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Abstract: (1) Background: Acetaminophen (APAP), an active component of many analgesic and
antipyretic drugs, is one of the most concerning trace contaminants in the environment and is
considered as an emergent pollutant of marine and aquatic ecosystems. Despite its biodegradability,
APAP has become a recalcitrant compound due to the growth of the global population, the ease of
availability, and the inefficient wastewater treatment applied. (2) Methods: In this study, we used
a transcriptomic approach to obtain functional and metabolic insights about the metabolization of
APAP by a phenol-degrading fungal strain, Penicillium chrysogenum var. halophenolicum. (3) Results:
We determined that the transcriptomic profile exhibited by the fungal strain during APAP degradation
was very dynamic, being characterized by an abundance of dysregulated transcripts which were
proportional to the drug metabolization. Using a systems biology approach, we also inferred the
protein functional interaction networks that could be related to APAP degradation. We proposed the
involvement of intracellular and extracellular enzymes, such as amidases, cytochrome P450, laccases,
and extradiol-dioxygenases, among others. (4) Conclusions: Our data suggested that the fungus
could metabolize APAP via a complex metabolic pathway, generating nontoxic metabolites, which
demonstrated its potential in the bioremediation of this drug.

Keywords: acetaminophen; biodegradation; Penicillium chrysogenum; transcriptomic analysis;
functional networks

1. Introduction

The chemical structure of Acetaminophen (APAP), also known as paracetamol,
N-4-hydroxyphenyl)ethanamide, N-acetyl-p-aminophenol, 4-acetaminophenol, or 4-
hydroxyacetanilide, contains a benzene ring core substituted by one hydroxyl group and
the nitrogen atom of an amide group in the para position. In 1948, Brodie and Axelrod
discovered that the analgesic effect of acetanilide was due to its active metabolite APAP,
and since then, it has been widely used as a pain reliever and antipyretic [1]. While it is
generally safe to take it at a low dosage (the FDA-approved maximum dose is less than
4 g per day), APAP is a major cause of acute liver failure worldwide [2,3].

Due to its high consumption and emission rates from manufacturing facilities and
hospitals, APAP is continuously introduced into aquatic environments, with it being
considered as an emerging pollutant. Despite wastewater treatment plants being the
main source of APAP into the environment [4–6], it has been detected in several rivers,
lakes, and groundwater reservoirs. Individual studies performed in surface waters from
Malaysia [7], Spain [8,9], China [4], and Portugal [10] allowed determining the presence
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of APAP in a wide range of concentrations. Moreover, a review article aiming to compare
African with European pharmaceuticals in freshwater aquatic environments concluded that
the maximum concentration of APAP in African aquatic environments is approximately
215 times higher than the concentrations reported in European studies [11].

Based on a literature survey and an extensive set of criteria such as regulation, con-
sumption/sales, physicochemical properties, toxicity/ecotoxicity, occurrence in surface and
drinking waters, groundwater and wastewater, as well as degradability/persistence and
resistance to treatment, APAP was considered in the class 2 as priority pharmaceuticals [12].
Ashfaq and coworkers estimated the ecological risks in wastewater and the results indicated
a medium risk of APAP against green algae and a high risk against Scinax proboscideus and
Daphnia magna [13]. Recently, Lindim and coworkers predicted the ecotoxicological impact
resulting from the exposure of aquatic organisms to the mixture of pharmaceuticals in
Swedish freshwaters and concluded that APAP, among four other pharmaceuticals (namely
diclofenac, ethinylestradiol, erythromycin, and ciprofloxacin), are associated with chronic
risks [14].

APAP is mainly removed from wastewaters using chemical processes such as ozona-
tion, electrochemical, TiO2, and Fenton oxidation [15–18]. Despite the efforts in the op-
timization of methodologies that allow eliminating APAP, the current methods are still
complicated, cost-prohibitive, and present environmental constraints [19–21]. So, APAP
is a current and future threat to ecosystem homeostasis due to the growing global popu-
lation, considering its presence as the main active ingredient in many prescriptions, the
ease of availability, and inefficient wastewater treatment processes. Bioremediation is an
ecofriendly, noninvasive, and cheaper alternative to conventional methods, since it is a
permanent solution that can end with the transformation of environmental pollutants into
harmless compounds such as CO2 and H2O, or less toxic forms [22]. However, APAP
biodegradation could create products that are equal pollutants and could even represent
a higher threat to human health due to their potential as mutagenic and carcinogenic
compounds. Examples of them are hydroquinone and p-aminophenol, which have been
reported as products of APAP biodegradation [23,24]. In 2018, Zur et al. compiled the data
on and advances in APAP degradation by bacteria, giving insights on the biodegradation
mechanisms for APAP detoxification [25]. Recently, Rios-Miguel et al. also highlighted the
large diversity of bacterial amidases involved in APAP metabolism [26].

In this field, mycoremediation could make an important contribution due to the
promiscuous nature of fungal enzymes and their ability to adapt to adverse environmental
conditions. Penicillium spp. have been used in the remediation of organic compounds and
heavy metals [27]. Interestingly, despite the few reports of APAP mycoremediation [28–31],
Penicillium was the first fungal species described to be able to degrade APAP [30]. In our
lab, we isolated and characterized a Penicillium strain designated as P. chrysogenum var.
halophenolicum (previously known as Penicillium chrysogenum CLONA2) [32]. Despite Peni-
cillium chrysogenum being reclassified as Penicillium rubens [33], we decide to maintain the
name as P. chrysogenum var. halophenolicum in order to avoid confusion with the previously
published work. This fungal strain was used before for the remediation of hydroquinone
and catechol among other phenolic compounds without previous acclimation under mini-
mal nutritional requirements [34,35]. In this work, we investigated the APAP degradation
ability of the selected fungal strain and characterized the transcriptomic response of the
fungus against APAP, giving some insights related to the possible pathways involved in
the metabolization of the drug.

2. Materials and Methods
2.1. Chemicals

Acetaminophen (APAP), as well as catechol (CAT), hydroquinone (HQ), and p-
aminophenol (APA), were purchased from Sigma-Aldrich (St. Louis, MO, USA). All
other reagents were of analytical reagent grade and were obtained from Riedel-de Haën
(Seelze, Germany). Water purified with a Mili-Q system was used in all the experiments.
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2.2. Microorganisms and Culture Conditions

P. chrysogenum var. halophenolicum, which was isolated from a salt mine in the Algarve
region, Southern Portugal and previously characterized [32,36], was used in this study.
The fungal strain was grown on solid Power medium [37] for 6 days at 25 ◦C and was
maintained at 4 ◦C for further experiment use.

Fungal precultures were obtained from conidia grown on Power medium and cul-
tivated in 300 mL flasks containing 80 mL of modified MC medium (per liter: 30 g of
glucose, 3.0 g of NaNO3, 0.50 g of MgSO4·7H2O, 10 mg of NH4Fe(SO4)2·12H2O, 1.0 g of
K2HPO4, 5.0 g of yeast extract, and 20 g of NaCl; the pH was adjusted to 5.6–5.8 with
5.0 M HCl) at 160 rpm in an orbital shaker (Certomat® BS-T Incubator, Sartorius Stedim
Biotech, Gottingen, Germany) at 25 ± 1 ◦C for 68 h. The cells were centrifuged for 10 min at
10,000× g and washed three times in 0.85% (w/v) of NaCl. Then, a 10% aliquot constituted
the biomass of the fungal precultures.

2.3. Acetaminophen Removal Experiments

P. chrysogenum var. halophenolicum cultures were performed by inoculating the biomass
from precultures on 50 mL of defined minimal medium (per liter: 1.0 g of K2HPO4, 3.0 g
of (NH4)2SO4, 200 mg of MgSO4·7H2O, 33 mg of FeCl3·6H2O, 100 mg of CaCl2, and 20 g
of NaCl; pH was adjusted to 5.6–5.8 with 5.0 M HCl) supplemented with acetaminophen
(APAP) and/or glucose (1.5 mg/mL) in 250 mL flasks and incubated at 25 ◦C in an orbital
shaker (160 rpm). An APAP concentration of 2.00 mM was used in all the experiments,
except in the case of removal ability experiments, where concentrations of 0.661, 1.00,
2.00, 3.00, 4.00, and 5.00 mM were tested. The experiments were performed in tripli-
cates. Uninoculated control flasks (duplicates) were incubated and aerated in parallel as
negative controls.

2.4. Analytical Methods

Microbial dry biomass was estimated gravimetrically in duplicate. Each sample of
50 mL was filtered through quantitative filter paper (VWR International, Leuven, The
Netherlands). The fungal pellets were dried at 60 ◦C for 48 h. The samples were placed
in a desiccator for 60 min and weighted afterwards. The concentration of biomass was
calculated as grams of dry biomass per liter of medium. To determine glucose consumption
in fungal cultures, the glucose concentration was measured using the commercial kit
D-Glucose GOD-POD (NzyTech, Lisbon, Portugal).

APAP concentrations were quantified in the fungal culture supernatants by using a
high-performance liquid chromatography system L-7100 (LaChrom HPLC System, Merck,
Darmstadt, Germany) consisting of a quaternary gradient pump, and L-7400 UV detector.
The whole system was controlled using the Merck HPLC System Manager software. The
separation of the analytes was performed at ambient temperature in a Waters Spherisorb
ODS2 column (5.0 µm, 4.6 × 250 mm) (Waters, Milford, MA, USA), using an isocratic
condition with a mobile phase composed of water (pH 3.5, adjusted with orthophosphoric
acid) and acetonitrile, at a 90:10 (v/v) and a flow rate of 1.0 mL/min. Detection was
performed at 254 nm. Under these conditions, APAP, HQ, CAT, and APA could be separated
within 12 min.

2.5. Cell Viability Assays

Cell viability assays were performed using the hepatocellular-carcinoma-derived
HepG2 cell line (ATCC HB-8065) according to the method previously described [38]. Briefly,
HepG2 cells were cultured in McCoy’s 5a modified medium supplemented with 10% heat-
inactivated fetal bovine serum, 2 mM L-glutamine, 1% MEM nonessential amino acids, and
100 U/mL penicillin/streptomycin (Gibco, Life Technologies, Waltham, MA, USA), and
maintained at 37 ◦C in a humidified incubator under 5% CO2. The cells were cultured in
24-well plates for 24 h to reach approximately 75% confluence. Then, depending on the
experiments, the cultures were supplemented with different concentrations of APAP or with
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fungal samples (96 h of culture) from different initial concentrations of APAP supplemented
with glucose (1.5 mg/mL), and finally with either control solutions containing 2.00 mM
APAP or fungal samples with no glucose after 96 h (an initial APAP concentration of
2.00 mM and a final concentration less than 0.33 mM). After 48 h of incubation, 50 µL of
PrestoBlue reagent® (Thermo Fisher Scientific, Waltham, MA, USA) solution was added
per 1 mL of culture medium and incubated for an additional time of 2 h. Plates were then
analyzed for fluorescence emission in a Tecan Infinite M200 plate reader, using an excitation
wavelength of 560 nm and an emission wavelength of 590 nm. The results were read using
Tecan i-Control v. 1.4.5.0 plate reader software. Each experiment was performed using
biological triplicates.

2.6. Transcriptome Analysis by Next-Generation Sequencing

Total RNA from selected P. chrysogenum var. halophenolicum cultures was isolated by
phenolic extraction and mechanical homogenization. Briefly, the fungal mycelium from
2 mL of culture was harvested using centrifugation, resuspended in 800 µL of Trizol reagent
(Thermo Fisher Scientific), and homogenized using agitation in a bed-beater for 2 min. After
this process, 200 µL of chloroform was added to the samples and subsequently extracted
using centrifugation. RNA was further purified and concentrated with column extraction
using a Qiagen RNAeasy mini kit. The quality and concentration of the RNA samples were
checked using UV spectroscopy in a Nanodrop 2000 microspectrophotometer (Thermo
Fisher Scientific) and capillary electrophoresis in a Tape Station system (Agilent, Santa Clara,
CA, USA). All the RNA extraction and further analysis were performed by using biological
triplicates. The quality control results per sample are depicted in supplementary material
(Figures S2 and S3).

Transcriptomic analysis of the selected RNA samples was performed by Illumina
next-generation sequencing in a NextSeq 500 system following the instructions from the
manufacturer. Library preparation, sample barcoding, and pair-ended next-generation
sequencing were carried out at the Genecore facility, EMBL, Heidelberg, Germany. Illumina
sequencing reads were quality-filtered and trimmed with the Trimmomatic software [39]
and aligned to the Penicillium chrysogenum genome (NCBI assembly ASM71027v1) with the
STAR software [40] (Supplementary Table S1 and Figure S4). Normalization of the aligned
reads, principal component analysis, and clustering and differential expression analysis
between sample groups were carried out by DESeq2 and EdgeR algorithms embedded
in the RNfuzzyApp suite (Supplementary Table S2) [41]. Annotation of the differentially
expressed genes was based on the Biomart database [42]. Functional classification, gene on-
tology analysis, and the filtering of redundant terms were performed with the DAVID [43]
and REVIGO applications [44]. BioCPR application was used for the calculation of correla-
tion matrices and a heatmap representation [45].

Functional protein–protein interaction networks were retrieved from the STRING
database considering a threshold of 0.75 in the combined prediction score [46]. Network
clustering, enrichment, and comparative analysis were performed using the NetConfer
application [47].

2.7. Statistical Analysis

Statistical analysis of cell viability data was performed by using Student’s t-test imple-
mented in the GraphPad software. Gene expression data were statistically analyzed by the
DESeq2 and EdgeR algorithms embedded in the RNfuzzyApp suite [41].

3. Results
3.1. Removal of APAP by P. chrysogenum var. halophenolicum and Cytotoxic Evaluation

To assess the APAP removal efficiency of P. chrysogenum var. halophenolicum, the fungal
strain was cultivated in a mineral medium supplemented with different concentrations of
APAP (0.661, 1.00, 2.00, 4.00, and 5.00 mM) and 1.5 mg/mL of glucose. The APAP levels
were monitored with HPLC and the supernatant cytotoxicity was evaluated using the
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hepatoma cell line HepG2 model (Figure 1a,c). APAP toxicity against HepG2 cells was
previously determined with a high-dose exposure experiment, showing a clear decrease in
cell viability as a function of APAP concentration (Figure S1). In fact, a viability reduction
in HepG2 cells of more than 25% was observed in 1.00 mM APAP, being more pronounced
for APAP concentrations up to 2.00 mM.
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Figure 1. Removal of acetaminophen (APAP) by P. chrysogenum var. halophenolicum and determi-
nation of the toxic effect over HepG2 cell line. (a) Percentage of APAP removal by P. chrysogenum
var. halophenolicum under cometabolism with glucose. (b) Percentage of APAP removal when
used as the sole carbon source by the fungal strain. (c) Cell viability determination of the hepatoma
HepG2 cell line when exposed to different APAP concentrations before (C) and after treatment with
the fungal strain (T), and fungal cultures from cometabolism after 4 days (4 d) and 7 days (7 d).
(d) Comparison of the effects of the bioremediation of APAP used as carbon source by P. chrysogenum
var. halophenolicum quantified as the viability of HepG2 cell line: Control, 2.00 mM APAP; Glucose,
fungal culture with an initial concentration of 1.5 mg/mL glucose; APAP, fungal culture with an
initial concentration of 2.00 mM APAP. Statistical significance of the comparisons calculated with
Student’s t-test was depicted by asterisks: *, p-value < 0.05; **, p-value < 0.001; ***, p-value < 0.0001.

We observed that the presence of the fungus resulted in a decrease of 33.2%, 36.5%,
37.3%, 32.0%, and 18.2% of APAP after 24 h of culture at initial concentrations of 0.661, 1.00,
2.00, 4.00, and 5.00 mM, respectively (Figure 1a). APAP time course analysis demonstrated
that after 96 h of culture, only levels of 1.2%, 2.1%, 5.2%, 12.4%, and 17.3% of APAP from
an initial concentration of 0.661, 1.00, 2.00, 4.00, and 5.00 mM, respectively, were detected.

Meanwhile, after 96 h of fungal treatment, a significant increase in HepG2 cell viability
was found for all the concentrations tested (Figure 1c). The additional time of contact with
P. chrysogenum var. halophenolicum in the cultures with higher levels of APAP (an initial
concentration of 5.00 mM) also resulted in decreased toxicity. Therefore, experimental data
highlight an unequivocally positive result of the fungal treatment over the detrimental
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effect of APAP on HepG2 cells. Moreover, we observed that cell death in HepG2 cells after
fungal treatment was similar to the determined at the remaining APAP concentration in
the media, indicating that cytotoxicity is mainly due to the presence of the drug.

According to the literature, there is only one publication reporting a Penicillium strain
and its ability to use APAP (0.661 mM) as the sole carbon source, [30]. In the present
study, we investigated the capacity of P. chrysogenum var. halophenolicum to use APAP
at concentrations from 0.661 mM to 3.00 mM as the sole carbon source. The fungus was
cultivated in mineral medium supplemented with 0.661, 1.00, 2.00, and 3.00 mM APAP.
A control condition with 2.00 mM APAP and without the fungal strain was performed to
investigate if the removal of APAP could be mediated by abiotic processes. In the control
assay, no decrease in APAP was observed, which indicated that the removal of APAP using
abiotic processes was negligible (data not shown). Compared to the 0.661 mM APAP, the
percentage of removal for all the concentrations tested at different times presented the same
trend (Figure 1b). The APAP concentration gradually decreased during 96 h of cultivation,
being less pronounced after 48 h. Moreover, similar percentage values were obtained in the
range from 0.661 to 2.00 mM APAP. For example, at 48 h of culture, 27.26%, 28.51%, and
29.03% of APAP from an initial concentration of 0.661, 1.00, and 2.00 mM, respectively, were
observed. Since APAP abiotic reduction was not detected, these results indicated that the
fungus not only could remove APAP when it is the sole carbon source, but the process is
also independent of the initial APAP concentration at concentrations from 0.661 to 2.00 mM.
It was reported that Mucor hiemalis tolerance to APAP increased at lower concentrations,
because a higher uptake was obtained at 5 mg/L (50%), compared to 50 mg/L (8%). This
ability to remove APAP was achieved in the first 24 h, remaining unchanged during seven
days [29]. Meanwhile, at 96 h, P. chrysogenum var. halophenolicum was able to degrade more
than 90% of APAP when the initial concentration was 1.00 mM (151.2 mg/L) (Figure 1b).

The exposition to easily metabolizable carbon sources combined with specific xenobi-
otic compounds could affect the degradation efficiency of the last ones, due to different
phenomena which include enzymatic competition and alterations in metabolic flux. In the
present study, the APAP removal efficiencies in the presence of glucose were found to be
slightly higher, or equivalent, for all the concentrations tested. In the case of 2.00 mM APAP,
the removal efficiency after 4 days was 94.8 ± 1.1% and 89.3 ± 4.3%, with and without
glucose, respectively.

Considering that 2.00 mM APAP was recently reported as the concentration from
which severe growth arrest and little proliferation of HepG2 cells is observed in vitro [48],
we further investigated APAP degradation with an initial concentration of 2.00 mM. It is
known that the degradation of APAP in the environment often results in the accumulation
of hydroquinone and p-aminophenol, metabolites that are toxic [31]. P. chrysogenum var.
halophenolicum is transforming APAP to easily metabolizable substrates since under the
experimental conditions not only hydroquinone and p-aminophenol were not detected
but also cytotoxicity decreased. However, HepG2 cell viability was not 100% after fungal
treatment, which could be hypothetically explained by dark-brown product(s) observed in
APAP fungal cultures (Figure 1d). Furthermore, the dark-brown coloration was dependent
on the initial concentration, presence of glucose, and time of incubation. A similar behavior
was observed with Pseudomonas moorei KB4 during APAP degradation, where the brown
colorization of cultures was detected with highest APAP concentration tested (50 mg/L) [49].
It has been reported that during APAP transformation, polymerization products of catechol
or APA complexes could be formed and this accumulation leads to brown coloration [23,26].
Interestingly, we observed a delay in pigment formation on the batch with glucose, possibly
due to the preferential use of the monomeric sugar instead of APAP. In fact, no glucose was
detected after the first 24 h of culture (data not shown).

3.2. Transcriptional Analysis of APAP Degradation

Using transcriptomic analysis via next-generation sequencing, we studied the tran-
scriptional pattern exhibited by the fungal strain during APAP degradation. The differ-
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entially expressed mRNA transcripts were determined by comparing samples where P.
chrysogenum var. halophenolicum was grown in APAP with samples containing only glucose
as the carbon source. Additional experiments were also performed by combining APAP
and glucose as carbon sources. The APAP degradation either alone or together with glucose
was followed during 72 h of culture in minimal medium, and the transcriptomic data were
characterized every 24 h. The results are depicted in Figure 2.
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Figure 2. Transcriptomic analysis of P. chrysogenum var. halophenolicum during APAP degradation.
(a) Number of differentially expressed mRNA transcripts at 24, 48, and 72 h of culture in media
containing APAP or APAP and glucose as carbon sources refer to the cultures growth using only
glucose. (b) Principal component analysis of gene expression in all the samples of the experiment
using glucose (GLU), APAP (APAP), and glucose + APAP (GLU-APAP) as carbon sources. (c) Volcano
plots of differentially expressed mRNA transcripts in presence of APAP or APAP and glucose, referred
to the respective cultures growth in glucose as carbon source. Differentially expressed genes were
considered when p-value < 0.05 and a −2.0 > logFC > 2.0, calculated by the EdgeR algorithm. In
the volcano plots, upregulated gene transcripts are represented as red dots and downregulated
transcripts by green dots.

Our results showed that the presence of APAP as the sole carbon source induces a
visible transcriptional pattern in the fungal strain, characterized by a predominance of
upregulated mRNA transcripts (Figure 2a). This pattern was especially evident in early
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culture times when the APAP was still present at high concentrations. Considering a
p-value < 0.05 and a −2.0 > logFC > 2.0, at 24 h of culture, we detected 604 upregulated and
396 downregulated mRNA transcripts (Figure 2a,c). The number of differentially expressed
mRNA transcripts decreased proportionally to the degree of APAP metabolization, reaching
202 upregulated and 95 downregulated transcripts at 72 h of culture (Figure 2a,c). Moreover,
the raw expression data allowed a clear stratification of the sample groups and replicates,
as determined using principal component analysis (Figure 2b). Curiously, the combination
of APAP and glucose together abolished the dysregulation pattern observed in the presence
of APAP as the sole carbon source (Figure 2a,c). The presence of an easily metabolizable
source of carbon suggested the phenomenon of catabolic repression, often observed as the
transition boundary between the primary and the secondary metabolism [50].

The spatial mapping of differentially expressed genes within the P. chrysogenum
genome showed a very interesting pattern of local events that are related to the culture time
(Figure 3a). Each chromosome presented areas with a high density of upregulated units at
24 h of culture, that decreased with the metabolization of APAP, suggesting the existence
of a metabolic induction phenomenon in specific genomic regions. Interestingly, at least
four chromosomal territories that are highly transcriptionally upregulated at 24 h showed
a transcriptional shutdown in the following culture times, accompanying the decrease in
APAP levels in the culture supernatants. These regions cover chr1: ~12.5–13.5 Mb, chr2:
~6–7 Mb, chr3: ~4.5–5.5 Mb, and chr4: ~1.8–2.5 Mb. Moreover, the transcriptional dysregu-
lation pattern induced by APAP also includes two clear regions in chr1 (~5–5.5 Mb) and
chr3 (~0.2–1 Mb) enriched in downregulated genes, that at lower concentrations of APAP
and longer culture times showed the opposite behavior (Figure 3b). This phenomenon
is compatible with a transcriptional repression induced by higher concentrations of the
drug. Variance analysis, using highly significant dysregulated mRNAs, clearly support the
previous findings about the stratification of the different samples, and the dynamic tran-
scriptional behavior in response to the exposure to APAP and the further metabolization
(Figure 3a).
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values during APAP degradation by the fungal strain. The concentric circles represent the transcrip-
tional pattern of gene expression at 24, 48, and 72 h of incubation with APAP, where the upregulated
transcripts are represented in red bars and the downregulated mRNAs in green ones. Scale in
chromosomes is represented as millions of base pairs.

3.3. Functional Analysis of the Differentially Expressed Transcripts during APAP Degradation

Despite the accumulated knowledge of APAP degradation pathways in bacteria [21,23],
the studies describing filamentous fungi as bioremediation agents able to degrade this
drug are comparatively less extended [29,31]. Subsequently, the enzymes and degradation
pathways used by filamentous fungi to degrade APAP are not well characterized. To give
some insight into the possible metabolic pathways and individual proteins involved in
APAP biodegradation, we performed a functional analysis based on gene set enrichment
methods (Figure 4).
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platform [43]. The left-hand side of the graph illustrates the enrichment analysis for the upregulated
gene transcripts and the right-hand side is the analysis of the downregulated mRNAs. The size of
the circular symbols depicting every functional category is proportional to the -log(p-value). The fill
color of the symbols represents the number of functional hits detected within each category. (a,b) GO
term enrichment analysis, biological process category; (c,d) GO term enrichment analysis, molecular
function category; and (e,f) Pathway enrichment analysis, KEGG database.

Considering the upregulated gene transcripts, the GO enrichment analysis results
showed an enrichment in genes related to the metabolism of high-molecular-weight polysac-
charides represented by chitin, the DNA damage response and repair, and the catabolism
of nitrogen compounds (Figure 4a,c). In more detail, and considering the up-regulated
mRNA transcripts, the pathway enrichment analysis based on the KEGG database showed
an overrepresentation of transcripts related to the metabolism of amino acids, glutathione,
butanoate, and the transmembrane transport involving ABC transporters (Figure 4e). In-
terestingly, the complexity of the enrichment pattern decreased with the culture time and
followd the APAP degradation.

The downregulated transcripts did not show a clear enrichment pattern when an-
alyzed by GO terms. Some terms related to divalent cation metabolism, binding, and
transport across membranes were detected at 24 h of culture, but they were statistically less
significant than those noticed in the upregulated transcriptome (Figure 4b,d). However,
the pathway enrichment analysis allowed determining that at 24 h of culture, the down-
regulated transcripts were specifically related with the anabolism of nitrogen compounds,
the biosynthesis of short-chain aliphatic amino acids, the metabolism of sulfur-containing
amino acids, and the biosynthesis of secondary metabolites. In the downregulated tran-
scriptome, the transition between culture times was more abrupt, and the enrichment
pattern disappeared at 48 h of culture.

3.4. Protein–Protein Interaction Networks during APAP Degradation

Fungal metabolism is often characterized by a great degree of flexibility, when com-
pared with lower complexity microorganisms [51]. The selected P. chrysogenum strain
has already shown an extraordinary metabolic potential, being characterized as an active
metabolizer of phenolic compounds [32,52]. To gain a more detailed view of the metabolic
events related with the degradation of APAP in minimal medium, we built the specific
PPIs involving proteins encoded by up- and downregulated transcripts, taking advantage
of the information deposited in the STRING database of protein–protein interactions [46].
The resulting interaction networks were compared at 24 and 48 h of culture, to deter-
mine the dynamic transitions between them as a response to the biodegradation of APAP
(Figures 5 and 6).

Considering the upregulated gene transcripts at 24 h of culture, 120 of the correspond-
ing encoded proteins establish at least one functional interaction annotated in the STRING
database (Figure 5a,b), corresponding to 19% of the total overexpressed coding transcripts.
The APAP degradation by the fungal strain was accompanied by a decrease in the number
of overexpressed gene transcripts whose coded proteins are involved in PPIs (47 at 48 h
and 16 at 72 h). Interestingly, at 24 h, the PPIs clearly showed a stress-dependent pattern
represented by the presence of a PPI cluster composed of proteins involved in DNA mis-
match repair and RNA binding proteins, and two interacting clusters comprising enzymes
involved in the catabolism of high-molecular-weight compounds and chitin. The PPIs
also include a group of enzymes with amidase and acetaminidase activities, and a cluster
formed by developmental regulators (Figure 5c). This complex PPIs pattern is substituted
by a simpler and less dense network of interactions at 48 h of culture. Under these condi-
tions, the APAP concentration has been reduced substantially, and the acute stress response
disappeared. The community structure at 48 h is characterized by the maintenance of
amidases, as well as by the presence of enzymes involved in the metabolism of amino acids
and the appearance of the new PPI cluster composed of oxidases (Figure 5c).
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The analysis of the PPIs established among the proteins whose genes were downregu-
lated during APAP degradation showed a community transition pattern characterized by a
dense network of interactions at 24 h of culture, that rapidly disappeared at 48 h (Figure 6a).
At 24 h, the densest PPIs included oxidoreductases, dehydrogenases, ad nenzymes involved
in fatty acid and cholesterol biosynthesis, and kinases involved in cell-cycle regulation. The
transition between 24 and 48 h of culture was characterized by a dramatic decrease in the
complexity in the community structure, where the oxidases were substituted by enzymes
involved in mRNA metabolism, decarboxylases, and glucosidases.
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Figure 5. Analysis of the protein–protein interaction networks (PPIs) established among the pro-
teins whose coding genes were overexpressed during APAP biodegradation by P. chrysogenum var.
halophenolicum. The existence of the depicted PPIs was supported by the information deposited in
the STRING database [46]. (a) schematic representation of the density of interaction nodes among
the selected proteins at 24 h, 48 h, and 72 h of culture. (b) Venn diagram representing the number of
proteins included in all the PPIs at the analyzed culture times. (c) Sankey plot showing the changes
in community structure (densely connected groups of nodes) analyzed in the transition between 24 h
and 48 h of culture performed by the Netconfer algorithm [47], illustrating the most relevant families
of enzymes involved.
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Figure 6. Analysis of the protein–protein interaction networks (PPIs) established among the proteins
whose coding genes were downregulated during APAP biodegradation by P. chrysogenum var. halophe-
nolicum and supported by the STRING database [46]. (a) schematic representation of the density of
interaction nodes among the selected proteins at 24 h, 48 h, and 72 h of culture. (b) Venn diagram
depicting the number of proteins included in all the PPIs at the analyzed culture times. (c) Sankey plot
showing the changes in community structure (densely connected groups of nodes) analyzed in the
transition between 24 h and 48 h of culture performed by the Netconfer algorithm [47], representing
the most relevant families of proteins involved.

3.5. Putative Enzymes and Coding Genes Involved in APAP Degradation

Considering the already-described pathways for APAP bioremediation by different
microorganisms, we can conclude that at least three key families of enzymes should be
involved: amidases, deaminases, and aromatic ring oxidases [24,26,49]. Taking advantage
of the already-described transcriptomic data, we analyzed the expression time course of
the mRNAs encoding enzymes belonging to the described families and induced by the
presence of APAP in the culture media. The results of the analysis of the normalized gene
expression are depicted in Figure 7.
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We detected three amidases encoded by genes EN45_065010, EN45_051840, and 
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Figure 7. Normalized expression levels of selected gene transcripts encoding enzymes that are
putative involved in the degradation of APAP by the strain of P. chrysogenum. Scattered dot plots
represent the median value of expression and the standard deviation of the biological replicates.
(a) amidase encoded by the EN45_065010 gene; (b) amidase encoded by the EN45_051840 gene;
(c) deaminase encoded by the EN45_082420 gene; (d) cytochrome P450 encoded by the EN45_053090
gene; (e) laccase encoded by the EN45_044880 gene; (f) gentisate 1,2-dioxygenase encoded by the
EN45_009850; (g) extradiol ring-cleavage dioxygenase encoded by the EN45_005290 gene; (h) phenol
2-monooxygenase encoded by the EN45_029090 gene; and (i) DOPA 4,5-dioxygenase encoded by the
EN45_058950. Statistical significance of the comparisons determined by the EdgeR algorithm was
depicted by asterisks: *, p-value < 0.05; **, p-value < 0.001; ***, p-value < 0.0001; NS, nonsignificant.

We detected three amidases encoded by genes EN45_065010, EN45_051840, and
EN45_110750, whose transcripts were induced by the presence of APAP. The EN45_051840
gene transcript showed an early induction pattern favored by the presence of APAP, with
higher expression levels at 24 h of culture (Figure 7a), whereas the EN45_051840 was more
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expressed at 72 h of culture (Figure 7b). Among the induced mRNA transcripts, we were
able to detect an annotated transcript coding for a deaminase (EN45_082420) that also
showed an early induction pattern which was more evident when the fungal strain was
cultivated in the presence of APAP as the sole source of carbon (Figure 7c).

The group of genes encoding aromatic ring oxidases induced by the presence of
APAP was very diverse, including generic oxidoreductases as a P450-like cytochrome
(EN45_053090, Figure 7d), a laccase (EN45_044880, Figure 7e), a phenol monooxyge-
nase (EN45_029090, Figure 7h), two aromatic dioxygenases (EN45_009850, Figure 7f, and
EN45_058950, Figure 7i), and a ring-cleavage dioxygenase (EN45_005290, Figure 7g). The
general expression patterns of the corresponding coding genes during APAP degradation
showed an early transcriptional induction at 24 h of culture, followed by a slow decrease
in the mRNA levels at higher incubation times. Analyzing the normalized count levels,
the mRNAs transcribed from the EN45_005290, EN45_029090, and EN45_058950 genes
showed higher expression values, proportional to the remaining APAP concentration in
the culture supernatants (Figure 7g–i).

Considering the metabolic background of APAP degradation and the observed tran-
scriptomic pattern, we proposed two possible pathways for the metabolization of APAP by
P. chrysogenum var. halophenolicum (Figure 8). One of the proposed pathways could involve
the transformation of APAP to HQ by deamidation and deamination, and a further oxida-
tion by aromatic dioxygenases to generate linear compounds that should be introduced
in the TCA cycle. The other pathway could produce CAT as a major APAP metabolite
by coordinated hydroxylation, deamidation and deamination reactions (Figure 8). CAT
would be likely oxidized by an intradiol-dioxygenase to release small linear compounds
that would be used as a source of energy within the TCA cycle (Figure 8).
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1,3,4-trihydroxybenzene.

4. Discussion

In this study, we used a transcriptomic approach to illustrate the biodegradation of
APAP by a Penicillium strain. Our results showed that either under cometabolism or as the
sole carbon source, APAP can be efficiently removed by P. chrysogenum var. halophenolicum.
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Additionally, the APAP reduction was accompanied by a decrease in the corresponding
toxicity of the culture supernatants against HepG2 cells (Figure 1).

The degradation of APAP by other Penicillium strains has been previously demon-
strated [30,53]. Hart and Orr (1975) reported the utilization of APAP for growth by
Penicillium sp., when it was used as the sole carbon source. On the contrary, in P. chrysogenum
var. halophenolicum cultures, the degradation of APAP without a net increase n fungal
biomass was observed. At this point, we could speculate if the energy obtained from the
APAP degradation could be used as maintenance, defined as the energy consumed for func-
tions other than the production of new cell material. This maintenance component depends
on relative growth rates, relative death rates, growth yield, and endogenous metabolism [54].
The flow of catabolism towards the maintenance of energy is a phenomenon often observed
when a useful source of carbon and energy is present at a low concentration [55,56]. How-
ever, the APAP concentrations used in the present study were equal or higher than the
concentration used by Hart and Orr (1975) [30]. These results prompted us to ask if APAP
could be considered as a stress factor, and how carbon flux is channeled from APAP.

Model and clinical studies previously showed that the cellular toxicity of APAP is in
part due to its DNA damage activity [57]. Our transcriptomic data revealed the induction of
diverse genes encoding proteins related to the DNA damage response, especially at 24 h of
culture. This acute transcriptional pattern in response to the presence of APAP is consistent
with a stress effect, directly exerted over the fungal genome. Additional data that could
support this idea were obtained from the analysis of the downregulated gene transcripts
in the presence of APAP, that include a rich group of cell cycle regulators (Figure 5c). The
inhibition of cell cycle transitions and the induction of apoptosis by APAP has been already
described in eukaryotic cells [58].

Regarding the possible explanation of the carbon flow originated from APAP, the
experimental data suggested that the drug is mainly metabolized by catabolic enzymes to
produce energy. We obtained solid evidence that could support this hypothesis. Together
with the “lack of growth” (i.e., cell viability is maintained relatively constant) of the fungal
strain during APAP degradation, we also detected a visible induction of the expression of
genes involved in the catabolism of high-molecular-weight compounds (Figure 5c). This
overexpression was also accompanied by a downregulation of anabolic genes encoding
enzymes involved in lipid and cholesterol biosynthesis (Figure 6c). The described results
suggested that the carbon flux from APAP is mainly through the production of energy, that
contributes to the maintenance of the cellular functions in a situation of a limited cell prolif-
eration. In human cells, the anabolic suppression and decoupling of the energy metabolism
induced by APAP has been also described, resulting in a limited cell proliferation by the
suppression of the pathways required for cell growth [48].

Previous studies on the degradation of APAP by fungal strains postulated that APAP
transformation involves a deacetylation catalyzed by an amidohydrolase or hydrolytic
enzyme and subsequent aromatic ring fission [30,31,59], while the accumulation of 4-
aminophenol (PAP) in the growth media was observed in the Penicillium cultures [30], in
the Scedosporium dehoogii cultures, the APAP intermediates PAP and HQ were not found [31].
Recently, in the mixed culture with diclofenac, ibuprofen, naproxen, and ketoprofen, the
3-hydroxyacetaminophen was the metabolite detected from APAP transformation by a
Penicillium oxalicum strain [53]. In the present study, we were not able to detect any of the
cited intermediates. However, in the presence of APAP, we found three amidases (encoded
by the genes EN45_065010, EN45_051840, and EN45_110750) with different patterns of
expression in P. chrysogenum var. halophenolicum (Figure 7a,b and Figure 8). Since the
first step of APAP deacetylation is performed by an amidase, cleaving the amide bond,
we proposed the amidase (EN45_065010) that showed higher expression levels at 24 h, as
presumably an aryl-acylamidase. In Penicillium species, the existence of an aryl-acylamidase
and its function in the APAP degradation has been described before [30,60]. An alternative
first step for APAP transformation could be its hydroxylation, as previously described in
Penicillium oxalicum cultures [53]. In fact, the expression of the cytochrome P450 enzymes
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(encoded by EN45_053090) was observed in P. chrysogenum var. halophenolicum, particularly
in the cultures with APAP (APAP and GLU-APAP) (Figures 7d and 8). It is well known
that cytochrome P450 enzymes play a central role in drug and xenobiotic detoxification,
acting as terminal monooxygenases in several biochemical reactions such as hydroxylation
and deamination [61]. Aspergillus nidulans required an amidase and a protein belonging to
the cytochrome P450 superfamily for the utilization of benzamide [62]. Besides cytochrome
P450 enzymes, laccases could also act on APAP, leading to 3-hydroxyacetaminophen
formation [53]. A highly upregulated gene transcript encoding a laccase enzyme (encoded
by the gene EN45_044880) was detected in P. chrysogenum var. halophenolicum in the
presence of APAP at 24 h of culture (Figures 7e and 8). Laccases are known to oxidize
several phenolic substrates such as mono-, di-, polyphenols, methoxy-substituted phenols,
aromatic compounds, and amines, including acrylamines or aminophenols [63].

According to the pathway proposed by Rios-Miguel et al. for APAP biodegrada-
tion [26], after amidase action, the second step could involve a deaminase. We also found
a deaminase-domain-containing protein-encoding gene (EN45_082420) expressed in the
fungal strain (Figures 7c and 8). Therefore, it could be presumably involved in deaminating
PAP that leads to HQ.

Hydroquinone, a frequently detected metabolite of APAP degradation, was not found
in P. chrysogenum var. halophenolicum cultures. This result could be explained by its ca-
pability to use HQ as previously reported [35]. Therefore, it should be expected to find
the specific hydroquinone 1,2-dioxygenase, an enzyme directly involved in HQ metab-
olization [64]. Similarly, as the work reported by Rios-Miguel et al. in bacteria [26], the
fungal strain did not use a specific hydroquinone 1,2-dioxygenase. These authors sug-
gested gentisate 1,2-dioxygenase instead, due to the chemical similarity of both compounds
with two hydroxyl groups in para position [26]. In fact, a gentisate 1,2-dioxygenase (en-
coded by the gene EN45_009850) was identified (Figures 7f and 8). However, gentisate
1,2-dioxygenase was expressed in the presence of APAP, GLU-APAP, and glucose as well,
which makes the gentisate 1,2-dioxygenase (encoded by the gene EN45_009850) a weak
candidate for ring cleavage. Despite the hydroquinone 1,2-dioxygenase not being identified
in the fungal strain, a highly expressed extradiol ring-cleavage dioxygenase (encoded by
the gene EN45_005290) on APAP conditions in comparison with GLU condition was ob-
served (Figures 7g and 8). On the other hand, a phenol 2-monooxygenase (encoded by the
gene EN45_029090) and a Dopa 4,5-dioxygenase (encoded by the gene EN45_058950) were
highly expressed in APAP cultures (APAP and GLU-APAP) compared with the glucose
controls (Figure 7h,i and Figure 8). Therefore, an alternative route for HQ ring cleavage
could be through the hydroxylation of HQ to originate 1,2,4-trihydroxybenzene [26].

Structurally identical to HQ, catechol (CAT) might be the last aromatic compound
in the route of the 3-hydroxyacetaminophen (Figure 8). CAT degradation by P. chryso-
genum var. halophenolicum has been previously demonstrated. Moreover, we reported that
both dihydroxybenzenes, CAT and HQ, can be simultaneously removed by this fungal
strain [34].

This work demonstrates that P. chrysogenum var. halophenolicum possess a versatile
enzymatic system for the degradation of APAP. The degradation occurs without a signif-
icant increment in cellular mass and showed a transcriptomic pattern compatible with
a stress response induced by the presence of APAP. The APAP biodegradation could be
achieved using intracellular and extracellular enzymes, such as amidases, CYP450, laccases,
and extradiol dioxygenases, among others, making P. chrysogenum var. halophenolicum an
excellent candidate for APAP remediation.
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