
Citation: Freitas, N.; Araújo, S.O.;

Alemão, D.; Ramos, J.; Guedes, M.;

Gonçalves, J.; Peres, R.S.; Rocha, A.D.;

Barata, J. Cloud-Based Machine

Learning Application for Predicting

Energy Consumption in Automotive

Spot Welding. Processes 2023, 11, 284.

https://doi.org/10.3390/pr11010284

Academic Editors: Fabricio

Napoles-Rivera and Mohd

Azlan Hussain

Received: 5 December 2022

Revised: 6 January 2023

Accepted: 13 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Cloud-Based Machine Learning Application for Predicting
Energy Consumption in Automotive Spot Welding
Nelson Freitas 1,2,* , Sara Oleiro Araújo 1,3 , Duarte Alemão 1,2 , João Ramos 4, Magno Guedes 4 ,
José Gonçalves 4, Ricardo Silva Peres 1,2 , Andre Dionisio Rocha 1,2 and José Barata 1,2

1 UNINOVA Centre of Technology and Systems (CTS), FCT Campus, Monte de Caparica,
2829-516 Caparica, Portugal

2 Department of Electrical and Computer Engineering, NOVA School of Science and Technology, NOVA
University of Lisbon, 2829-516 Caparica, Portugal

3 Earth Sciences Department (DCT), School of Science and Technology, NOVA University of Lisbon,
2829-516 Caparica, Portugal

4 Introsys S.A., Estrada dos 4 Castelos 67, 2950-805 Quinta do Anjo, Portugal
* Correspondence: n.freitas@uninova.pt

Abstract: The energy consumption of production processes is increasingly becoming a concern for
the industry, driven by the high cost of electricity, the growing concern for the environment and the
greenhouse emissions. It is necessary to develop and improve energy efficiency systems, to reduce
the ecological footprint and production costs. Thus, in this work, a system is developed capable of
extracting and evaluating useful data regarding production metrics and outputs. With the extracted
data, machine learning-based models were created to predict the expected energy consumption of
an automotive spot welding, proving a clear insight into how the input values can contribute to the
energy consumption of each product or machine, but also correlate the real values to the ideal ones
and use this information to determine if some process is not working as intended. The method is
demonstrated in real-world scenarios with robotic cells that meet Volkswagen and Ford standards.
The results are promising, as models can accurately predict the expected consumption from the
cells and allow managers to infer problems or optimize schedule decisions based on the energy
consumption. Additionally, by the nature of the conceived architecture, there is room to expand and
build additional systems upon the currently existing software.

Keywords: data prediction; energy consumption; Industry 4.0; machine learning; manufacturing;
optimization

1. Introduction

The environmental aspect of the industry in today’s world is increasingly becoming
a concern among producers and clients. It is expected that the product will not only be
reasonably priced and of high quality, but also that it will have a low environmental impact,
either due to the materials used or due to the manufacturing process [1].

Industry 4.0 focuses on the digitalization and optimization of processes, through
the interaction of different system components, often utilizing technologies such as the
Internet of Things (IoT) or Cyber-Physical Production Systems (CPPS) to achieve the
desired results. Nevertheless, the usage of such systems is often not enough, as with the
arrival of mass customization and ever-increasing difficulties in optimizing the processes,
especially with the high consumption of raw resources, energy and information, the process
become increasingly more difficult to optimize as more variables are put in place and more
processes differ from product to product. It is necessary to better these systems to tackle
with the new difficulties of increasing the process making and product personalization
efficiency of the Industry 4.0 paradigm. As society becomes more aware of the problem,

Processes 2023, 11, 284. https://doi.org/10.3390/pr11010284 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11010284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4616-0723
https://orcid.org/0000-0001-6192-8409
https://orcid.org/0000-0002-0785-8451
https://orcid.org/0000-0002-2450-8349
https://orcid.org/0000-0003-3777-1346
https://orcid.org/0000-0003-0874-7099
https://orcid.org/0000-0002-6348-1847
https://doi.org/10.3390/pr11010284
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11010284?type=check_update&version=2

Processes 2023, 11, 284 2 of 25

new solutions start to be developed with the idea of mitigating the losses and optimizing
the processes [2].

With the present focus on energy reduction and efficiency, there are several processes
that help reduce or optimize energy consumption. The solution is frequently a combination
of methods based on passive and active energy consumption reduction. The passive energy
consumption reduction method does not actively need action to effectively reduce the
energy consumption, for example, the Trombe wall, lightweight concrete wall, natural
ventilation, roof greening and architectural design [3]. On the other hand, the active energy
consumption optimization methods actively need to consider, either by software or human
resources, the energy consumption data for their decisions, for example, by minimizing the
time of support activities that do not create value, updating to more electrical efficiency
components and integrating high-level production management decision with energy data
such as production planning and scheduling, demand response, machine configuration
and logistics [4]. Furthermore, this energy consumption must also be reflected in an
optimization of the industrial manufacturing process, resulting in a decrease in expenses
on the electricity bill.

This work focuses on the use of a machine learning (ML) cloud-based application to
optimize the energy consumption of the manufacturing process with regards to the welding
of automotive parts in compliance of the Ford and Volkswagen (VW) industrial parameters.
To be able to achieve this goal, a brief introduction of the cloud applications in the industry
and ML for energy management is conducted in the next section.

1.1. Cloud Applications

In Industry 4.0, the utilization of cloud-based applications is becoming a staple, with
programs running in a cloud environment able to be more easily accessed by all interested
parties, be they humans, machines or software programs. In the literature, several examples
can be found of software applications running in the cloud that add value to the systems or
products of a factory. Some of them utilize software to monitor and predict or track the
state and maintenance of the equipment [5]. Others use this cloud-based software to control
the schedule, as it is one of the most important areas of the manufacturing process that
is often conducted in a rudimentary manual way [6]. A good approach to improving the
way scheduling is conducted is implementing service-based cloud software, which helps
the whole factory easily implement, modify or adjust the production schedule [7,8]. An
additional use of the cloud technology is the utilization of such software for collaboration
in new ways. The software being in the cloud allows an easier approach to working with
manufacturing as a service, not only with the final client but also in collaboration with other
factories [9,10]. Another growing use is the fact that the cloud-based approach facilitates
the usage and collection of elevated volumes of information. This approach allows the
centralization of the data to a specific piece of software or specific database, allowing it
to be worked on or correlated with other data or events [11]. In [12], the authors propose
an automated system using Artificial Intelligence (AI) connected to an online shopping
platform that allows the robot to pick the list of products demanded in by the costumer,
revealing a flow of data between a cloud platform and a robot, also allowing the delivery of
some information back from the robot to the cloud-base management platform. Last comes
the utilization of such software to help in the management of resources. An example comes
from the usage of cloud services integrated with additive and subtractive manufacturing to
boost resource efficiency [13].

As seen previously, cloud-based applications can help optimize the production and
processes of the industry, and it can be an important tool to minimize the production cost,
in this case by optimizing the energy consumption for the production. There are already
articles demonstrating the usage of cloud-based software regarding the optimization of
energy consumption [14,15]; nevertheless, it usually does not demonstrate all the processes
from the shopfloor to the cloud-based applications, besides having a clear and real-world
test scenario regarding the usage of such methods.

Processes 2023, 11, 284 3 of 25

1.2. Machine Learning for Energy Consumption Prediction and Management

We are currently in the era of IoT and Big Data, that is, at every moment, huge amounts
of data are produced all over the world, far beyond what a human can process. As a result
of this constant torrent of information, methods of data analysis emerge, which is what
ML provides. ML can be broadly defined as a subfield of AI, which gives certain machines
the ability to learn, without being explicitly programmed to, from computational methods
that use “experience” (training data), such as information and/or past events, to improve
performance or to make accurate predictions [16–18].

The evolution in technology leads large organizations to entrust the control and
monitoring of data to ML algorithms. Basically, ML can be applied to large volumes of data
to produce deeper insights and improve decision-making, so that industries can improve
their operations and competitiveness. There are many ML-based functionalities used these
days.

According to [19], there are five potential game changing use cases from across in-
dustries that uses Big Data applications for ML techniques: (a) condition monitoring, (b)
quality diagnostics, (c) energy optimization, (d) demand prediction, and (e) propensity
to buy.

Focusing on topic energy optimization, which is one of the issues described in this
document, in the industrial sector, the continuous increase in energy consumption and
the scarcity of non-renewable resources force several industrial entities to search for new
methods to improve energy management and, hence, saving costs. In an interesting
review of energy management in the industry provided by [20], the authors identified
five high-level energy efficiency functions, and their specific objectives, using ML tools,
namely: (a) Estimation: (i) energy efficiency metrics resolution; (ii) benchmark and baseline
identification. (b) Prediction: (i) input-output model development; (ii) energy consumption
trend prediction. (c) Analysis: (i) operating modes classification and identification; (ii)
identification of saving potentials and energy savings; (iii) identification of key variables for
energy efficiency; (iv) quantification of energy consumption per product. (d) Optimization:
(i) corrective actions; (ii) optimal scheduling; (iii) optimal control; (iv) optimal process
settings; (v) robustness. (e) Technology and scale: (i) technology assessment; (ii) scale
assessment.

Currently, predictive analytics are seen as a game changer for the industry. Due to
the importance of optimizing energy consumption, many researchers are exploring the
use of different types of ML algorithms to forecast energy consumption. Some examples
are Decision trees and Random Forest, Linear and non-linear regression and Artificial
Neural Networks (ANN) [21]. For example, the authors in [22] studied various models to
predict energy consumption for a smart small-scale steel industry, namely: general linear
regression, decision tree-based classification and regression trees, Random Forest, Support
Vector Machine with a radial basis kernel, K-nearest neighbors and CUBIST. In [23], the
authors proposed an hourly building energy prediction model using Random Forest and
compared it with regression tree and Support Vector Regression. In [24], an intelligent
reasoning system is presented, featuring energy consumption prediction and optimization
of cutting parameters in milling process. ANN and Intelligent Case Based Reasoning (ICBR)
are used for providing accurate estimation of cutting power. The authors of [25] designed
a supervised ML-approached analytic modeling to predict a sustainable performance for
power consumption in the metal cutting industry. In [26], a predictive approach was
proposed using deep learning-driven techniques to reduce energy consumption in additive
manufacturing.

1.3. This Work’s Contribution

This specific work’s contributions revolve around the Introsys company and the
necessity to improve the energy efficiency of the production. Having an already-established
infrastructure of collecting and storing production and energy consumption data [27], the
next logical step is to expand upon what is already built and develop new systems cable of

Processes 2023, 11, 284 4 of 25

helping the shopfloor managers make the best decisions regarding the scheduling of the
production and the correct functioning of the machinery.

Building upon the aforementioned infrastructure, new cloud tools were developed to
provide easy access across the whole plant the ML predictive models. Moreover, the data
model was improved to accommodate the predictive model’s necessary inputs and register
the outputs and finally the improve of the HMI, to accommodate the ML predictive models
output and facilitate the view of the relevant data either by the shopfloor worker or the
manager.

Regarding the predictive analysis, two ML algorithms (Linear regression and Random
Forest) are used to create the ML predictive models to create energy profiles of two robotics
cells (Ford and VW) and to predict the energy consumption of these same cells.

This approach will allow industrial entities to have a better view of their energy con-
sumption, helping them to lower costs and have a better decision-making, thus achieving
both sustainability and production goals.

2. Materials and Methods

This section contains the methods, specifications, materials and approaches of the
work done to demonstrate the implementation and utility of the presented work. First, the
system architecture is presented, using a middleware in the cloud responsible for being the
bridge between the communication among different cloud applications (e.g., prediction
software, database and data visualization software) or shopfloor machinery. Second, to
achieve this setup, a deployment of the cloud environment, made with containers, was
implemented. This deployment was made with the software portainer.io using Docker
containers, where different containers represent the different software deployed and one of
these containers included the prediction software responsible for the energy consumption
prediction of the given machines. ML was used to train the prediction software, utilizing
data available from previous productions in the robotic cells, and correlating it with the
energetic consumption, ultimately making the prediction models.

Despite the architecture and methodology being valid for the complete shopfloor
processes, for demonstration purposes, it was used two robotic cells. The use of any
another machine from the shopfloor process will utilize the same principles demonstrated
for these two robotic cells.

2.1. System Architecture

The architecture used for the use case demonstration in this paper is presented in
Figure 1. The presented architecture can be divided into three focus areas: the shopfloor,
the middleware and the cloud software (applications).

On the shopfloor, there is a representation of the machinery present in a common
producing factory. This symbolizes the types of machines with their different and respective
categories. The main restriction, however, is that it should be possible to extract data from
the machine either by having external sensors/devices that can extract the state and metrics
of the machine or by internally the machine be able to communicate these states and metrics
to external entities. The communication is also highlighted here, where different machines
can communicate with the middleware through different methods, either by dedicated
libraries allowing the more technologically advanced machines to be able to directly connect
to the middleware through publish/subscribe or a streaming service approach. For the rest
of the machines, an auxiliar program can collect the data and publish in the middleware
and, finally, the middleware can also provide a REST API (Application Programming
Interface) so that some machines, sensors or programs can communicate through HTTP
(Hypertext Transfer Protocol), collecting or sending data to the middleware.

After the data are extracted, they are sent to the middleware that is responsible for
handling all the communications from the shopfloor machines and between the cloud appli-
cations. The middleware based on a publish/subscribe approach allows the introduction of
several new and different machines without the need for complicated integration of all the

Processes 2023, 11, 284 5 of 25

other machines. The new machines need only to connect with the middleware and, after
the connection is successful, subscribe and publish to the relevant topics. The same can
be said for cloud applications, as the new software only needs to be able to communicate
with the middleware, using one of the mechanisms at its disposal, and utilize the available
data to execute the application process and then publish the results. The machines can
also receive and publish different types of data, granting other machines or software the
possibility to use this data as they deem fit and change parameters or tasks as the data
changes. The approach of publish/subscribe allow one of the main advantages of the
usage of the architecture, being the scalability of the shopfloor, machinery or local and
cloud-software only by needing the new systems to connect to the middleware.

Processes 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 1. System architecture.

On the shopfloor, there is a representation of the machinery present in a common
producing factory. This symbolizes the types of machines with their different and
respective categories. The main restriction, however, is that it should be possible to extract
data from the machine either by having external sensors/devices that can extract the state
and metrics of the machine or by internally the machine be able to communicate these
states and metrics to external entities. The communication is also highlighted here, where
different machines can communicate with the middleware through different methods,
either by dedicated libraries allowing the more technologically advanced machines to be
able to directly connect to the middleware through publish/subscribe or a streaming
service approach. For the rest of the machines, an auxiliar program can collect the data
and publish in the middleware and, finally, the middleware can also provide a REST API
(Application Programming Interface) so that some machines, sensors or programs can
communicate through HTTP (Hypertext Transfer Protocol), collecting or sending data to
the middleware.

After the data are extracted, they are sent to the middleware that is responsible for
handling all the communications from the shopfloor machines and between the cloud
applications. The middleware based on a publish/subscribe approach allows the
introduction of several new and different machines without the need for complicated
integration of all the other machines. The new machines need only to connect with the
middleware and, after the connection is successful, subscribe and publish to the relevant
topics. The same can be said for cloud applications, as the new software only needs to be
able to communicate with the middleware, using one of the mechanisms at its disposal,
and utilize the available data to execute the application process and then publish the
results. The machines can also receive and publish different types of data, granting other
machines or software the possibility to use this data as they deem fit and change
parameters or tasks as the data changes. The approach of publish/subscribe allow one of
the main advantages of the usage of the architecture, being the scalability of the shopfloor,

Figure 1. System architecture.

Finally, the cloud applications, use the data at their disposal to generate information
or knowledge, which is then stored in a database or passed as parameters to the shopfloor.
These applications can vary in complexity and usefulness, as they can be databases, opti-
mization software, data visualization applications and data processing software, among
many other useful applications relevant to the industrial environment.

This architecture was designed with a focus on the energetic optimization of a company,
as several machines produce and send energetic consumption data to the cloud, meant
to be processed and create metrics to visualize the energy consumption and alert in the
event of abnormal energy consumption. A cloud-based optimization software can also be
used to direct production and optimize the velocity in terms of energy consumption or
delivery times.

Regarding the communication between the different devices of the architecture, an
activity diagram was created, see Figure 2. The diagram, which will support the imple-
mentation, demonstrates how the different systems communicate with each other. It can
be seen in the diagram that the communication between the shopfloor machinery starts
after the end of production, and all the relevant metrics are sent to the message broker. The
message broker not only stores the data in the database but also allows other programs
to subscribe to the topic and receive the subscribed metrics. Finally, the communication

Processes 2023, 11, 284 6 of 25

between the message broker and the predictor is highlighted. After receiving the data, the
predictor utilizes the input machinery data to predict the energy consumption. Then, after
concluding the prediction, the software sends the new data to another topic of the message
broker with the objective of storing the data in the database.

Processes 2023, 11, x FOR PEER REVIEW 7 of 26

Figure 2. Activity diagram of the architecture.

2.2. Demonstration Scenario
The demonstration scenario for the beforementioned solution was based on the

current robotic assembly cells used in Introsys SA installations, in Quinta do Anjo,
Portugal, for testing and training (Figure 3). These cells were first introduced during
Proflex project, with the main objective of closing the gap between academia and
industrial manufacturers by providing pilots, which represent the reality of actual
production lines regarding equipment, safety and control standards used and approved
by the automotive industry, yet they do not take in to account the major drawbacks and
risks of cells imbedded in production lines, where changes and new integrations cannot
be made with ease due to the risk of causing disruptions to the production line itself and
its respective value chain. Each one implements several spot-welding processes and
comprises a 6-DoF robotic arm with a custom gripper attached, a fixture into which the
operator inserts and removes the product before and after the process, a stationary
welding gun and several sensors to monitor energy consumption for the different
components mentioned.

Figure 2. Activity diagram of the architecture.

2.2. Demonstration Scenario

The demonstration scenario for the beforementioned solution was based on the current
robotic assembly cells used in Introsys SA installations, in Quinta do Anjo, Portugal, for
testing and training (Figure 3). These cells were first introduced during Proflex project, with
the main objective of closing the gap between academia and industrial manufacturers by
providing pilots, which represent the reality of actual production lines regarding equipment,
safety and control standards used and approved by the automotive industry, yet they do
not take in to account the major drawbacks and risks of cells imbedded in production lines,
where changes and new integrations cannot be made with ease due to the risk of causing
disruptions to the production line itself and its respective value chain. Each one implements
several spot-welding processes and comprises a 6-DoF robotic arm with a custom gripper
attached, a fixture into which the operator inserts and removes the product before and after
the process, a stationary welding gun and several sensors to monitor energy consumption
for the different components mentioned.

Processes 2023, 11, 284 7 of 25Processes 2023, 11, x FOR PEER REVIEW 8 of 26

Figure 3. Introsys welding industrial robotic cells (Left: VW station; Right: Ford station).

The workstations, for each cell, were designed to automatically manipulate and
simulate spot welding processes on a side member car part, and both can perform the
exact same processes. Nevertheless, the main difference between them is the compliance
with two different major car manufacturers standards, which rule the adoption of
equipment suppliers, control systems, safety approaches, programming methods and
tools. Bearing this in mind, the demonstration scenario mentioned provides the ideal
conditions to show the interoperability of the system when deployed in actual execution
processes from different end-users. Additionally, with both cells having multiple welding
programs available, they can handle multiple product variants (types) and the process
may be described as follows: (i) the operator deploys the car part on the fixture; (ii) the
robot moves the part from the fixture to a stationary welding gun; (iii) the part is moved
to a vision-based quality inspection system; (iv) the part is moved back to the fixture.
When simulating spot welding, several different welding spots need to be set; therefore,
the robot needs to reposition the product in relation to the welding gun for each spot.

Furthermore, both cells integrate an orchestrator that follow Industry 4.0 ideologies,
regarding the ability of devices to provide a free flow of information between the shop
floor and cloud systems, such as the one proposed in this article. This orchestrator, shown
in Figure 4, is composed of four major components: (i) the Station Server, which is
responsible for controlling unit production processes, named skills, and collecting raw
sensor data from the equipment of a generic cell; (ii) the Device Adapter, which is
responsible for controlling complex production processes, named recipes, and transform
the raw sensor data obtained in the Station Server into relevant key performance
indicators(KPIs); (iii) the Enterprise Information Bus, which is responsible for handling
communications between the components, managing production orders and to provide
interfaces that allow the transfer of data to outside systems; and finally, (iv) the MES,
which is responsible for the distribution of products to be produced across the available
stations in the system. This separation of responsibilities into several components allowed
the orchestrator to be more agile and flexible, when confronted with different end user
requirements, making it relevant to a wider array of possible implementations.

Figure 3. Introsys welding industrial robotic cells (Left: VW station; Right: Ford station).

The workstations, for each cell, were designed to automatically manipulate and
simulate spot welding processes on a side member car part, and both can perform the exact
same processes. Nevertheless, the main difference between them is the compliance with
two different major car manufacturers standards, which rule the adoption of equipment
suppliers, control systems, safety approaches, programming methods and tools. Bearing
this in mind, the demonstration scenario mentioned provides the ideal conditions to
show the interoperability of the system when deployed in actual execution processes
from different end-users. Additionally, with both cells having multiple welding programs
available, they can handle multiple product variants (types) and the process may be
described as follows: (i) the operator deploys the car part on the fixture; (ii) the robot
moves the part from the fixture to a stationary welding gun; (iii) the part is moved to a
vision-based quality inspection system; (iv) the part is moved back to the fixture. When
simulating spot welding, several different welding spots need to be set; therefore, the robot
needs to reposition the product in relation to the welding gun for each spot.

Furthermore, both cells integrate an orchestrator that follow Industry 4.0 ideologies,
regarding the ability of devices to provide a free flow of information between the shop floor
and cloud systems, such as the one proposed in this article. This orchestrator, shown in
Figure 4, is composed of four major components: (i) the Station Server, which is responsible
for controlling unit production processes, named skills, and collecting raw sensor data
from the equipment of a generic cell; (ii) the Device Adapter, which is responsible for
controlling complex production processes, named recipes, and transform the raw sensor
data obtained in the Station Server into relevant key performance indicators(KPIs); (iii) the
Enterprise Information Bus, which is responsible for handling communications between
the components, managing production orders and to provide interfaces that allow the
transfer of data to outside systems; and finally, (iv) the MES, which is responsible for
the distribution of products to be produced across the available stations in the system.
This separation of responsibilities into several components allowed the orchestrator to be
more agile and flexible, when confronted with different end user requirements, making it
relevant to a wider array of possible implementations.

Regarding the use case at hand, the orchestrator provided was parameterized to: (i)
allow production in both stations simultaneously, following rules in order to decrease
station idle times; (ii) allow the production of two different products, using 5 (Weld) and 8
(Weld Complex) welding points, respectively; and (iii) report for each product produced
the following KPIs: Duration, Consumption, Robot Consumption and Cell Consumption,
verified in each skill and recipe executed. In addition, the communication protocol used

Processes 2023, 11, 284 8 of 25

between the internal components of the orchestrator was OPC-UA, since this is still one
of the most widely accepted protocols in the industry, and to export the data to populate
the various Execution Data Tables, in order to publish product, recipe and KPI execution
information.

Processes 2023, 11, x FOR PEER REVIEW 9 of 26

Figure 4. Orchestrator provided with the Introsys cells.

Regarding the use case at hand, the orchestrator provided was parameterized to: (i)
allow production in both stations simultaneously, following rules in order to decrease
station idle times; (ii) allow the production of two different products, using 5 (Weld) and
8 (Weld Complex) welding points, respectively; and (iii) report for each product produced
the following KPIs: Duration, Consumption, Robot Consumption and Cell Consumption,
verified in each skill and recipe executed. In addition, the communication protocol used
between the internal components of the orchestrator was OPC-UA, since this is still one
of the most widely accepted protocols in the industry, and to export the data to populate
the various Execution Data Tables, in order to publish product, recipe and KPI execution
information.

2.3. Deployment
There are multiple ways to deploy software in the cloud, either by using several open

software services, such as Cloud Foundry, or privately owned clouds, such as in the case
of Google Cloud or Microsoft Azure. The most notable feature of most cloud-based
software deployment platforms is their operation, as they typically use a container-based
approach to deal with the deployed software. Thus, a privately owned server with a
container-based approach can work very similarly to the core base of this software. As
such, the portainer.io software was used to instantiate the system architecture. This
software allows the user to easily deploy, configure and secure containers on Docker,
Kubernetes, Swarm and Nomad in any cloud, datacenter or device. Figure 5 depicts the
Introsys server with the portrainer.io software, where several Docker containers are
deployed. Each container can be described as a single program or system that is self-
contained and can only communicate with other containers or with the outside in specific
channels. The Docker software also has a repository with several programs built and
ready to use, with the added advantage of being separated by version. This allows the
same version to be deployed and maintained, facilitating the transitions from the test
environment to the industrial sector or maintaining a compatible version that may break
in later versions. Finally, the user’s own container can also be deployed, with a set of
software and connections deemed useful for the situation and allowing the Docker

Figure 4. Orchestrator provided with the Introsys cells.

2.3. Deployment

There are multiple ways to deploy software in the cloud, either by using several
open software services, such as Cloud Foundry, or privately owned clouds, such as in the
case of Google Cloud or Microsoft Azure. The most notable feature of most cloud-based
software deployment platforms is their operation, as they typically use a container-based
approach to deal with the deployed software. Thus, a privately owned server with a
container-based approach can work very similarly to the core base of this software. As such,
the portainer.io software was used to instantiate the system architecture. This software
allows the user to easily deploy, configure and secure containers on Docker, Kubernetes,
Swarm and Nomad in any cloud, datacenter or device. Figure 5 depicts the Introsys
server with the portrainer.io software, where several Docker containers are deployed. Each
container can be described as a single program or system that is self-contained and can only
communicate with other containers or with the outside in specific channels. The Docker
software also has a repository with several programs built and ready to use, with the added
advantage of being separated by version. This allows the same version to be deployed and
maintained, facilitating the transitions from the test environment to the industrial sector or
maintaining a compatible version that may break in later versions. Finally, the user’s own
container can also be deployed, with a set of software and connections deemed useful for
the situation and allowing the Docker software to build the container with the information
and installation specified by the user. This was the specific case for the customized ML
prediction software, which was then deployed in an API.

Processes 2023, 11, 284 9 of 25

Processes 2023, 11, x FOR PEER REVIEW 10 of 26

software to build the container with the information and installation specified by the user.
This was the specific case for the customized ML prediction software, which was then
deployed in an API.

Figure 5. Docker (Portainer) containers.

2.4. Machine Learning Predictive Models
To train the ML predictive models that will be further deployed in the developed API

(Subsection 3.5), it is first necessary to collect the robotic cells sensor’s data that were
subsequently sent by the middleware. These models were created using Python language
and the software JupyterNotebook (https://jupyter.org/, accessed on 5 of December 2022).
Figure 6 shows the workflow diagram for the creation of the ML predictive models.

Figure 6. Workflow diagram used to obtain the predictions (predictive models), using data from
Introsys robotic cells.

Figure 5. Docker (Portainer) containers.

2.4. Machine Learning Predictive Models

To train the ML predictive models that will be further deployed in the developed
API (Section 3.5), it is first necessary to collect the robotic cells sensor’s data that were
subsequently sent by the middleware. These models were created using Python language
and the software JupyterNotebook (https://jupyter.org/, accessed on 5 December 2022).
Figure 6 shows the workflow diagram for the creation of the ML predictive models.

Processes 2023, 11, x FOR PEER REVIEW 10 of 26

software to build the container with the information and installation specified by the user.
This was the specific case for the customized ML prediction software, which was then
deployed in an API.

Figure 5. Docker (Portainer) containers.

2.4. Machine Learning Predictive Models
To train the ML predictive models that will be further deployed in the developed API

(Subsection 3.5), it is first necessary to collect the robotic cells sensor’s data that were
subsequently sent by the middleware. These models were created using Python language
and the software JupyterNotebook (https://jupyter.org/, accessed on 5 of December 2022).
Figure 6 shows the workflow diagram for the creation of the ML predictive models.

Figure 6. Workflow diagram used to obtain the predictions (predictive models), using data from
Introsys robotic cells.

Figure 6. Workflow diagram used to obtain the predictions (predictive models), using data from
Introsys robotic cells.

https://jupyter.org/

Processes 2023, 11, 284 10 of 25

In the first phase (model training), data come from the Introsys facilities in a .csv
format (historical data). These files were first pre-processed, in order to create the ML
predictive models. Of the information coming from the robotics cells (Ford/VW), only a
part was used for data analysis purposes, namely:

(a) Product Unique ID (product identifier);
(b) Product ID (name of the product);
(c) Recipe Unique ID (recipe identifier);
(d) Recipe ID (recipe type, it can be PWD—for Pick-Weld-Drop—or PWCD—for

Pick-Weld Complex-Drop);
(e) Station ID (name of the station where the recipe was performed, i.e., Ford or VW);
(f) Velocity_* (robots’ velocity, in m/s);
(g) Duration_* (duration of respective task, in seconds);
(h) RobotConsumption_* (total robot energy for given task, in Watt-hour);
(i) Consumption_* (total cell energy for given task, in Watt).
The wildcard (*) stands for the three tasks of each recipe: “Pick”, “Weld/WeldComplex”

and “Drop”. In cases where the parameters are just “Velocity”, “Duration”, “RobotCon-
sumpion” and “Consumption”, it means that it is the sum of the three previous tasks,
either “Pick”, “Weld/WeldComplex” or “Drop”. Four predictive ML models were created,
two for each robotic cell and two for each type of recipe, as follows: (a) Ford_PWD; (b)
Ford_PWCD, (c) VW_PWD and (d) VW_PWCD.

In the second phase (predictions), the new data (i.e., the recipes which are executed by
the robotics cells) are sent through the middleware to the API (Section 3.5) that contains the
predictive models. These same recipes were used to predict: (a) the values of the execution
duration of each recipe and/or task; (b) the energy consumption of each robot; and (c) the
energy consumption of the respective robotic cells.

3. Results

Utilizing the robotic cells previously presented as well as the developed architecture,
an implementation was made with the objective of extracting real-world results. After the
integration of the robotic cells with the cloud-based middleware, in this case, Apache Kafka,
the data collected after each process are both stored in a database (Postgres Database) and
used for the prediction ML models regarding the ideal results of the energy consumption.
The Node-Red API was built that uses the ML models and then store the predicted values
in the database. Finally, an HMI made in Grafana uses the values from the database to
make intuitive and simple-to-read graphs that represent some important metrics of the
production process.

3.1. Data Model

In Figure 7, the data model of the implementation is presented. In this demonstration,
eight tables were made, accommodating all the necessary and available data from the
execution of recipes and products to the catalog of the different recipes, products and
stations available in the factory. The prediction table stores the ML model’s prediction,
connecting the existing execution data with that of each recipe as well as their key perfor-
mance indicators (KPI), allowing to correlate the prediction of the models with the real
values. The correlation can be further used to analyze some flaws that the machine might
have, as it represents an excess of consumption in the models. It is also worth noting the
relationship between each table, as it helps present a clear picture of the behind-the-scenes
work of the data flow, not only in a real industrial environment but also in the specific case
of this demonstration and ML model usage.

Processes 2023, 11, 284 11 of 25Processes 2023, 11, x FOR PEER REVIEW 12 of 26

Figure 7. Data model.

3.2. Flow of Data
The flow of data, regarding the data model explained in Subsection 3.1, is presented

in Figure 8.

Figure 8. Flow of data from the shopfloor to the cloud software.

From the previously mention figure, it is possible to see the flow of data collected
from the shopfloor, mainly the Recipe_Execution_Data, the Product_Execution_Data and
the KPI_Execution_Data. This information is transmitted to the Introsys MES and Service
Bus systems. These systems are also responsible to send and keep the information
updated in the database regarding the Products, Recipes, Stations and KPIs. The Service

Figure 7. Data model.

3.2. Flow of Data

The flow of data, regarding the data model explained in Section 3.1, is presented in
Figure 8.

Processes 2023, 11, x FOR PEER REVIEW 12 of 26

Figure 7. Data model.

3.2. Flow of Data
The flow of data, regarding the data model explained in Subsection 3.1, is presented

in Figure 8.

Figure 8. Flow of data from the shopfloor to the cloud software.

From the previously mention figure, it is possible to see the flow of data collected
from the shopfloor, mainly the Recipe_Execution_Data, the Product_Execution_Data and
the KPI_Execution_Data. This information is transmitted to the Introsys MES and Service
Bus systems. These systems are also responsible to send and keep the information
updated in the database regarding the Products, Recipes, Stations and KPIs. The Service

Figure 8. Flow of data from the shopfloor to the cloud software.

Processes 2023, 11, 284 12 of 25

From the previously mention figure, it is possible to see the flow of data collected from
the shopfloor, mainly the Recipe_Execution_Data, the Product_Execution_Data and the
KPI_Execution_Data. This information is transmitted to the Introsys MES and Service Bus
systems. These systems are also responsible to send and keep the information updated
in the database regarding the Products, Recipes, Stations and KPIs. The Service Bus is
then responsible to send to the database all the information previously mentioned; this
information will from now on be called Shopfloor Data. The Shopfloor Data are now stored
on the cloud database, each in their respective table, that are then utilized by other types of
software, such as the data visualization software, responsible to make easy-to-read graphs
and tables of data in real time. The prediction software also collects data from the database
and uses these data as inputs for the already created models, allowing the output of several
metrics that are sent to the database as the Prediction_Data.

3.3. Implementation

The implementation of the architecture is presented in Figure 9. This implementation
comes from the necessity to send the information from the robotic cells, a cloud approach
for data visualization, data storage (database) and data analysis services (in this case, using
ML algorithms).

Processes 2023, 11, x FOR PEER REVIEW 13 of 26

Bus is then responsible to send to the database all the information previously mentioned;
this information will from now on be called Shopfloor Data. The Shopfloor Data are now
stored on the cloud database, each in their respective table, that are then utilized by other
types of software, such as the data visualization software, responsible to make easy-to-
read graphs and tables of data in real time. The prediction software also collects data from
the database and uses these data as inputs for the already created models, allowing the
output of several metrics that are sent to the database as the Prediction_Data.

3.3. Implementation
The implementation of the architecture is presented in Figure 9. This implementation

comes from the necessity to send the information from the robotic cells, a cloud approach
for data visualization, data storage (database) and data analysis services (in this case,
using ML algorithms).

Figure 9. Implementation overview.

The implementation is made using two robotic cells that can make different types of
recipes in order to complete a product. These robotic cells are connected to the Introsys
service bus. The service bus, programmed in C#, is responsible for collecting the metrics
from the robotic cells and agglomerating the information, such as the recipes and the
products that are produced in the robotic cells. The service bus sends all the compiled data
as JSON to the Apache Kafka middleware through the publish/subscribe approach using
the C# available library. When the information is in Apache Kafka on the respective topic,
the information is then passed from the JSON original format to AVRO, and finally,
utilizing the Java database connectivity (JDBC), a stream is created connecting the Apache
Kafka middleware to the Postgres Database, which is also deployed in the cloud. Lastly,
it is important to talk about the Node-Red API, which contains all the ML models already
trained and ready to be used. When new KPIs are sent to Apache Kafka, the Node-Red
API receives a trigger (as it is subscribed to the topic) and collects useful information for
the models using the PostgreSQL database. Finally, the Node-Red API processes these

Figure 9. Implementation overview.

The implementation is made using two robotic cells that can make different types of
recipes in order to complete a product. These robotic cells are connected to the Introsys
service bus. The service bus, programmed in C#, is responsible for collecting the metrics
from the robotic cells and agglomerating the information, such as the recipes and the
products that are produced in the robotic cells. The service bus sends all the compiled
data as JSON to the Apache Kafka middleware through the publish/subscribe approach
using the C# available library. When the information is in Apache Kafka on the respective
topic, the information is then passed from the JSON original format to AVRO, and finally,
utilizing the Java database connectivity (JDBC), a stream is created connecting the Apache
Kafka middleware to the Postgres Database, which is also deployed in the cloud. Lastly, it

Processes 2023, 11, 284 13 of 25

is important to talk about the Node-Red API, which contains all the ML models already
trained and ready to be used. When new KPIs are sent to Apache Kafka, the Node-Red
API receives a trigger (as it is subscribed to the topic) and collects useful information for
the models using the PostgreSQL database. Finally, the Node-Red API processes these
data and makes a prediction of duration, total consumption and robot consumption and
registers this in the PostgreSQL database.

Message Broker

The middleware used in the implementation of the architecture was Apache Kafka.
Apache Kafka is a message broker/streaming service that allows topics to be published
and subscribed to by dedicated libraries and an API. Apache Kafka also excels in scalability,
allowing it to serve as the architecture’s middleware with ease, connecting all shopfloor
machinery and cloud applications. Moreover, Kafka enables the use of streaming services,
connecting cloud applications, such as databases, through a stream without the need for an
intermediate program and giving a constant flow of information as soon as it arrives at the
topic. A more focused view of the message broker can be found in an article written by
the team that addresses the middleware functionalities in greater detail, focusing on the
message broker and why Apache Kafka was chosen [27]

3.4. Machine Learning–Creating the Predictive Models

To create the four predictive models mentioned in Section 2.4 (Ford_PWD, Ford_PWCD,
VW_PWD and VW_PWCD), “Velocity_*” was considered as an independent variable (i.e.,
input) and “Duration_*”, “RobotConsumption_*” and “Consumption_*” as dependent
variables (i.e., outputs).

Figure 10 presents the correlation the connection matrix resulting from these param-
eters for the Ford_PWD predictive model. The same analysis was carried out for the
remaining models.

Processes 2023, 11, x FOR PEER REVIEW 14 of 26

data and makes a prediction of duration, total consumption and robot consumption and
registers this in the PostgreSQL database.

Message Broker
The middleware used in the implementation of the architecture was Apache Kafka.

Apache Kafka is a message broker/streaming service that allows topics to be published
and subscribed to by dedicated libraries and an API. Apache Kafka also excels in
scalability, allowing it to serve as the architecture’s middleware with ease, connecting all
shopfloor machinery and cloud applications. Moreover, Kafka enables the use of
streaming services, connecting cloud applications, such as databases, through a stream
without the need for an intermediate program and giving a constant flow of information
as soon as it arrives at the topic. A more focused view of the message broker can be found
in an article written by the team that addresses the middleware functionalities in greater
detail, focusing on the message broker and why Apache Kafka was chosen [27]

3.4. Machine Learning–Creating the Predictive Models
To create the four predictive models mentioned in Subsection 2.4 (Ford_PWD,

Ford_PWCD, VW_PWD and VW_PWCD), “Velocity_*” was considered as an
independent variable (i.e., input) and “Duration_*”, “RobotConsumption_*” and
“Consumption_*” as dependent variables (i.e., outputs).

Figure 10 presents the correlation the connection matrix resulting from these
parameters for the Ford_PWD predictive model. The same analysis was carried out for
the remaining models.

Figure 10. Correlation Matrix for the Ford_PWD model, showing the connection between the
parameters Velocity, Duration, Robot Consumption and Consumption.

Two ML regression models were trained with the intention of creating the desired
energy profiles: Linear Regression and Random Forest. Linear Regression was used as a
baseline and Random Forest was chosen since it represents a general-purpose ensemble
approach (multiple decision trees), which is generally more robust, less prone to

Figure 10. Correlation Matrix for the Ford_PWD model, showing the connection between the
parameters Velocity, Duration, Robot Consumption and Consumption.

Processes 2023, 11, 284 14 of 25

Two ML regression models were trained with the intention of creating the desired
energy profiles: Linear Regression and Random Forest. Linear Regression was used as a
baseline and Random Forest was chosen since it represents a general-purpose ensemble
approach (multiple decision trees), which is generally more robust, less prone to overfitting
and can handle larger datasets more efficiently, often being used in the literature for
predicting energy consumption [21]. The tradeoff in this case is that it may require more
computational power and resources; however, this was not a constraint for the use case
at hand.

Table 1 presents the R-squared (R2) and Root-mean-square error (RMSE) metrics as
these two metrics are used to calculate the evaluation of the four predictive models. The
random forest regression algorithm was used to create these models, and according to [28],
R2 and RMSE are the most used metrics for evaluating regression models.

Table 1. Model Evaluation: summary of R2 and RMSE metrics calculated for the Duration, Robot
Consumption (RobotC) and Total Consumption (TotalC) parameters for the four predictive models
(Ford_PWD, Ford_PWCD, VW_PWD and VW_PWCD).

Models Skills
R2 RMSE

Duration RobotC TotalC Duration RobotC TotalC

Ford_PWD

Pick 0.881 0.083 0.296 0.869 0.733 0.559
Weld 0.996 0.241 0.645 0.368 0.973 0.699
Drop 0.992 0.125 0.557 0.201 0.691 0.432
Total 0.982 0.374 0.774 1.377 1.345 0.978

Ford_PWCD

Pick 0.956 0.017 0.415 0.481 0.422 0.467
WeldComplex 0.998 0.402 0.781 0.276 0.820 0.569

Drop 0.985 0.104 0.392 0.264 0.675 0.525
Total 0.997 0.472 0.861 0.601 1.142 0.745

VW_PWD

Pick 0.958 0.402 0.485 0.592 0.531 0.448
Weld 0.988 0.117 0.488 0.281 0.583 0.488
Drop 0.998 0.165 0.544 0.113 0.562 0.318
Total 0.989 0.599 0.827 0.788 0.612 0.515

VW_PWCD

Pick 0.975 0.433 0.574 0.492 0.619 0.443
WeldComplex 0.997 0.311 0.765 0.257 0.841 0.431

Drop 0.958 −0.034 0.480 0.582 0.799 0.409
Total 0.993 0.813 0.917 0.902 0.493 0.518

As is possible to see from Table 1, the Duration parameter provides the best results,
both for the R2 and RMSE metrics, in the four models. This was expected, since the Duration
is controlled internally by the orchestrator, and is not dependent on hardware devices (i.e.,
sensors) installed in the Ford/VW cells. The robot energy consumption (RobotC), however,
provide the worst results, since these are dependent on the accuracy and quality of the
hardware devices. The same happens with the total energy consumption (TotalC) parameter.
This has a direct impact on the effectiveness of the predictive ML models, and consequently,
on the comparisons between the predicted and actual values recorded.

Figure 11 illustrates the predictions (y) versus real values (X) and R2 and RMSE metrics
for the predictive model Ford_PWD. The same logic was used for the other models.

Processes 2023, 11, 284 15 of 25
Processes 2023, 11, x FOR PEER REVIEW 16 of 26

Figure 11. Predictions (y) versus True Values (X) for the Ford_PWD predictive model, being (a) the
duration, (b) the robot energy consumption and (c) the total energy consumption.

3.5. Creating the Node-Red API XE “3.4 Creating the Node-Red API (SARA)”
An API using Node-Red was created to support the communication between the

Apache Kafka and the predictive ML models. This API is based on the Publish-Subscribe
principle and contains additional palettes for the API to work as desired, namely “node-
red-contrib-kafka-client”, “node-red-contrib-queue-gate”, “node-red-contrib-machine-
learning-v2” and “node-red-contrib-postgresql”.

The developed API contains several flows and nodes to work properly. However,
this paper addresses only the most relevant steps, namely the communication with the
Apache Kafka and the nodes that contains the ML predictive models. As such, six steps
were identified:
• Step 1: Communicating with Apache Kafka: The first step was to trigger the

information from the Apache Kafka. The node “kafka-consumer” was created
(Figure 12), so it was able to configure the Broker, Host (broker: 29092) and Topic
(KPIEDTest).

Figure 11. Predictions (y) versus True Values (X) for the Ford_PWD predictive model, being (a) the
duration, (b) the robot energy consumption and (c) the total energy consumption.

3.5. Creating the Node-Red API

An API using Node-Red was created to support the communication between the
Apache Kafka and the predictive ML models. This API is based on the Publish-Subscribe
principle and contains additional palettes for the API to work as desired, namely “node-red-
contrib-kafka-client”, “node-red-contrib-queue-gate”, “node-red-contrib-machine-learning-
v2” and “node-red-contrib-postgresql”.

The developed API contains several flows and nodes to work properly. However,
this paper addresses only the most relevant steps, namely the communication with the
Apache Kafka and the nodes that contains the ML predictive models. As such, six steps
were identified:

• Step 1: Communicating with Apache Kafka: The first step was to trigger the infor-
mation from the Apache Kafka. The node “kafka-consumer” was created (Figure 12),
so it was able to configure the Broker, Host (broker: 29092) and Topic (KPIEDTest).

Processes 2023, 11, 284 16 of 25

• Step 2: Filtering messages containing “Velocity”: The second step was to filter the
messages coming from the “kafka-consumer”. As mentioned in Section 3.4, the
parameter “Velocity_*” was considered the independent variable, and as such, it was
used as the input of our API. The switch node “Velocity” (Figure 12) was used to filter
the messages that contains the string “Velocity”.

• Step 3: Selecting the RecipeID and StationID: A postgresql node “SELECT Recipe/
Station” was created (Figure 12) in order to select the RecipeID and StationID from
the PostgreSQL database. It was necessary to configure the server and develop a
query. Additionally, two change nodes were created ““kafka”” and ““postgres” + com-
plete msg” to store the information desired from Apache Kafka and the PostgreSQL
database, respectively. This information was posteriorly joined and stored in a change
node “Information1”.

• Step 4: Routing the messages: We started the fourth step by filtering the Stations
(i.e., Ford or VW), using the switch node to route the messages based on sequential
position. Using the same logic, two new switch nodes were created, one for the Ford
station (Ford: 1. PWD; 2. PWCD) and another for the VW station (VW: 1. PWD; 2.
PWCD), where it is possible to filter the type of Recipe (PWD or PWCD). Figure 13
illustrates the flow and configuration of the mentioned nodes.

• Step 5: Deploying the ML predictive models: After creating the route for the mes-
sages, it was time to deploy the ML predictive models. Thus, sixteen nodes were
created, each one corresponds to a respective task (Pick, Weld/WeldComplex, Drop),
of a respective recipe (PWD and PWCD) and of a respective station (Ford and VW).
Figure 14 shows the ML predictive models (green nodes) for Ford station. The same
logic was used for VW station.

As explained in Section 3.4, “Velocity_*” was considered as an independent variable
and “Duration_*”, “RobotConsumption_*” and “Consumption_*” as dependent variables
for the ML predictive models. Therefore, the input of the ML predictive model nodes is the
value of Velocity (four values for each task), and as an output, the models give the values
of Duration, RobotConsumption and Consumption.

After the ML predictive model nodes, the function node “SUMMARY” was created to
track and store all the information that is needed (Figure 15).

• Step 6: Sending the information to Apache Kafka: Finally, and similarly to what was
done with the “kafka-consumer” node (Figure 12), a new node, “kafka-producer”, was
created (Figure 16) and configured in order to send the information back to Apache
Kafka, with the difference of the Topic, untimely creating a new table in the database
with the prediction results named “PREDICTIONTest”.

Processes 2023, 11, x FOR PEER REVIEW 17 of 26

Figure 12. Kafka communication using the “kafka-consumer” node.

• Step 2: Filtering messages containing “Velocity”: The second step was to filter the
messages coming from the “kafka-consumer”. As mentioned in Subsubsection 3.4,
the parameter “Velocity_*” was considered the independent variable, and as such, it
was used as the input of our API. The switch node “Velocity” (Figure 12) was used
to filter the messages that contains the string “Velocity”.

• Step 3: Selecting the RecipeID and StationID: A postgresql node “SELECT
Recipe/Station” was created (Figure 12) in order to select the RecipeID and StationID
from the PostgreSQL database. It was necessary to configure the server and develop
a query. Additionally, two change nodes were created ““kafka”” and ““postgres” +
complete msg” to store the information desired from Apache Kafka and the
PostgreSQL database, respectively. This information was posteriorly joined and
stored in a change node “Information1”.

• Step 4: Routing the messages: We started the fourth step by filtering the Stations
(i.e., Ford or VW), using the switch node to route the messages based on sequential
position. Using the same logic, two new switch nodes were created, one for the Ford
station (Ford: 1. PWD; 2. PWCD) and another for the VW station (VW: 1. PWD; 2.
PWCD), where it is possible to filter the type of Recipe (PWD or PWCD). Figure 13
illustrates the flow and configuration of the mentioned nodes.

Figure 12. Kafka communication using the “kafka-consumer” node.

Processes 2023, 11, 284 17 of 25

Processes 2023, 11, x FOR PEER REVIEW 17 of 26

Figure 12. Kafka communication using the “kafka-consumer” node.

• Step 2: Filtering messages containing “Velocity”: The second step was to filter the
messages coming from the “kafka-consumer”. As mentioned in Subsubsection 3.4,
the parameter “Velocity_*” was considered the independent variable, and as such, it
was used as the input of our API. The switch node “Velocity” (Figure 12) was used
to filter the messages that contains the string “Velocity”.

• Step 3: Selecting the RecipeID and StationID: A postgresql node “SELECT
Recipe/Station” was created (Figure 12) in order to select the RecipeID and StationID
from the PostgreSQL database. It was necessary to configure the server and develop
a query. Additionally, two change nodes were created ““kafka”” and ““postgres” +
complete msg” to store the information desired from Apache Kafka and the
PostgreSQL database, respectively. This information was posteriorly joined and
stored in a change node “Information1”.

• Step 4: Routing the messages: We started the fourth step by filtering the Stations
(i.e., Ford or VW), using the switch node to route the messages based on sequential
position. Using the same logic, two new switch nodes were created, one for the Ford
station (Ford: 1. PWD; 2. PWCD) and another for the VW station (VW: 1. PWD; 2.
PWCD), where it is possible to filter the type of Recipe (PWD or PWCD). Figure 13
illustrates the flow and configuration of the mentioned nodes.

Figure 13. Switch nodes used for routing the messages using the Ford station as example. In the
edit switch node, from left to right, we have: Stations: 1. Ford; 2. VW, Ford: 1. PWD; 2. PWCD and
Velocity PWD: 1. Pick; 2. Weld; 3. Drop; 4. Total. The same logic was used for the VW station.

Processes 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 13. Switch nodes used for routing the messages using the Ford station as example. In the edit
switch node, from left to right, we have: Stations: 1. Ford; 2. VW, Ford: 1. PWD; 2. PWCD and
Velocity PWD: 1. Pick; 2. Weld; 3. Drop; 4. Total. The same logic was used for the VW station.

• Step 5: Deploying the ML predictive models: After creating the route for the
messages, it was time to deploy the ML predictive models. Thus, sixteen nodes were
created, each one corresponds to a respective task (Pick, Weld/WeldComplex, Drop),
of a respective recipe (PWD and PWCD) and of a respective station (Ford and VW).
Figure 14 shows the ML predictive models (green nodes) for Ford station. The same
logic was used for VW station.

Figure 14. ML predictive model nodes (in green) for the Ford station.

As explained in Subsection 3.4, “Velocity_*” was considered as an independent
variable and “Duration_*”, “RobotConsumption_*” and “Consumption_*” as dependent
variables for the ML predictive models. Therefore, the input of the ML predictive model
nodes is the value of Velocity (four values for each task), and as an output, the models
give the values of Duration, RobotConsumption and Consumption.

After the ML predictive model nodes, the function node “SUMMARY” was created
to track and store all the information that is needed (Figure 15).

Figure 14. ML predictive model nodes (in green) for the Ford station.

Processes 2023, 11, 284 18 of 25Processes 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 15. Function node “SUMMARY” used to retrieve data from all the Node-Red API process.

• Step 6: Sending the information to Apache Kafka: Finally, and similarly to what
was done with the “kafka-consumer” node (Figure 12), a new node, “kafka-
producer”, was created (Figure 16) and configured in order to send the information
back to Apache Kafka, with the difference of the Topic, untimely creating a new table
in the database with the prediction results named “PREDICTIONTest”.

Figure 16. Final flow of the Node-Red API, presenting the node “kafka-producer”, used to send the
information back to Apache Kafka.

3.6. Data Visualization
Despite all the relevant information being stored in the PostgresSQL database, the

reading of this information for a human being is not an easy task. It is important to quickly
assess some metrics and check the correlation between values, to be assured that all the
processes are working properly. The PostgreSQL database is depicted in Figure 17, along
with a specific table with some values. It directly correlates with the data model in Figure
7, as it is the main database and the one used to store all data for visualization and tests.
It is easy to prove by this demonstration that some metrics are hard to correlate like this
and visualize, and when more metrics start to integrate in the correlation of tables, it
becomes clear that this is not a good way to display information.

Figure 15. Function node “SUMMARY” used to retrieve data from all the Node-Red API process.

Processes 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 15. Function node “SUMMARY” used to retrieve data from all the Node-Red API process.

• Step 6: Sending the information to Apache Kafka: Finally, and similarly to what
was done with the “kafka-consumer” node (Figure 12), a new node, “kafka-
producer”, was created (Figure 16) and configured in order to send the information
back to Apache Kafka, with the difference of the Topic, untimely creating a new table
in the database with the prediction results named “PREDICTIONTest”.

Figure 16. Final flow of the Node-Red API, presenting the node “kafka-producer”, used to send the
information back to Apache Kafka.

3.6. Data Visualization
Despite all the relevant information being stored in the PostgresSQL database, the

reading of this information for a human being is not an easy task. It is important to quickly
assess some metrics and check the correlation between values, to be assured that all the
processes are working properly. The PostgreSQL database is depicted in Figure 17, along
with a specific table with some values. It directly correlates with the data model in Figure
7, as it is the main database and the one used to store all data for visualization and tests.
It is easy to prove by this demonstration that some metrics are hard to correlate like this
and visualize, and when more metrics start to integrate in the correlation of tables, it
becomes clear that this is not a good way to display information.

Figure 16. Final flow of the Node-Red API, presenting the node “kafka-producer”, used to send the
information back to Apache Kafka.

3.6. Data Visualization

Despite all the relevant information being stored in the PostgresSQL database, the
reading of this information for a human being is not an easy task. It is important to quickly
assess some metrics and check the correlation between values, to be assured that all the
processes are working properly. The PostgreSQL database is depicted in Figure 17, along
with a specific table with some values. It directly correlates with the data model in Figure 7,
as it is the main database and the one used to store all data for visualization and tests. It is
easy to prove by this demonstration that some metrics are hard to correlate like this and
visualize, and when more metrics start to integrate in the correlation of tables, it becomes
clear that this is not a good way to display information.

To display all this information in a more useful and human-friendly way, the Grafana
software was used. Grafana allows the use of SQL queries to make time graphs, histograms,
display tables and even create alerts in case of something going past specific values. In the
specific case of this demonstration, the graphical interface is alternated and separate for
each one of the robotic cells in order to facilitate and separate the analysis of each one. The
prediction analysis is also demonstrated here. There is some discrepancy regarding some
values, as they are based on some simulated values that do not represent the real metrics.
These simulations were made by the company Introsys to test some systems. Nevertheless,
it is possible to see the different recipes and consumption patterns and compare them with

Processes 2023, 11, 284 19 of 25

the predictive value, allowing the detection of problems and irregularities without the need
for any more systems.

From top to bottom, it is possible to see on the dashboard:

• Alerts: In Figure 18, three alerts were created, with the objective of alerting the user if
some basic metrics were out of control. The first two alerts are equal but for different
robotic cells, and they measure the last entry and compare it with the average of the
last five entries. If the value is superior to 15% of the average value, the alert is raised.
The final alert checks if the last entry is bigger than 30 Wh and raises an alert if it is.

• Products: In Figure 19 is a simple table that shows the products of the factory and
their status, ordered by the “not produced” products.

Processes 2023, 11, x FOR PEER REVIEW 20 of 26

Figure 17. Database visualization.

To display all this information in a more useful and human-friendly way, the Grafana
software was used. Grafana allows the use of SQL queries to make time graphs,
histograms, display tables and even create alerts in case of something going past specific
values. In the specific case of this demonstration, the graphical interface is alternated and
separate for each one of the robotic cells in order to facilitate and separate the analysis of
each one. The prediction analysis is also demonstrated here. There is some discrepancy
regarding some values, as they are based on some simulated values that do not represent
the real metrics. These simulations were made by the company Introsys to test some
systems. Nevertheless, it is possible to see the different recipes and consumption patterns
and compare them with the predictive value, allowing the detection of problems and
irregularities without the need for any more systems.

From top to bottom, it is possible to see on the dashboard:
• Alerts: In Figure 18, three alerts were created, with the objective of alerting the user

if some basic metrics were out of control. The first two alerts are equal but for
different robotic cells, and they measure the last entry and compare it with the
average of the last five entries. If the value is superior to 15% of the average value,
the alert is raised. The final alert checks if the last entry is bigger than 30 Wh and
raises an alert if it is.

Figure 18. Alert panel.

• Products: In Figure 19is a simple table that shows the products of the factory and
their status, ordered by the “not produced” products.

Figure 17. Database visualization.

Processes 2023, 11, x FOR PEER REVIEW 20 of 26

Figure 17. Database visualization.

To display all this information in a more useful and human-friendly way, the Grafana
software was used. Grafana allows the use of SQL queries to make time graphs,
histograms, display tables and even create alerts in case of something going past specific
values. In the specific case of this demonstration, the graphical interface is alternated and
separate for each one of the robotic cells in order to facilitate and separate the analysis of
each one. The prediction analysis is also demonstrated here. There is some discrepancy
regarding some values, as they are based on some simulated values that do not represent
the real metrics. These simulations were made by the company Introsys to test some
systems. Nevertheless, it is possible to see the different recipes and consumption patterns
and compare them with the predictive value, allowing the detection of problems and
irregularities without the need for any more systems.

From top to bottom, it is possible to see on the dashboard:
• Alerts: In Figure 18, three alerts were created, with the objective of alerting the user

if some basic metrics were out of control. The first two alerts are equal but for
different robotic cells, and they measure the last entry and compare it with the
average of the last five entries. If the value is superior to 15% of the average value,
the alert is raised. The final alert checks if the last entry is bigger than 30 Wh and
raises an alert if it is.

Figure 18. Alert panel.

• Products: In Figure 19is a simple table that shows the products of the factory and
their status, ordered by the “not produced” products.

Figure 18. Alert panel.

Processes 2023, 11, x FOR PEER REVIEW 21 of 26

Figure 19. Products panel.

• Consumption/velocity: In Figure 20,there are two similar bar charts, one for each
robotic cell. These bar charts represent the energy consumption paired with the
velocity as a percentage. This metric allows the worker to quickly check if something
is going wrong with the robotic cell. In this figure, it is possible to see some values
where the energy consumption is very low, as it represents some simulations made
by Introsys with non-representative values.

Figure 20. Consumption/Velocity Panel (a) for the Ford robotic cell and (b) for the VW robotic cell.

• Energy/Velocity histogram: In Figure 21, there are two similar histograms, one for
each robotic cell. These histograms represent the energy consumption and velocity
of each robotic cell. Histograms (a) and (b) represent the number of times of each the
energy consumption intervals of the robotic cells from Ford and VW, respectively,
while histograms (c) and (d) represent de number of times of the velocity intervals,
also of the Ford and VW robotic cells, respectively.

Figure 19. Products panel.

Processes 2023, 11, 284 20 of 25

• Consumption/velocity: In Figure 20, there are two similar bar charts, one for each
robotic cell. These bar charts represent the energy consumption paired with the
velocity as a percentage. This metric allows the worker to quickly check if something
is going wrong with the robotic cell. In this figure, it is possible to see some values
where the energy consumption is very low, as it represents some simulations made by
Introsys with non-representative values.

Processes 2023, 11, x FOR PEER REVIEW 21 of 26

Figure 19. Products panel.

• Consumption/velocity: In Figure 20,there are two similar bar charts, one for each
robotic cell. These bar charts represent the energy consumption paired with the
velocity as a percentage. This metric allows the worker to quickly check if something
is going wrong with the robotic cell. In this figure, it is possible to see some values
where the energy consumption is very low, as it represents some simulations made
by Introsys with non-representative values.

Figure 20. Consumption/Velocity Panel (a) for the Ford robotic cell and (b) for the VW robotic cell.

• Energy/Velocity histogram: In Figure 21, there are two similar histograms, one for
each robotic cell. These histograms represent the energy consumption and velocity
of each robotic cell. Histograms (a) and (b) represent the number of times of each the
energy consumption intervals of the robotic cells from Ford and VW, respectively,
while histograms (c) and (d) represent de number of times of the velocity intervals,
also of the Ford and VW robotic cells, respectively.

Figure 20. Consumption/Velocity Panel (a) for the Ford robotic cell and (b) for the VW robotic cell.

• Energy/Velocity histogram: In Figure 21, there are two similar histograms, one for
each robotic cell. These histograms represent the energy consumption and velocity
of each robotic cell. Histograms (a) and (b) represent the number of times of each
the energy consumption intervals of the robotic cells from Ford and VW, respectively,
while histograms (c) and (d) represent de number of times of the velocity intervals,
also of the Ford and VW robotic cells, respectively.

Processes 2023, 11, x FOR PEER REVIEW 22 of 26

Figure 21. Energy/Velocity histogram panel, the (a) and (b) the energy consumption for Ford and
VW respectively and the (c) and (d) the percentage velocity for Ford and VW respectively.

• Time graph of robotic cell consumption: In Figure 22,the time graph is a junction of
four different graphs that the user can choose and even correlate with different
metrics. The worker might want to see the consumption and velocity, or the
consumption of both robotic cells, and this graph allows that customization.

Figure 22. Time graph of each robotic cell energy consumption.

• Predicted and real values per recipe: In Figure 23, these graphs allow the user to
choose different metrics and correlate them between the different recipes and stations
with the predicted and real values of (a) cell, (b) robot energy consumption and (c)
duration. This graph is deemed extremely useful, as it can show the total
consumption or duration of the different robotic cells and compare them in an easy-
to-read value with the prediction values. This allows the worker to easily check
which station is having problems or is performing in a way that is out of the ordinary.

Figure 21. Energy/Velocity histogram panel, the (a,b) the energy consumption for Ford and VW
respectively and the (c,d) the percentage velocity for Ford and VW respectively.

Processes 2023, 11, 284 21 of 25

• Time graph of robotic cell consumption: In Figure 22, the time graph is a junction of
four different graphs that the user can choose and even correlate with different metrics.
The worker might want to see the consumption and velocity, or the consumption of
both robotic cells, and this graph allows that customization.

Processes 2023, 11, x FOR PEER REVIEW 22 of 26

Figure 21. Energy/Velocity histogram panel, the (a) and (b) the energy consumption for Ford and
VW respectively and the (c) and (d) the percentage velocity for Ford and VW respectively.

• Time graph of robotic cell consumption: In Figure 22,the time graph is a junction of
four different graphs that the user can choose and even correlate with different
metrics. The worker might want to see the consumption and velocity, or the
consumption of both robotic cells, and this graph allows that customization.

Figure 22. Time graph of each robotic cell energy consumption.

• Predicted and real values per recipe: In Figure 23, these graphs allow the user to
choose different metrics and correlate them between the different recipes and stations
with the predicted and real values of (a) cell, (b) robot energy consumption and (c)
duration. This graph is deemed extremely useful, as it can show the total
consumption or duration of the different robotic cells and compare them in an easy-
to-read value with the prediction values. This allows the worker to easily check
which station is having problems or is performing in a way that is out of the ordinary.

Figure 22. Time graph of each robotic cell energy consumption.

• Predicted and real values per recipe: In Figure 23, these graphs allow the user to
choose different metrics and correlate them between the different recipes and stations
with the predicted and real values of (a) cell, (b) robot energy consumption and (c)
duration. This graph is deemed extremely useful, as it can show the total consumption
or duration of the different robotic cells and compare them in an easy-to-read value
with the prediction values. This allows the worker to easily check which station is
having problems or is performing in a way that is out of the ordinary.

Processes 2023, 11, x FOR PEER REVIEW 23 of 26

Figure 23. Predicted and real values per recipe of (a) cell energy consumption, (b) robot energy
consumption and (c) duration.

4. Discussion
The study conducted by the authors represents a vertical use case from shopfloor to

cloud of a real implementation of cloud-based applications used by robotic cells that
complies with Ford and VW production standards. From this study, it is possible to see a
cloud application cable that can be used by any machine or software as long as it is
connected to the middleware [27]

In Industry 4.0, the deployment of a cloud-based application software allows an
increase in efficiency of resources (for example, programs can be instantiated in the cloud
and not locally), allowing easy scalability and integration from different shopfloor
machines, but also from other software or even workers. Moreover, the centralization and
sharing of such processes can easily allow the comparison and scheduling of production
based on the results of the data gathered and processed by the software.

In this study’s specific case, the use of prediction software allows the understanding
of which processes, recipes and products are more efficiently produced in each robotic
cell. The scheduling of production should be done by considering the energy consumption
of each process and efficiently produce each product. Another use of this prediction of
energy consumption is the possibility of detecting any inefficiency or problems with the
machine sooner than with other methods. Some problems could be detected if the energy
consumption of the machine starts to increase in relation to the prediction, such as in the

Figure 23. Predicted and real values per recipe of (a) cell energy consumption, (b) robot energy
consumption and (c) duration.

Processes 2023, 11, 284 22 of 25

4. Discussion

The study conducted by the authors represents a vertical use case from shopfloor
to cloud of a real implementation of cloud-based applications used by robotic cells that
complies with Ford and VW production standards. From this study, it is possible to see
a cloud application cable that can be used by any machine or software as long as it is
connected to the middleware [27].

In Industry 4.0, the deployment of a cloud-based application software allows an
increase in efficiency of resources (for example, programs can be instantiated in the cloud
and not locally), allowing easy scalability and integration from different shopfloor machines,
but also from other software or even workers. Moreover, the centralization and sharing of
such processes can easily allow the comparison and scheduling of production based on the
results of the data gathered and processed by the software.

In this study’s specific case, the use of prediction software allows the understanding
of which processes, recipes and products are more efficiently produced in each robotic
cell. The scheduling of production should be done by considering the energy consumption
of each process and efficiently produce each product. Another use of this prediction of
energy consumption is the possibility of detecting any inefficiency or problems with the
machine sooner than with other methods. Some problems could be detected if the energy
consumption of the machine starts to increase in relation to the prediction, such as in the
case of lack of lubrification or any problem contributing to the excessive effort of the motors
to achieve the same production.

It is also critical to recognize some important aspects of this study. First, the test was
conducted using only two robotic cells, and although the middleware and cloud-based
software were ready to handle an increasing number of communications, restrictions in
terms of hardware disallowed it, as no more robotic cells were available to be utilized in
the study. Second, regarding the prediction results provided (Table 1) it is clear that KPI
Duration provides better results, and this was expected since the KPI Duration is internally
controlled by the orchestrator, resulting in a KPI independent from all hardware devices
installed in the cells. On the one hand, KPI Consumption in VW and KPI Robot Consump-
tion in Ford provide the worst results in terms of differences between the predicted and
actual registered value, and this was also expected, since it introduces dependencies on
hardware devices. In the case of the KPI Consumption of VW, the sensor used provides
energy consumption with some level of uncertainty due to its magnitude, which can result
in an innate error that can reach ±10% of the normal detected values. This has a direct
influence on the training of the ML model, and consequently, on the comparisons between
the predicted and real values registered. On the other hand, the KPI Robot Consumption in
Ford uses a sensor that monitors tri phase powers, which means that in order to obtain a
consumption (energy), internally, the orchestrator is required to convert power to energy,
and in consequence, make this process extremely dependent on sensor latency and update
frequency. Since the provided sensor only allows low frequency values, this means that the
energy calculated can incur significant variations in its reading from product to product.
Regarding the chosen ML algorithm (Random Forest), it proved to be fast to train, easy
to use, flexible, robust to noise and quite effective with prediction results very close to
the real results (at least for the Duration parameter). This was expected, since, according
to the literature, this model is very effective with regression problems and often used in
predictive functions [29–31].

Finally, is important to regard this study as an implementation test case, where the
company had a specific problem that needed a resolution. The study was not meant to
benchmark different approaches regarding ML algorithms, and as such, makes it difficult
to compare to different studies (such [22,25]), as they do not deal with the specific cases
and data of the present demonstration. Nevertheless, several studies relevant for this paper
are mentioned in Section 1.2; additionally, some important references for the creation and
validation of the ML models are referenced in Section 3.4.

Processes 2023, 11, 284 23 of 25

As for future directions, the creation and use of an optimizer or scheduling software
capable of automatically allocating the production based on time, cost efficiency or the
best of both, by making the production the most cost-efficient at the given time, can be
developed. Given that the scheduling is usually done manually, software that can take the
inputs of the predictor software and compute the best-case scenario would be a great asset
and an engineering feat.

5. Conclusions

This case study uses data from two shopfloor robotic cells that are on par with Volk-
swagen and Ford production standards to construct a ML algorithm capable of predicting
the energy consumption of a product, based on the recipe and velocity of the process,
and deploy these models on a cloud-based software API. Moreover, an HMI is developed
capable to easy-to-read and adaptable graphs to facilitate the reading of important infor-
mation and status either by a shopfloor worker or by a manager. This is based on an
architecture capable of working with an expanding shopfloor’s machinery or software
(both in the cloud and on the shopfloor), allowing an addition of the several layers of the
factory. The work shows promising results, allowing for the prediction of the results of the
energy consumption of each product with high accuracy, even with some measurement
inconsistencies from the used hardware.

Nevertheless, is important to highlight some limitations of this case study, mainly
the test of the architecture, which has only been implemented in a single factory, as it is
important to use it in several different types of factories to be validated. Another important
limitation is the data used for the models, which need to be collected when the machines
are in prime state, as the condition of these machines will reveal a natural limitation of the
models and consequently for all the predictions made since the model’s training. Finally,
the limitation of input parameters as the only input parameters are the velocity and recipe
type, so the models make the correlation between only these two parameters to compute
an energy consumption.

It is important, in the future, to test the work done with several machines and products
in a more complex environment. A scheduling software can be realized that can utilize the
work done in this paper, mainly the architecture and the predictor software, to automati-
cally schedule the machinery with different input parameters, for example, time, energy
consumption and workers, and compute an optimal production schedule and machinery
input for the given parameters.

Author Contributions: Conceptualization, D.A., J.G., A.D.R. and J.B.; methodology, N.F., D.A., M.G.,
R.S.P. and A.D.R.; software, N.F., S.O.A. and J.R.; validation, N.F., S.O.A. and J.R.; formal analysis,
D.A., J.G., R.S.P., A.D.R. and J.B.; investigation, N.F., S.O.A., D.A., J.R. and M.G.; writing—original
draft preparation, N.F., S.O.A., D.A. and J.R.; writing—review and editing, N.F., D.A., R.S.P., A.D.R.
and J.B.; project administration, J.B.; funding acquisition, A.D.R. and J.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by the SIMShore: SIMOcean Nearshore Bathymetry
Based on Low Cost Approaches. This project received funding from the EEA Grants Portugal research
and innovation program under grant agreement No PT-INNOVATION-0027.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data from both models and database can be accessed on Github:
https://github.com/Nelson-PT/database-ADAM, accessed on 5 December 2022.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analysis or interpretation of data, in the writing of the manuscript or in
the decision to publish the results.

https://github.com/Nelson-PT/database-ADAM

Processes 2023, 11, 284 24 of 25

References
1. Saniuk, S.; Grabowska, S.; Gajdzik, B.Z. Personalization of products in the industry 4.0 concept and its impact on achieving a

higher level of sustainable consumption. Energies 2020, 13, 5895. [CrossRef]
2. Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of industry 4.0 on environmental sustainability.

Sustainability 2020, 12, 4674. [CrossRef]
3. Meng, Y.; Yang, Y.; Chung, H.; Lee, P.H.; Shao, C. Enhancing sustainability and energy efficiency in smart factories: A review.

Sustainability 2018, 10, 4779. [CrossRef]
4. Nota, G.; Nota, F.D.; Peluso, D.; Lazo, A.T. Energy efficiency in Industry 4.0: The case of batch production processes. Sustainability

2020, 12, 6631. [CrossRef]
5. Li, Q.; Yang, Y.; Jiang, P. An Industry 4.0 Platform for Equipment Monitoring and Maintaining in Carbon Anode Production.

IFAC-Pap. 2022, 55, 37–41. [CrossRef]
6. Alemão, D.; Rocha, A.D.; Barata, J. Smart manufacturing scheduling approaches—Systematic review and future directions. Appl.

Sci. 2021, 11, 2186. [CrossRef]
7. Mawson, V.J.; Hughes, B.R. Optimisation of HVAC control and manufacturing schedules for the reduction of peak energy demand

in the manufacturing sector. Energy 2021, 227, 120436. [CrossRef]
8. Hu, Y.; Zhu, F.; Zhang, L.; Lui, Y.; Wang, Z. Scheduling of manufacturers based on chaos optimization algorithm in cloud

manufacturing. Robot. Comput. Integr. Manuf. 2019, 58, 13–20. [CrossRef]
9. Li, X.; Fang, Z.; Yin, C. A machine tool matching method in cloud manufacturing using Markov Decision Process and cross-entropy.

Robot. Comput. Integr. Manuf. 2020, 65, 101968. [CrossRef]
10. Wang, J.; Xu, C.; Zhang, J.; Bao, J.; Zhong, R. A collaborative architecture of the industrial internet platform for manufacturing

systems. Robot. Comput. Integr. Manuf. 2020, 61, 101854. [CrossRef]
11. Lu, Y.; Xu, X. Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robot.

Comput. Integr. Manuf. 2019, 57, 92–102. [CrossRef]
12. Muslikhin, M.; Horng, J.R.; Yang, S.Y.; Wang, M.S.; Awaluddin, B.A. An artificial intelligence of things-based picking algorithm

for online shop in the society 5.0’s context. Sensors 2021, 21, 2813. [CrossRef] [PubMed]
13. Qian, C.; Zhang, Y.; Liu, Y.; Wang, Z. A cloud service platform integrating additive and subtractive manufacturing with high

resource efficiency. J. Clean. Prod. 2019, 241, 118379. [CrossRef]
14. Mariano-Hernández, D.; Hernández-Callejo, L.; Zorita-Lamadrid, A.; Duque-Pérez, O.; García, F.S. A review of strategies for

building energy management system: Model predictive control, demand side management, optimization, and fault detect &
diagnosis. J. Build. Eng. 2021, 33, 101692. [CrossRef]

15. Javied, T.; Huprich, S.; Franke, J. Cloud based Energy Management System Compatible with the Industry 4.0 Requirements.
IFAC-Pap. 2019, 52, 171–175. [CrossRef]

16. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018.
17. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.

[CrossRef] [PubMed]
18. Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and

performance: A review. Vis. Eng. 2018, 6, 1–20. [CrossRef]
19. White, M. Using Big Data for Machine Learning Analytics in Manufacturing. 2016. Available online: https://silo.tips/download/

manufacturing-white-paper-using-big-data-for-machine-learning-analytics-in-manuf#modals (accessed on 18 October 2022).
20. Narciso, D.A.C.; Martins, F.G. Application of machine learning tools for energy efficiency in industry: A review. Energy Rep. 2020,

6, 1181–1199. [CrossRef]
21. Sk, S.C.; Singh, M.K.; Sanyal, J. Machine Learning Based Prediction of Energy Consumption. IJIREEICE 2019, 7, 19–22. [CrossRef]
22. VE, S.; Shin, C.; Cho, Y. Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart

city. Build. Res. Inf. 2021, 49, 127–143. [CrossRef]
23. Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random Forest based hourly building energy prediction. Energy

Build. 2018, 171, 11–25. [CrossRef]
24. Xu, L.; Huang, C.; Li, C.; Wang, J.; Liu, H.; Wang, X. A novel intelligent reasoning system to estimate energy consumption and

optimize cutting parameters toward sustainable machining. J. Clean. Prod. 2020, 261, 121160. [CrossRef]
25. Shin, S.J.; Woo, J.; Rachuri, S. Predictive analytics model for power consumption in manufacturing. Procedia CIRP 2014, 15,

153–158. [CrossRef]
26. Qin, J.; Liu, Y.; Grosvenor, R.; Lacan, F.; Jiang, Z. Deep learning-driven particle swarm optimisation for additive manufacturing

energy optimization. J. Clean. Prod. 2020, 245, 118702. [CrossRef]
27. Rocha, A.D.; Freitas, N.; Alemão, D.; Guedes, M.; Martins, R.; Barata, J. Event-Driven Interoperable Manufacturing Ecosystem for

Energy Consumption Monitoring. Energies 2021, 14, 3620. [CrossRef]
28. Scikit-Learn Developers, Model Evaluation: Quantifying the Quality of Predictions. 2014. Available online: https://scikit-learn.

org/0.15/modules/model_evaluation.html (accessed on 20 December 2022).
29. Cutler, A.; Cutler, D.R.; Stevens, J.R. Ensemble Machine Learning; Springer: Boston, MA, USA, 2012. [CrossRef]

http://doi.org/10.3390/en13225895
http://doi.org/10.3390/su12114674
http://doi.org/10.3390/su10124779
http://doi.org/10.3390/su12166631
http://doi.org/10.1016/j.ifacol.2022.04.166
http://doi.org/10.3390/app11052186
http://doi.org/10.1016/j.energy.2021.120436
http://doi.org/10.1016/j.rcim.2019.01.010
http://doi.org/10.1016/j.rcim.2020.101968
http://doi.org/10.1016/j.rcim.2019.101854
http://doi.org/10.1016/j.rcim.2018.11.006
http://doi.org/10.3390/s21082813
http://www.ncbi.nlm.nih.gov/pubmed/33923702
http://doi.org/10.1016/j.jclepro.2019.118379
http://doi.org/10.1016/j.jobe.2020.101692
http://doi.org/10.1016/j.ifacol.2019.10.018
http://doi.org/10.3390/s18082674
http://www.ncbi.nlm.nih.gov/pubmed/30110960
http://doi.org/10.1186/s40327-018-0064-7
https://silo.tips/download/manufacturing-white-paper-using-big-data-for-machine-learning-analytics-in-manuf#modals
https://silo.tips/download/manufacturing-white-paper-using-big-data-for-machine-learning-analytics-in-manuf#modals
http://doi.org/10.1016/j.egyr.2020.04.035
http://doi.org/10.17148/IJIREEICE.2019.7506
http://doi.org/10.1080/09613218.2020.1809983
http://doi.org/10.1016/j.enbuild.2018.04.008
http://doi.org/10.1016/j.jclepro.2020.121160
http://doi.org/10.1016/j.procir.2014.06.036
http://doi.org/10.1016/j.jclepro.2019.118702
http://doi.org/10.3390/en14123620
https://scikit-learn.org/0.15/modules/model_evaluation.html
https://scikit-learn.org/0.15/modules/model_evaluation.html
http://doi.org/10.1007/978-1-4419-9326-7

Processes 2023, 11, 284 25 of 25

30. Segal, M.R. UCSF Recent Work Title Machine Learning Benchmarks and Random Forest Regression Publication Date Machine Learning
Benchmarks and Random Forest Regression; University of California, San Francisco: San Francisco, CA, USA, 2003.

31. Robnik-Šikonja, M. Improving Random Forests; Springer: Berlin/Heidelberg, Germany, 2004; pp. 359–370. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/978-3-540-30115-8_34

	Introduction
	Cloud Applications
	Machine Learning for Energy Consumption Prediction and Management
	This Work’s Contribution

	Materials and Methods
	System Architecture
	Demonstration Scenario
	Deployment
	Machine Learning Predictive Models

	Results
	Data Model
	Flow of Data
	Implementation
	Machine Learning–Creating the Predictive Models
	Creating the Node-Red API
	Data Visualization

	Discussion
	Conclusions
	References

