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Abstract—DC microgrids are now starting to attract huge
attention from researches and engineers. Among the several DC
microgrid architectures, bipolar DC microgrids are advantageous
to accommodate a wider range of DC loads. However, due to
mismatched loads connected to the two poles, bipolar DC
microgrids may show voltage balancing issues. In this context,
this article presents a new high input-to-output voltage gain, non-
isolated DC–DC converter specifically designed for bipolar DC
Microgrids. The proposed converter supports the balance of
voltages at both bipolar DC microgrid poles, as the converter can
transfer energy between the two poles in an unbalanced way. The
description, theoretical support, and operation of the proposed
converter will be presented. The theoretical assumptions will be
complemented with several results obtained from computer
simulation tests. The simulation tests will be compared to
laboratory results from an experimental prototype. The obtained
results confirm the theoretical properties of the proposed
converter.

1. INTRODUCTION

Electrical infrastructures, especially at low voltage (LV),

are facing a paradigm change. In fact, now instead of

always using the classical AC grid, engineers have started

to consider using DC grids (or microgrids) [1–5]. DC grids

present strong advantages over the classical AC grids, such

as increased efficiency, no reactive power, and higher

power transfer capability [6–9]. In particular, the bipolar

microgrid architecture provides two symmetrical DC vol-

tages (þV, –V) and presents several advantages over most

of the unipolar DC microgrid architectures [10–13], namely

the possibility to fed a broader range of power loads.

Nevertheless, a bipolar microgrid may present a significant
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disadvantage related to the unbalance of the absolute val-
ues of the voltages in the positive (þV) and negative (–V)
poles. This unbalance may be originated by asymmetries in
the loads, generators, and storage systems connected to the
two DC poles. For example, typical PV generators use a
single input, single output DC–DC converter, therefore,
feeding only one of the bipolar microgrid poles. Even if
there are two PV generators, each one feeding its own DC
microgrid pole, to avoid pole voltage unbalances, each PV
generator must inject the exact energy needed for pole
voltage balancing, considering the loads at each pole,
therefore, impairing the PV generators maximum renew-
able power transfer capability. Hence, specifically designed
DC–DC microgrid converters able to eliminate or mitigate
microgrid pole unbalance issues are welcome.

Unbalance issues in bipolar DC microgrids can be miti-
gated through careful balancing over time, the power distri-
bution among the two poles of devices, like generators,
storage systems, and loads [14, 15]. However, due to ran-
dom variations in consumption and renewable generation,
it is difficult, without using extra power converters, to
ensure that the number of connected devices and their
powers are such that the net power in both poles is exactly
balanced over time. Therefore, the simple static equalizing
balancing strategy will not ensure the balance of a bipolar
DC microgrid as the number and power of loads and
renewable generators change stochastically. A better strat-
egy to balance the two voltages of bipolar DC microgrid
poles uses an extra power electronic converter called a
voltage balancer (VB) [16–18]. A VB converter allows
transferring the energy from one pole to the other pole,
dynamically ensuring the balance of the two bipolar DC
microgrid poles. However, besides the extra cost of the VB
converter, it also introduces additional power losses. A
third strategy to address the unbalance issue is to change
the type of DC–DC converter used in generators like
photovoltaic and/or fuel-cells. Instead of using the usual
single-input single-output DC–DC converter, a multiport
(single-input dual-output) DC–DC converter is devised.
The multiport converter must be designed to transfer the
energy as a function of the pole voltage unbalance [19–
25]. Thus, if the bipolar DC microgrid is balanced, sup-
posing unbalanced loads, then, the energy must be trans-
ferred to the positive and negative poles in an unbalanced
way. Otherwise, the multiport converter should transfer
most of the energy to the pole with lower absolute volt-
age value.

Not many multiport converter topologies have been pro-
posed for this type of bipolar DC microgrids, the subject

still being a new area under study. As photovoltaic panels
and fuel-cells present relatively low output voltage values,
usually DC–DC converters processing the output power of
these generators must have voltage boost characteristics
[26–30]. Consequently, the majority of the proposed topol-
ogies for bipolar DC microgrids are boost type converters.
Additional features related to boost converters are galvanic
isolation and high input-to-output voltage gain. Several
high gain topologies based on high frequency transformers
were proposed [31–33]. However, transformer isolation
presents some disadvantages like lower efficiency and core
saturation issues. Thus, several proposals were made to use
topologies without high frequency transformers. Some of
these topologies are characterized by a typical boost fea-
ture, with the standard Boost DC–DC converter static
input-to-output voltage gain or the double considering pole
to pole voltage [34–37]. However, although under the the-
oretical point of view the boost voltage gain can be very
high, in practice due to the losses and voltage drops the
standard boost presents a very limited voltage gain (<5).
This limitation led to the proposal of several converters
with extended static input-to-output voltage gains [38–43].
Nevertheless, the high majority of the proposed converters
with extended voltage gains are not well suited for bipolar
DC microgrids since they have only a single output.
Nevertheless, some extended gain converters were designed
for two outputs and with the capability to operate in differ-
ent conditions to support the balance of the microgrid. An
interleaved Boost converter with Greinacher voltage multi-
plier cells was revealed in Ref. [44]. A topology with an
additional inductor added to a conventional three-level-
boost converter was disclosed in Ref. [45]. Another top-
ology based on a boost converter integrated with a bipolar
Dickson voltage multiplier was proposed in Ref. [46]. A
converter that allows for some extended voltage gain was
also presented in work [47]. An extended gain topology
with continuous input current was also proposed in Ref.
[48]. However, some limitations of the aforementioned top-
ologies include relatively high losses, discontinuous input
current, high number of active semiconductor switches, or
many passive components, especially inductors.

Regarding the importance of the development of DC–
DC converters suited to address the unbalance issue of
bipolar DC microgrids, this article proposes a new con-
verter topology with capability to support the voltage bal-
ance of bipolar DC microgrids. The proposed self-balance
dual output (SBDO) converter is characterized by high
static input–output voltage gain, as well as, continuous
input current (Section 2). The proposed self-balance dual
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output converter, developed aiming to reduce the number
of passive components, is designed in Section 3. To show
the claimed features and theoretical assumptions, the article
includes several tests carried out by computer simulations
(Section 4) and by a laboratory prototype (Section 5).

2. PROPOSED DC–DC SBDO CONVERTER FOR
BIPOLAR DC MICROGRIDS

To mitigate voltage unbalances between the positive and
negative poles of a DC bipolar microgrid, DC–DC power
electronic converters, fed from PV panels or fuel cells,
should have continuous input current and dual outputs to
supply a bipolar DC microgrid. Taking into consideration
these requirements, the new DC–DC power electronic
SBDO converter topology is proposed, as shown in Figure
1. The SBDO converter has a single inductive input for
continuous input current and a double voltage source out-
put to allow the transfer of the input power to the two
poles of the bipolar DC microgrid in a balanced or unbal-
anced way. This feature contributes to the microgrid pole
voltage balance. The proposed SBDO converter also fea-
tures a boost characteristic with high input-to-output volt-
age gain.

For continuous input current, the proposed topology
must operate in the continuous conduction mode (CCM).
In CCM, if the two switches (S1 and S2) operate synchron-
ously, that is, when S1 is in the ON state S2 is also in the
ON state and vice-versa, the SBDO converter has only two
operation modes, as described hereafter:
� First operation mode - Mode 1 - (switches S1 and S2

ON, t0–t1): During the time span where both switches
are ON (Figure 2(a)), inductor L will receive energy

from the DC source (e.g., PV panel), aided by the dis-
charge of capacitor C1 in series with said DC source
via S1 and S2. If the absolute value of the negative
pole voltage Vo2 is smaller or equals the capacitor C2

voltage VC2, then, some energy from capacitor C2 will
be transferred to the negative pole capacitor Co2, via
S2 D5, up to the equilibrium of these two capacitor
voltages. Therefore, the negative pole voltage Vo2 is
linked to the capacitor C2 voltage VC2, except if
jVo2j> VC2. In this case, there is no energy transfer
from capacitor C2, up to the moment where the dis-
charge of Co2 will lead to VC2>jVo2j.

� Second operation mode - Mode 2 - (both switches
OFF, t1–T): During this time span both switches are
OFF (Figure 2(b)). In Mode 2, the energy stored in
inductor L can be transferred, via D1, to capacitor C1,
to capacitor C2 and to the output positive pole capaci-
tor Co1, via diodes D2, D3, and D4, respectively. These

FIGURE 1. Topology of the DC–DC SBDO converter
designed to support the balancing of bipolar DC
microgrids.

FIGURE 2. First (a) and second (b) operation modes of
the SBDO converter designed to be used in bipolar DC
microgrids.
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three capacitors are connected in parallel through the
diodes. Therefore, the positive pole voltage Vo1 is
linked to the capacitor C2 voltage VC2, except if Vo1 >
VC2. In this case, there is no energy transfer from cap-
acitor C2 to capacitor Co1, until Vo1 < VC2.

The proposed SBDO converter addresses the voltage
balancing issues of bipolar DC microgrids in the following
ways:
� In Mode 1, if jVo2j > VC2 no power is transferred

from C2 to Co2, until Co2 is sufficiently discharged,
therefore, promoting jVo2j � VC2;

� In Mode 2, if Vo1> VC2 no power is transferred to
Co1, until Co1 is sufficiently discharged, therefore, pro-
moting Vo1 � VC2;

� if jVo2j> VC2 power is only transferred to the positive
pole (during Mode 2);

� if Vo1> VC2 power is only transferred to the negative
pole (during Mode 1);

� if jVo2j � Vo1 � VC2 power is transferred to the posi-
tive pole during Mode 2 and to the negative pole dur-
ing Mode 1.

The combined effect of the two modes gives jVo2j �
Vo1 � VC2, therefore, self-eliminating voltage unbalances
in the bipolar microgrid.

Regarding the typical waveforms (Figure 3) associated
to the proposed SBDO converter, it can be seen that the
current in inductor L, iL, rises during Mode 1 and decreases
during Mode 2, being iL(t) > 0 to guarantee operation in
CCM. The current variation can be made small enough for
the PV or fuel-cell generator optimum operation by design-
ing the inductance value for a given switching frequency.
The microgrid output voltages jVo2j, Vo1, and capacitor
voltage VC2 are nearly constant and show nearly equal
average values. The voltages at the terminals of the active
semiconductors VS1, VS2, and diodes VD1, VD2, VD3, VD4,

and VD5, show semiconductors have to sustain only half of
the total output voltage.

To determine the static input-to-output voltage gain,
steady-state is considered at nearly constant capacitor vol-
tages to apply the inductor volt-second balance principle.
The inductor average voltage is zero in steady-state.
Considering the duty cycle d of both switches, (being d ¼
(t1/T)), the average value of the inductor voltage is:

VLav ¼ 0 ¼ 1
T

ðdT

0

Vi þ VC1ð Þdt þ
ðT

dT

Vi � VC1ð Þdt

2
64

3
75 ) VC1

¼ Vi
1

1� 2d
(1)

From Mode 2, it is concluded that VC2 � VC1 and Vo1

� VC2. From Mode 1, it is concluded that jVo2j � VC2.
Therefore, Vo1 � jVo2j � VC1:

Vo1 � Vo2j j � Vi
1

1� 2d
(2)

The total static input-to-output voltage gain of the pro-
posed SBDO converter, it is given by:

Vo ¼ Vo1 � �Vo2ð Þ � Vi
2

1� 2d
(3)

From the static input-to-output voltage gain of the
SBDO converter given in (3), it is seen that the SBDO
converter allows a relatively high gain. Figure 4 presents a
comparison of the static input-to-output voltage gain of the
SBDO converter regarding the classical Boost, the dual
Boost, and the Z-source converter.

3. DESIGN OF THE SBDO CONVERTER

The design of the SBDO converter assumes the CCM oper-
ation, ideal semiconductor devices and circuit components
together with the relationships presented in the previous
section.

As the SBDO converter is assumed to be conservative,
the input power equals the output power. Therefore, the
inductor current average value is expressed by (9).

ViIL ¼ VoIo ¼ 2
1� 2d

ViIo ) IL ¼ 2
1� 2d

Io (4)

The design of the inductor and capacitors will take into
consideration the rated voltages and current in these com-
ponents, as well as, the limitation of the ripples of the cur-
rent in the inductor and of the voltage in the capacitors.
Considering expressions (1) and (5), the condition to size

FIGURE 3. Current and voltage waveforms associated to
the CCM of the proposed SBDO converter to be used in
bipolar DC microgrids.
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the inductance is:

L ¼ t1 Vi þ VC1ð Þ
DIL

¼ d 1� dð ÞVi

1� 2dð ÞfsDIL
(5)

To size the capacitances, the rate of change of the cap-
acitor voltage (6) is assumed to be proportional to the cap-
acitor current. Then, the equations to size the capacitances
Co1 ¼ Co2, C1, C2 ¼ C3, are given by (7), (8), and (9),
respectively.

DvC
Dt

¼ iC
C

(6)

Co1 ¼ Co2 ¼ t1Io
DVCo1,o2

¼ dIo
fsDVCo1,o2

(7)

C1 ¼ t1IC1

DVC1

¼ 2 d Io
1� 2dð ÞfsDVC1

(8)

C2 ¼ C3 ¼ t2IC2

DVC2

¼ 1� dð Þ Io
fsDVC2

(9)

The previous assumptions will also be used to determine
the power semiconductor ratings. The power semiconduc-
tors (transistors and diodes) current ratings will be given
by expressions (10) to (13).

IS1 ¼ IS2 ¼
4d

1� 2d
þ 1
d

� �
Io (10)

ID1 ¼
4 1� dð Þ
1� 2d

þ 1
1� d

� �
Io (11)

ID2 ¼ ID3 ¼ ID4 ¼
1

1� d
Io (12)

ID5 ¼
1
d
Io (13)

The power semiconductors voltage ratings are estimated
neglecting the voltage ripple in the capacitors. The min-
imum voltage capability required for each power semicon-
ductor is given by expressions (14) and (15).

VS1 ¼ VS2 ¼ VD1 ¼ VD2 ¼ VD4 ¼ VCo1 ¼
Vo

2
(14)

VS2 ¼ VD4 ¼ VCo1 ¼
Vo

2
(15)

4. SIMULATION RESULTS

This section presents some simulation results of the pro-
posed DC–DC SBDO converter using the
MATLAB/Simulink software. The proposed SBDO con-
verter component values for capacitors are Co1 ¼ Co2 ¼
470 mF, C1 ¼ C2 ¼ 48 mF and for inductor L¼ 600 mH.
The SBDO converter is supplied by a single DC voltage
source of 48VDC and the output of the bipolar DC micro-
grid was adjusted through the duty cycle to obtain
±170VDC, which is a quite common voltage for bipolar
DC microgrids. The switching frequency selected was
20 kHz and the initial load was considered to equal 140 X
in each pole. The operation mode of the DC–DC SBDO
converter was tested in CCM and steady-state. The first
simulation result presents the input and output voltages of
the SBDO converter (Figure 5(a)) showing the obtained
voltage gain from 48VDC to 340 VDC (total voltage).
Figure 5(b) shows the voltage over the power devices with
a switching frequency of 20 kHz and a duty-cycle of 0.36.
This figure shows that the maximum hold-off voltage in
each power device is around 170 V. The input current (see
Figure 5(c)) in the inductor L of the SBDO converter
shows the CCM operation at an average value around
15A. The nearly 7A peak-to-peak ripple allows expecting
CCM operation of the SBDO converter down to nearly
3.5A input inductor averaged current.

The capability of the proposed SBDO converter to sup-
port the bipolar DC microgrid voltages with unbalanced
loads was evaluated creating a simulated transient test.
Prior to the transient test, the microgrid was balanced (con-
sidering the same load in each pole). After t¼ 1.2msec the
load of the negative pole changed from 140 X to 100 X,

FIGURE 4. Comparison of the static input-to-output volt-
age gain function of the duty cycle between the classical
Boost, the dual Boost, the Z-source converter, and the pro-
posed SBDO converter.

Pires et al.: A High-Voltage Gain Non-Isolated DC–DC Converter Designed for Bipolar DC Microgrids 1175



resulting in a current increment as can be seen in Figure
6(a). This figure shows that only the output current (Io2)
associated to the negative pole increases while the current

of the positive pole (Io1) remains constant. Figure 6(a) con-
firms that the positive output voltage average value is not
affected by the unbalance in the negative pole load, as the
average values of jVo2j � Vo1 do not change significantly,
in spite of the shown transient in the instantaneous pole
voltages to accommodate the load unbalance. This confirms
that the operation of the SBDO converter allows more
energy transfer for the pole that most requires it.

5. EXPERIMENTAL RESULTS

This section presents some experimental tests and obtained
results using a laboratory prototype. These experiments
tests were made using components with similar values to
those presented in the simulation section. All the tests were
executed with a duty-cycle providing CCM operation.

Similarly to the simulation tests, the first experimental
test was performed in steady state conditions and balanced

FIGURE 5. Results obtained by simulation of the SBDO
converter designed for the bipolar DC microgrid: (a) vol-
tages of the input source and SBDO converter output; (b)
voltages over transistors S1 and S2; (c) input current of the
proposed SBDO converter.

FIGURE 6. Results obtained by simulation of the SBDO
converter designed for the bipolar DC microgrid when
there is a suddenly change in the load connected to the
negative pole: (a) Output currents of the proposed SBDO
converter and (b) voltages across capacitors C1 and C2.
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loads in the bipolar DC microgrid. The obtained voltage
gain can be seen in Figure 7(a). Considering an input volt-
age of 48VDC, it was obtained a total output voltage over
340VDC which demonstrates the high input-to-output volt-
age gain of the proposed SBDO converter. Similarly, the
voltage over the power devices and input current can be

seen in Figures 7(b) and 7(c). Observing these results it is
possible to conclude that they are similar to those shown in
the simulation and with agreement with the theoretical
analysis.

An experimental transient analysis was also made to
demonstrate the proposed SBDO converter capability to
support unbalanced loads in the bipolar DC microgrid. In
the beginning of this second experimental test, the loads
connected to the two microgrid DC poles were nearly
equal to obtain balanced operation. Then, after some time,
in the microgrid negative pole an additional resistive load
was manually switched on to create an unbalanced condi-
tion. Figure 8(a) shows the abrupt increase in the negative
DC pole current at the instant in which the load was
switched on. As the added load is resistive almost no cur-
rent establishing transient can be seen. After the fast transi-
ent mode the input current stabilizes around a higher

FIGURE 7. Results obtained through laboratory tests of
the SBDO converter designed for the bipolar DC micro-
grid: (a) voltages of the input source and SBDO converter
output; (b) voltages over transistors S1 and S2; (c) input
current of the proposed SBDO converter.

FIGURE 8. Results obtained through laboratory tests of
the SBDO converter designed for the bipolar DC microgrid
when there is a suddenly change in the load connected to
the negative pole: (a) Output currents of the proposed
SBDO converter and (b) voltages across capacitors C1

and C2.
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average value. Conversely, the current in the positive
remains constant, which indicates that the positive output
voltage is not affected by the unbalance in the negative
pole load. This demonstrates that a load change in one DC
pole, does not affect the other pole, implying only current
variations in the pole current itself and in the SBDO con-
verter input current. Figure 8(b) also shows the transient
behavior of the SBDO converter voltages to load variation,
which present dynamics with acceptable transient response.

6. CONCLUSIONS

This work addressed the problem of bipolar microgrids volt-
age unbalance, through the proposal of a new self-balance
dual output converter to be powered from photovoltaic pan-
els or fuel cells. The proposed SBDO converter presents
boost characteristics with high input-to-output voltage gain,
continuous input current, and dual complementary output.
Since in bipolar DC microgrids voltage unbalances between
their poles may appear, mainly due to load unbalance, the
proposed SBDO converter allows to transfer of energy to the
dual output in a balanced or unbalanced way. If the voltage
absolute value at one of the poles is lower than the voltage at
the other pole, then the SBDO converter will only transfer
energy to the pole with the lower voltage helping to achieve
the microgrid balance. Another characteristic of the SBDO
converter is that it uses only two active switches that operate
synchronously. Besides the description of the operation of
the proposed SBDO converter, the article also presented the
design of the topology. To confirm the referred characteris-
tics of the proposed SBDO converter, several tests were per-
formed. These tests were made in two different ways,
namely through computer simulations and using a laboratory
prototype. The results obtained in simulations and in the
laboratory confirmed the important SBDO converter feature
to correctly operate in balanced or unbalanced load condi-
tions. In fact, when the DC microgrid was balanced, the
SBDO converter delivered the energy in a balanced way to
the positive and negative poles. However, when the micro-
grid was unbalanced, the results showed that the energy was
only transferred to the pole with the voltage with a lower
absolute value. The shown results confirm the suitability of
the SBDO converter to be used in bipolar DC microgrids.
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