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Abstract: Cardiothoracic surgery patients have the risk of developing surgical site infections which
cause hospital readmissions, increase healthcare costs, and may lead to mortality. This work aims to
tackle the problem of surgical site infections by predicting the existence of worrying alterations in
wound images with a wound image analysis system based on artificial intelligence. The developed
system comprises a deep learning segmentation model (MobileNet-Unet), which detects the wound
region area and categorizes the wound type (chest, drain, and leg), and a machine learning classifi-
cation model, which predicts the occurrence of wound alterations (random forest, support vector
machine and k-nearest neighbors for chest, drain, and leg, respectively). The deep learning model
segments the image and assigns the wound type. Then, the machine learning models classify the
images from a group of color and textural features extracted from the output region of interest to feed
one of the three wound-type classifiers that reach the final binary decision of wound alteration. The
segmentation model achieved a mean Intersection over Union of 89.9% and a mean average precision
of 90.1%. Separating the final classification into different classifiers was more effective than a single
classifier for all the wound types. The leg wound classifier exhibited the best results with an 87.6%
recall and 52.6% precision.

Keywords: deep learning; machine learning; image analysis; wound infection; cardiothoracic surgery

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally. WHO esti-
mated that 17.9 million people died from CVDs in 2019, representing one-third of global
mortality. The incidence and prevalence of cardiothoracic diseases are increasing globally,
and it is estimated that every year 2 million open heart surgeries are performed [1].

Cardiothoracic surgery patients have a substantial risk of developing surgical site
infections (SSIs). These infections cause an increase in morbidity, mortality, costs, prolonged
hospital stays, and the need for other surgical procedures [2–4]. SSIs are often detected
after patients are discharged from the hospital. Hence, they require an early diagnosis
and treatment to prevent further complications. Since hospitalization is getting shorter,
post-discharge surveillance with feedback information has proved to be an important way
of reducing and treating SSIs [5]. Therefore, this work focuses on creating an automatic
system that predicts the risk of post-surgical infections.

This work is part of a research project funded by Fundação para a Ciência e Tecnolo-
gia, which aims to design and implement a post-surgical digital telemonitoring service
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for cardiothoracic surgery patients. The main goals of the research project are: to study
the impact of daily telemonitoring on early diagnosis, to reduce hospital readmissions,
and to improve patient safety, during the 30-day period after hospital discharge. This
remote follow-up involves a digital remote patient monitoring kit which includes a
sphygmomanometer, a scale, a smartwatch, and a smartphone, allowing daily patient
data collection. One of the daily outcomes was the daily photographs taken by patients
regarding surgical wounds. Every day, the clinical team had to analyze the image of each
patient, which could take a long time. The automatic analysis of these images would
allow implementing an alert related to the detection of wound modifications that could
represent a risk of infection. Such an alert would spare time for the clinical team in
follow-up care.

SSIs are a complication of cardiac surgery varying in different reports between
3.5 to 26.8% of patients. The incidence of deep sternal wound infections is between 1
and 5% and is associated with increased length of stay, readmissions, increased costs,
and mortality that can reach 20%. The clinical manifestations of mediastinitis are redness,
exudate, subcutaneous fluid collections, and sternum instability. Surgical infections of
surgical wounds can occur 90 days after surgery. Most of the infections manifest after
discharge, which usually occurs during the first week after the procedure. The objective
of this study is to detect the risk of infection earlier. The earlier diagnoses permit a more
precocious treatment with better results. The length of stay and costs will be diminished
by wound vigilance [6].

Recently, the advances in machine learning (ML) and deep learning (DL) algorithms
increased the number of studies on medical image analysis, which has many applications,
such as segmentation, location, classification, and detection. One of the most developed
areas is wound analysis regarding pressure ulcers, skin lesions, and burns. However,
the use of DL or ML algorithms for the automatic examination of cardiothoracic surgical
sites has not been investigated.

In this study, we developed a system based on deep learning and machine learning
methods to segment the wounds from daily patient photographs and to classify each
wound as altered or not altered. The aim of the proposed system is to detect worrying
wound alterations. Such a system will support the implementation of an alert system to
prevent further infections, allowing the intervention of the clinical team to initiate an
early response and treatment. The paper is organized as follows: the literature review is
detailed in Section 2. Section 3 examines the data collection procedure and the proposed
approach for image segmentation and wound classification The results obtained are
reported in Section 4, and the results and limitations are discussed in Section 5. Finally,
Section 6 remarks on the findings of this paper

2. Related Work

Over the years, many studies have focused on automatic wound assessment meth-
ods to diminish possible complications. The application of fast and accurate systems
that attempt to solve this problem has increased with technological advances and the
growth of computational power. Despite the popularity growth in DL applications,
conventional ML algorithms continue to be studied, mainly due to their more straight-
forward nature and higher model interpretability. A vast number of image processing
methods for wound segmentation using DL are discussed next. A system based on DL to
calculate the area of wound surfaces was proposed by [7]. The image segmentation step
was performed using a convolutional neural network (CNN) variant, the convolutional
encoder–decoder, to segment the wound region from the background in an end-to-end
style. An automatic segmentation using a pre-trained fully convolutional neural network
model in a pixel-wise manner, where each pixel is attributed to a class, was proposed
by [8]. Even with the promising results, this segmentation method is less accurate when
distinguishing small wounds and has the tendency to draw smooth contours, which
is incompatible with the irregular nature of the wound’s borders. A two-tier transfer
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learning was used to be more effective, with the CNN models trained on the ImageNet
dataset [9] and Pascal VOC dataset. Multiple studies developed a system built upon
a MobileNet framework [10–12]. Liu et al. proposed an efficient and accurate frame-
work named WoundSeg, based on an adapted MobileNet architecture with different
numbers of channels along with VGG-16 as a baseline [11]. One major drawback of this
developed annotation tool is that it was based on a watershed algorithm; hence, the
model is learning the watershed annotations instead of the annotations from a specialist.
After the segmentation, a post-processing step based on traditional methods removes the
background of the images and corrects the segmentation results by removing small noise
objects and filling the inner holes from the segmentation masks. Other frameworks, such
as Unet, Segnet, and LinkNet, were also used in wound segmentation problems [13,14].

In wound image analysis, following wound segmentation comes wound classification
to analyze only the wound area itself. Traditional ML algorithms are widely chosen by
authors for medical image classification. One reason for its wide application is the lack of
an amount of labeled wound images, which makes DL inappropriate and over-expensive
for this case.

In recent years, several authors tried to address burn assessment with ML meth-
ods [15–17]. Suvarna et al. focused on the classification of scalding burns into different
categories with support vector machine (SVM) and k-nearest neighbors (KNN) classi-
fiers [16]. Color and texture features were extracted from the LAB color space. SVM
classifier gave the best classification results with 85% in first-degree burns, 87.5% in
second-degree burns, and 92.5% in third-degree burns.

Several research works compared traditional ML algorithms to determine the best
model for their specific dataset and problem. Regarding the diagnosis of pressure ulcers,
three different ML approaches (artificial neural networks, SVM, and random forest (RF))
were compared to classify each segmented region as a specific tissue type [18]. They
extracted color, texture, morphological, and topological characteristics and selected them
with a wrapper approach with recursive feature elimination. Moreover, four different
classifiers were also evaluated: linear discriminant analysis (LDA), RF, naive Bayes (NB),
and decision trees (DT) [19]. A classification system with NB and SVM algorithms to
describe granulation, necrotic, and slough tissues was proposed in [20]. A total of 5 color
and 10 texture features were extracted from 45 color channels, from which only 50 had
statistical significance. SVM is widely regarded as the best algorithm for classification and is
considered very appropriate for these types of problems. As in image segmentation, hand-
crafted features are difficult to tune due to uncontrolled conditions, and these schemes
show a low performance on new cases due to little generalization power. The main
limitation of the previous classification algorithm is that their employed datasets do not
focus specifically on cardiothoracic surgical sites. Although ML algorithms are widely used
for wound classification due to their simplicity and good performance, DL and hybrid
approaches started to surface when the extraction of hand-crafted features for specific
problems gave a poor performance. Therefore, the current work aims to find an optimal
and combined segmentation and classification framework to be applied to the identification
of complications ensuing from cardiothoracic surgery.

3. Materials and Methods
3.1. Dataset

The dataset comprises surgical site RGB images from 34 cardiothoracic surgery patients
of Hospital de Santa Marta. The photographs correspond to the evolution of each patient’s
surgical wounds during a 30-day follow-up. Initially, there were 1443 images collected
by the front or back camera of a Xiaomi Mi A2 Lite smartphone. As such, the images’
resolution varied among samples, but the majority had a 1920 × 1080 pixel resolution.

The image acquisition protocol was not defined to keep the procedure as simple
as possible for the patients and to emulate collection in different places. This resulted
in images with several different conditions, such as differences in illumination, patient
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position, orientation, and background. For this reason, images with poor illumination
conditions or heavily blurred with unrelated images taken by accident were eliminated
from the dataset. After the image removal process, the final dataset had 1337 images.

The acquired images could have three types of wounds: chest wound (CW), drainage
wound (DW), and leg wound (LW). An example of each wound type is illustrated in
Figure 1. Regarding the type of wounds that are shown in the images, 77.5% of images
had CW, 67.0% DW, and 20.8% LW. The sum of these three types is higher than 100%
because each image could have more than one wound type. In addition, the wounds
can be categorized into binary labels, where zero indicates the wound does not have
any concerning alterations, and one means that an alteration is present in the wound.
Only 10.7% of such images had displayed wounds with alterations, resulting in a rather
imbalanced dataset.

(a) (b) (c)

Figure 1. Different types of wounds: (a) example of chest wound labelled as CW; (b) example of
drainage wound labelled as DW; (c) example of leg wound labelled as LW.

Data Annotation

For image segmentation, manual annotation was performed on the full dataset with
the recourse to a graphical image annotation tool Labelme [21]. The annotation consists of
categorizing the wound type and delineating the surgical site. For each image annotation,
a ground-truth mask was created with an established pixel intensity for each wound type.

An infected wound presents specific local signs, such as redness, disunion, pus,
and exudation. These signs indicate that the wound has a risk of being infected, but the
evaluation of infection in the wound must be supported by microbiological data, so it
cannot be visually detected because it needs the confirmation of a positive culture of
bacteria. As such, the images with a risk of infection were labeled with the help of clinical
experts. Every wound was classified with one of two options: YES or NO, corresponding
to one or zero. The YES label meant that the wound had an alarmist alteration that could
later lead to wound infection. In contrast, the NO label meant there were no alarmist signs
or characteristics in the wound that could compromise its healing process. An example of
each wound category is illustrated in Figure 2.
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(a) (b)

Figure 2. Example of wound categories: (a) example of chest wound without alarmist alteration
labelled as NO; (b) example of chest wound with alarmist alteration, labelled as YES.

3.2. System Pipeline

The proposed approach consists of two stages: wound segmentation with a CNN
architecture and a binary classification with traditional ML algorithms. The proposed
processing pipeline, described below, is illustrated in Figure 3.

Figure 3. Process of the flowchart of the proposed system. CW is chest wound, DW drainage wound,
and LW leg wound.
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3.2.1. Pre-Processing

The quality of digital wound images is damaged due to noise because of inappropriate
illumination, shadows, and camera flash [22]. Therefore, the quality of the images was
enhanced, prior to image segmentation, in two pre-processing stages: color correction and
noise removal. Color correction was performed by a hybrid approach combining gray world
assumption and retinex theory [23], which are the most common techniques used in the
literature. The gray world assumption method is based on the average intensity value of the
color channels, while retinex theory is based on maximum intensity values [24]. The hybrid
approach maximizes each method’s efficacy by finding the correlation coefficients that will
simultaneously satisfy both methods. Due to noise in digital images caused by reflections
and shadows, noise removal is vital to removing white and black pixels in the images.
For this reason, a median filter was applied to all images since it is a compelling method
for removing salt and pepper noise while preserving the surgical site’s edges. The results
of pre-processing are displayed in Figure 4.

(a) (b)

Figure 4. Example of image result from the pre-processing step: (a) original image before pre-
processing; (b) image after pre-processing.

3.2.2. Segmentation Model

A DL approach is proposed to perform wound segmentation due to the nature of
the problem. Traditional methods tend to fail for irregular boundaries where DL ap-
proaches achieve a better performance when employed with a dataset of considerable size.
The dataset for image segmentation is divided into input RGB images and the correspond-
ing segmentation masks, previously annotated.

A segmentation toolkit from Keras, called keras-segmentation [25], was used to define
the segmentation model. This toolkit uses Keras API, built-in TensorFlow, and contains
several well-known pre-trained models for application that can be combined with different
decoders. The proposed semantic segmentation algorithm was built by combining typ-
ical segmentation networks and backbones, namely, MobileNet [26] and ResNet50 [27].
The Unet [28] and Segnet [29] image segmentation architectures were evaluated for seman-
tic segmentation. These architectures consist of two paths: encoder and decoder. For the
encoder part of the network, the transfer learning technique was used to take common
neural networks that perform well on image classification tasks and retrain only the top
layers. Therefore, four models, MobileNet-Unet, MobileNet-SegNet, ResNet50-SegNet,
and ResNet50-Unet, were trained and evaluated for the corresponding problem. Transfer
learning was used in the DL base models to make the training process more effective. Both
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base models, ResNet50 and MobileNet, pre-trained on the ImageNet dataset, were loaded
before training.

The dataset was split into three sets with a nested cross-validation technique: 60% for
training, 20% for validation, and 20% for evaluation. For model selection, the training set
was split randomly with four-fold cross-validation into a training set and validation set,
creating the inner loop. The final evaluation was performed on the outer loop with the
best model from the validation set, with the five never-seen test sets. The four-fold cross-
validation procedure for model selection was nested inside the five-fold cross-validation
for model evaluation. This process is shown in Figure 5.

Figure 5. Representation of the nested cross-validation procedure.

During training and validation, all the models were trained with the same hyperpa-
rameters: 50 epochs, 2 batch-size, and Adam optimizer. After validation, the model with
the best mean IOU, MobileNet-Unet, was selected and evaluated with five-test folds to
tune several hyperparameters and optimize the network’s performance. The hyperpa-
rameters optimized during this stage were the following: number of epochs, batch size,
and optimizer.

A different experiment besides the hyperparameter search was made to investigate
the changes in the model’s performance with data augmentation. After finding the best
hyperparameters for the MobileNet-Unet architecture, a different experiment was con-
ducted to investigate the changes in the model’s performance with data augmentation.
Three experiments with different combinations of transformations were applied in the
training dataset to investigate if augmentation could optimize the model’s performance.
The image augmentation tool, Imgaug [30], was used to create geometric transformations,
color modifications, and a hybrid technique with both transformations.
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3.2.3. Post-Processing

After segmentation, undesirable results such as inner holes, small noise regions,
and mistaken regions may appear. Given the final segmented output masks, a post-
processing step was performed to improve the robustness of the segmentation model and
correct these unwanted results. First, a morphological operation of hole filling was used
to remove the inner holes, followed by dilation with a 3 × 3 cross-shaped mask to grow
and smooth the wound boundaries. In order to remove the small noise areas, regions
with a pixel area inferior to 2000 pixels were excluded. Lastly, the final segmented images,
as illustrated in Figure 6, were obtained through pixel-wise multiplication between the
post-processed binary masks and the original input image.

Figure 6. Example of a final output image from the segmentation model.

3.2.4. Evaluation of the Segmentation Model

Since the dataset has an uneven class distribution regarding the different wound types,
utilizing appropriate metrics was crucial to tackle class imbalance. To overcome this limita-
tion, intersection over union (IoU) (Equation (1)) and Dice coefficient (Equation (2)); were
chosen as the evaluation metrics for the wound segmentation problem, giving preference to
the mean IoU (average IoU of all classes), which considers the segmentation performance
and pixel-wise classification for each class.

IoU =
TP

FP + TP + FN
(1)
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Dice =
2TP

2TP + FN + FP
(2)

Lastly, the final segmentation model’s precision was calculated with the Microsoft COCO
challenge’s primary metric [31], which evaluates the mean average precision at specific
IoU thresholds, ranging from 0.5 to 0.95 with 0.05 increments. For calculating the precision,
only the mean class-wise IoU without the background class was taken into account because
it is important to evaluate if the system performs the wounds’ segmentation and the
classification of the wound types well.

Precision =
TP

TP + FP
(3)

The precision score (Equation (3)) is calculated from the true positives (TP) and false
positives (FP). In this case, a TP was observed when the overlap area between the ground
truth and the predicted mask gives an IoU greater or equal to the threshold. If a segmented
region does not meet the mentioned criterion with the ground truth, it is considered a false
positive (FP). Lastly, a false negative (FN) indicates that the ground-truth mask has no
overlapping with the predicted mask.

3.3. Wound Alteration Classification Model

For classifying the presence of concerning alterations in the wound images, the prob-
lem was divided into three classifiers, one for each type of wound. This division was made
because each wound type could have different characteristics, which could penalize the
final classification model performance. However, a comparison between one model with
all wound types and the three proposed models was made to obtain the better option.

3.3.1. Pre-Processing

The final output of the segmentation model has some wrong segmented images:
misclassified wound classes and segments from non-wound regions. These images are
not meant to enter the classification dataset since they may negatively impact the model
training process. Accordingly, only images with an IoU over 0.5 were selected to enter the
classification dataset.

The final segmented images were separated into single wound regions through the
location of the segmentation masks, originating from the full dataset with 3146 wounds
distributed over the three wound type classes. The DW type had the highest number of
wounds, with 1738, then CW had 1037 wounds, and LW had 371 wounds.

3.3.2. Feature Extraction

Once the images were fully segmented, color and texture descriptors were extracted
from each segmented region. The combination of textural and color indicators gave a total
of 182 features extracted from the dataset, with the help of the Pyfeats library [32].

Color is one of the most important features of this kind of image because the main
alterations that can occur on a post-operative wound while healing is related to the
coloration present in the suture’s borders. The feature extraction process was performed
on multiple color spaces, such as RGB, LAB, Haematoxylin-Eosin-DAB, CIE, XYZ, HSV,
YCbCr, YDbDr, YUV, YPbPr, and YIQ [33]; 4 features (mean, standard deviation, skew-
ness, energy) were extracted for each color channel component, giving a total of 132 in
all color models. The color features extracted are listed with the corresponding equation
in Table A1.

Whereas color features are a great measure for wound alterations regarding the redness
of infection, other alteration indicators are hardly measured with color features. Purulent
discharge, swelling, and exudation are important characteristics that represent a change in
the texture of the surgical site. Accordingly, other types of features are necessary to further
differentiate between these alterations, such as textural features.
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Textural features can be divided into statistical and structural. Three types of statis-
tical features were extracted from the wound regions: first-order statistics (FOS), features
derived from gray level co-occurrence Matrix (GLCM), and local binary pattern (LBP).
These features describe the texture as a measure of low-level statistics of gray-level im-
ages. The FOS features extracted from the image converted into grayscale are represented
in Table A2. The GLCM is a second-order statistical feature that uses a dependency
matrix based on the relationship among the gray levels. GLCM, which was proposed
by [34], is based on the estimation of the second-order joint conditional probability
density function. For a chosen distance of one, four angles (π, π/4, π/2, 3 ∗ π/4) were
considered to build the corresponding matrices. Hence, for each feature, four values are
obtained in which the mean and range of each parameter are calculated. These averaged
mean and range of the four values comprise a set of 28 features. The corresponding
equations are displayed in Table A3. LBP is a simple and robust method that describes
textural information. It is computed by analyzing the circular neighborhood of radius
R surrounding a central pixel P. In binary encoding, all the pixels with gray values less
than P are encoded as 0 while the others are encoded as 1. These binary-coded values
are converted to decimal numbers for building a histogram, thus obtaining a feature
vector [35]. LBP features were obtained by choosing circles with a different radius
around the central pixel and constructing separate LBP histograms. Energy and entropy
of the LBP correspond to the final features, constructed over different combinations of
radius and pixel count. The different sequences of points and radius (R = 1, 2, 3 with
corresponding pixel count P = 8, 16, 24) constructed 6 features.

3.3.3. Binary Model Classification

The final binary classification was divided into three separate classifiers for each
wound type. The segmented wounds are fed as input to one of the three models depending
on the output class given by the segmentation model. The final model was separated
into three classifiers due to the differences in the distinct types of wounds, considering all
wound types could have unique characteristics and healing stages.

After the pre-processing stage, the dataset for classification consisted of 3146 wounds,
of which only 140 suffered from alterations. There is a high imbalance in the binary classes’
distribution, given that the number of data points in the negative class (majority class) is
outnumbered by the positive class (minority class).

To mitigate the effect of class imbalance, a data synthesis technique was implemented
with the synthetic minority oversampling technique (SMOTE) and a combination of SMOTE
with random undersampling to verify which of the techniques improves the models’ per-
formance. SMOTE is an oversampling technique in which synthetic samples are generated
for the minority class from the existing data [36].

Originally, the CW dataset had 985 negative samples and 52 positive samples, while
after the application of the SMOTE + Undersampling technique, this dataset was reduced
to a total of 680 samples, with 368 belonging to the negative class and the remaining 295
to the positive class. The DW dataset was very unbalanced, with only 26 altered wounds
from a total of 1738 wounds. This was addressed with the reduction of the full dataset to
1154 wounds with the SMOTE + Undersampling technique, in which 641 were negative
and 513 were positive. Lastly, the ratio between the negative and positive class for the LW
samples was the smallest presented, with 309 non-altered wounds to 62 altered wounds.
After the application of the SMOTE + Undersampling approach, the dataset consisted of
115 negative samples and 92 positive samples.

3.3.4. Feature and Model Selection

After the extraction of a high dimensional feature vector, the number of input variables
needs to be reduced in order to decrease the computational cost and improve the model’s
performance. To select the optimal features, the principal component analysis (PCA)
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technique was employed to reduce dataset dimensionality by removing the predictors with
low variance.

A nested cross-validation technique was applied to optimize the model’s hyperparam-
eters along with model selection and evaluation to overcome the optimistically biased eval-
uation with only cross-validation. A three-time repeated five-fold stratified cross-validation
was applied as the outer loop in which the final model is evaluated. The hyperparameters
search was conducted on the inner loop by four-fold stratified cross-validation, returning
the optimized pipeline with the ideal number of feature components.

The choice of the number of folds relied on the dataset division of 60% training, 20%
validation, and 20% test, where a stratified k-fold was applied instead of standard k-fold
cross-validation due to the problem of class imbalance. This stratification divides the
dataset into folds while preserving the percentage of samples for each class.

A total of seven ML models were considered for model selection, such as SVM, LDA,
KNN, NB, RF, DT, and logistic regression. Each of these ML algorithms has changeable
hyperparameters, which can modify the algorithm’s behavior towards the specific dataset
and final performance.

The optimization was performed with a grid search for the three classification models
and the full dataset model, along with the PCA for feature reduction.

The hyperparameter search was performed to optimize two scoring parameters, F1
and F2, due to the imbalance class problem since accuracy gives us a biased evaluation
of the model. These two metrics evaluate the system by combining precision and recall.
While F1 balances the two metrics, F2 adds more weight to recall, minimizing FN. The ideal
system would have high F1 and F2 scores while balancing out both precision and recall,
but in practice, it is more important to have fewer FN because overlooking an alteration
would be harmful to patients.

The training phase occurred for multiple experiments, such as evaluating the over-
sampling techniques and with a single classifier for all wound types. As such, for every
model type, 2 score optimizations were made for 3 experiments: with no oversampling,
with oversampling, and with a combination of oversampling and undersampling, giving a
total of 18 training steps with an additional 3 for the single classifier. For each grid search,
the final pipeline model with the best hyperparameters and the optimal feature number
used was obtained.

Finally, the model evaluation is obtained by averaging the chosen metrics along the
outer loop test folds. Other metrics, such as accuracy, precision, recall, F1, and F2, were used
to prevent a biased interpretation of the model’s performance. The metrics are expressed in
Equations (3–(8). Moreover, the receiver operating characteristics (ROC) curve ROC were
used for evaluating the performance of the machine learning classifier. The graphical plot
of the ROC curve includes a true-positive rate (also called recall) y-axis and a false-positive
rate x-axis (Equation (6)). This performance can be quantitatively evaluated using the area
under the ROC curve (AUC) [37].

Accuracy =
TP + TN

FP + FN + TP + TN
(4)

Recall =
TP

FN + TP
(5)

False Positive Rate =
FP

FP + TN
(6)

F1 = 2
precision · recall

precision + recall
=

TP
TP + 1

2 (FP + FN)
(7)

F2 =
(1 + 22)(precision · recall)

22 · precision + recall
(8)
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4. Results
4.1. Wound Segmentation
4.1.1. Model Selection

Table 1 reports the performance results of every model with the mean IoU and mean
Dice coefficient. This table shows that MobileNet-Unet achieves the best performance
of all architectures with the same hyperparameters following the procedure described in
Section 3.2.2. The MobileNet base models show a high mean IoU, whereas for ResNet50,
the metric does not exceed the 60% value. Between segmentation models with the ResNet50
base network, SegNet had a better performance, while Unet showed a poor segmentation
result. However, the inverse is noted for MobileNet, in which Unet achieved better scores
than SegNet.

Table 1. Performance of the DL segmentation models for the evaluation metrics, mean IoU, and mean
Dice coefficient.

Metric MobileNet-SegNet MobileNet-Unet ResNet50-SegNet ResNet50-Unet

Mean IoU% 77.48± 0.61 81.03± 0.17 55.43± 0.16 44.65± 0.73
Dice% 87.17± 0.41 89.51± 0.11 71.27± 0.13 61.40± 0.65

4.1.2. Hyperparameters Grid-Search

The results for the hyperparameter combinations across the five validation sets for
the three experimented number of epochs are shown in Table 2. This table shows the
variation in the model’s performance for the different parameters. There is an increase of
the mean IoU along with the number of epochs and a slight increase of the metric from
40 to 50 epochs, with a stabilization around the gap between 50 and 60 epochs, where the
values settled.

Table 2. Comparison of the MobileNet-Unet performance with the various hyperparameters combi-
nations for 40, 50, and 60 epochs.

Number of Epochs Optimizer Batch Size Mean IoU%

40

Adam
16 81.3 ± 0.19
32 80.7 ± 0.14
64 80.0 ± 0.09

SGD
16 76.8 ± 0.08
32 73.6 ± 0.11
64 69.4 ± 1.06

50

Adam
16 82.1 ± 0.13
32 82.5 ± 0.04
64 80.9 ± 0.40

SGD
16 77.8 ± 0.10
32 74.8 ± 0.09
64 71.1 ± 0.12

60

Adam
16 80.8 ± 0.31
32 81.7 ± 0.20
64 82.1 ± 0.17

SGD
16 78.0 ± 0.07
32 75.5 ± 0.10
64 72.5 ± 0.11

Regarding the optimizer, it is clear that the adaptive moment estimation (Adam)
optimizer performs better for every experiment with the same parameters than stochastic
gradient descent (SGD). The optimizer’s performance does not alter with the increase in
the number of epochs.
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Regarding the batch size for the SGD optimizer, there is a minor reduction in the
mean IoU when the batch size increases. However, the same is not reported for the Adam
optimizer, in which the score increases almost every time with a 32 batch size and decreases
with 64. Nonetheless, with 60 epochs and the Adam optimizer, the score improves with the
gradual increase of batches.

4.1.3. Data Augmentation

The evaluation of all augmentation procedures and with the non-augmented dataset
is reported in Table 3. It shows that none of the three experiments conducted with data
augmentation improved the model’s performance. The use of geometrical and color modi-
fications slightly reduced the presented metric to 79.3% and 80.4%, respectively. The best
augmentation method was the combination of both geometrical and color modifications,
which randomly applied flipping, cropping, and blurring along with color modifications in
terms of brightness, saturation, and contrast. However, the best augmentation method did
not improve the model’s performance even with a good result. Hence, the augmentation
was discarded for the final model since it only increased the computational cost and did
not show any benefits to the model.

Table 3. Performance comparison of the dataset with no augmentation and with the three different
types of augmentations.

Metric No
Augmentation

Geometrical +
Color Color Geometrical

Mean IoU% 82.5± 0.04 82.5± 0.24 79.3± 0.10 80.4± 0.09
Dice% 90.4± 0.02 90.4± 0.15 88.5± 0.06 89.1± 0.06

4.1.4. Wound Segmentation Model Results

Lastly, Table 4 displays the precision, mean IoU, and mean Dice coefficient for the
segmentation model MobileNet-Unet with optimized hyperparameters. The final mean
IoU score after post-processing had a considerable increase to 89.9%, which corroborates
the importance of post-processing in these segmentation problems.

Table 4. Evaluation of the segmentation model.

Mean IoU% Dice% Precision%

89.9 ± 0.40 94.6 ± 0.30 90.1 ± 0.01

4.2. Results of Wound Classification Model
4.2.1. Addressing Class Imbalance

The dataset for post-operative wound classification suffered from a severe class im-
balance problem addressed with an oversampling technique called SMOTE, as described
in Section 3.3.3. Two types of alternatives were tried to equalize the class distribution,
a combination of SMOTE and undersampling and the single SMOTE application. Figure 7
exhibits three subfigures showing the class distribution before and after the two addressed
approaches. The rating of the oversampling approaches was performed for all models
and combination of hyperparameters, where for each technique, the best hyperparameters,
number of features, and model were chosen. Table 5 shows the results of the models’
performance with the aforementioned oversampling techniques.
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(a) (b)

(c)

Figure 7. Class distribution over the three wound types, before and after the approaches to address
class imbalance: (a) CW type; (b) DW type; (c) LW type.

Table 5. Models’ performance for the oversampling techniques regarding both optimization metrics
and their respective score.

Metric No SMOTE SMOTE SMOTE +
Undersampling

CW F1% 47.5 ± 6.1 52.9 ± 5.3 56.6 ± 5.7
F2% 52.8 ± 6.4 54.3 ± 7.2 59.7 ± 5.0

DW F1% 32.1 ± 6.9 32.7 ± 5.7 34.1 ± 5.5
F2% 32.2 ± 5.3 34.8 ± 6.0 56.4 ± 7.2

LW F1% 56.4 ± 5.2 67.0 ± 4.0 63.4 ± 5.8
F2% 71.7 ± 4.5 77.3 ± 3.7 76.9 ± 4.6

4.2.2. Hyperparameter Search and Model Selection

After selecting the oversampling technique for each model, Table 6, reports the best
hyperparameters for the selected ML algorithms while optimizing the F-score metrics and
the number of ideal feature components selected by PCA.

The three best ML algorithms were selected for each type of classifier; RF, SVM,
and KNN achieved the best scores for CW, DW, and LW, respectively. The best algorithms
remained the same for each wound type, but the optimal hyperparameters varied within
the optimization metric. There are combinations of hyperparameters that achieve a better
performance when giving preference to the F2 metric and others for F1.
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Table 6. Results of the hyperparameter search and the performance achieved by the best models with
the corresponding number of feature components.

Wound Type
Model Optimized Metric Fβ-Score% Algorithm Hyperparameters Feature

Components

CW

F1 56.6 ± 5.7 RF
max_features=‘sqrt’,
n_estimators=1000,

criterion=“gini”
30

F2 59.7 ± 5.0 RF
max_features= auto,
n_estimators=1000,
criterion=‘entropy’

20

DW

F1 34.1 ± 5.5 SVM C=50, kernel=‘rbf’,
gamma=‘scale’ 70

F2 56.4 ± 7.2 SVM C=1, kernel=‘rbf’,
gamma=‘auto’ 70

LW

F1 67.0 ± 4.0 KNN
metric=‘manhattan’,

n_neighbors=5,
weights=‘uniform’

60

F2 77.3 ± 3.7 KNN
metric=‘minkowski’,

n_neighbors=5,
weights=‘uniform’

50

4.2.3. Model Evaluation

After performing the hyperparameter search, the multiple test folds obtained by cross-
validation predicted the outcomes that were then evaluated using several metrics: accuracy,
precision, recall, F1, F2, and area under the curve (AUC). Tables 7 and 8 report the final
results achieved for the three classifiers and for a single classifier, optimized regarding the
F1 and F2 metric, respectively. Moreover, the receiver operator characteristic (ROC) curves
of the classifiers are shown in Figure 8.

(a) (b)

Figure 8. Receiving operating characteristic (ROC) curves of each classifier model: CW is chest
wound, DW drainage wound, LW leg wound, and full dataset: (a) ROC curves optimized regarding
F1 score; (b) ROC curves optimized regarding F2 score.
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Table 7. Final evaluation metrics for the best optimized algorithm regarding F1-score optimization.

Wound
Type

Model
Accuracy% Precision% Recall% F1% F2% AUC%

CW 95.6 ± 1.2 62.7 ± 7.4 51.5 ± 5.7 56.6 ± 5.7 53.4 ± 6.3 68.4 ± 6.0
DW 97.6 ± 1.1 34.6 ± 7.6 33.8 ± 7.2 34.1 ± 5.5 34.0 ± 5.6 57.9 ± 8.5
LW 87.2 ± 1.9 61.5 ± 4.5 73.7 ± 5.3 67.0 ± 4.0 70.9 ± 5.0 80.1 ± 5.7
Full

dataset 95.4 ± 2.0 51.1 ± 7.3 46.2 ± 6.9 48.6 ± 5.8 47.2 ± 6.8 71.8 ± 3.9

Table 8. Final evaluation metrics for the best optimized algorithm regarding F2-score optimization.

Wound
Type

Model
Accuracy% Precision% Recall% F1% F2% AUC%

CW 91.8 ± 1.4 36.0 ± 4.3 71.4 ± 5.4 47.8 ± 4.7 59.7 ± 5.0 81.8 ± 7.0
DW 91.0 ± 2.5 33.2 ± 6.6 68.4 ± 7.4 44.7 ± 6.7 56.4 ± 7.2 69.4 ± 13.2
LW 87.2 ± 2.4 52.6 ± 4.0 87.6 ± 4.5 65.7 ± 3.6 77.3 ± 3.7 82.7 ± 6.3
Full

dataset 94.2 ± 3.3 43.3 ± 7.5 59.1 ± 8.1 49.9 ± 6.5 55.5 ± 7.3 75.5 ± 5.7

5. Discussion
5.1. Wound Segmentation

MobileNet-Unet was the selected architecture for the wound segmentation model
due to its good performance and advantageous characteristics. It achieved 82.06% ± 0.55%
mean IoU when tested on the five test folds. MobileNet is a widely used structure with low
memory requirements, high processing speed, and fewer parameters than other networks,
which can be highly beneficial for this specific type of problem and for the future applica-
tions of this work. In terms of the decoder’s frameworks, there is no way to distinguish
the best network because SegNet had a significantly better score than Unet for ResNet50
but worse for MobileNet, in which there is only a slight variance between both.

The reported results demonstrate that the Adam optimizer’s best batch size is 32,
which is corroborated by [38], who suggested a 32 batch size was a reasonable default
value. Commonly, larger batch sizes lead to poor generalization and can take a long
to reach the optimal minimum. On the other hand, smaller batch sizes have shown
faster convergence because they allow the model to start learning before seeing all data.
Nevertheless, the model may never reach the optimal minimum. The presented outcomes
on smaller batch sizes agree with several authors [39,40], which stated that a smaller
batch size should be used. In addition, there is a high correlation between the learning
rate and the batch size, where larger batch sizes perform better with high learning rates.
In the present segmentation model, there was no optimization regarding the learning
rate; the default values were 0.001 and 0.01 for Adam and SGD, respectively. Hence,
these low learning rates demonstrated their better performance with the experimented
small batch sizes. Regarding the optimizer’s choice, Adam is already an upgrade of SGD,
which was proven for this dataset with the exhibited mean IoU. Regarding the reported
results, the MobileNet-Unet architecture achieved its best performance with the Adam
optimizer, a 32 batch size, and 50 epochs.

Data augmentation aims to improve the generalization of a model by artificially
inflating the training dataset size with transformed data, introducing more information
for the model to learn. However, the results remained the same with and without
augmentation, concluding that the augmentation had no significant effect on the dataset.
There are two possible explanations for this occurrence: a large number of data samples
and the misrepresenting image transformations. Other combinations of geometrical and
color modifications can be tried in the future to see if the model improves beyond its
achieved performance.
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Regarding the wound segmentation model, since the IoU metric penalizes the badly
classified instances harder, it is the best metric to evaluate the proposed system along with
the final mean average precision. It is vital not to have bad segmentation results since
these can penalize and lead to wrong final classifications, such as FN, which can cause a
wound with actual alterations to be overlooked by clinicians. Hence, it can be concluded
that the segmentation system achieved a good score and performed well on the proposed
task. The final average precision of the segmentation, 90.1%, shows promising results in the
pixel-wise classification made by the segmentation model, which is extremely important
for dividing the several wounds along the three classifiers. In addition, it indicates that the
system seems suitable for our purpose.

5.2. Wound Classification

Applying methods that address class imbalance improves the performance of the
models. In terms of the two trials conducted to balance the class distribution, the SMOTE
technique combined with undersampling achieved better overall results than the single
SMOTE method. However, the best type of technique to balance data is not equal for every
classifier. The SMOTE technique had better scores for the LW classifier, while for CW and
DW, the SMOTE + Undersampling was better. As the number of LW samples and the ratio
between classes are smaller than in other wound types, the undersampling may eliminate
important information regarding the negative class. Thus, the performance is slightly lower
when compared to the use of SMOTE alone.

On the other hand, the CW and DW datasets are more extensive, so removing data
points is less critical because there is more information regarding the majority class. Even
though the oversampling techniques improved the model’s performance, some flaws must
be considered. SMOTE generates a lot of noisy artificial samples in the feature space,
which can increase the number of data points in the boundaries between the two classes,
confusing the classification algorithm. In addition, the increase in samples may result in
overfitting the model.

The number of features varies within each wound type classifier, suggesting that every
wound type could have different representative features. Certain features may be more
appropriate to characterize a specific wound type than another. However, the variance
in the feature number is visible within the same type of classifier. Table 6, shows that the
CW algorithm needs less number of components, 20 and 30, compared with the other
types, indicating that the boundaries between the two classes are well-defined and that the
alterations in the wounds are visually notorious.In contrast, DW needs more features to
predict changes in the wound correctly and reports a lower performance when compared
with the other classifiers. This can be interpreted as the substantial portion of the features
extracted sharing similar values between the positive and negative classes, which can
be explained by the few DW alterations being very hard to differentiate. Lastly, the LW
algorithm varies the number of needed components from 50 to 60. It shows the best
performance among the three classifiers, suggesting that the variations in the images
between both classes are considerable and well-categorized.

The reported metrics of the wound alteration classifier show a high standard devia-
tion, except for accuracy, due to the high number of obtained folds for validation and
testing. Hence, the selection bias is minimal, but the evaluation performance variance is
considerable. As expected, the models optimized with the F1 score have more balance
between precision and recall, while the optimization with the F2 score compromises the
precision to obtain a higher recall. All models achieved a good accuracy, but as men-
tioned, it is a biased metric even after the application of oversampling because the test
data is unaltered; so, there is still a superior number of samples for the negative class.

From all model types, the DW classifiers had the worst performance for both metrics,
while LW achieved the best scores. Regarding the F1-optimization, DW obtained poor
results, below 50%, for precision, recall, F1, and F2. The performance slightly improved for
the F2-score, reaching a recall of 68.4%; however, the remaining metrics, except accuracy,
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still showed bad results. The poor results for the DW classifier can have two possible
explanations: the significant discrepancy in the number of data samples between classes
in the test set and the few differences presented between characteristics of positive and
negative classes. The quantity of DW that has an alteration is low, meaning there are few
examples of DW alterations. In CW, the scores already surpass the 50% barrier, except for
the precision for the F2-optimization. The differences between F1 and F2 scores for both
optimizers are low, while precision and recall are higher. Ultimately, the LW showed a
higher overall score for all metrics and a recall of 87.6% for the F2-optimizer. However, it
has the worst accuracy, which may be because LW has the lowest ratio between positive
and negative classes; as such, the accuracy metric is less biased and corresponds more
to reality.

The better performances by the LW and CW can be interpreted by the more consid-
erable visual variances between the positive and negative classes, where the alterations
of the wounds are more visible than in DW. It also corroborates that characteristics that
indicate wound alterations can differ for each wound type, confirming the need to separate
the wound classification problem into three classifiers.

Lastly, by comparing the performance between a single classifier and the three pro-
posed, it can be concluded that the single classifier achieves a worse performance. Thus, it
cannot be considered the final classification model.

The reported results and the discussion have some essential points of information
that need to be addressed. As previously mentioned, a high number of FNs can be highly
prejudicial to the proposed system, causing worrying alterations to be overlooked by the
clinicians. For this reason, the best ML algorithms were selected based on the F2 optimiza-
tion since it gives a higher weight to the recall metric. Hence, for the CW classifier, the RF
algorithm with 50 feature components had the best performance with the following hy-
perparameters, entropy criterion, 1000 number of estimators, and with auto maximization
of features. The SVM algorithm with regularization parameter (C) of 1, with rbf kernel
type and an auto kernel coefficient (gamma), gave the best scores for the DW classifier with
a total of 70 features. Lastly, the LW classifier utilized 60 features and elected the KNN
algorithm with 5 nearest neighbors. The distance between them was measured by the
minkowski metric, and the uniform weight function was used to make the predictions.

In summary, the LW clearly had the best performance, while the CW and DW need
some improvements to obtain good predictions. As such, the LW classifier is acceptable
for being implemented in the system, but overall, the classification needs improvement to
be integrated into a real context. The use of oversampling techniques addresses the class
imbalance problem by creating synthetic samples. However, the application of the SMOTE
algorithm has to be cautious because artificially synthesized data may create unrealistic
data samples that diverge from the actual dataset. Another essential consideration to
consider is the lack of generalization present in the classification dataset. Besides the low
amount of wounds belonging to the positive class, this reduced number is very biased
because the same wound alteration is repeated for the same individual in the following
images until a proposed treatment starts to have effects.

To the best of our knowledge, this is the first research work that applies artificial
intelligent methods to assess surgical site infection in cardiac surgery based on images
collected by patients themselves in a remote patient monitoring service. Related works
were not trained with our type of wounds; most of them are related to burns or ulcers,
which is the reason for not being able to present a fair comparison of our results with other
related work.

5.3. Limitations

The size of the dataset may somewhat limit these findings. The dataset has a total of
1337 images. However, these belonged to a limited number of 34 patients, which may make
the dataset redundant or ambiguous, showing slight variance among images. In addition,
the number of images with alterations was significantly reduced, which constitutes a
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problem for ML algorithms because they have few examples to learn. Another limitation
regarding the images was the uncontrolled illumination conditions when the images were
taken, which could distort the results since one of the main characteristics of wound
alterations is color. Even with these variances in illumination bringing robustness to the
system, photographs with awful lighting conditions are detrimental to the system.

5.4. Future Work

Further research should be undertaken to investigate the use of other features for
the wound alteration classification model, such as scale-invariant feature transform and
histogram of oriented gradients, to verify their variance between the two classes and
increase the performance of the classification model. Moreover, other undersampling
techniques could be explored with the combination of SMOTE, such as Tomek links and
edited nearest neighbour. Another possible solution would be a hybrid approach that
extracts the features from the CNN layers and later feeds them into an ML algorithm.

In future investigations, it might be possible to assess a temporal evolution-based
system that for each patient compares the daily image with the previous ones to as-
sess the healing process regressed by analyzing if the wound shows more redness or
abnormal coloration.

6. Conclusions

A system based on deep learning and machine learning methods for segmenting the
wounds from daily patient photographs and classifying each post-surgical site as altered or
not altered to prevent the risk of infection was designed and developed. The proposed sys-
tem consists of two separate models, wound segmentation and wound classification, com-
bining DL and traditional ML techniques. The segmentation model extracts the wound’s
region areas and categorizes each of those regions with the corresponding wound type.
This segmentation architecture showed promising results, with 89.9% of mean IoU after
post-processing and a 90.1% mean average precision. A group of color and textural features
was extracted from the output region of interest to feed one of the three wound-type classi-
fiers that reached the final binary decision. Separating the final classification into separate
classifiers was more effective than a single classifier for all the wound types. After hyperpa-
rameter search and model selection, the selected ML algorithms were RF, SVM, and KNN
for CW, DW, and LW classifiers, respectively. The models were optimized in function of the
F2 in order to favor the recall metric and of the F1 to find a balance solution with precision
and recall. The best classifier (LW) obtained an 87.6% recall, 52.6% precision, 65.7% F1, and
77.3% F2. The appearance of FN could be a big issue for the system since it could overlook
wound alterations and detect them negatively, preventing the intervention of the clinicians
and increasing the risk of developing an infection. As such, the optimization with F2 was
favored instead of F1.
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Appendix A. Feature Extraction Formulas

Table A1. Equation of color features.

Feature Name Equation

Mean Ei =
N

∑
j=1

1
N

Pij (A1)

Standard deviation σi =

√√√√ 1
N

N

∑
j=1

(pij − Ei)2 (A2)

Skewness m3

m3/2
2

where mi =
1
N

N

∑
n=1

(pixel(n)−mean)i (A3)

Energy E =
1
N

N

∑
i=1

pixel(i)2 (A4)

Table A2. First order statistics texture features.

Feature Name Equation

Mean µ = ∑
i

iHi (A5)

Standard Deviation σ =

√
∑

i
(i− µ)2Hi (A6)

Median
f3

∑
i=0

Hi = 0.5 (A7)

Mode argmaxi{Hi} (A8)

Skewness ∑
i

(
i− µ

σ

)3
Hi (A9)
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Table A2. Cont.

Feature Name Equation

Kurtosis ∑
i

(
i− µ

σ

)4
Hi (A10)

Energy ∑
i

H2
i (A11)

Minimal Grey Level min{ f (x, y)}∗ (A12)

Maximal Grey Level max{ f (x, y)}∗ (A13)

Coefficient of Variation
σ

µ
(A14)

Percentiles (10, 25, 75, 90) fn =
fn

∑
i=0

Hi = c∗ (A15)

Histogram Width f4 − f1 (A16)

* Considering f (x, y) is a grayscale image and Hi is the first order histogram defined as:

Hi =
number o f pixels with grey level i inside ROI

total number o f pixels in the ROI
(A17)

** where (n, c) = (1, 0.1), (2, 0.25), (3, 0.75), (4, 0.9). Note that 50-Percentile is the median

Table A3. The gray-level co-occurrence matrix (GLCM) textural features used in this study.

Feature Name Equation

Angular Second Moment f1 =
N−1

∑
i=0

N−1

∑
i=0

p(i, j)2 (A18)

Contrast f2 =
N−1

∑
i=0

n2

 N−1

∑
i=0|i−j|=n

N−1

∑
j=0

P(i, j)

 (A19)
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Table A3. Cont.

Feature Name Equation

Correlation f3 =
N−1

∑
i=0

N−1

∑
j=0

(
i− µx

σx

)(
j− µy

σy

)
p(i, j) (A20)

Sum of Squares: Variance
N−1

∑
i=0

N−1

∑
i=0

(i− µ)2 p(i, j) (A21)

Homogeneity f5 =
N−1

∑
i=0

N−1

∑
i=0

p(i, j)
1 + |i− j| (A22)

Sum Average f6 =
2N−1

∑
k=1

kpx+y(k) (A23)

Sum Variance f7 =
2N−1

∑
k=1

(i− µx−y)
2 px+y(k) (A24)

Sum Entropy f8 = −
2N−1

∑
k=1

px+y(k)ln[px+y(k)] (A25)

Entropy f9 = −
2N−1

∑
i=0

N−1

∑
i=0

p(i, j)log[p(i, j)] (A26)

Difference Variance f10 =
N−1

∑
k=0

(k− µx−y)
2 px−y(k) (A27)

Difference Entropy f11 = −
N−1

∑
k=0

px−y(ik)log[px−y(k)] (A28)

Information Measures of Correlation

f12 =
HXY− HXY1
max{HX, HY} (A29)

and

f13 = (1− exp(−2.0[HXY2− HXY]))1/2 (A30)
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Table A3. Cont.

Feature Name Equation

HX = −∑N−1
i=0 px(i)log[px(i)]

HY = −∑N−1
j=0 py(j)log[py(j)]

HXY = −∑N−1
i=0 ∑N−1

j=0 p(i, j)log[p(i, j)]

HXY1 = −∑N−1
i=0 ∑N−1

j=0 p(i, j)log[px(i, j)py(i, j)]

HXY2 = −∑N−1
i=0 ∑N−1

j=0 p(i, j)log[px(i, j)py(i, j)]2

Maximal Correlation Coefficient f14 = (Second largest Eigenvalue o f Q)1/2 (A31)

Where Q(i, j) = ∑N−1
k=0

p(i,k)p(j,k)
px(i)py(k)
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