU_BN_DO 6 Residential Porch 0.254895 0.892625

RELU_DO 6 Residential Porch 0.262867 0.894375

NOIC_RELU_BN_DO 6 Residential Porch 0.2512 0.893625

DARTS_1Layers 6 Residential TiledRoof 0.200503 0.92925

DARTS_2Layers 6 Residential TiledRoof 0.196054 0.93175
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DARTS_3Layers 6 Residential TiledRoof 0.213652 0.92725

DARTS_4Layers 6 Residential TiledRoof 0.207991 0.92825

1_NEURON 6 Residential TiledRoof 0.207175 0.919375

BN 6 Residential TiledRoof 0.209143 0.915375

BN_DO 6 Residential TiledRoof 0.226424 0.91325

DO 6 Residential TiledRoof 0.233348 0.913375

RELU 6 Residential TiledRoof 0.209293 0.920125

RELU_BN 6 Residential TiledRoof 0.208607 0.919

RELU_BN_DO 6 Residential TiledRoof 0.218657 0.915625

RELU_DO 6 Residential TiledRoof 0.226436 0.91575

NOIC_RELU_BN_DO 6 Residential TiledRoof 0.199233 0.92
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