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Abstract
Weexhibit a faithful representation of the stylicmonoid of every finite rank as amonoid
of upper unitriangularmatrices over the tropical semiring. Thus,we show that the stylic
monoid of finite rank n generates the pseudovariety J n , which corresponds to the
class of all piecewise testable languages of height n, in the framework of Eilenberg’s
correspondence. From this, we obtain the equational theory of the stylic monoids of
finite rank, show that they are finitely based if and only if n ≤ 3, and that their identity
checking problem is decidable in linearithmic time. We also establish connections
between the stylic monoids and other plactic-like monoids, and solve the finite basis
problem for the stylic monoid with involution.

Keywords Stylic monoid · Tropical representation · Unitriangular matrices · Monoid
identities · Finite basis problem · Involution.

1 Introduction

Identities and varieties of semigroups andmonoids have long been studied, and several
important questions arise in this study, such as the question of whether a semigroup
admits a finite basis for its equational theory. This question is known as the finite basis
problem [55, 61], and it is well-known that there are finite semigroups which are not
finitely based [52]. Other questions regarding the variety generated by a semigroup
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2 T. Aird, D. Ribeiro

are those of whether it contains only finitely generated subvarieties (see, for example,
[61]), or countably infinite subvarieties [60]. We can also ask about the computational
complexity of checking if an identity is satisfied by said semigroup. This problem is
the identity checking problem [39], denoted by Check- Id, and is not only decidable
for finite semigroups, but it is also known to be in the complexity class coNP. Due to
Birkhoff’s HSP Theorem [5], we can study these problems either by working directly
with the identities, or by looking at homomorphic images, subsemigroups or direct
products of other semigroups of which we already know enough to answer our ques-
tions. These problems have also been considered for involution semigroups, that is,
semigroups equipped with a unary operation * which satisfies the identities (x∗)∗ ≈ x
and (xy)∗ ≈ y∗x∗ (see [46] for a collection of results on this subject). In particular,
the finite basis problem for finite involution semigroups has received much attention,
since, contrary to intuition, finite involution semigroups and their underlying semi-
groups need not necessarily be simultaneously finitely based (see, for example, [43,
45]).

The tropical semiring T, also known as the max-plus semiring, is an important
algebraic structure, due to its applications in many areas of mathematics, such as
algebraic geometry and combinatorial optimization (see, for example, [12] and [49]).
It is natural to consider matrices over this semiring which, under the induced operation
of matrix multiplication, form monoids. These monoids have been used to great effect
in representations of semigroups, in particular, infinite semigroups which do not admit
faithful finite dimensional representations over fields. For example, the famous bicyclic
monoid has been shown to admit faithful representations over the tropical semiring
[21, 35].

The plactic monoid plac, whose elements can be identified with semistandard
Young, has attracted the attention of many mathematicians, due to its connections
with several areas of mathematics, such as algebraic combinatorics [47], represen-
tation theory [28], symmetric functions [48] and crystal bases [10]. First studied by
Schensted [56] and Knuth [40], and later studied in depth by Lascoux and Schützen-
berger [42], the plactic monoid is now the focus of much attention with regards to its
identities and varieties [34, 41].

Cain et al. [14] have shown that the plactic monoid of finite rank n, denoted by
placn , does not satisfy any non-trivial identity of length less than or equal to n, hence,
there is no single “global” identity satisfied by every plactic monoid of finite rank,
and the infinite-rank plactic monoid does not satisfy any non-trivial identity. On the
other hand, Johnson and Kambites [38] have given a faithful representation of placn in
monoids of upper triangular matrices over the tropical semiring T, for every finite n.
These monoids are known to satisfy non-trivial identities [33, 51, 59], thus, Johnson
and Kambites’ result implies that every finite-rank plactic monoid satisfies non-trivial
identities.

The study of the plactic monoid has given rise to a family of ‘plactic-like’ monoids,
whose elements can be uniquely identifiedwith combinatorial objects.Monoids of this
family include the hypoplactic monoid hypo [15, 50]; the sylvester monoid sylv and
the #-sylvester monoid sylv# [16, 31]; the Baxter monoid baxt [16, 27]; the stalactic
monoid stal [32, 54]; the taigamonoid taig [54]; and the right patience-sortingmonoid
rPS [20]. These monoids satisfy non-trivial identities [17] and, except for the case of
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Tropical representations and identities of the stylic monoid 3

the right patience-sorting monoid, these identities are satisfied regardless of rank.
The finite basis problem regarding the plactic-like monoids has also been studied by
different authors (including the second author), using different techniques [13, 18, 19,
29], and the identity checking problem has been studied in [18] by Cain, Malheiro and
the second author.

The stylic monoid of finite rank n, introduced by Abram and Reutenauer in [1]
and denoted by styln , is a finite quotient of the plactic monoid of rank n, defined by
the action of words, over a finite totally ordered alphabet with n letters, on the left
of columns of semistandard Young tableaux, by Schensted left insertion. Its elements
can be uniquely identified with so-called N -tableaux, and it is presented by the Knuth
relations and the relationsa2 ≡ a, for eacha ∈ An .As such, to the authors’ knowledge,
it is the first finite plactic-like monoid to be studied. It is a finite J -trivial monoid ( [1,
Theorem 11.1]), hence, by [57], is in J k , the pseudovariety in Simon’s hierarchy of
J -trivialmonoidswhich corresponds to the class of all piecewise testable languages of
height k, in Eilenberg’s correspondence ( [23, 53]), for some k ∈ N. The pseudovariety
J k is defined by the equational theory Jk of all identities u ≈ v such that u and v share
the same subsequences of length ≤ k. Blanchet-Sadri has studied these equational
theories in depth ( [6–8]), having shown that Jk is finitely based if and only if k ≤ 3.
Johnson and Fenner, expanding upon Volkov’s work [62], showed in [37] that the
variety described by Jk is generated by the monoidUk+1(S) of (k+1)× (k+1) upper
unitriangular matrices with entries in a non-trivial, idempotent commutative semiring
S, of which the max-plus tropical semiring T is an example.

In this work, we show that the stylic monoid of rank n generates the pseudovariety
J n . The paper is organized as follows: Sect. 2 gives the necessary background on
the subject matter, namely words in Sect. 2.1; identities and varieties in Sect. 2.2;
semirings and matrix semigroups in Sect. 2.3; and the stylic monoid in Sect. 2.4. In
Sect. 3, we give a faithful representation of styln in Un+1(T), thus proving that styln
is in the variety generated by Un+1(T), and we follow up in Sect. 4 by showing that
all identities satisfied by styln must also be in Jn , and therefore the equational theory
of styln is Jn . From this, we deduce that the identity checking problem for styln is
decidable in linearithmic time, and the variety generated by styln , for n ≥ 3, has
uncountably many subvarieties. We also delve into the connections between the stylic
monoid and other plactic-like monoids, by looking at the interactions between the
varieties they generate. Finally, in Sect. 5, we look at the finite basis problem for the
stylic monoid with involution * induced by the unique order-reversing permutation of
An , and show that (styln, *) is finitely based if and only if n = 1. We also show that
(styln, *) and (Un+1(T), �), where � is the skew transposition, do not generate the
same variety for n ≥ 2, which contrasts with the results obtained in Sect. 4.

The authors would like to note that, during the final revisions of this paper, Volkov
[63] proved the same result as Corollary 4.2 independently, by showing that styln is a
homomorphic image of the Kiselman monoid Kisn of rank n, and the Catalan monoid
Catn of rank n is a homomorphic image of styln . Both Kisn and Catn are known to
generate the variety described by Jn [3, Theorem 8].
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4 T. Aird, D. Ribeiro

2 Background

We recall the necessary definitions and notations. Let N denote the set of natural
numbers, without zero.

2.1 Words

Let � be a non-empty set, referred to as an alphabet, whose elements are referred
to as letters. Given an alphabet �, we denote the monoid of all words over � under
concatenation, the free monoid on �, by �∗, and we denote the empty word by ε. We
write |w| for the length of a word w. For 1 ≤ i ≤ |w|, we denote its i-th letter by wi .
The support of w, denoted by supp(u), is the subset of � of letters which occur in w.

For u, v ∈ �∗ we say that u is a prefix of v if there existsw′ ∈ �∗ such that v = uw′,
and a subsequence of v if there exist u1, . . . , un ∈ � and v′

1, . . . , v
′
n+1 ∈ �∗ such that

u = u1 · · · un and v = v′
1u1v

′
2 · · · v′

nunv
′
n+1. We shall denote the prefix of the first i

letters of a word w by w≤i , and denote the subsequence u = u1 · · · un by its sequence
of letters u1, . . . , un .

2.2 Identities and varieties

For a general background on universal algebra, see [11]; on pseudovarieties, see [2];
on computation and complexity theory, see [58]. We also refer the reader to the survey
[61] on the finite basis problem for finite semigroups.

A monoid identity, over an alphabet of variables �, is a formal equality u ≈ v,
where u and v are words in the free monoid �∗, and is non-trivial if u 	= v. We say a
variable x occurs in u ≈ v if x occurs in u or v. We say that a monoid M satisfies the
identity u ≈ v if for every morphismψ : �∗ → M (also referred to as an evaluation),
the equality ψ(u) = ψ(v) holds in M .

For a given monoid M , its identity checking problem is the combinatorial decision
problem Check- Id(M) whose instance is an arbitrary identity u ≈ v, and whose
answer to such an instance is positive if M satisfies the identity, and negative oth-
erwise. As its input is only the identity and not the monoid, the time complexity of
Check- Id(M) should be measured only in terms of the size of the identity.

The class of all monoids which satisfies some set of identities � is called an equa-
tional class, and � is called its equational theory. An identity u ≈ v is a consequence
of a set of identities � if all monoids which satisfy all identities of � also satisfy
u ≈ v. An equational basis, or simply basis, B of an equational theory � is a subset
of � such that each identity in � is a consequence of B. We say an equational theory
is finitely based if it admits a finite basis, and non-finitely based otherwise.

On the other hand, a class of monoids is a variety if it is closed under taking
homomorphic images, submonoids and direct products, while a class of finite monoids
is a pseudovariety if it is closed under taking homomorphic images, submonoids and
finitary direct products. A subvariety is a subclass of a variety which is itself a variety.
We say a variety is generated by a monoid M if it is the smallest variety containing
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Tropical representations and identities of the stylic monoid 5

M , and denote it by V(M). We define a pseudovariety generated by a monoid in a
parallel way.

A classical result by Birkhoff [5] (in the context of monoids) states that a class
of monoids is a variety if and only if it is an equational class. As such, a variety is
uniquely determined by its equational theory. Therefore, for a given equational theory
�, we denote the variety which corresponds to � by V(�).

An equational pseudovariety is a pseudovariety which consists of all the finite
monoids in some variety (see, for example, [2]). Though not all pseudovarieties are
equational, every finitely generated pseudovariety is equational. An equational pseu-
dovariety is defined by its equational theory. We say that a variety or an equational
pseudovariety is finitely based if its equational theory is finitely based, and that a
monoid is finitely based if the variety it generates is finitely based.

For each k ∈ N, we denote byJ k the pseudovariety which corresponds to the class
of all piecewise testable languages of height k, by Eilenberg’s correspondence, and
by Jk the set of all identities u ≈ v such that u and v share the same subsequences of
length ≤ k. The increasing sequence

J 1 � J 2 � · · · � J k � . . . ,

whose union is the pseudovarietyJ of all finite J -trivial monoids, was introduced in
[57], and is known as Simon’s hierarchy of J -trivial monoids. Furthermore, a finite
monoid is J -trivial if and only if it is in J k if and only if it satisfies all identities
in Jk , for some k. Regarding whether these equational theories admit finite bases, we
have the following:

1. ([8, folklore]) J1 admits a finite basis, consisting of the following identities:

x2 ≈ x and xy ≈ yx .

2. ([57]) J2 admits a finite basis, consisting of the following identities:

xyxzx ≈ xyzx and (xy)2 ≈ (yx)2.

3. ([6, Proposition 4.1.6] and [7]) J3 admits a finite basis, consisting of the following
identities:

xyx2zx ≈ xyxzx,

xyzx2t z ≈ xyxzx2t x,

zyx2zt x ≈ zyx2zxtx,

(xy)3 ≈ (yx)3.

4. ([8, Theorem 3.4]) The equational theory Jk is non-finitely based, for k ≥ 4.
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6 T. Aird, D. Ribeiro

2.3 Semirings andmatrix semigroups

For further reading on tropical semirings and their applications, see, for example, [12].
A commutative semiring S is a set equipped with two binary operations + and ·,

such that (S,+) and (S, ·) are both commutative monoids, with respective neutral
elements 0S and 1S , that satisfy

a · (b + c) = a · b + a · c and 0S · a = 0S,

for all a, b, c ∈ S. We say S is trivial if 0S = 1S , and S is idempotent if a + a = a,
for all a ∈ S. The main relevant example of a non-trivial, idempotent commutative
semiring for this paper is the tropical semiring T := (R ∪ {−∞},⊕,⊗), where
a ⊕ b = max(a, b) and a ⊗ b = a + b, for a, b ∈ R ∪ {−∞}. Notice that −∞
is the additive neutral element, or ‘zero’, and 0 is the multiplicative neutral element,
or ‘one’, of T. Another relevant example is the Boolean semiring B = {0, 1}, with
maximum as addition and minimum as multiplication.

The set of alln×nmatriceswith entries in a commutative semiring S forms amonoid
under the matrix multiplication induced from the operations in S, and is denoted by
Mn(S). Its neutral element is the n×n identity matrix In×n , whose diagonal entries are
1S and all other entries are 0S , and its absorbing element is the n×n zero matrix 0n×n ,
whose entries are all 0S . The submonoid of upper triangular matrices, that is, matrices
whose entries below the main diagonal are 0S , of Mn(S) is denoted byUTn(S), while
the submonoid of upper unitriangularmatrices, that is, upper triangularmatriceswhose
diagonal entries are 1S , of Mn(S) is denoted by Un(S).

Johnson and Fenner have shown in [37, Corollary 3.3] that, for n ∈ N and any non-
trivial idempotent commutative semiring S, the monoid Un+1(S) generates V(Jn),
the variety whose equational theory is the set of identities Jn defined in the previous
subsection.

2.4 The stylic monoid

For a general background on the plactic monoid, see [47, Chapter 5]. For an in-depth
look at the stylic monoid, see [1].

Let An denote the totally ordered finite alphabet {1 < · · · < n}. A semistandard
Young tableau, or simply tableau, is a (finite) grid of cells, with down-left-aligned rows,
filled with symbols from An , such that the entries in each row are weakly increasing
from left to right, and the entries in each column are strictly decreasing from top to
bottom. An example of a Young tableau is

5 6

2 3 4

1 1 3 3 4

.
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Tropical representations and identities of the stylic monoid 7

Using Schensted’s algorithm [56], we compute a unique tableau Pplac(w), for each
word over An . The plactic congruence on A∗

n is defined by

u ≡plac v ⇐⇒ Pplac(u) = Pplac(v),

for u, v ∈ A∗
n . The factor monoid A∗

n/≡plac is the plactic monoid of rank n, denoted
by placn [42]. It follows from the definition of ≡plac that each element [u]plac of plac
can be identified with the Young tableau Pplac(u).

The plactic monoid of rank n can also be defined by the presentation
〈An

∣∣Rplac
〉

[40], where

Rplac = {(acb, cab) : a ≤ b < c}
∪ {(bac, bca) : a < b ≤ c} .

The defining relations are known as the plactic relations, or as the Knuth relations.
The stylic monoid of rank n, denoted by styln , is first defined in [1, Section 5]

as the monoid of endofunctions of the set of columns over An obtained by a left
action of words on columns [1, Section 4]. It is a finite quotient of the free monoid
over An , and the corresponding stylic congruence of A∗

n is denoted by ≡styl. It is
J -trivial [1, Theorem 11.1], therefore, by Simon’s Theorem, there exists k ∈ N such
that styln ∈ J k .

The stylic monoid of rank n can be defined in two other ways, which will be the
ones used in this work: It is defined by the presentation

〈An
∣∣Rstyl

〉
[1, Theorem 8.1],

where

Rstyl =Rplac ∪ {(a2, a) : a ∈ An}.

The defining relations are known as the stylic relations, and are the plactic relations
together with a generator idempotent relation. As such, the stylic monoid of rank n
can be viewed as a quotient of the plactic monoid [1, Proposition 5.1], and two words
in the same stylic class have the same support [1, Lemma 5.3].

For the other definition,weneed a combinatorial object analogue to aYoung tableau:
An N -tableau is a Young tableau where each row is strictly increasing and contained
in the row below [1, Subection 6.1]. An example of an N -tableau is

5 6

2 5 6

1 2 3 4 5 6

.

As with Young tableaux and Schensted’s algorithm, it is possible to associate each
word w ∈ A∗

n to a unique N -tableau, which we denote by N (w), by using the right
N-algorithm: Consider rows of an N -tableau as subsets of the alphabet. The right N-
insertion of a letter a ∈ An into a rowB ⊆ An gives the rowB∪{a}. If b is the smallest
letter in B strictly greater than a, we say b is bumped (but b is not deleted in B∪ {a}).
The right N-insertion of a letter a ∈ An into an N -tableau is recursively defined as
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8 T. Aird, D. Ribeiro

follows: a is inserted into the first row, then, if a letter b is bumped, b is inserted into
the row above. The algorithm stops when no letter is bumped. Inserting a letter into
an N -tableau, using this algorithm, produces an N -tableau [1, Proposition 6.1]. The
right N-insertion of a word w ∈ A∗

n into an N -tableau is done by inserting the letters
of w, one-by-one from left-to-right. The stylic congruence on A∗

n is defined by

u ≡styl v ⇐⇒ N (u) = N (v),

for u, v ∈ A∗
n [1, Theorem 7.1].

The stylicmonoid of rank n has an absorbing element, which is the stylic class of the
decreasing product of all letters in A∗

n [1, Proposition 5.4]. This element corresponds
to the N -tableau with n rows and the letters {i, . . . , n} in the i-th row.

The following definitions are introduced in [1, Subsection 6.3]: For each subset
B of An , and each letter a ∈ An , the element a↑

B ∈ B ∪ {ε} is the smallest letter
in B which is strictly greater than a, or ε if such a letter does not exist. Define the
mapping δ : A∗

n → A∗
n as follows: for any word w ∈ A∗

n and letter a ∈ An ,

δ(wa) = δ(w) · a↑
supp(w). Notice that the smallest letter in w is not in δ(w), hence

supp(δk(w)) � supp(δk−1(w)), for all k ∈ N such that supp(δk−1(w)) 	= ∅.
We introduce the following definition, which expands upon the “arrow” notation:

For a word w ∈ A∗
n , and k ∈ N, define the mapping ↑k

w : {1, . . . , |w|} → supp(w)

recursively, as follows: for 2 ≤ l ≤ k,

↑1
w(i) = (wi )

↑
supp(w≤i )

,

↑l
w(i) =

(
↑l−1

w (i)
)↑
supp(δl−1(w≤i ))

.

If ↑k
w(i) 	= ε, then ↑k

w(i) is the letter which is bumped into the (k + 1)-th row when
wi is inserted into the N -tableau. As an example, consider the word 535234512345.
Then,

5 3 5 2 3 4 5 1 2 3 4 5 = w,

5 3 5 5 2 3 4 5 = δ(w),

5 3 5 5 = δ2(w),

5 = δ3(w),

and ↑3
w(8) = 5, that is, the letter w8 = 1 bumps 5 to the fourth row of

N (535234512345).
The following lemmata are immediate consequences of the definition of ↑k

w, and
the right N -algorithm in the case of the first lemma:

Lemma 2.1 Let w ∈ A∗
n, a ∈ An, and k ∈ N. Then, a occurs in the k-th row of N (w)

if and only if there exists an index j ≤ |w| such that ↑k−1
w ( j) = a.

Proof By repeated application of [1, Lemma 6.3], supp(δk−1(w)) is the k-th row of
N (w), viewed as a subset of An . Moreover, by the definition of ↑k−1

w , for a ∈ An ,
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Tropical representations and identities of the stylic monoid 9

we have that a ∈ supp(δk−1(w)) if and only if ↑k−1
w ( j) = a for some j ≤ |w|. Thus,

a is in the k-th row of N (w) if and only if there is some j satisfying the previously
mentioned condition. ��

Lemma 2.2 Let w ∈ A∗
n and let k, sk ∈ N be such that 1 ≤ k ≤ sk ≤ |w|. If

↑k−1
w (sk) = a, for some a ∈ An, then there exists a strictly decreasing subsequence

ws1, . . . , wsk of w such that ws1 = a and ↑l−1
w (sl) = a for 1 < l ≤ k.

Proof Since supp(δl(w)) � supp(δl−1(w)), for all l < k, then ↑k−1
w (sk) = a implies

that a ∈ supp(δl(w)), for all 1 ≤ l ≤ k − 1, and a ∈ supp(w). Thus, there exist
1 ≤ s1, . . . , sk−1 ≤ |w| such that ws1 = a and ↑l−1

w (sl) = a for 1 < l ≤ k − 1.
Notice that ↑l−1

w (sl) = a implies that there is a letter a to the left of ↑l−2
w (sl) in

δl−2(w), for all 2 < l ≤ k. Similarly, ↑1
w(s2) = a implies that there is a letter a

to the left of ws2 in w. As such, we can restrict the choice of s1, . . . , sk−1 to have
s1 < · · · < sk .

Furthermore, notice that, since ↑l−1
w (sl) = a, there must exist i ≤ sl such that

↑l−2
w (i) = a and wi > wsl : In order to obtain a contradiction, take i such that

wi ≤ wsl ,

↑ j
w(i) ≤ ↑ j

w(sl) < ↑ j+1
w (sl) < ↑ j+1

w (i),

and ↑ j ′
w(i) ≤ ↑ j ′

w(sl) for all 1 ≤ j ′ ≤ j , such that j is minimal. In other words,
when comparing the sequences of “arrows” of i and sl , this choice of i gives us the
sequence where there are the least number of elements which are less than or equal to
the corresponding elements of the sequence of sl , i.e.

wi ≤ wsl
↑1

w(i) ≤ ↑1
w(sl)

...
...

↑ j
w(i) ≤ ↑ j

w(sl)

↑ j+1
w (i) > ↑ j+1

w (sl)
...

...

↑l−2
w (i) > ↑l−2

w (sl)
↑l−1

w (sl)

Then,wehave that all occurrences of↑ j+1
w (sl)must be to the right of↑ j

w(i) in δ j (w≤sl ),

since ↑ j
w(i) bumps ↑ j+1

w (i) and not ↑ j+1
w (sl). But at least one occurrence of ↑ j+1

w (sl)
in δ j (w≤sl ) will bump a to the (l − 2)-th row. This contradicts the minimality of j ,
hence, we can choose s1, . . . , sl such that s1 < · · · < sk and ws1 > · · · > wsl .

Thus, we have found a strictly decreasing subsequence ws1 , . . . , wsk of w, where
ws1 = a and ↑l−1

w (sl) = ws1 for all 1 < l ≤ k. ��
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10 T. Aird, D. Ribeiro

3 Tropical representations of the stylic monoid

We first construct a faithful representation of the stylic monoid of finite rank n in the
monoid of upper unitriangular (n + 1) × (n + 1) tropical matrices, for each n ∈ N.
Since, by [37, Corollary 3.3], this monoid generates the variety with equational theory
Jn , we show that styln satisfies all identities in Jn .

Let x := n + 1 − x for all x ∈ An . We define the map ρn : A∗
n → Un+1(T) as

follows:

ρn(x)i, j =

⎧
⎪⎨

⎪⎩

0 if i = j;
1 if i ≤ x < j;
−∞ otherwise.

for each x ∈ An , extending multiplicatively to all of A∗
n and defining ρn(ε) =

I(n+1)×(n+1). For example, the images of 2 and of 4213 under ρ4 are, respectively,

⎡

⎢⎢⎢⎢
⎣

0 −∞ −∞ 1 1
−∞ 0 −∞ 1 1
−∞ −∞ 0 1 1
−∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ 0

⎤

⎥⎥⎥⎥
⎦

and

⎡

⎢⎢⎢⎢
⎣

0 1 2 2 3
−∞ 0 1 1 2
−∞ −∞ 0 1 2
−∞ −∞ −∞ 0 1
−∞ −∞ −∞ −∞ 0

⎤

⎥⎥⎥⎥
⎦

Notice that, for each x ∈ An , its image under ρn is a unitriangular tropical matrix
where the only entries above the diagonal different from −∞ are equal to 1.

Lemma 3.1 Letw ∈ A∗
n. For 1 ≤ i < j ≤ n+1 and k ∈ N, we have that ρn(w)i, j = k

if and only if k is the maximum length of any strictly decreasing subsequence of w

only using letters between j + 1 and i . On the other hand, ρn(w)i, j = −∞ if and
only if w does not contain a for any i ≤ a < j .

A remark about abuse of language: we say “only using letters between j + 1 and
i” in order to avoid the formal, but more cumbersome, statement “only using letters
a ∈ An such that j + 1 ≤ a ≤ i”.

Proof Let w ∈ A∗
n and 1 ≤ i < j ≤ n + 1. Suppose ρn(w)i, j = k, for some

k ∈ N. Then, by the definition of tropical matrix multiplication, w admits a sub-
sequence ws1 , . . . , wsk , of length k, and there exist i = t0 < · · · < tk = j such
that ρn(wsi )ti−1,ti = 1 for all 1 ≤ i ≤ k. Furthermore, by the definition of ρn ,
ti−1 ≤ wsi < ti . Therefore, ws1, . . . , wsk is a strictly decreasing subsequence of w

such that i ≥ ws1 > · · · > wsk ≥ j + 1 and hence, the maximum length of a strictly
decreasing subsequence of w only using letters between j + 1 and i is greater than or
equal to ρn(w)i, j .

Suppose now that k is the maximum length of any strictly decreasing subsequence
of w only using letters between j + 1 and i . Let ws1 , . . . , wsk be a strictly decreasing
subsequence of w such that i ≥ ws1 > · · · > wsk ≥ j + 1, then let t0 = i, tk = j and
ti = wsi+1 for 1 ≤ i < k. Hence, by the definition ofρn , we have thatρn(wsi )ti−1,ti = 1
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for 1 ≤ i ≤ k, and therefore

ρn(w)i, j ≥
k∏

i=1

ρn(wsi )ti−1,ti = k.

Thus, ρn(w)i, j is greater than or equal to the maximum length of a strictly decreasing
subsequence only using letters between j + 1 and i . Equality follows.

In the case where ρn(w)i, j = −∞, there is no t ∈ {1, . . . , |w|} such that i ≤ wt <

j , otherwise, wt would form a strictly decreasing subsequence of w (with just one
letter), only using letters between j + 1 and i , which would imply that ρn(w)i, j ≥ 1.
Similarly, if wt < i or wt ≥ j for all 1 ≤ t ≤ |w|, then ρn(wt )i, j ′ = −∞ for all
i < j ′ ≤ j and hence ρn(w)i, j = −∞. ��

As an immediate corollary, notice that ρn(w)i, j ≤ n, for all 1 ≤ i, j ≤ n + 1. We
also have the following:

Corollary 3.2 Let w ∈ A∗
n. Then, any two finite adjacent entries in ρn(w) must differ

by at most 1, and are weakly increasing on columns and weakly decreasing on rows.
In other words, for 1 ≤ i ≤ j ≤ n + 1, if ρn(w)i, j and ρn(w)i+1, j are both finite,
then ρn(w)i+1, j ≤ ρn(w)i, j ≤ ρn(w)i+1, j + 1. Similarly, if ρn(w)i, j and ρn(w)i, j+1
are both finite, then ρn(w)i, j ≤ ρn(w)i, j+1 ≤ ρn(w)i, j + 1.

Proof First, by noticing that any strictly decreasing subsequence only using letters
between j+1 and i is also a strictly decreasing subsequence only using letters between
j and i , and j + 1 and i + 1, we have that the the entries of ρn(w) weakly increase
left-to-right on the columns and weakly decrease top-to-bottom on the rows.

Suppose, in order to obtain a contradiction, that there exist 1 ≤ i ≤ j ≤ n and
0 ≤ k < k′ ≤ n such that ρn(w)i, j = k and ρn(w)i, j+1 = k′ + 1. By the previous
lemma, there are maximum length strictly decreasing subsequences u and v of w,
of length k and k′ + 1 and only using letters between j + 1 and i and between
j and i , respectively. Taking v and discarding its smallest letter gives us a strictly
decreasing subsequence of w, of length k′, only using letters between j + 1 and i ,
which contradicts the maximality of the length of u. Similarly, we can prove that
there are no 2 ≤ i ≤ j ≤ n + 1 and 1 ≤ k < k′ ≤ n such that ρn(w)i, j = k and
ρn(w)i−1, j = k′ + 1. ��
Proposition 3.3 The map ρn induces a well-defined morphism from styln to Un+1(T).

Proof We show that ρn satisfies the stylic relations, that is x2 ≡ x for all x ∈ An and
the Knuth relations.

To show that ρn(x2) = ρn(x) for all x ∈ An , begin by observing that for all i ≤ j ,
ρn(x2)i, j = ρn(x)i,k · ρn(x)k, j for some i ≤ k ≤ j . Suppose ρn(x2)i, j 	= −∞. If
there exists i < k < j such that ρn(x)i,k 	= −∞ 	= ρn(x)k, j , then we have that
i ≤ x < k ≤ x < j , giving a contradiction. Thus, we either have i = k or k = j .
In either case, as ρn(x)i,i = ρn(x) j, j = 0, we have that ρn(x2)i, j = ρn(x)i, j . If
ρn(x2)i, j = −∞, then as ρn(x2)i, j ≥ ρn(x)i, j · ρn(x) j, j , we have that ρn(x)i, j =
−∞.
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12 T. Aird, D. Ribeiro

For the Knuth relations, both sides of each relation have the same number of occur-
rences of each letter, and are of length 3. Let w be one side of a Knuth relation, then
by Lemma 3.1, ρn(w)i, j ∈ {−∞, 0, 1, 2} for all i, j , as w does not contain a strictly
decreasing subsequence of length 3. Moreover, it is clear to see that ρn(w)i, j = 0 if
and only if i = j .

Let u ≡ v be a Knuth relation. Then, ρn(u)i, j 	= −∞ if and only if i = j
or i ≤ ut < j for some t ∈ {1, 2, 3}. Thus, as u and v have the same content,
ρn(u)i, j 	= −∞ if and only if ρn(v)i, j 	= −∞.

Finally, it suffices to show that ρn(u)i, j = 2 if and only if ρn(v)i, j = 2. Observe
that, as ρn(u)i, j ≤ 2, then ρn(u)i, j = 2 if and only if there exists i ≤ k ≤ j
such that ρn(us1)i,k = ρn(us2)k, j = 1 for some 1 ≤ s1 < s2 ≤ 3 and hence,
i ≤ us1 < k ≤ us2 ≤ j .

By considering all the decreasing sequences in both sides of each Knuth relation,
it suffices to show that if ρn(ca)i, j = 2 then ρn(ba)i, j = 2 for a < b ≤ c and
ρn(cb)i, j = 2 for any a ≤ b < c.

Suppose ρn(ca)i, j = 2 for a < b ≤ c. Then, there exists k such that ρn(c)i,k =
ρn(a)k, j = 1, with i ≤ c < k ≤ a < j . But then as a < b ≤ c, there exists
k′ such that i ≤ b < k′ ≤ a < j , hence ρn(b)i,k′ = ρn(a)k′, j = 1. Similarly, if
ρn(ca)i, j = 2 for a ≤ b < c then there exists k such that ρn(c)i,k = ρn(a)k, j = 1,
with i ≤ c < k ≤ a < j . But then as a ≤ b < c, there exists k′ such that
i ≤ c < k′ ≤ b < j , hence ρn(c)i,k′ = ρn(b)k′, j = 1. Thus, ρn respects the Knuth
relations. ��

Let us denote by �n the induced morphism from styln to Un+1(T). For example,
the words 4213, 4214234 and 4241234 are in the same stylic class, and the image of
[4213]styl4 under �4 is the same as that of 4213 under ρ4, that is,

4

2 4

1 2 3 4

�4�−−−−→

⎡

⎢⎢⎢⎢
⎣

0 1 2 2 3
−∞ 0 1 1 2
−∞ −∞ 0 1 2
−∞ −∞ −∞ 0 1
−∞ −∞ −∞ −∞ 0

⎤

⎥⎥⎥⎥
⎦

The following lemma allows us to deduce if a letter a occurs in the k-th row of
N (w), by looking at the image of N (w) under ρn and seeing if, in line a, the leftmost
entry with value k (if it exists) has below it an entry with value k − 1:

Lemma 3.4 Let w ∈ A∗
n, a ∈ An, and k ∈ N. Then, a occurs in the k-th row of N (w)

if and only if there exists j ∈ {1, . . . , n+ 1}, with a < j , such that ρn(w)a, j = k, and
ρn(w)a+1, j = k − 1.

Proof Suppose for some a < j , ρn(w)a, j = k and ρn(w)a+1, j = k − 1. Then, by
Lemma 3.1, there exists a strictly decreasing subsequencews1 , . . . , wsk ofw such that
a ≥ ws1 > · · · > wsk ≥ j + 1.

Recall the “arrow” notation introduced in Sect. 2.4. We want to show that
↑k−1

w (sk) = a. As ws1 , . . . , wsk is a strictly decreasing sequence of length k,
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b := ↑k−1
w (sk) 	= ε. Note that b ≤ a as ↑l

w(sk) ≤ wsk−l by the definition of ↑l
w.

Thus, by Lemma 2.2, there is a strictly decreasing subsequence ws′1 , . . . , ws′k−1
, wsk

such thatws′1 = b. However, as ρn(w)a+1, j = k−1, by Lemma 3.1, there is no strictly

decreasing subsequence of length k only using letters between j +1 and a−1. Hence,
a − 1 < ws′1 or wsk < j + 1. Thus, b = ws′1 > a − 1 as wsk ≥ j + 1. Therefore,
a = b, and hence, by Lemma 2.1, a occurs in the k-th row of N (w).

Suppose now that a occurs in the k-th row of N (w). Hence, by Lemma 2.1, there
exists an index sk ≤ |w| such that ↑k−1

w (sk) = a, and therefore, by Lemma 2.2, there
exists a strictly decreasing subsequence wm1 , . . . , wmk of w, where wm1 = a and
hence, by Lemma 3.1, ρ(w)a,n+1 ≥ k.

Choose j as the minimum index such that ρn(w)a, j = k, which exists by Corol-
lary 3.2, since ρn(w)a,a = 0. Suppose, in order to obtain a contradiction, that
ρn(w)a+1, j = k. Let b < a be such that ρn(w)b, j = k and ρn(w)b+1, j =
ρn(w)b, j−1 = k−1. Notice that such a b exists, by Corollary 3.2. By Lemma 3.1, there

exists a strictly decreasingwp1 , . . . , wpk ofw such thatb ≥ wp1 > · · · > wpk ≥ j+1.
By the same reasoning as given before, we can show that ↑k−1

w (pk) = b. Thus, by
Lemma 2.2, there exists a strictly decreasing subsequencewr1 , . . . , wrk ofw such that
wrk = wpk ≥ j + 1, wr1 = b, and ↑i−1

w (ri ) = b for 1 < i ≤ k. Notice that, since
ρn(w)b, j−1 = k − 1, then wrk ≤ j + 1 by Lemma 3.1, otherwise we would have a

strictly decreasing subsequence of w of length k only using letters between j + 2 and
i . Hence, wrk = j + 1.

On the other hand, as a is in the k-th row of N (w), by Lemma 2.1, there exists sk
such that ↑k−1

w (sk) = a, and hence, by Lemma 2.2, there exists a strictly decreasing
sequence ws1 , . . . , wsk where ws1 = a, ↑i−1

w (si ) = a for 1 < i ≤ k, and wsk ≤ j + 1,
since ρn(w)a, j−1 = k − 1.

As ws1 > wr1 , we have that r1 ≤ s1 as otherwise ws1 , wr1 , . . . , wrk would form
a strictly decreasing sequence between a and wrk of length k + 1. Moreover, if we
had ws2 < wr1 , then we would have a = ↑1

w(s2) ≤ wr1 = b < a as r1 ≤ s2. Thus,
ws2 ≥ wr1 .

By induction,wewill show thatwsi+1 ≥ wri , for all 1 ≤ i ≤ k−1.Thebase casewas
covered in the previous paragraph. Suppose that there is 1 ≤ i ≤ k−2 such thatwsi+1 ≥
wri . Notice that, if si+1 < ri+1, then, by our assumption, wsi+1 ≥ wri > wri+1 , and
hence ws1, . . . , wsi+1 , wri+1 , . . . , wrk is a strictly decreasing sequence between a and
wrk of length k + 1, giving a contradiction. So, ri+1 ≤ si+1. Since wsi+2 occurs after
wsi+1 , which was shown to occur after wri+1 , we have that wsi+2 < wri+1 implies
↑1

w(si+2) ≤ wri+1 and hence a = ↑i+1
w (si+2) ≤ ↑i

w(ri+1) = b < a, giving a
contradiction. Thus, wsi+2 ≥ wri+1 .

Therefore, we can conclude that

j + 1 ≥ wsk ≥ wrk−1 > wrk = j + 1,

which results in a contradiction. Thus, ρn(w)a+1, j 	= k, which, by Corollary 3.2,
implies that ρn(w)a+1, j = k − 1. ��
Theorem 3.5 Themorphism �n : styln → Un+1(T) is a faithful representation of styln.
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14 T. Aird, D. Ribeiro

Proof It suffices to show that we can construct N (w) from ρn(w). By the previous
lemma, a letter a is in the k-th row of N (w) if and only if there exists an index j
such that ρn(w)a, j = k and ρn(w)a+1, j = k − 1. Since N -tableaux are uniquely
determined by the support of each row (see [1, Subsection 6.1]), and ρn induces �n
by Proposition 3.3, we can recover from �n([w]styln ) all the information needed to
construct N (w). ��

As an example, recall the image of [4213]styl4 under �4, that is,

4

2 4

1 2 3 4

�4�−−−−→

⎡

⎢⎢⎢⎢
⎣

0 1 2 2 3
−∞ 0 1 1 2
−∞ −∞ 0 1 2
−∞ −∞ −∞ 0 1
−∞ −∞ −∞ −∞ 0

⎤

⎥⎥⎥⎥
⎦

Notice that ρn(4213)1,5 = 3 and ρn(4213)2,5 = 2, hence, 4 is in the third row
of N (4213). However, since ρn(4213)2,4 = ρn(4213)3,4 = 1 and ρn(4213)2,5 =
ρn(4213)3,5 = 2, we have that 3 is neither in the second nor the third row of N (4213);
on the other hand, since ρn(4213)2,3 = 1, we can conclude that 3 is in the first row
of N (4213). Similarly, we can see that 2 is in the second, but not the third row, and 1
is only in the first row. With this, we have all the necessary information to construct
N (4213).

Corollary 3.6 V(styln) ⊆ V(Jn) for all n ∈ N.

Proof Follows from the previous theorem, and [37, Corollary 3.3]. ��
We now define two semirings: Nmax := T ∩ (N ∪ {0,−∞}); and [n]max := {x ∈

Nmax : x ≤ n}, for n ∈ N, with operations max and n-truncated addition, that is x ⊗
y := min(x+y, n). It is easy to see that these semirings are non-trivial and idempotent.
Furthermore, we define the morphism ϕn+1 : Un+1(Nmax) → Un+1([n]max) to be
given by ϕn+1(X)i, j = min(Xi, j , n).

Note that �n(styln) ⊆ Un+1(Nmax). For the following corollary, treat �n as
a morphism with codomain Un+1(Nmax). Consider the morphism �n : styln →
Un+1([n]max) defined by �n([x]styln ) = ϕn+1(�n([x]styln )), for x ∈ A∗

n .

Corollary 3.7 The morphism �n : styln → Un+1([n]max) is a faithful representation of
styln.

Proof Wecan see that �n is amorphism asϕn+1 and �n are bothmorphisms.Moreover,
for w1, w2 ∈ A∗

n ,

�n([w1]styln ) = �n([w2]styln ) if and only if �n([w1]styln ) = �n([w2]styln ),

as �n([w]styln )i, j ≤ n for all 1 ≤ i, j ≤ n + 1 and w ∈ A∗
n . Hence, �n(styln) ∼=

�n(styln) ∼= styln . ��
Remark 1 By [37],Un+1(T), Un+1(Nmax) andUn+1([n]max) satisfy the exact same set
of monoid identities. Hence, we gain no more information about the monoid identities
satisfied by styln by considering �n rather than �n .
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Tropical representations and identities of the stylic monoid 15

4 Identities of the stylic monoid and connections to other plactic-like
monoids

We now show that styln and Un+1(T) satisfy the exact same set of monoid identities,
thus proving that styln and Un+1(T) both generate the variety V(Jn), and that styln
generates the pseudovariety J n .

Theorem 4.1 Let n ∈ N and let u ≈ v be a non-trivial identity satisfied by styln. Then,
u ≈ v ∈ Jn.

Proof We show the contrapositive of the statement. Let � = {x1, . . . , xm} be a set of
variables, and let u, v ∈ �∗ be such that u ≈ v /∈ Jn . Without loss of generality, we
can assume that there exist variables ak, . . . , a1 ∈ � which form a subsequence of u
but not of v, for some k ≤ n.

Let y1, . . . , ym be strictly increasing words over Ak such that i ∈ supp(y j ) if and
only if ai = x j , for 1 ≤ i ≤ k, 1 ≤ j ≤ m. In other words, y j is the strictly increasing
product of indexes i such that ai is the variable x j .

Let φ : �∗ → A∗
k be the evaluation given by xi �→ yi . Notice that, since j ∈

supp(φ(a j )), then, for any w ∈ �∗, if w contains the subsequence ak, . . . , a1, then
φ(w) contains the subsequence k, . . . , 1. On the other hand, if φ(w) contains the
subsequence k, . . . , 1, then each index i occurs in some y ji , such thatφ(w) contains the
subsequence y jk , . . . , y j1 . This implies that w contains the subsequence x jk , . . . , x j1 ,
which, by the definition of y j , is the subsequence ak, . . . , a1, giving a contradiction.

Hence, φ(u) contains the subsequence k, . . . , 1, but φ(v) does not. Therefore, since
this subsequence is the only strictly decreasing subsequence, of length k, whose first
letter is k, that can occur in a word over Ak , we have that, by Lemmas 2.2 and 2.1,
N (φ(u)) contains k in the k-th row, but N (φ(v)) does not. Hence φ(u) 	≡styl φ(v)

and therefore u ≈ v is not satisfied by stylk . Since k ≤ n, u ≈ v is not satisfied by
styln . ��

Therefore, the stylic monoid of rank n joins an increasing list of monoids (see [37,
62]) whose equational theory is Jn .

Corollary 4.2 For each n ∈ N, styln generates the varietyV(Jn) and the pseudovariety
J n. Furthermore, V(styln) � V(styln+1), and styln is finitely based if and only if
n ≤ 3: styl1 admits the basis 1, styl2 admits the basis 2, and styl3 admits the basis 3.

The following is an immediate consequence of [4, Section 3]:

Corollary 4.3 For each n ∈ N, the identity checking problem for styln is decidable in
linearithmic time. Therefore, Check- Id(styln) is in the complexity class P.

Proof Taking into account that the number of variables which occur in an identity is
less than or equal to the length of the identity, we have that, by the observation after
Theorem 8 in [4, Section 3], testing if two words over an alphabet of variables share
the same subsequences of length ≤ n takes O(l log l) time, where l is the sum of the
lengths of both words. ��
Corollary 4.4 V(styln) has uncountably many subvarieties, for n ∈ N such that n ≥ 3.
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16 T. Aird, D. Ribeiro

Proof For any n ∈ N such that n ≥ 3, the word xyx is an isoterm for the equational
theory of styln , that is, there is no non-trivial identity u ≈ v satisfied by styln , where
u or v is the word xyx . Hence [36, Theorem 3.2] applies. ��

As such, styl3 is the only stylic monoid which is simultaneously finitely based
and which generates a variety with uncountably many subvarieties. Thus, it is finitely
based but not hereditarily finitely based, that is, not all of its subvarieties are finitely
based. On the other hand, since styl1 and styl2 are monoids with a zero and five or less
elements, they are hereditarily finitely based [22].

We now look at how the stylic monoids relate to other plactic-like monoids, namely
the hypoplactic monoid hypo [15, 50]; the sylvester monoid sylv and the #-sylvester
monoid sylv# [16, 31]; the Baxter monoid baxt [16, 27]; the stalactic monoid stal
[32, 54]; the taiga monoid taig [54]; the right patience-sorting monoid rPS [20]. Let
C denote the variety of all commutative monoids.

Corollary 4.5 V(hypo) is the varietal join V(styl2) ∨C, and is generated by styl2 and
the free commutative monoid.

Proof A consequence of [19, Corollary 4.4]. ��
Notice that V(styl3) � V(hypo), since styl3 does not satisfy the identity xxyx ≈

xyxx : the left-hand side admits xxy as a subsequence, but the right-hand side does
not.

Corollary 4.6 V(sylv) andV(sylv#) both strictly contain the varietal joinV(styl2)∨C.
Proof A consequence of the previous corollary, since V(sylv) and V(sylv#) both
strictly contain V(hypo) (see [18] for details). ��

Notice that V(styl3) � V(sylv), since styl3 does not satisfy the identity xyxy ≈
yxxy: the left-hand side admits xyx as a subsequence, but the right-hand side does not.
Similarly,V(styl3) � V(sylv#), since styl3 does not satisfy the identity yxyx ≈ yxxy.

Corollary 4.7 V(baxt) strictly contains the varietal join V(styl3) ∨ C.
Proof It is easy to see that styl3 satisfies the following identities, which form a basis
for V(baxt) [18, Theorem 4.18]:

xzyt xy r xsy ≈ xzyt yx r xsy;
xzyt xy rysx ≈ xzyt yx rysx .

Therefore, styl3 ∈ V(baxt). On the other hand, by [13, Proposition 6.12], V(baxt) is
not contained in the varietal join of C and any variety generated by a finite monoid. ��

Notice that V(styl4) � V(baxt), since styl4 does not satisfy the identity
xzytxyr xsy ≈ xzytyxr xsy: the left-hand side admits xxyx as a subsequence, but
the right-hand side does not.

Corollary 4.8 V(plac2) strictly contains the varietal join V(styl3) ∨ C.
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Proof A consequence of the previous corollary and [18, Corollary 4.15] or [13, Propo-
sition 6.12]. ��

Notice that styl6 /∈ V(plac2), since styl6 does not satisfy Adjan’s identity
xyyx xy xyyx ≈ xyyx yx xyyx : the left-hand side admits xxxyyy as a subse-
quence, but the right-hand side does not. On the other hand, both styl4 and styl5
satisfy Adjan’s identity, but it is still unclear if styl4 or styl5 are in V(plac2). On a
more general note, we have the following upper bound on whether a stylic monoid of
finite rank is in the variety generated by a plactic monoid of finite rank:

Corollary 4.9 For any n ∈ N,V(placn) does not contain styld , where d = 2(2�n2/4� +
�n2/4� + 1).

Proof Let B̃(2, k − 1) be a non-cyclic de Bruijn sequence of order k − 1 on a size-2
alphabet [9], that is, a word of shortest length in which every possible word of length
k − 1 over a size-2 alphabet occurs exactly once as a subsequence. Let w be obtained
from B̃(2, k − 1) by replacing the first variable by xy and the second by yx . The
identity

w xy w ≈ w yx w

is satisfied by UTk(T) [59, Section 3.2].
Notice that, since a non-cyclic de Bruijn sequence of order k−1 on a size-2 alphabet

is of length 2k−1+k−1, thenw has exactly 2k−1+k−1 occurrences of each variable.
Then, the left-hand side of the identity admits the subsequence x2

k−1+k y2
k−1+k , but

the right-hand side does not. As such, this identity is not satisfied by stylp, where
p = 2(2k−1 + k).

Since V(UTq(T)) contains V(placn) [38, Corollary 3.3], where q = �n2/4� + 1,

we have that V(placn) does not contain styld , where d = 2(2�n2/4� + �n2/4� + 1). ��
Corollary 4.10 V(stal) = V(taig) and V(styl2) are incomparable, with respect to
inclusion.

Proof It is easy to see that styl2 does not satisfy xyx ≈ yxx , and that stal does not
satisfy xyxy ≈ yxyx . ��
Corollary 4.11 V(rPSn) does not contain styln+2, for any n ∈ N.

Proof By [20, Proposition 4.7], for any n ∈ N, the right patience-sorting monoid of
rank n satisfies the identity (xy)n+1 ≈ (xy)n yx . The left-hand side of this identity
admits xn+1y as a subsequence, but the right-hand side does not. Hence, this identity
is not satisfied by styln+2, and the result follows. ��

5 The finite basis problem for the stylic monoid with involution

Given a semigroup S, an involution on S is a unary operation * on S such that (x∗)∗ = x
and (xy)∗ = y∗x∗. An involution semigroup is a semigroup together with an invo-
lution, denoted (S, *). Given an involution semigroup (S, *), we say the semigroup
reduct of (S, *) is the underlying semigroup S.

123



18 T. Aird, D. Ribeiro

The definitions of involution semigroup variety, finitely based involution semi-
group, identities satisfied by involution semigroups, and their corresponding involution
monoid definitions are defined in an analogous way to the ones given for monoids in
Sect. 2.

The unique order-reversing permutation on a finite ordered alphabet An extends
uniquely to an anti-automorphism of the free monoid over An , thus giving an invo-
lution. Furthermore, it induces an anti-automorphism of the stylic monoid of rank n,
which is also an involution (see [1, Subsection 9.1]). We will denote this involution by
* and the stylic monoid with involution by (styln, *). Similarly, the operation of skew
transposition, denoted �, is an involution on the monoid of unitriangular matrices over
the tropical semiring.

We can extend the tropical representation of the stylic monoid of rank n given in
Sect. 3 to the involution case:

Proposition 5.1 The morphism �n : styln → Un+1(T) extends to a faithful morphism
from (styln, *) to (Un+1(T), �).

Proof It suffices to show that �n(x)� = �n(x∗) for all x ∈ An as then

�n(xy)
� = �n((xy)

∗) = �n(y
∗x∗) = �n(y)

��n(x)
�.

For x ∈ An , we have that �n(x∗)i, j = 1 if and only if i ≤ n + 1 − x < j and
(�n(x)�)i, j = 1 if and only if n + 1 − j < x ≤ n + 1 − i . Thus, �n(x∗)i, j = 1
if and only if (�n(x)�)i, j = 1, and hence, by the definition of �n , we have that
�n(x∗) = �n(x)�. ��

In [30, Section 5], it was shown that the involution monoid (Un+1(T), �) is non-
finitely based, for n ≥ 3. It was also shown that (U3(T), �) satisfies, for each k ∈ N,
the identity

xy1y
∗
1 y2y

∗
2 · · · yk y∗

k x
∗zz∗ ≈ zz∗xy1y∗

1 y2y
∗
2 · · · yk y∗

k x
∗.

As such, (styl2, *) must also satisfy these identities. Similarly, it was also shown that
(U4(T), �) satisfies, for each k ∈ N, the identity

x1x2 · · · xkx∗
1 x

∗
2 · · · x∗

k x1x2 · · · xk ≈ x∗
k x

∗
k−1 · · · x∗

1 xkxk−1 · · · x1x∗
k x

∗
k−1 · · · x∗

1 .

As such, (styl3, *) must also satisfy these identities.
However, as with the case of (Un+1(B), �) where the involution is again given by

skew transposition, we have that (styln, *) does not satisfy exactly the same identities
as (Un+1(T), �), in contrast to the monoid reduct case:

Proposition 5.2 For each n ≥ 2, (styln, *) satisfies the identity

x∗xn−1 ≈ x∗xn, (1)

while (Un+1(T), �) does not.
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Proof By [30, Theorem 5.2], we already know that (Un+1(T), �) does not satisfy
the identity (1). Let φ : X → styln be an evaluation. If supp(φ(x)) = An , then
supp(φ(x∗)) = An and, as such, each side of the identity 1 has a word representative
with a decreasing subsequence of all letters in An . As such, both sides of the identity
are equal to [n · · · 1]styln = 0styln .

On the other hand, suppose supp(φ(x)) 	= An . Then, φ(x)n−1 = φ(x)n , since
both elements have a word representative with the maximal decreasing subsequence
of elements of its support, of length less than or equal to n − 1. Equality follows.
Therefore, (styln, *) satisfies the identity (1). ��

As such, (styln, *) does not generate the same variety as (Un+1(T), �), in contrast
to the monoid reduct case. It remains open if (styln, *) and (Un+1(B), �) generate the
same variety.

Regarding the question of finite bases for the stylic monoids with involution, it is
immediate that (styl1, *) is finitely based, since it is a two-element monoid with a
zero. Hence, it admits a finite basis, consisting of the following identities:

x2 ≈ x and xy ≈ yx and x∗ ≈ x .

We say an involution semigroup (S, *) is twisted if the variety V(S, *) it generates
contains the involution semilattice (Sl3, *), where

Sl3 = {0, a, b}

is a semilattice such that ab = ba = 0 and the involution is given by

0∗ = 0, a∗ = b, b∗ = a.

Notice that any identity u ≈ v satisfied by (Sl13 , *), that is, (Sl3, *) with an identity
adjoined, is such that supp(u) = supp(v). It can be easily seen that the variety gen-
erated by a twisted involution monoid also contains (Sl13 , *). Therefore, the identities
satisfied by any twisted involution monoid must have the same support in both sides
of the identity.

Lemma 5.3 For each n ≥ 2, (styln, *) is twisted.

Proof Consider the quotient of the involution subsemigroup

{[1]styl2 , [2]styl2 , [12]styl2 , [21]styl2
}

of (styl2, *) by the congruence which identifies [12]styl2 with [21]styl2 . This quotient is
isomorphic to (Sl3, *), hence (styl2, *) is twisted. Furthermore, since (styl2, *) embeds
into (styln, *), for each n ≥ 3, we have that (styln, *) is also twisted. ��

By [44, Theorem 4], we have that any twisted involution semigroup whose semi-
group reduct is non-finitely based must also be non-finitely based. Since styln is
non-finitely based for n ≥ 4, by Corollary 4.2, the following is immediate:
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Corollary 5.4 For any n ≥ 4, (styln, *) is non-finitely based.

Now, we look at the case of (styl2, *):

Proposition 5.5 (styl2, *) is non-finitely based.

Proof As a consequence of Proposition 5.1, (styl2, *) satisfies condition (4A) of [64,
Theorem 4.1]. As such, we only need to prove that (styl2, *) satisfies condition (4B)
to show that it is not finitely based.

Notice that [64, Lemma 4.9] holds for (styl2, *): By the same reasoning as the
one given in the proof of [64, Lemma 4.9], and replacing the evaluation used in that
proof by any evaluation ϕ : X → styl2 such that ϕ(x) = [1]styl2 gives us the result.
Furthermore, [64, Lemma 4.10] also holds for (styl2, *), by taking any evaluation
ϕ : X → styl2 which maps x and y to [1]styl2 . Thus, (styl2, *) satisfies condition (4B),
and is therefore non-finitely based. ��
Remark 2 As noticed by the anonymous referee, it is easy to see that (styl2, *) is
isomorphic to the Catalan monoid with involution (Cat2, *), of rank 2 and order 5,
which was shown to be non-finitely based in [24], hence, the previous result follows.

Finally, we look at the case of (styl3, *):

Proposition 5.6 (styl3, *) is non-finitely based.

Proof As a consequence of Proposition 5.1, (styl3, *) satisfies condition (5A) of [64,
Theorem 5.2]. As such, we only need to prove that (styl3, *) satisfies conditions (5B)
and (5C) to show that it is not finitely based.

Similarly to the previous case, we have that [64, Lemmas 5.9−5.12] hold for
(styl3, *).

In the case of [64, Lemma 5.9], consider the involution submonoid Z ′ =
{[ε]styl3, [123]styl3 , [2312]styl3 , [321]styl3}. Notice that [123]2styl3 = [2312]styl3 . The
proof then follows from [2, Lemma 6.1.4].

For [64, Lemma 5.10], consider the evaluations ϕ : X → styl3 which maps x to
[23]styl3 and φ : X → styl3 which maps x to [12]styl3 . Notice that [23]∗styl3 = [12]styl3 .
Then, using the reasoning in the proof of [64, Lemma 5.10], the result follows. Notice
that it is also relatively easy to see that [uu∗u]styl3 = [u∗uu∗]styl3 .

For [64, Lemma 5.11], consider the evaluations ϕ : X → styl3 which maps x to
[3]styl3 and y to [2]styl3 and φ : X → styl3 which maps x to [1]styl3 and y to [2]styl3 .
Replace the first evaluation in the proof of [64, Lemma 5.11] by ϕ and the second by
φ, and the image of w by both ϕ and φ will be different from [321]styl3 . The result
follows and (styl3, *) satisfies condition (5B).

Finally, for [64, Lemma 5.12], we consider the substitutions ϕ : X → styl3 which
maps t to [3]styl3 and s to [2]styl3 and φ : X → styl3 which maps t to [12]styl3 and s
to [21]styl3 , and the result follows. Hence, (styl3, *) satisfies condition (5C). As such,
(styl3, *) is non-finitely based. ��
Remark 3 The anonymous referee has also observed the following: In [63], it is shown
that styl3 is a homomorphic imageof theKiselmanmonoidKis3 and theCatalanmonoid
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Cat3 is a homomorphic image of styl3. It can be easily checked that these properties
still hold when considering the mentioned monoids with involution. Since, in [25], it
was shown that (Kis3, *) and (Cat3, *) generate the same variety and said variety is
non-finitely based, the previous result follows.

Therefore, we obtain the following result:

Theorem 5.7 The involution monoid (styln, *) is finitely based if and only if n = 1.

It was shown in [26] that the variety generated by (Cat3, *) has uncountably many
subvarieties. Therefore, since (styl3, *) embeds into (styln, *), for each n ≥ 3, we
have the following, suggested by the anonymous referee:

Corollary 5.8 The variety generated by (styln, *) has uncountably many subvarieties,
for each n ≥ 3.
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