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Abstract

Predicting the loss in superconductive power devices is of utmost importance when de-

signing such devices. This is because the cooling system needs to be designed accordingly.

The current methods for predicting AC Loss are either inaccurate or very time consuming.

These conventional methods for predicting loss are of two types in which one is faster

but inaccurate, while the other is very accurate but also very time consuming. While

currently they are both employed in different stages of the design process, there is an

interest in a faster, but still accurate, form of predicting AC Loss.

Studies have time and time again shown that Artificial Neural Networks are capable

of taking on complex tasks and handling them faster than regular computing. Because of

this, in this work, an Artificial Neural Network based approach is proposed as to predict

AC Loss in various configurations of HTS coils. This approach aims to replicate the

accuracy of standard numerical models while being much faster than said models.

This results in a final framework comprised of two distinct sequential Neural Net-

works that are capable of predicting the AC Loss for different configurations of HTS coils

nearly instantaneously while still being very accurate and reliable in their predictions.

Keywords: Superconductor, HTS, Power Devices, AC Loss, Artificial Neural Network
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Resumo

A capacidade de previsão de perdas em dispositivos de potência supercondutores é um

assunto de alta importância aquando do desenho dos mesmos. Isto deve-se ao facto de

o sistema de arrefecimento necissitar de ser desenhado de acordo com as mesmas. Os

métodos atuais de previsão de perdas AC são ou pouco fiávies, ou bastante demorados.

Estes métodos atuais de previsão de perdas são de dois tipos em que um é mais rápido

mas pouco preciso, enquanto o outro é bastante preciso mas, no entanto, muito demorado.

Embora atualmente sejam ambos empregados em fases diferentes do processo de desenho,

continua a existir interesse numa forma rápida e precisa de prever perdas AC.

Estudos têm vindo a provar que as Redes Neuronais são capazes de enfrentar tarefas

complexas e lidar com elas de forma mais rápida que a computação tradicional. Dado

isto, neste trabalho propõe-se uma abordagem baseada em Redes Neuronais para prever

perdas AC em várias configurações de bobinas HTS. Esta abordagem visa a replicar a

fiabilidade de métodos numéricos sendo, no entanto, bastante mais rápida.

Isto resulta numa framework final composta por duas Redes Neuronais distintas se-

quenciais que é capaz the prever perdas AC em diversas configurações de bobinas de

forma quase instantânea sendo, no entanto, bastante correta e confiável nas suas previ-

sões.

Palavras-chave: Supercondutor, HTS, Dispositivos de Potência, Perdas AC, Redes Neuro-

nais
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1

Introduction

1.1 Background and Motivation

A major challenge when implementing a new a power device with superconductive ele-

ments is to be able to design a proper cooling system capable of handling any excess heat

present in the system. The biggest source of heat in said systems is the loss through Joule’s

Effect in the superconductive element itself. The challenge is being able to predict the

amount of loss in a system given its configuration as to create a proper cooling solution.

Although there are ways to predict the loss in superconductive materials, most of

these ways are either imprecise or time-consuming. Having models that predict loss

precisely but are slow increases the duration of the design phase of a superconductive

power device significantly.

Current modeling solutions for predicting loss in superconductors are based on the

physical properties of these materials. This means that these models are mathematically

very complex and, because of this, require an immense computing power in order to

be calculated. This need for computing power leads to an increase in duration of the

design phase, but also to an increase in cost as more computing power translates to more

investment.

1.2 Research Question and Hypothesis

This works aims, therefore, to propose a more efficient way of accurately predict the AC

loss in superconductive power devices. Having a more efficient model would lead to a

decrease in time spent on the design stage and to a decrease in overall investment as less

computing power would be necessary.

Research Question: Is there a more efficient way of predicting AC loss in supercon-

ductive power devices?

The solution to this question proposed in this work is to implement and Artificial

Intelligence model to predict this loss. The aim is to make use of Deep Learning to

convert a small amount of known data into an infinite prediction model that is able to,

1



CHAPTER 1. INTRODUCTION

given the configuration, predict the possible AC loss.

Hypothesis: An Artificial Intelligence based model would be able to accurately predict

AC loss in superconducting power devices much faster that current mathematical models.

1.3 Objectives

This work is part of the project tLOSS - Transformando o Cálculo de Perdas em Sistemas

de Potência com Supercondutores de Alta Temperatura [2]. One of the objectives of this

project is to transform the methodologies of calculating loss in devices with superconduc-

tive components. As such, the main objective of this work is to implement and Artificial

Intelligence based model that is capable of predicting AC loss in different configurations

of High-Temperature Superconductor (HTS) coils. To achieve this, smaller objectives have

to be met:

This first objective is to be able to characterize the loss in the tape that is used in

the coils. This means finding parameters that are unique to that tape so that different

tapes are viewed by the model as different inputs. Since this only has to be done for

a small piece of HTS tape, and the AC loss in this small pieces of tape behaves more

predictably, the aim is to find general equation to characterize the loss. This equation

will have constants that are different for different tapes and these constants will be used

to characterize the tape.

The second objective is to implement a prediction model to an individual coil. For

this, and Artificial Neural Network will be used to predict loss in said coil. The differ-

ent parameters of a coil: tape type, number of turns, inner radius, operating current

and frequency, will be used as inputs for the network and the only output will be the

corresponding AC loss.

The third objective is to implement a prediction model for a stack of similar coils. For

this, another Artificial Neural Network will be used and the inputs will be the number of

coils in a stack and the AC loss in an individual coil.

The final objective is to put the different models together in order to predict loss in

a stack given only the tape parameters, the operating current and frequency, the coil

parameters (inner radius and number of turns) and the number of coils in the stack. By

separating the prediction for a single coil and a stack will possibly make it easier to

predict loss for an individual coil as treating a coil as a stack of one coil in unnecessary.

1.4 Expected Contributions

The following contributions are expected to result of this work:

• A large dataset of AC loss values for different HTS tapes, coils and stacks of coils;

• An Artificial Intelligence based model that is able to accurately predict the AC loss

in different configurations of HTS devices.

2



1.5. DOCUMENT STRUCTURE

1.5 Document Structure

This document is divided into five Chapters. It starts with the present Chapter, an Intro-

duction do the document itself.

After this introductory chapter, a description of the current State of Art relating to

the study subject is given. This description is subdivided into three sections: the first

explains the basics of superconductivity, the second explains basic aspects of Artificial

Neural Networks and the final one presents related studies.

This is followed by a Chapter describing the Preparation and Setup that went into

this work. This Chapter is divided into four Sections: the first describes the preparation

of the datasets used in the work; the second describes the training process used for the

Neural Networks; the third explains the setup of combining both Networks and the final

section explains the Network performance analysis method.

Then, in the fourth Chapter the Results from the experimental work are presented.

This Chapter is divided into four sections: the first presents the results from the ANN

used for predicting loss in HTS coils; the second presents results from the ANN used for

predicting loss in HTS coil stacks, the third presents the results from the combination of

both ANNs and, finally, the fourth sections presents a comparison of said results.

The final Chapter presents the Conclusion from this study and ideas on what can be

done to improve the results.

3



2

State of Art

2.1 Superconductivity

Superconductivity is a different state of matter in which a material has no electrical resis-

tance and, in some cases, presents perfect diamagnetism. For these reasons, especially the

first one, these materials are of very high interest for their possible applications in energy

transmission. For this reason, a contextualization on superconductivity is provided.

2.1.1 Introduction to Superconductivity

The phenomenon of superconductivity was first observed by Dutch physicist Heike Kam-

merlingh Onnes in 1911. Onnes had previously studied the resistance of metals at liquid

helium temperatures and hypothesised that, for pure enough metals, their resistance

would drop to 0Ω [3]. When experimenting with mercury in 1911, Onnes observed that

bellow 4.2K, its electrical resistance plummeted to 0Ω [4]. The plot of his observations is

depicted in Figure 2.1.

Later studies in the field of superconductivity led to better understanding this state.

An important aspect is the conditions that need to be met to achieve and maintain this

state [5]:

1. T < Tc: the temperature of the material must be lesser than its critical temperature;

2. B < Bc: the magnetic field surrounding the material must be smaller than the mate-

rials critical field;

3. J < Jc: the current density that flows through the material must be inferior to the

critical current density.

If all of the above stated conditions are met, then the material is able to enter and

maintain its superconductive state.

4



2.1. SUPERCONDUCTIVITY

Figure 2.1: Resistance-Temperature plot of Onnes’ experiment with Mercury [6]

2.1.1.1 The Meissner Effect

The Meissner Effect was discovered by German physicists Walther Meissner and Robert

Ochsenfeld in 1933. While Onnes had discovered that, in the superconductive state,

materials had no electrical resistance, Meissner and Ochsenfeld observed that, in that

same state, these materials would expel any magnetic field that tried to penetrate them

[7].

This expulsion of the incident magnetic field is what is called the Meissner effect.

By expelling all magnetic field, the material exhibits perfect diamagnetism meaning its

behaviour is not influenced by the outside field. While some superconductors are what

is commonly called Full-Meissner, meaning that they are always perfect diamagnets in

their superconductive state, some are not. This difference is explained in section 2.1.1.2.

2.1.1.2 Type I and Type II Superconductivity

While in the early stages, all the discovered superconductors exhibited the aforemen-

tioned behaviour, in 1957 soviet physicist Aleksei Abrikosov predicted the existence of a

new type type of superconductor to which he gave the name of Type II [8].

This new type of superconductor also has to be maintained in conditions 1. (T < Tc)

and 3. (J < Jc), the second condition varies. This is because Type II superconductors

have two distinct critical magnetic field values Bc1 and Bc2, where Bc2 > Bc1. Type II

superconductors are just like Type I superconductors if the magnetic field B < Bc1.

But, if the magnetic field values is comprehended between the two critical values

Bc1 < B < Bc2 the material exhibits a new behaviour. While its electrical resistance is

still virtually 0Ω, the material is penetrated by the magnetic field and, therefore, is not a

perfect diamagnet. This difference was introduced in the previous section:

5



CHAPTER 2. STATE OF ART

• Type I Superconductors present zero electrical resistance and Full-Meissner Effect

in their superconductive state. They only have one critical magnetic field value Bc,

above which they are no longer superconductive. The magnetization characteristic

of these materials is depicted in Figure 2.2.

Figure 2.2: Magnetization in a Type I superconductor

• Type II Superconductors present zero electrical resistance in their superconductive

state. They have 2 distinct critical magnetic field values and only exhibit Full-

Meissner Effect bellow Bc1. Above this value, they start to increasingly be penetrated

by the outside magnetic field until Bc2 is reached where the material leaves its

superconductive state. The magnetization characteristic of a Type II superconductor

is depicted in Figure 2.3.

Figure 2.3: Magnetization in a Type II superconductor

6



2.1. SUPERCONDUCTIVITY

2.1.2 High Temperature Superconductivity

Another important discovery on the field of Superconductivity was that of High Tempera-

ture Superconductors. These are also the materials we are mainly focused on this work as

their application is much greater due to their relatively high critical temperature values.

As the name indicates, High Temperature Superconductors (HTS) have a relatively

high critical temperature value (Tc). While the first high temperature superconductor,

discovered by Bednorz and Müller, had a critical temperature of Tc = 35K [9], in present

days is common to call high temperature superconductors to materials that present a

critical temperature higher than that of liquid nitrogen T = 75K.

So, as was previously mentioned, the first ever high temperature superconductor was

discovered by german physicist Johannes Bednorz and swiss physicist Karl Müller in 1986.

These scientists observed that, in the Ba−La−Cu−O system, the critical temperature was

Tc = 35K [9].

Since the discovery of HTS, several new high temperature superconductors have been

discovered. In this work, we are focused on tapes of HTS materials presented in Section

2.1.2.1.

2.1.2.1 HTS Tapes

HTS tapes present an inviting form of using superconductive material as the tape format

allows for multiple applications. Since the problem of low critical temperatures is solved

by HTS and the tape format allows for a multitude of applications, the study of these

tapes is of high interest amongst the scientific community.

Having said this, there are currently two distinct generations of HTS tapes with differ-

ent materials and construction among them.

First Generation HTS Tape (1G)

First Generation HTS tapes are manufactured using compounds of Bi2Sr2CanCun+1O6+2n

(BSCCO). The process of constructing these tapes consists of having filaments of super-

conductive material encased in silver or silver alloy sheaths [5].

The main drawback of these tapes is that their critical current will severely drop when

an outside magnetic field is present [10]. This led to the creation of a new kind of HTS

tape, the second generation.

Second Generation HTS Tape (2G)

Second Generation HTS tapes are constructed out of YBa2Cu3O7−δ compounds (YBCO).

Their construction process also differs from first generation tapes as they are formed by

different thin layers deposited in a substrate. The layers alternate between superconduct-

ing material and adhesion layers [11].

These second generation tapes perform better in the presence of magnetic fields as

the critical magnetic field for these tapes is much greater than 1G [10].

7



CHAPTER 2. STATE OF ART

As stated before, the main advantage of the tape format in superconductors is the

possibility to employ them in diverse applications. These applications may include:

• HTS transformers: Because superconductors have little loss, this makes them ideal

for use in transformers. There have been some HTS transformers that have already

been built. One example of one of these transformers is a 630kVA three-phase

transformer developed and operated by ABB in the grid of Geneva’s utility (SIG)

during the year of 1997 [12].

Another example of a real HTS transformer is one that powered an entire power

substation in China for six months in 2011. This transformer was also three-phase

with a rated power of 630kVA [13].

• HTS motors: HTS also offers a great alternative to building motors. There have also

been several HTS motors built during the years (e.g.): in 2005, a three-phase, 100hp,

4 pole, 1800rpm synchronous motor with a superconducting rotor was built and

tested in Korea Electrotechnology Research Institute (KERI) [14]; in 2014, the first

fully HTS synchronous motor was built and tested at Cambridge University [15].

2.1.3 Loss in superconductors

As previously stated, the scope of this work is to accurately predict loss in superconduc-

tive systems. This is of upmost importance when developing said systems for one very

important reason: loss in electric conduction takes the form of heat.

This heat generated is especially harmful when taking into consideration that these

systems are operated at cryogenic temperatures. This means that these losses have to

be accounted for when designing the cooling system for these devices. Having said this,

the logical conclusion is that there has to be a way of calculating the possible loss that

will occur in one of these devices as to design a suitable cooling system. This is where

the purpose of this work takes form: as we will see, current ways of modelling loss in

superconductive systems are either inaccurate or very time consuming opening the door

for a faster, but still accurate approach.

2.1.3.1 Cooling Systems

As stated previously, superconductors need to be kept at a temperature lower that their

critical on in order to maintain their superconductive state. This means that there is a

need for a cooling system when operating on this type of materials.

These cooling systems need to be able to combat not only the zeroth law of thermody-

namics, meaning that the heat from the neighbourhood of the system will be absorbed by

said system, but also the heat that comes from the system itself.

8



2.1. SUPERCONDUCTIVITY

2.1.3.2 Types of Loss in Superconductors

Even though superconductors have virtually no loss when operating with Direct Current

(DC) as their resistivity is very close to 0Ω, this is not true for Alternating Current (AC).

When in the presence of an Alternating Current, Faraday’s Law and the subsequent

Maxwell Equation (Equation 2.1) states that the variation in the magnetic field will lead

to an electric field.

∇×E = −∂B
∂t

(2.1)

Loss in superconducting systems takes various forms. These losses can be divided

into two separate groups depending on the mechanisms that originates them [11]. These

groups are:

• Magnetization losses: originated by variations in the magnetic field;

• Transport current losses: originated by variations in the current flowing through

the superconductor.

Magnetization Losses

Magnetization losses are originated by variations in the applied magnetic field. The

different magnetization losses are:

Hysteretic Losses

When a varying magnetic field is applied in a material, the work done by the magneti-

zation performs an hysteresis cycle. After one full cycle, the potential energy must return

to its initial state leaving the remaining energy to be dissipated as heat. This energy lost

through heat is called hysteresis loss [16].

In superconducting devices, hysteretic losses can be both superconducting and fer-

romagnetic in nature. This is because 2G tapes have a ferromagnetic substrate making

them liable to ferromagnetic hysteretic loss. Superconducting hysteresis, on the other

hand, happen because variations in the applied magnetic field lead to the formation of

hysteresis cycles in the superconducting material itself [5].

An example of an hysteresis cycle is presented in Figure 2.4.

The loss through hysteresis between two different values of magnetic field can be

calculated by:

Q =
∮

MdBa (2.2)

Coupling current losses

As mentioned in 2.1.2.1, 1G tapes are formed by superconducting filaments sur-

rounded by a silver matrix. When this tapes are subjected to varying magnetic fields,

they produce shielding currents in the superconductive filaments and coupling currents
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Figure 2.4: Hysteresis cycle [5]

in both the filaments and the silver matrix [11]. This behaviour is portrayed in Figure 2.5.

Figure 2.5: Shielding and coupling currents [5]

Eddy current losses

Second Generation HTS tapes have, in their construction, that react to changes in the

magnetic field generating Eddy currents. These currents are induced in these layers and

flow in closed loops in planes perpendicular to the magnetic field.

The power lost through Eddy Currents per unit of mass of conductor can be calculated

by [17]:

P =
π2B2

pd
2f 2

6ρD
(2.3)

where Bp is the peak magnetic field, d is the thickness of the sheet and D is the density

of the material.

We can derive from Equation 2.3 that the amount of power lost through Eddy currents

is directly proportional to the frequency. This means that, for low frequencies, the power

lost through Eddy currents is negligible.
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Transport Current Losses

Transport current losses are caused by the current that flows in the superconducting

tape. There are different mechanisms that lead to this kind of loss:

Self-field losses

These losses are derived from Ampère’s Law that states that current flowing through

a conductor generates a magnetic field. This is also true for superconductors and the

field that is generated takes the name of self-field. This self-field also generates hysteresis

loops leading to loss.

Flux-flow losses

This type of loss occurs only when the superconductor is operated in its mixed state.

But this is usually the state in which HTS are operated as its much easier to achieve than

the purely dieletric state.

When superconductors are operated in their mixed state, some of the magnetic field

penetrates the material in some specific areas called vortexes. When current flows

through the material, these vortexes tend to move towards the edges of the supercon-

ductor. If the interaction force caused by the current flow surpasses the force that pins

the vortexes, these vortexes will start to move freely inside the superconductor leading

to energy dissipation [18].

Resistive losses

These losses occur when the current density being put through the HTS tapes sur-

passes the critical value for the superconductor being used. When this happens, some of

the current will start to flow through the non-superconductive parts of the tape. Because

these are not superconductive, they have resistance and, therefore, Ohm’s Law will apply.

2.1.4 Modelling Loss in Superconductors

Presently, there are already various different ways of modelling loss in superconductive

devices. The problem with current models is either their relative inaccuracy or their slow

computing times. This is where the subject of this document will come into play.

But, before introducing the project itself, an explanation on current models will be

provided in order to properly comprehend their drawbacks.

Current models are divided into two groups: analytical and numerical models. An-

alytical models are much simpler than numerical ones requiring much less time to com-

pute. They are, on the other hand, inaccurate in their predictions. Numerical models

are very accurate but take a great amount of time to compute. This means that, usually,

both kinds of models are employed when developing a superconducting system: At an

early stage, analytical models are used in order to have a general idea of what kind of

11



CHAPTER 2. STATE OF ART

loss to expect in said system; At a later stage, numerical models are employed to properly

predict the loss of the system [11].

2.1.4.1 Analytical Models

As the name suggests, this type of model takes an analytical approach to calculating

possible loss in a superconducting device. This means finding an approximation of the

system and making suppositions in order to greatly simplify the calculations.

Some analytical models are, but are not limited to:

Norris Model

This model was first introduced by W. T. Norris in 1970. It assumes that the super-

conductor is infinite in length and that the critical current density is independent from

the applied magnetic field [19].

In his article published under the Journal of Physics, "Calculation of hysteresis in hard
superconductors carrying ac: isolated conductors and edges of thin sheets"[19], Norris gives

loss approximation formulae to different superconductor configurations. As this work is

mainly focused on superconducting tapes, the appropriate formula to approximate loss

is the one for losses in a thin strip of finite width is given by Equation 2.4.

Qc =
I2
c µ0

π
{(1−F) ln1−F + (1 +F) ln1 +F −F2} (J/m/cycle) (2.4)

where F =
Ipeak
Ic

, Ipeak being the peak current and Ic the critical current associated with

the superconducting tape.

The problem is that this model makes two assumptions that are highly untrue for real

applications. The first one being that the tape is infinite in length which clearly wrong

and that the critical current density is independent of the magnetic field, which is also

wrong as stated by Norris himself [19]:

"The critical current density is independent of ambient magnetic field although it
is well known that critical currents depend not only on the magnitude but also the
direction of the field."

Clem Model

This model was introduced by John R. Clem, J. H. Claasen and Yasunori Mawatari

in 2007. It also assumes that the critical current density is independent from the ap-

plied magnetic field. The critical difference between this model and Norris’ is that it

estimates loss for a finite vertical stack of tape. This is a great improvement as it allows

for estimation of loss in pancake coils as a coil can be approximated as a stack of tape.

An important assumption made in this model is that, for an individual strip of tape,

the width of the superconducting strip is much greater than its thickness [11]. The model
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considers different levels of flux penetration, using the Bean model to estimate the impact

of said penetration.

The formula achieved to estimate the loss in an individual strip is given by Equation

2.5.

Q′strip =
16µ0Jc

2a2b2

π
[(1−F) ln1−F + (1 +F) ln1 +F −F2] (J/m/cycle) (2.5)

where F =
Ipeak
Ic

, Ipeak being the peak current and Ic the critical current associated with

the superconducting tape, 2a is the width of the tape and 2b is its heigth [20].

Pardo Model

This final model was first introduced by Enric Pardo in his pubication "Modelling of
coated conductor pancake coils with a large number of turns"[21]. This model also aims to

simplify the calculations of loss in superconducting tapes but taking into account the

separation between different superconducting layers. This makes this model interesting

as 2G tapes have the superconducting layers stacked between adhesion layers having,

therefore, a physical space between them.

This model starts from Norris’ equation for superconducting slabs [11] and makes the

following assumptions:

1. The magnetization is independent from the outside magnetic field;

2. The pancake coil has a high number of turns;

3. The inner radius of the coil is much greater than its width.

The problems of analytical models

As seen before, analytical models make several assumptions in order to reach a con-

clusion. This makes the final equation much easier to compute as several variables are

removed in this simplification but leads to a highly inaccurate final result.

2.1.4.2 Numerical Models

Numerical models, on the other hand, are very precise in their predictions. This is mainly

due to the fact that they make no false assumptions in other to simplify the computing

process.

One example of a widely used numerical model is:

H-formulation numerical model

This model is based on the Finite Element Method (FEM) and the H-formulation

of Maxwell’s equations [22]. It uses Finite Element Method (FEM) to solve Faraday’s

equation (Equation 2.1), using the magnetic field H as a state variable. It also uses non-

linear resistivity [23] meaning that the resistivity is not constant when the magnetic field

is varied:

13



CHAPTER 2. STATE OF ART

ρ =
E0

Jc

∣∣∣∣∣ J
Jc

∣∣∣∣∣n−1
(2.6)

where E0 is a characteristic electric field and n is a factor indicating the steepness of

the transition from the superconducting to the normal state [23].

From the analysis of Equation 2.6, it is easily comprehended that the resistivity in

the superconductor is a function of the current density that flows in said superconductor.

Because, as stated in section 2.1.4.1, the current density is dependent on the applied

magnetic field, the conclusion is that the materials resistivity is also influenced by said

magnetic field.

The superconductor is modelled as a material with a relative magnetic permeability

of µr = 1 [23]. This leads to Faraday’s equation in terms of the magnetic field:

∂(µ0µrH)
∂t

+∇× (ρ∇×H) = 0 (2.7)

Equation 2.7 can then be solved using FEM software.

The problems of numerical models

The problem with numerical models is not their accuracy as they yield results that are

very close to reality. The problem is, instead, the time and resources they take in order to

compute said results. Because these models take a great amount of variables, they require

a lot of computing power and time to make the necessary calculations.

2.1.4.3 The proposed framework

The scope of this work is to introduce a different framework to compute loss in a super-

conducting device. Instead of trying to describe these devices as mathematical models,

the objective is to train an Artificial Neural Network to predict the loss given the device’s

configuration.

This framework will, in theory, mitigate the problems of both kinds of models as a

properly trained neural network yields very accurate results and, despite taking a great

amount of time to train, after the training stage these networks are very fast in calculating

these predictions.

In the next section, a theoretical background on Artificial Neural Networks will be

provided in order to better comprehend this powerful tool.
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2.2 Artificial Neural Networks

The Merriam-Webster dictionary defines a Neural Network as "a computer architecture in
which a number of processors are interconnected in a manner suggestive of the connections
between neurons in a human brain and which is able to learn by a process of trial and error"
[24].

The theory of an Artificial Neural Network (ANN) is to artificially mimic the workings

of the human brain [25]. This is achieved by implementing a mathematical representation

of the biological neuron, denominated artificial neuron, and creating connections between

said artificial neurons.

2.2.1 Artificial Neuron

As stated previously, the artificial neuron is a mathematical representation of its biological

counterpart. It works by taking an input, or several, applying a transfer function to that

input and returning the result in the form of a scalar output [26].

Each artificial neuron receives one or more inputs, each with an associated weight

value w. The neuron then sums these inputs with a bias value b. A transfer function is

then applied to this sum resulting in the scalar output a. A visual representation of this

mechanism is provided in Figure 2.6.

Figure 2.6: Artificial Neuron

By having multiple artificial neurons in parallel, a neuron layer is formed. In this

layer, multiple neurons can share multiple inputs with different weight values for each

neuron. A representative example of a neuron layer is portrayed in Figure 2.7.

As we can see in Figure 2.7, an input vector is shared between each neuron, but each

input carries a weight vector with a possibly different value for each neuron. Each neuron

also has its own bias value. This assures that the outputs will be different for each artificial

neuron.

The stacking of multiple neuron layers in series results in an Artificial Neural Network.

The nomenclature for the different layers in an ANN is:

• Input Layer: the first layer in an ANN that directly receives the network inputs;

• Output Layer: the final layer in an ANN that yields the final outputs of the network;
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Figure 2.7: Neuron Layer

• Hidden Layers: the middle layers between the input and output layers. Its inputs

and outputs are never known by the user, hence the name.

An ANN is comprised by one input and one output layers, and by one or more hidden

layers. The number of inputs in the input layer is the same as the number of different

inputs for the network. Since an artificial neuron only generates one output, the number

of neurons in the output layer is equal to the number of outputs of the network.

2.2.2 Classification of Neural Networks

Currently, most researchers agree that Artificial Neural Network (ANN)s are divided into

two distinct categories [26]:

1. Feed-Forward Neural Networks

2. Recurrent Neural Networks

Feed-Forward Neural Networks:

In this first kind of Neural Network architecture signals are unidirectional, meaning

that they can only go from input to output and not the other way around. This means

that the output of a given layer can only have an impact of the following layers [27].

This architecture is simpler that recurrent networks. A graphical illustration of a

simple feed-forward neural network is portrayed in Figure 2.8.

Recurrent Neural Networks:

This type of architecture is not unidirectional. The output of an artificial neuron is

passed on to the next layer but is also fed into the same neuron again. This is called
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Figure 2.8: Simple feed-forward neural network

a feedback loop [27]. This allows neurons with feedback loops to store information on

previous inputs.

This architecture is more complex than feed-forward networks due to the existence of

these feedback loops. An illustration of a simple recurrent network is portrayed in Figure

2.9, where D represents a delay box that feeds the output of a given artificial neuron back

to it with a certain amount of delay.

Figure 2.9: Simple recurrent neural network

Convolutional Neural Networks:

Convolutional Neural Networks have a similar architecture to simple feed-forward

ones. The main difference is that, some of the hidden layers are convolutional layers.

These layers convolve its inputs before passing the through to the next layer. This allows
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for far less artificial neurons in the hidden layers.

2.2.3 Machine Learning Algorithms

Now that the different network architectures have been presented, there is also a need to

differentiate the multiple algorithms used to train said networks. These algorithms are

also divided into different categories. These are:

• Supervised Learning Algorithms;

• Unsupervised Learning Algorithms;

• Semi-supervised Learning Algorithms;

• Reinforcement Learning Algorithms.

Supervised Learning Algorithms:

These algorithms make use of labeled datasets to train neural networks. They are

mostly used to classify data or predict outcomes [28].

Supervised Learning works by having a dataset that provides the correct outputs for

a given set of inputs. These algorithms constantly measure their accuracy during the

training phase, adjusting until the error has reached a small enough value [28].

Since this work makes use of a labeled dataset having as inputs the characteristics of

the superconducting device and as output the loss associated with said characteristics,

and the purpose of the network is to predict loss for different configurations, the safe

conclusion is that supervised learning algorithms will be best for the use case at hand.

Even so, a brief explanation on the other algorithms will be given for contextualization.

Unsupervised Learning Algorithms:

This type of algorithm is employed when using unlabeled datasets. They are espe-

cially useful in pattern recognition or data grouping applications without the need for

human input [29].

Semi-supervised Learning Algorithms:

These algorithms are used when a small part of the available dataset is labeled. They

use this small labeled dataset to guide feature extraction and classification from a larger

unlabeled dataset [30].

Reinforcement Learning Algorithms:

These final algorithms use state-action pairs that represent the state of an environ-

ment at a given time and the possible actions for that given state. They explore these

pairs in order to find the actions that lead to a goal state [31].
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Now that all algorithms have been briefly introduced, the conclusion presented in the

first one is still valid. Since the dataset used for this work is labeled, having the value

of loss for each configuration of HTS device, and the goal is to predict loss values for

different, unseen configurations, Supervised Learning is clearly the way to go.

2.2.4 Training Artificial Neural Networks

The training stage is where an ANN learns to yield the required results. In the case

of Supervised Learning, the Network examines the inputs and outputs and adjusts the

weight and bias values to achieve the outputs with the inputs. This adjustment process is

called training and it is done several times, each iteration given the name of epoch.

Different training algorithms have different ways of going about these adjustments

and different criteria to determine when to stop the training. In this work, only the

algorithms present in the MATLABTM Neural Network Toolbox will be explained as this

is the tool that will be used for the experimental part.

2.2.4.1 Levenberg-Marquardt Algorithm

The first training algorithm is the Levenberg-Marquardt algorithm. This algorithm was

developed in the 1960’s with the purpose of solving nonlinear least squares problems

[32]. It is the combination of two different algorithms: the gradient descent method and

the Gauss-Newton method.

This algorithm actively varies the parameter updates between the two methods [32].

The algorithm contains a damping parameter λ that is varied throughout the fitting

process:

• When λ is large, the algorithm results in a gradient descent update.

• When λ is small, the algorithm results in a Gauss-Newton update.

To understand this variation, a contextualization of both methods must be provided:

The gradient descent method

2.2.4.2 Bayesian Regularization Algorithm

The main advantage of this algorithm, and the main reasoning for using it in this work,

is that the resultant models are robust and the validation stage is unnecessary [33]. The

algorithm is based on Bayes’ probability theorem [34]:

P (A|B) =
P (B|A)P (A)

P (B)
, (P (B) , 0) (2.8)

The Bayesian Regularization Algorithm makes use of Equation 2.8 during the training

stage in the regularization scheme. The use of this theorem yields a great advantage that

is the shortening of the interactive procedure when opposed to unregularized ANNs [33].
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2.2.4.3 Scaled Conjugate Gradient Algorithm

This algorithm is based on conjugate directions. It is similar to other conjugate gradient

algorithms except for the fact that it does not perform a line search for each iteration [35].

This makes it less computationally expensive than its counterparts.

This method can train an ANN as long as its weights, net input and transfer functions

have derivative functions [35].

2.2.5 Artificial Neural Network Performance

Finally, after training an Artificial Neural Network, a performance analysis must be con-

ducted in order to see how correct its predictions are.

The MATLAB toolbox used in this work calculates the individual errors of each value

in the dataset. The error matrix stores all the individual errors. If this error matrix is

called E, the output matrix is called X and the prediction matrix is called Y , then:

Ei = Yi −Xi (2.9)

Because these errors are stored in a matrix, they can all be mapped to the correspond-

ing values. This is useful in detecting intervals where the network is less precise.
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2.3 Related Work

The study of AC Loss in superconductors is a field with high demand. This is especially

true in configurations that make them suitable for use in power systems. For example, in

[36], a study on different configurations of superconductive fault current limiter (SFCL)

coils is made. The purpose of the study is to determine which configurations translate

to the least amount of AC loss. This translates to a difference with this paper, as all

configurations are of solenoidal coils as these are more effective in dissipating the tremen-

dous amounts of fault energy in a short amount of time [36]. The study is, nonetheless,

interesting as the subject matter is closely related to what is studied in this paper.

This article makes use of H formulation to accurately estimate the loss in the different

configurations as using real superconductors would be a tremendously expensive endeav-

our. Using this numerical model ensures that the values will be very close to the real loss

in each configuration.

This study concludes that the best configuration in minimizing AC loss in SCFL coils

while still relatively easy to manufacture is to arrange half of the conductors vertically

in one layer in one direction and the other half in another layer in the opposite direction.

This ensures some cancellation of the magnetic field leading to smaller AC loss [36].

But while several studies have been made on AC loss in different HTS configurations,

the main interest of this work is to have ANNs do this. This begs the question of relating

this framework with superconductors.

Machine Learning has already been employed in several studies with superconduc-

tors as they help with the complicated properties of these materials [37–43]. The use of

Artificial Intelligence models leads to a great time reduction when solving complex super-

conductor problems as, once trained, these models are much faster than the calculations

required to solve said problems.

One field of superconductivity where Artificial Intelligence has been heavily em-

ployed is in predicting critical temperatures of new materials. The main focus of the

research in this field is to search for materials that are superconductive at ambient tem-

peratures. While these materials have not yet been found, the use of AI to find new

materials beats the current method of experimenting with first-principle calculations

[37].

In [37], for example, an Artificial Neural Network is combined with Decision Trees in

hope for being able to predict critical temperatures of unseen materials. There are two

types of material representation: one based in the molecular formulae and other based

on crystal structures. This means that the first allows for exploration across the entire

chemical composition space [37], while the second allows for property inference based

on the structural properties. In this study, the molecular formula representation is used

in conjunction with statistical properties of the given materials.

The properties used in material representation in this study are shown in Figure

2.10. An attribute matrix T is employed, in which each property is given one of six
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statistical values (T ∈ R22×6) [37]. To extract features from T , 32 convolutional kernels

with size 1 × 6 are used. Feature extraction for each material is achieved through the

use of a Convolutional Neural Network with two row-scanning convolutional layers, one

fully convolutional layer and two fully connected layers. A schematic of this network is

presented in Figure 2.11.

Figure 2.10: Elemental attributes used in materials representation in [37]. [44]

Figure 2.11: CNN model in [37]

A Gradient Boosting Decision Tree is then employed as to combine multiple learners

into a strong one. This leads to a decrease in variance and deviation in the final model.

This results in a more accurate prediction model, as evidenced by the results of the study.

The conclusion is that this new model is able to cluster different types of superconductors

together meaning that the network will know that the Tc for a given superconductor must

be in the neighbourhood of superconductors of the same type [37].

Even though critical temperature is not dependant on configuration, it is still a factor

that is mathematically difficult to achieve and Artificial Intelligence helps to solve this

problem with very good results. If a Network is able to predict characteristics of unseen

materials, then it must also be able to predict characteristics of a given configuration of

superconducting material.
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Another example of use of ANNs in predicting critical temperatures in supercon-

ductors is [38]. In this study, a new approach is used in predicting critical temperature

on superconductors based on their chemical formulae. This new approach is named a

variational bayesian neural network and leads to the following results: RMSE = 3.83,

R2 = 0.94.

Another field of superconductivity where Artificial Intelligence has been employed

is in predicting certain characteristic curves for given superconductors. We have, in this

area, a study that predicts the resistance-temperature of a superconducting film [39] and

one that predicts the Current-Voltage curves of that same film [40].

The first of these articles, [39] uses various forms of machine learning for approximat-

ing resistance-temperature curves in superconductors. The method that is closer to the

one used in this work is the shallow learning process that yields a MSE = 8.04 ∗ 10−5. The

second,[40] uses artificial intelligence to predict IV curves (Figure 2.12) for superconduc-

tors and yields a MSE = 2.3 ∗ 10−8.

Figure 2.12: The predicted and cross validated IV curves for T = 8.65K and H = 41Oe in
[40]

Artificial Intelligence has also been employed in superconductors to predict some-

thing different than properties. For example, in [41], a Neural Network that uses Back-

propagation and a Genetic Algorithm is used in order to predict the optimal charging

scheme of a flux pump.

Even though the subject of the study is not, in itself, superconductor in nature, it aims

to be used in charging superconductive coils. These flux pumps are used to inject DC

current into HTS tapes since they more thermal efficient than regular DC power supplies

[41].
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Research has already been conducted in using Neural Networks to predict AC loss

in superconductors. Even though the aim of this work has not yet been implemented,

that is, using neural networks for prediction of AC loss in different configurations of HTS

tapes based solely on configuration parameters, some articles are close to this and are,

therefore, worth tapping into.

For example, in [42], Artificial Neural Networks are used to predict non-sinusoidal

AC loss in superconducting tapes. This is the study closest to the one presented in this

document. For a feed-forward neural network, similar to what is used in this work, the

best result of this study (3rd harmonic) is RMSE = 4.0 ∗ 10−3 and R = 0.9999.

Other studies to use Artificial Intelligence in predicting loss in superconductors are,

for example, [43] that uses Artificial Neural Networks to predict the AC loss of a 150kJ

Superconducting Magnetic Energy Storage System (SMES). In this study, two separate

networks are developed and tested against 4 data points. The best of the networks, ANN2,

yields an error below 4% for all data points.

While it is true that there are many more uses of Artificial Intelligence in matters

relating to both power devices and superconductivity, these cannot be all enumerated

in this work as it is virtually impossible to come across them all. It is, nonetheless,

important to reference this fact as all contributions to any field are positive and deserve

the acknowledgement.

To summarize this final Section, Table 2.1 presents the results for some of the studies

presented. This serves as a benchmark as to what is to be expected as a possible outcome

for this work.

Table 2.1: Article Result Comparison

Article MSE R2

[38] 1.957 0.94
[39] 8.04 ∗ 10−5 N/A
[40] 2.3 ∗ 10−8 N/A
[42] 1.6 ∗ 10−5 0.99
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Preparation and Setup

In this chapter, an insight on the preparation and setup used to achieve the results is given.

The chapter is divided into four sections according to the workflow taken in its realiza-

tion: Dataset Acquisition and Preparation, Neural Network Training, Combination of

Neural Networks and Network Performance Analysis.

3.1 Dataset Acquisition and Preparation

The first stage of the work was to prepare the data to use in the training, validation and

testing of both neural networks. There are three different types of data utilized in this

work: data from individual tapes, data from coils and data from stacks of coils.

This data was gathered from applying numerical models to simulate different config-

urations of HTS coils. This means that, in this work, the final model actually predicts

predicted values and not real ones. But, as the purpose of the work is to prove the ability

of Neural Networks in predicting something as complex as AC Loss in HTS coils, pre-

dicting the values yielded from the use of numerical models or real ones is virtually the

same. So, because of this, the use of models was employed instead of testing real HTS

coils, portrayed in Figure 3.1, as this is considerably less costly.

Figure 3.1: HTS pancake coil [45]
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3.1.1 Data from individual tapes

The first type of data used is the loss in an individual piece of HTS tape. This type of data

is used to characterize different tape variations as to form a loss model for each individual

tape. This data was not fed into any Neural Network as its purpose was only to yield

parameters that characterized the tape.

The aim of this data was: seeing that loss in an individual piece of tape took the

form Q(I) = A ∗ IB(J/m/cycle), where A and B are constants, the conclusion was that these

constants could be used in the characterization of the tape itself.

The data used in this was gathered from simulations of the given tape using numerical

modelling. This model calculated the energy lost for very small time intervals for the

duration of one wave cycle for different values of peak current. This yielded a spreadsheet

that was then used to calculate the power lost during each cycle. To achieve this, the

trapezoidal method of integration (Equation 3.1) was used. Figure 3.2 displays the power

at each moment in a 1 meter strip of 4mm HTS tape at 10% of critical current at 50Hz.

∫ b

a
f (x)dx = (a− b) · 1

2
(f (a) + f (b)) (3.1)

Figure 3.2: Power evolution with time in an HTS tape strip

Adding the power for each small time interval in a current cycle leads to total power

in a cycle (Wm−1/cycle) for a given current value. This procedure is repeated for different

current values in order to be able to describe the loss power as a function of current.

Figure 3.3 displays this plot for a 1 meter strip of 4mm HTS tape at 50Hz.

The plots like those of Figure 3.3 allow for the retrieval of both parameters (A and B).

Having this two parameters that characterize the loss in each tape makes it possible to

differentiate tapes with only these two parameters and not tape geometry. This means
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Figure 3.3: Loss power as a function of current

less inputs to the ANNs. Note that this reduction in characterization parameters does not

translate to possible loss in information as each different tape has a different loss function

and, therefore, different characterization parameters.

3.1.2 Data from coils

The second type of data utilized in this work is individual coil data. This data is used to

train the first ANN in order to predict loss in an individual coil. For that, a dataset was

built using the data divided as shown in Table 3.1.

Table 3.1: Inputs and Outputs of the single coil ANN

Input/Output Name Explanation
Input A One of the constants that define the HTS tape
Input B The other constant that defines the HTS tape
Input d The inner diameter of the coil
Input N The number of turns in the coil
Input I The current flowing through the coil

Output Q The AC loss in the coil

Note that the value of Q is given in J/cycle, meaning that the operating frequency

does not have an impact on said value. To know the amount of energy lost in a period

(Td) of time it is crucial to know how many cycles of current happen in said period:
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ncycles =
Td

1/f
(3.2)

This dataset is comprised from multiple coil configurations of multiple different HTS

tapes. The tapes, as stated in the previous Section, are characterized by the two constants

A and B. This means that, in order for a new tape to be added to this dataset, it first need

to be tested as a strip as to gather these parameters. The loss values used in this dataset

are also gathered from simulations using numerical modelling.

This model is also ran for each different configuration for a single current wave period.

The method used in calculating the loss is the same as before, meaning that the simulation

yields the energy lost in small time intervals and the trapezoidal method of integration is

used in order to calculate the power for each of these intervals. In the end, the different

power values are added to result in the total power lost within a current cycle.

Figure 3.4 shows some points gathered from this dataset, for the same 12mm width

HTS tape and an inner coil radius of 160mm. The graph show different colour regressions

for different number of turns in each coil.

Figure 3.4: Loss variation with current and number of turns

The final dataset is presented as a table in Annex I.

3.1.3 Data from stacks of coils

This last type of data is used for training the ANN that handles prediction of loss in stacks

of tapes. This data contains loss in various configurations of stacks, meaning, different
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coils used and different number of coils. For each configuration, the data provides the

number of coils in the stack, the loss in the first coil and the loss in the entire stack.

The purpose of having the loss in one single coil is to have the output from the

previous network feed into this one as an input. This means that this second network has

fewer inputs, as is portrayed in Table 3.2.

Table 3.2: Inputs and outputs of the coil stacks ANN

Input/Output Name Explanation
Input Q1 The AC loss value from one single coil
Input n The number of coils in a stack

Output Qt The AC loss value from the entire stack

This dataset is also comprised of simulated loss values, achieved by modelling stacks

of the preciously simulated coils. These simulations are more time consuming as they are

modelling each coil individually for better results. This also means that, the greater the

stack, the more time consuming the simulation becomes.

The process of transforming simulation data for this dataset is very similar to those

before. The energy is converted to power through the means of trapezoidal integration,

the main difference being that for each spreadsheet, this has to be done twice: once for

the loss in a single coil and once for the total loss in the stack.

The final dataset is presented as a table in Annex II.

3.2 Neural Network Training

The second stage in this work is to prepare and train the different Artificial Neural Net-

works. As stated in Chapter 2, the tool used for handling ANNs is MATLAB’s Neural

Network Toolbox. Also, as briefly mentioned in Section 3.1, there are two different Neural

Networks implemented in this work: single coil AC loss prediction network and stack

AC loss prediction network. The process of training both is explained next.

3.2.1 Single coil AC loss Prediction Network

The dataset used in training the first Neural Network is the one explained in Section 3.1.2.

This dataset has 5 inputs and 1 output. The Neural Network Toolbox has a Supervised

Learning-dedicated Network tool that is used to implement the network.

The implemented network has two layers: a hidden layer with 25 artificial neurons

and finally an output layer with one artificial neuron corresponding to the number of

outputs. A schematic of this ANN is portrayed in Figure 3.5.

The number of neurons in the hidden layer was defined through a process of trial and

error. Having a greater number of artificial neurons in this layer had a very similar or

worse outcome to this number while having a greater training time.
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Figure 3.5: Schematic of the single coil ANN

This network is trained using the Bayesian Regularization algorithm present in the

Neural Network Toolbox. This allows for a smaller validation dataset making it possible

to use a greater training dataset. This is useful as the available data is limited.

The dataset subdivision will be: 85% to the training set, 5% to the validation set and

10% to the testing set. This means that this final 10% will not be used during the training

stage and will only come into effect when testing the resultant network.

3.2.2 Stacks of coils AC loss Prediction Network

The dataset used for this second network is the one presented in Section 3.1.3. This

dataset, however, is only comprised of three variables: number of coils (ncoils), loss in the

first coil (Q1) and total loss (Qt). Of these three variables, two will be used as inputs: ncoils
and Q1; and the total loss as output. As stated previously, this dataset allow for taking

the output from the previous network as an input for this one. This network connection

will be explained further ahead.

This second ANN is also comprised of two distinct layers. There is one artificial

neuron in the output layer corresponding to the number of outputs while hidden layer

has 15 artificial neurons. The schematic representation of this network is portrayed in

Figure 3.6.

Figure 3.6: Schematic of the coils stacks ANN

The number of neurons in the hidden layer, as in Section 3.2.1, was defined through a

process of trial and error. Having a greater number of artificial neurons in this layer had

a very similar or worse outcome to this number while having a greater training time.

The training algorithm used for this second network is the same as the previous and

the possibility for increased training dataset size comes even more handy here given

that the stack data available is even thinner. Given that this dataset is smaller, it is

expected that the prediction error will be greater that the previous but, hopefully, not

much. Having small errors in both networks is fundamental as in its final form of having
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both networks, the error will propagate meaning a greater deviation from the expected

values.

Finally, in terms of dataset subdivision, the validation set will be kept at 5% but the

testing set will be increased to 15% leading to a 80% training set. This increase in testing

set sizes comes from the smaller dataset available creating the need for a smaller training

set in order to have a large enough testing set.

3.3 Combination of Neural Networks

The final stage in this work is to combine both neural networks in order to predict loss in

different configurations of HTS power devices. This is done by having a simple program

that stores the necessary data and feeds it into the networks correctly. This program is

essentially a state machine runing the different networks consecutively hence feeding the

output of one as an input of the other.

To analyze the quality of these networks together, the intersection of both previous

datasets will be used. To calculate the error from this combination of networks, the

formula for error propagation will be used. As this is virtually a linear system with two

error values, final error is the sum of both values.

3.4 Network performance analysis

In order to properly analyse if the results yielded by the network are good, there needs

to be a way of validating these values. The MATLAB toolbox presents various tools to

analyse the deviation of the values from the expected ones.

The first and most common way of analysing deviation in statistics is with the Mean

Squared Error (MSE). The mathematical formula of calculating this error is presented in

Equation 3.3.

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2 (3.3)

Equation 3.3 says that the Mean Squared Error is the average of the squared difference

between the actual value Y and the estimated one Ŷ . The squared difference is used to

ensure that both positive and negative individual errors contribute to a positive increase

in total error.

Another way of analysing the deviation is through the coefficient of correlation R. The

formula for calculating this coefficient is given by Equation 3.4.

R =
n ∗ (Σ(X,Y )− (Σ(X) ∗Σ(Y )))√

(n ∗Σ(X2)−Σ(X)2) ∗ (n ∗Σ(Y 2)−Σ(Y )2)
(3.4)

This value is the correlation between the predictor variable X and response variable

Y .
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A more common value than the coefficient of correlation is its squared value R2,

known as the coefficient of determination. This is a widely used coefficient when studying

the accuracy of prediction models. This is because this value measures how well the model

replicates the studied data. Not counting it being the squared value of the coefficient of

correlation, the formula for calculating the value of R2 is provided in Equation 3.5.

R2 = 1−
∑n

i (xi − yi)2∑n
i (xi − x̄)2 (3.5)

where n is the number of elements in the dataset, x is the dataset value, y is the

predicted value and x̄ is the mean value of all dataset values.

The MATLAB Neural Network Toolbox also presents a great tool for evaluating the

accuracy of the prediction model in the form of an Error Histogram. This tool calculates

the error of each individual predictions and groups this errors in small intervals. Then,

the histogram displays different bars for each interval. Having the larger histogram closer

to 0 means a better prediction. A good prediction, not only has the larger error bars closer

to 0, but also forms a Gaussian distribution shape.

The performance analysis will be done for both Neural Networks. But there needs to

be a way of analysing the performance of the combination of both networks. As there is

no dataset containing data for this final model, the individual error cannot be computed.

For this, we can make use of the individual correlation coefficients. For combinations

of linear models, the coefficient of correlation of this combination will be the product

of the individual coefficients. This is true for the coefficient of determination as well as

A2 ∗B2 = (A ∗B)2.

Despite not having the individual error values, there is the MSE of each model. So,

even though there is no way of propagating the error of each individual observation, there

is a possibility of approximating the combined MSE by adding the value of each model

through Equation 3.6.

MSEcomb ≈MSEA + MSEb (3.6)
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Results

In this chapter, the results from the training of both networks is presented, as well as the

combination of both. A brief discussion of these results is also presented. This chapter

follows the same division of the work, meaning that first are the results of the ANN for

individual coils, than are the results of the ANN for stacks of coils. Finally, the last results

to be presented are those of the combination of both networks.

For both Neural Networks, the Matlab Toolbox was used when validating results as

the toolbox calculates the individual errors of each prediction. Another validation step

is to compare the loss variation with current change to the theoretical variation. It is

understood that, for superconductors, the AC Loss increases exponentially as the current

approaches its critical value.

4.1 Individual coil ANN results

As stated previously, in this section are presented the results of the ANN for individual

coils. The dataset used to train this network featured coils of two different tapes and of

two distinct inner diameters (d = 80mm and d = 160mm). As such, the accuracy of the

network cannot be verified for other types of tapes as there is not a great enough interval.

With this information in mind, Figures 4.1 and 4.2 depict a three-dimensional graph

of AC loss as a function of current and number of turns.

As can be seen in the aforementioned Figures, the model reveals an exponential

growth in AC loss with the increase in both current and number of turns, with a steeper

exponential in terms of current. This coincides with the reality as AC loss increases ex-

ponentially with current as this tends to its critical value. It is also expected that the

growth in loss is exponential in terms of number of turns since the amount of supercon-

ductive material does not increase linearly with number of turns (the radius for each turn

is larger).

The result of the training process of this network is depicted in Figure 4.3. The

training process was limited to 1000 Epochs by MatLab and it is visible that the minimum

error in the training dataset was achieved in this final Epoch. The value of the error at
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this stage is MSE = 2.21 ∗ 10−6.

Figure 4.1: AC Loss for an individual coil with 80mm of inner diameter

Figure 4.2: AC Loss for an individual coil with 160mm of inner diameter

Figure 4.3: Network performance throughout the training process for the first ANN

In Figure 4.4, the error histogram of this network is presented. This histogram shows

that, for the entire dataset, most of the error is extremely close to 0, while the greatest
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deviation from the expected value is around 0.26. It is also apparent that the error of

predictions with values from the training dataset is virtually 0.

Figure 4.4: Error histogram for the individual coil ANN

Finally, in Figure 4.5, a depiction of the deviation of the actual values from the pre-

dictions is presented. This Figure contains three separate graphs: one that only depicts

the deviation from the training dataset, one that depicts the deviation from the testing

dataset and one that depicts the deviation from the entire dataset. Having said this, from

the analysis of these graphs, it is inferable that the dataset values (presented as circles)

fit almost perfectly in the prediction line (coloured line). This is also apparent from the

coefficient of correlation being virtually 1 in all cases.

From the analysis of the results of this Neural Network, it is concluded that these

values are very optimal as they are very close to the initial values. Having a small error

in this model is also important as this error is carried onto the final one.
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Figure 4.5: Error regression for the individual coil ANN

4.2 Stacks of coils ANN results

In this section, the results from the second neural network are presented. As stated in the

previous Chapter, this second network is dedicated to predicting AC Loss values in stacks

of coils when knowing the value of loss in one individual coil. While the dataset in itself

contains information on the coils themselves, this information is not passed through as

an input so that this information will not be required post-training.

The training of this second network resulted in a final MSE of 2.73 ∗ 10−6. While

this error is very small, it is important to note that the dataset used in the training of

this network was considerably smaller. While this dataset contained multiple loss values

for different configurations, only two configurations were available for a myriad of coils:

stacks of 5 coils and stacks of 10 coils. This means that the predictions might be inaccurate

for a number of stacks that greatly deviates from this values. The training performance

for this network is portrayed in Figure 4.6.

Subsequently, in Figure 4.7 is portrayed the error hystogram that results from this

second ANN. It is noticeable that most error values are extremely close to 0, while the
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Figure 4.6: Network performance throughout the training process for the second ANN

Figure 4.7: Error histogram for the coil stacks ANN

largest deviations from the actual values are from values contained in the training set.

Even so, the greatest error is in the order of 10−3. This small value is important since

the smallest loss value present in the dataset is in the order of 10−2. This translates to a

noticeable but small deviation.

Finally, a depiction of the error regression for this network is displayed in Figure 4.8.

It is noticeable that, in this network, the value of the coefficient of correlation is worse that

the previous. The value of this coefficient is now 0.99983, meaning that the coefficient of

determination becomes 0.999832 = 0.99966.
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Figure 4.8: Error regression for the coil stacks ANN

4.3 Combination of Neural Networks Results

In this final section, the results of the combination of both previous sections are presented.

Since the aim of this work is to predict AC loss in multiple configurations of HTS coils,

these results are the most relevant for this study. As explained before, there is no way of

computing the individual errors for each prediction since there is no dataset for this part.

Having said this, using the Equations presented in 3.4, the MSE for this combination

will be:

MSEcomb ≈MSE4.1 + MSE4.2 = 2.21 ∗ 10−6 + 2.72 ∗ 10−6 = 4.93 ∗ 10−6 (4.1)

As stated in 3.4, there is also a way of approximating the coefficient of correlation of

this model by multiplying both coefficients:

Rcomb ≈ R4.1 ∗R4.2 = 1 ∗ 0.99983 = 0.99983 (4.2)

Finally, having the value of coefficient of correlation allows for the calculation of the

coefficient of determination:

R2
comb = R2

comb = 0.999832 = 0.99966 (4.3)
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4.4 Result Comparison

Having provided the individual results of each model in the previous sections, now is

time to present them side by side. This allows for an easier understanding of the entire

model and where the biggest problems lie in said model. Table 4.1 illustrates this side by

side display of results.

Table 4.1: Result Comparison

Value Individual Coil Stacks of Coils Combination
MSE 2.21 ∗ 10−6 2.72 ∗ 10−6 ≈ 4.93 ∗ 10−6

R ≈ 1 0.99983 ≈ 0.99983
R2 ≈ 1 0.99966 ≈ 0.99966

As is visible in Table 4.1, the Mean Squared Error is greater in the second network.

This is due to the smaller dataset used in training this network. This also results in worse

approximations (R,R2 < 1).

As the values in the combination of both networks are dependant on the individual

ones, having worse individual values will result in worse combinations values. This is also

illustrated in Table 4.1, as the Mean Squared Error of the combination is much greater

than the individual MSE’s. As the approximation quality values for the first network are

virtually 1, then the results for the combination of both are the same as for the second

network.
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Conclusion

The two main focus points on employing ANNs on AC Loss in superconductive devices

was to be able to predict loss in different configurations of said devices in a much faster

manner. While in no way have all possible configurations been studied, it is safe to

conclude that, for stacks of HTS coils, this aim has been met. Even though this main

objective has achieved, several other complementary objectives were defined.

The first of these objectives was to find a way to be able to characterize HTS tapes

in a simple mathematical fashion. This was achieved through finding the exponential

regression that characterizes AC Loss in said tape and using its two constants as tape

identifiers. It is also logical that these parameters will differ between different tapes as

AC Loss behaves differently making these parameters simple and unique.

The second objective was to create a model able to predict AC loss in HTS coils given

the configuration of said coils. This was achieved through the use of an Artificial Neural

Network based model that takes into account every element in the coil’s configuration.

While, in this case, the model can be improved with further enlargement of the training

dataset, the results are optimistic.

The next objective was to create a model that predicts AC loss in stacks of HTS coils,

given the loss of an individual coil. While this model was implemented and behaves well

for configurations close to those present in the dataset, further configurations need to

be studied to perfect this model. This is because the present dataset is too small for the

network to properly make predictions that stray too far from the ones studied.

The final objective was to combine both models as one. This has also been achieved

but, because the second model is currently far from perfect, this one also is. It is under-

stood that, to improve this combinations of models, the most important step is to enlarge

the dataset used to train the stack of coils ANN as this is the main injuring factor in its

performance.

As for contributions, both expectations have been met since both datasets that have

been developed for this project contain the loss for vast configurations of HTS tapes and

both ANN models have been implemented.
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So, to summarize, while the objectives set out for this project have been met, further

work needs to be put into increasing dataset size. Nonetheless, this work lays the ground

for the idea that using ANNs to reduce time in estimating AC Loss in HTS devices is

feasible with very accurate results.
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I

Annex 1

A B N d(mm) I(A) Q(J/cycle)

6 ∗ 10−3 4.2496 10 160 150 1.53 ∗ 10−2

6 ∗ 10−3 4.2496 10 160 250 9.03 ∗ 10−2

6 ∗ 10−3 4.2496 10 160 400 5.45 ∗ 10−1

6 ∗ 10−3 4.2496 20 160 150 7.06 ∗ 10−2

6 ∗ 10−3 4.2496 20 160 250 4.15 ∗ 10−1

6 ∗ 10−3 4.2496 20 160 400 2.35

6 ∗ 10−3 4.2496 30 160 150 1.86 ∗ 10−1

6 ∗ 10−3 4.2496 30 160 250 1.02

6 ∗ 10−3 4.2496 30 160 400 5.31

6 ∗ 10−3 4.2496 100 160 150 1.73

6 ∗ 10−3 4.2496 100 160 250 13.5

6 ∗ 10−3 4.2496 100 160 400 62.0

6 ∗ 10−3 4.2496 10 80 150 7.13 ∗ 10−3

6 ∗ 10−3 4.2496 10 80 250 4.14 ∗ 10−2

6 ∗ 10−3 4.2496 10 80 400 2.51 ∗ 10−1

6 ∗ 10−3 4.2496 10 80 600 1.89

6 ∗ 10−3 4.2496 20 80 150 3.52 ∗ 10−2

6 ∗ 10−3 4.2496 20 80 250 1.95 ∗ 10−1

6 ∗ 10−3 4.2496 20 80 400 1.10

6 ∗ 10−3 4.2496 20 80 600 7.45

6 ∗ 10−3 4.2496 30 80 150 8.81 ∗ 10−2

6 ∗ 10−3 4.2496 30 80 250 4.80 ∗ 10−1

6 ∗ 10−3 4.2496 30 80 400 2.62

6 ∗ 10−3 4.2496 30 80 600 16.7

6 ∗ 10−3 4.2496 100 80 150 1.23

6 ∗ 10−3 4.2496 100 80 250 6.22

6 ∗ 10−3 4.2496 100 80 400 33.1

6 ∗ 10−3 4.2496 100 80 600 179

6 ∗ 10−3 4.2496 10 80 100 1.83 ∗ 10−3
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A B N d(mm) I(A) Q(J/cycle)

6 ∗ 10−3 4.2496 10 80 120 3.40 ∗ 10−3

6 ∗ 10−3 4.2496 10 80 180 1.30 ∗ 10−2

6 ∗ 10−3 4.2496 10 80 200 1.88 ∗ 10−2

6 ∗ 10−3 4.2496 10 80 220 2.63 ∗ 10−2

6 ∗ 10−3 4.2496 10 80 300 8.13 ∗ 10−2

6 ∗ 10−3 4.2496 10 80 350 1.47 ∗ 10−1

6 ∗ 10−3 4.2496 20 80 100 9.55 ∗ 10−3

6 ∗ 10−3 4.2496 20 80 120 1.72 ∗ 10−2

6 ∗ 10−3 4.2496 20 80 180 6.44 ∗ 10−2

6 ∗ 10−3 4.2496 20 80 200 9.12 ∗ 10−2

6 ∗ 10−3 4.2496 20 80 220 1.26 ∗ 10−1

6 ∗ 10−3 4.2496 20 80 300 3.72 ∗ 10−1

6 ∗ 10−3 4.2496 20 80 350 6.58 ∗ 10−1

6 ∗ 10−3 4.2496 10 160 100 3.87 ∗ 10−3

6 ∗ 10−3 4.2496 10 160 120 7.29 ∗ 10−3

6 ∗ 10−3 4.2496 10 160 180 2.84 ∗ 10−2

6 ∗ 10−3 4.2496 10 160 200 4.13 ∗ 10−2

6 ∗ 10−3 4.2496 10 160 220 5.74 ∗ 10−2

6 ∗ 10−3 4.2496 10 160 300 1.77 ∗ 10−1

6 ∗ 10−3 4.2496 10 160 350 3.19 ∗ 10−1

6 ∗ 10−3 4.2496 20 80 100 9.55 ∗ 10−3

6 ∗ 10−3 4.2496 20 160 120 3.71 ∗ 10−2

6 ∗ 10−3 4.2496 20 160 180 1.34 ∗ 10−1

6 ∗ 10−3 4.2496 20 160 200 1.96 ∗ 10−1

6 ∗ 10−3 4.2496 20 160 220 2.65 ∗ 10−1

6 ∗ 10−3 4.2496 20 160 300 7.96 ∗ 10−1

6 ∗ 10−3 4.2496 20 160 350 1.41

2.8 ∗ 10−3 4.2069 10 80 90 8.21 ∗ 10−3

2.8 ∗ 10−3 4.2069 10 80 100 1.20 ∗ 10−2

2.8 ∗ 10−3 4.2069 10 80 110 1.70 ∗ 10−2

2.8 ∗ 10−3 4.2069 10 80 120 2.35 ∗ 10−2

2.8 ∗ 10−3 4.2069 10 80 130 3.20 ∗ 10−2

2.8 ∗ 10−3 4.2069 10 80 150 5.77 ∗ 10−2

2.8 ∗ 10−3 4.2069 10 80 160 7.70 ∗ 10−2

2.8 ∗ 10−3 4.2069 10 80 180 1.32 ∗ 10−1

2.8 ∗ 10−3 4.2069 20 80 90 3.70 ∗ 10−2

2.8 ∗ 10−3 4.2069 20 80 100 5.21 ∗ 10−2

2.8 ∗ 10−3 4.2069 20 80 110 7.43 ∗ 10−2

2.8 ∗ 10−3 4.2069 50 80 25 4.35 ∗ 10−3

2.8 ∗ 10−3 4.2069 50 80 35 1.20 ∗ 10−2
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ANNEX I. ANNEX 1

A B N d(mm) I(A) Q(J/cycle)

2.8 ∗ 10−3 4.2069 50 80 50 3.86 ∗ 10−2

2.8 ∗ 10−3 4.2069 50 80 60 6.81 ∗ 10−2

2.8 ∗ 10−3 4.2069 50 80 75 1.42 ∗ 10−1

2.8 ∗ 10−3 4.2069 50 80 82 1.90 ∗ 10−1

2.8 ∗ 10−3 4.2069 50 80 90 2.60 ∗ 10−1

2.8 ∗ 10−3 4.2069 50 80 100 3.71 ∗ 10−1

2.8 ∗ 10−3 4.2069 54 80 50 4.51 ∗ 10−2

2.8 ∗ 10−3 4.2069 54 80 60 8.08 ∗ 10−2

2.8 ∗ 10−3 4.2069 54 80 75 1.65 ∗ 10−1

2.8 ∗ 10−3 4.2069 54 80 90 3.03 ∗ 10−1

2.8 ∗ 10−3 4.2069 54 80 100 4.33 ∗ 10−1

2.8 ∗ 10−3 4.2069 50 100 50 4.83 ∗ 10−2

2.8 ∗ 10−3 4.2069 50 100 60 8.49 ∗ 10−2

2.8 ∗ 10−3 4.2069 50 100 75 1.77 ∗ 10−1

2.8 ∗ 10−3 4.2069 50 100 90 3.25 ∗ 10−1

2.8 ∗ 10−3 4.2069 50 100 100 4.63 ∗ 10−1

2.8 ∗ 10−3 4.2069 54 100 50 5.63 ∗ 10−2

2.8 ∗ 10−3 4.2069 54 100 60 1.01 ∗ 10−1

2.8 ∗ 10−3 4.2069 54 100 75 2.07 ∗ 10−1

2.8 ∗ 10−3 4.2069 54 100 90 3.78 ∗ 10−1

2.8 ∗ 10−3 4.2069 60 100 100 5.40 ∗ 10−1

2.8 ∗ 10−3 4.2069 60 80 120 9.40 ∗ 10−1

2.8 ∗ 10−3 4.2069 60 80 130 1.24

2.8 ∗ 10−3 4.2069 60 80 150 2.09

2.8 ∗ 10−3 4.2069 60 80 160 2.66

2.8 ∗ 10−3 4.2069 60 80 180 4.26

Total Simulation Time: 20h 11min 12s
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II

Annex 2

Q1(J/cycle) n Qt(J/cycle)

2.46 ∗ 10−3 5 1.19 ∗ 10−2

2.36 ∗ 10−3 5 1.14 ∗ 10−2

2.05 ∗ 10−3 5 9.84 ∗ 10−3

1.78 ∗ 10−3 5 8.53 ∗ 10−3

4.63 ∗ 10−3 5 2.26 ∗ 10−2

4.46 ∗ 10−3 5 2.16 ∗ 10−2

3.86 ∗ 10−3 5 1.87 ∗ 10−2

3.35 ∗ 10−3 5 1.61 ∗ 10−2

7.96 ∗ 10−3 5 3.92 ∗ 10−2

7.62 ∗ 10−3 5 3.74 ∗ 10−2

6.59 ∗ 10−3 5 3.22 ∗ 10−2

5.71 ∗ 10−3 5 2.77 ∗ 10−2

1.28 ∗ 10−2 5 6.40 ∗ 10−2

1.23 ∗ 10−2 5 6.10 ∗ 10−2

1.05 ∗ 10−2 5 5.19 ∗ 10−2

9.10 ∗ 10−3 5 4.46 ∗ 10−2

1.99 ∗ 10−2 5 1.00 ∗ 10−1

1.89 ∗ 10−2 5 9.51 ∗ 10−2

1.61 ∗ 10−2 5 8.00 ∗ 10−2

1.38 ∗ 10−2 5 6.82 ∗ 10−2

4.55 ∗ 10−3 10 4.68 ∗ 10−1

4.38 ∗ 10−3 10 4.50 ∗ 10−2

3.86 ∗ 10−3 10 3.95 ∗ 10−2

3.41 ∗ 10−3 10 3.47 ∗ 10−2

8.31 ∗ 10−3 10 8.67 ∗ 10−2

8.01 ∗ 10−3 10 8.33 ∗ 10−2

7.06 ∗ 10−3 10 7.30 ∗ 10−2

6.23 ∗ 10−3 10 6.40 ∗ 10−2

1.48 ∗ 10−2 10 1.54 ∗ 10−1
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ANNEX II. ANNEX 2

Q1(J/cycle) n Qt(J/cycle)

1.34 ∗ 10−2 10 1.41 ∗ 10−1

1.18 ∗ 10−2 10 1.23 ∗ 10−1

1.04 ∗ 10−2 10 1.08 ∗ 10−1

2.18 ∗ 10−2 10 2.35 ∗ 10−1

2.02 ∗ 10−2 10 2.25 ∗ 10−1

1.83 ∗ 10−2 10 1.95 ∗ 10−1

1.62 ∗ 10−2 10 1.70 ∗ 10−1

3.27 ∗ 10−2 10 3.59 ∗ 10−1

3.13 ∗ 10−2 10 3.42 ∗ 10−1

2.73 ∗ 10−2 10 2.94 ∗ 10−1

2.39 ∗ 10−2 10 2.54 ∗ 10−1
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