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Abstract 

Colorectal cancer (CRC) is the third most common cancer and the second most deathly 
worldwide. It is a very heterogeneous disease that can develop via distinct pathways 
where metastasis is the primary cause of death. Therefore, it is crucial to understand 
the molecular mechanisms underlying metastasis. RNA-sequencing is an essential tool 
used for studying the transcriptional landscape. However, the high-dimensionality of 
gene expression data makes selecting novel metastatic biomarkers problematic. To 
distinguish early-stage CRC patients at risk of developing metastasis from those that 
are not, three types of binary classification approaches were used: (1) classification 
methods (decision trees, linear and radial kernel support vector machines, logistic 
regression, and random forest) using differentially expressed genes (DEGs) as input 
features; (2) regularized logistic regression based on the Elastic Net penalty and the 
proposed iTwiner—a network-based regularizer accounting for gene correlation infor-
mation; and (3) classification methods based on the genes pre-selected using regular-
ized logistic regression. Classifiers using the DEGs as features showed similar results, 
with random forest showing the highest accuracy. Using regularized logistic regression 
on the full dataset yielded no improvement in the methods’ accuracy. Further classifi-
cation using the pre-selected genes found by different penalty factors, instead of the 
DEGs, significantly improved the accuracy of the binary classifiers. Moreover, the use 
of network-based correlation information (iTwiner) for gene selection produced the 
best classification results and the identification of more stable and robust gene sets. 
Some are known to be tumor suppressor genes (OPCML-IT2), to be related to resistance 
to cancer therapies (RAC1P3), or to be involved in several cancer processes such as 
genome stability (XRCC6P2), tumor growth and metastasis (MIR602) and regulation of 
gene transcription (NME2P2). We show that the classification of CRC patients based on 
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pre-selected features by regularized logistic regression is a valuable alternative to using 
DEGs, significantly increasing the models’ predictive performance. Moreover, the use of 
correlation-based penalization for biomarker selection stands as a promising strategy 
for predicting patients’ groups based on RNA-seq data.

Keywords: Colorectal cancer, Classification, Biomarker selection, Regularization, 
iTwiner

Introduction
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths world-
wide. In 2018, it was the third most common cancer, with around 1.8 million new cases 
and the second most deathly cancer with almost 900 thousand deaths (9% of all cancer-
related deaths) [1]. CRC begins as a benign adenomatous polyp, which develops into an 
advanced adenoma with high grade dysplasia and then progresses to invasive cancer. 
Invasive cancers that are confined within the wall of the colon (stages I and II) are cur-
able. However, if untreated, they may spread to regional lymph nodes (stage III) or later 
metastasize to distant sites (stage IV) [2].

CRC is a very heterogeneous disease that can develop via distinct pathways involving 
different combinations of genetic and epigenetic changes [3]. These genetic differences 
between patients may lead to differences in susceptibility where cancers deriving from 
the same tissue may be stratified into disease subtypes [4]. Genetic and epigenetic het-
erogeneity poses a problem for the diagnosis and therapy of cancer. For example, it can 
lead to incorrect treatment decisions. CRC has three main types known, divided by their 
origin and expression: sporadic form (60%–80% of the cases), family type (20%–40%) 
and hereditary type [5]. Sporadic CRC may appear in individuals who carry no mutation 
that makes them susceptible to developing this type of cancer. Regarding the family type, 
no gene has been found to be related to the disease. However, there is a higher chance of 
developing this tumor when family members have suffered from sporadic colon cancer. 
In these cases, environmental factors play a critical role. Hereditary type may be divided 
into two subtypes whether patients show adenomatous polyps - familial adenomatous 
polyposis (FAP), or not - hereditary nonpolyposis colorectal cancer [5].

Metastasis is the major cause of death in CRC patients, and approximately 20% of the 
patients already have metastases at diagnosis [6]. In this context, it is vital to diagnose 
CRC at an early-stage and accurately identify patients likely to progress to metastasis 
in order to improve CRC patients outcomes. Tumor surgical removal is the treatment 
of choice for early localized CRC disease (stage II-III) [7]. 50% of stage III patients are 
cured by surgery, whereas 20% of patients will survive due to the addition of adjuvant 
chemotherapy and 30% will relapse in 2-3 years [8]. Altogether, only 20% of stage III 
patients benefit from chemotherapy, exposing 80% of patients to unnecessary toxicity 
[9]. Therefore, one of the main challenges is to identify those stage II-III CRC patients 
where adjuvant chemotherapy is crucial to improve their outcomes.

Many studies try to understand tumor biology and mechanisms that lead to metas-
tasis; notwithstanding, the identification of the factors influencing metastatic tumor 
cells, especially in colorectal cancer, remains poor [10]. Consequently, over the years, 
there was an increase in molecular profiling of tumors using next-generation sequencing 
(NGS), such as RNA sequencing (RNA-seq), which constitutes an important tool widely 
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used in cancer research for studying the transcriptional landscape and molecular path-
ways [11].

Supervised learning comes as a natural choice for helping in the classification of 
patients into metastatic and non-metastatic, based on NGS data. Some of the widely 
used classifiers applied to RNA-seq data are Logistic Regression (LR), Decision Tree 
(DT), Random Forest (RF), and Support Vector Machine (SVM) [12–14]. However, 
despite the invaluable information provided by NGS, the intrinsic high dimensionality 
of gene expression data may compromise the classification learning task and severally 
hamper an accurate selection of biomarkers. Therefore, feature selection plays a pivotal 
role in the selection of informative genes preceding the classification of RNA-Seq data 
for disease prediction and diagnosis, to enhance accuracy in disease classification [15]. 
Furthermore, ranking of the features according to their relevance to the classification 
problem and further selection of the best ones can improve the performance of the pre-
diction model [13].

Another common way to address the data high-dimensionality challenge is to use clas-
sification algorithms that control the model’s complexity through regularization [16, 17]. 
One option is to regularize the log-likelihood function of the LR model. Two of the most 
commonly used penalties are the lasso ( ℓ1-norm) and the ridge ( ℓ2-norm) [14] regular-
izers, whose combination leads to the Elastic Net [18]. Network analysis has also shown 
enormous potential in precision medicine, helping to identify key biomarkers and thera-
peutic targets in cancer [19]. Several studies used network-based regularizers to improve 
model accuracy and interpretability. Prior network knowledge may be based on protein-
protein interactions [20], or from the correlation matrix of the gene expression values 
[21, 22].

In sum, several studies demonstrated that using supervised learning methods in 
microarray gene expression data [23] is a very promising technique and that the integra-
tion of gene expression profiles with network information may help to identify markers 
correlated with metastasis [24]. Also, in the context of colorectal cancer, some classi-
fiers developed to investigate metastasis were based only on clinical data (e.g., sex, age 
at diagnosis, histological subtype, stage, primary site) [25]. Therefore, there is still an 
urgent need of methods for the identification of factors influencing metastatic tumor 
cells, especially in colorectal cancer.

In this work, we try to find a set of biomarkers that may predict the risk of metastasis 
using transcriptomic data from a cohort of CRC patients followed at the Hospital de 
Santa Maria (Lisbon), one of the largest hospitals in Portugal.

To achieve this goal, we applied and tested different classification methods using tran-
scriptomic data, and proposed a new combined model that showed higher classification 
accuracy compared to its model counterparts. Altogether, we proposed a new pipeline 
for the selection of putative biomarkers based on patients’ gene correlation matrices.

Materials and methods
To identify important genes involved in the CRC metastasis process, several classifica-
tion methods applied to RNA-seq data were tested. The pipeline of this study is repre-
sented in Fig. 1. All the methods were implemented in the R statistical software [26] and 
the corresponding code is available at https:// github. com/ sysbi omed/ iTwin er. git.

https://github.com/sysbiomed/iTwiner.git
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Datasets

Primary tumor samples from patients diagnosed with CRC disease from June 2010 to 
October 2017 were collected as part of a prospective biobanking project approved by 
the Ethical Committee of Hospital de Santa Maria, all procedures were performed in 
accordance with relevant guidelines. Patients were followed at the Oncology Division of 
Hospital Santa Maria, Lisbon, and were treated as per institutional clinical practice in 
accordance with international guidelines, namely ESMO and NCCN guidelines. Cases 
were staged according to The American Joint Committee on Cancer (AJCC) staging sys-
tem, 8th edition, and patients had not received neoadjuvant chemo or radiotherapy prior 
to sample collection. Whole transcriptome sequencing (WTS) was performed by Illu-
mina Inc.

The dataset used in this study comprises 110 samples from early-stage (II and III) 
CRC patients with both clinical and transcriptomic (RNA-seq) data. This was obtained 
from two different cohorts of CRC patients from Hospital Santa Maria (Lisbon, Portu-
gal): Cohort 1: Cohort described in [27] containing 111 samples, available under acces-
sion number EGAS00001005276 (European Genome-Phenome Archive). This cohort 
has 26 samples from primary stage II-III colorectal tumors that did not metastasize, 34 
primary stage II-III colorectal tumors that metastasize in three years of follow up, 12 
adjacent normal colonic mucosa, and 39 metastasis of CRC patients. From this cohort, 
only the primary colorectal tumors samples were used ( nT1 = 45 ), from early-stage CRC 
that metastasize ( nPM1 = 19 ), and did not metastasize ( nP1 = 26 ). Cohort 2: Cohort 
described in [28] containing 114 samples, already available in NCBI Database under 
accession number PRJNA689313. We used nT2 = 65 samples that correspond to early-
stage CRC that metastasize ( nPM2 = 11 ) and early-stage CRC that did not metastasize 
( nP2 = 54).

The clinical dataset descriptive statistics are summarized in Table 1. The sex (Female 
or Male), tissue of cancer primary site (Colon or Rectum), stage of the disease (II or 
III), sidedness of primary site (Right or Left side of the colon), and age variables were 
selected for further analysis. For the classification methods, two groups of interest were 
selected, early-stage (II-III) patients that do not metastasize (P, nP1 + nP2 = 80 ) and 
early-stage patients that metastasize (PM, nPM1 + nPM2 = 30 ) during the follow-up time 
period. Given the resulting imbalanced groups and the problems in classification that 
were obtained due to class imbalance, an undersampling strategy was taken for model 
training by splitting the initial dataset into three different smaller datasets, i.e., DATA-
SET1 ( n = 60 ), DATASET2 ( n = 55 ), and DATASET3 ( n = 55 ). For each dataset, PM 
patients were the same ( n = 30 ) and P patients were randomly divided into three groups 
( n1 = 30 , n2 = 25 , n3 = 25 ). With this strategy, we exploit all the data collected while 
keeping class balance in each classification procedure. Other data partitions may be 
tested using the available code.

The original gene expression dataset was comprised of 39,103 variables (genes). After 
excluding the genes with a constant expression (standard deviation of zero), a dataset 
with 37,504 variables (genes) was obtained.

A preliminary study of the datasets was performed to verify the statistical significance 
of the differences between factor variables across the P and PM groups of patients using 
the Fisher’s Exact test, namely to the variables sex, tissue type, stage of the disease, and 
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sidedness. For the age variable, a t-test was used to compare the mean between the two 
groups. Subsequent survival analysis was performed for each dataset used, with the 
main goal of studying the time until an event of interest, i.e., death, occurs [29]. Here, we 
compared the differences in survival between several groups of interest – namely, stages 
of the disease (II vs. III), sidedness (Right vs. Left side of the colon), and class (P vs. PM) 
– using the log-rank test [30].

Finally, differential gene expression analysis was performed to identify genes differen-
tially expressed between the two patient groups (P and PM). To perform this analysis, 
the edgeR R software package was used, employing an FDR (false discovery rate) cut-off 
of 0.05 to identify differentially expressed genes (DEGs). These genes were further used 
for classification.

Classification methods

Classification is a supervised learning method, where the model learns from a set of pre-
defined samples with given class labels (training dataset). The knowledge inferred from 
this is applied to classify unknown samples (a test dataset) accordingly [13].

In this work, three binary classification approaches were used to distinguish early-
stage CRC patients that metastasize from those that did not: 1) classification methods 
based on a subset of relevant genes (DEGs), 2) classification via regularized logistic 
regression with embedded feature selection applied to the full dataset, and 3) all classi-
fiers based on the relevant features identified by regularized logistic regression (Fig. 1).

Binary classification

Regarding binary classification, five different classifiers were tested: decision trees, sup-
port vector machines (linear and radial), logistic regression, and random forest. One of 
the limitations of these methods emerges when using high-dimensional data. Since a 

Table 1 Distribution of the patients of each dataset (D1 - DATASET1, D2 - DATASET2, D3 - DATASET3) 
used regarding sex (Female, Male), tissue type (Colon, Rectum), stage of the disease (II, III), sidedness 
(Right, Left) and age; * p-value comparing P and PM class groups using the Fisher exact test

 Regarding age, a t-test was used to compare the mean between groups

Total P PM (30) p-value*

 D1 (60)  D2 (55)  D3 (55)  D1 (30)  D2 (25)  D3 (25)  –  D1  D2  D3

 Sex
 Female  37  30  30  20  13  13  17

 Male  23  25  25  10  12  12  13  0.60  0.79  0.79

 Tissue
 Colon  53  49  47  28  24  22  25

 Rectum  7  6  8  2  1  3  5  0.42  0.20  0.72

 Stage
 II  32  24  24  22  14  14  10

 III  28  31  31  8  11  11  20  0.004  0.11  0.11

 Sidedness
 Right  23  23  24  14  14  15  9

 Left  26  21  17  13  8  5  13  0.32  0.12  0.04

 Age  68.55  67.77  69.5  68.29  66.52  70.36  68.77  0.90  0.53  0.64
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high number of features may lead to problems in classification analysis, a smaller subset 
containing only genes found to be differentially expressed between the groups P and PM 
was used. The difference in the expression level of genes is found useful in classification 
in order to identify disease biomarkers [13]. Decision trees (DT) are one of the most 
used classifiers. The tree complexity, measured by the number of nodes and number of 
features used, has a crucial effect on its accuracy  [31]. Certain parameters for tree con-
struction were fixed as explained in the section “Method evaluation and comparison”. 
SVMs have been successfully applied to a wide variety of biological applications, such 
as the classification of microarray gene expression profiles. Here we tested both linear 
(svmL) and radial (svmR) kernel functions [32]. Logistic regression allows the analysis 
of binary outcomes using a logistic function [33]. This method will be explained in more 
detail below. Finally, Random forest (RF) is an ensemble learning method for classifica-
tion, operating by constructing a multitude of decision trees [34] to get a more accurate 
and stable prediction. These classification procedures were performed using the R soft-
ware caret package.

Regularized logistic regression

Another approach that has been widely used for classification problems in cancer is 
logistic regression [35, 36]. This method is used for modeling a binary response variable 
[37]. In this specific case, we investigated how metastasis may be predicted using gene 
expression levels from early-stage CRC patients.

The logistic regression model estimates the probability of belonging to a given class 
( Yi = 1 ) by:

where Xi, i = 1, . . . , n , is the vector of the p covariates (gene expression values) of the i-
th patient, and β = (β1,β2, . . . ,βp) are the corresponding regression coefficients.

(1)P(Yi = 1|Xi,β) =
exp(XT

i β)

1+ exp(XT
i β)

,

Fig. 1 Methodological procedure of the work presented here. The full dataset was divided into three 
smaller datasets. Survival analysis was performed to each dataset to evaluate how stages of the disease (II 
vs. III), sidedness of primary tumor site in colon (Right vs. Left), and class (P—primary patients that do not 
metastasize vs. PM—primary patients that metastasize) are related to risk of death. Afterwards, three different 
approaches to classify early-stage patients that metastasize were used: (1) Classifiers without regularization 
(DT – decision trees, svmL—linear support vector machine, svmR—radial support vector machine, LR—
logistic regression and RF—random forest) applied to subset of genes that were found differentially 
expressed between two groups (P vs. PM); (2) Regularized logistic regression performed on the full dataset 
using two different penalization factors (EN—elastic net, and iTwiner); (3) Classifiers applied to genes 
pre-selected by regularized logistic regression. Model performance was compared using different types of 
measures (e.g., accuracy and misclassifications)
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The parameters β of the logistic model are estimated by maximizing the log-likelihood 
function, given by

where the binary variable yi indicates to which group observation i belongs  to, either 
a patient known to have metastasized in the future (group PM, yi = 0 ) or to a patient 
whose tumor did not metastasize (group P, yi = 1).

One of the most used techniques to handle high-dimensional gene expression data is reg-
ularization [38]. The most common regularizer is the Elastic Net ([18]), which combines the 
ℓ1-norm and the squared ℓ2-norm of the parameters:

where 0 ≤ α ≤ 1 . When α = 1 , the least absolute shrinkage and selection operator 
(Lasso) is obtained, whereas α = 0 corresponds to the Ridge regression. Lasso may set 
coefficients to zero, resulting in a sparse model with fewer coefficients. Ridge regression, 
on the other hand, is a continuous shrinkage method that minimizes the residual sum of 
squares, keeping all the predictors in the model [39]. The parameter � that controls the 
penalizing weight is usually chosen with cross-validation.

Incorporating network-based regularizers in classifiers may improve model interpret-
ability leading to parameter estimation towards meaningful biological solutions. This net-
work information may be obtained from the data correlation itself. For example, Twiner 
was recently proposed as a regularizer based on pairwise correlations between the features 
in two distinct groups A and B [21]. This method allows the selection of similarly corre-
lated genes in two groups (e.g., in two given diseases). Here we propose a variant of Twiner, 
the iTwiner, in which the more different a gene’s correlation pattern is between two groups 
(metastatic and non-metastatic), the less penalized will be in the regularization term of 
logistic regression.

Given two correlation matrices for A and B, �A = [σA
1 , ..., σ

A
p ] and �B = [σB

1 , ..., σ
B
p ] , 

respectively, where each column σ j ∈ R
p represents the correlation of each feature 

j = 1, . . . , p with the remaining ones, the dissimilarity measure dj(A,B) of feature j between 
A and B is given by the angle of the corresponding vectors

The regularizer is constructed using these distances, to promote the selection of genes 
whose correlation patterns are more distant between A and B. The penalty term is given 
by

where vector q = (w−1
1 , . . . ,w−1

j , . . . ,w−1
p ) represents the inverse of the normalized dis-

tances wj = dj(A,B)/maxk dk(A,B).

(2)l(β) =

n

i=1

yi log P(Yi = 1|Xi,β)+ (1− yi) log[1− P(Yi = 1|Xi,β)] ,

(3)F(β) = �

{

α�β�1 + (1− α)�β�22

}

,

(4)dj(A,B) = arccos
< σA

j , σ
B
j >

�σA
j � · �σ

B
j �

, j = 1, . . . , p.

(5)F(β) = �

{

α�q ◦ β�1 + (1− α)�q ◦ β�22

}

,
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The iTwiner adapts the former regularization in order to penalize, now in an inverse 
way, the gene expression correlation similarities between the two groups (P vs. PM). The 
main rationale, in this context, is to select biomarker signatures that indeed reflect the 
different correlation patterns between the metastatic vs. non-metastatic early-stage CRC 
patients.

Method evaluation and comparison

In this work we tested three different approaches to find the best CRC metastasis clas-
sifier: 1) Classifiers based on DEGs; 2) Regularized logistic regression applied to the full 
dataset; 3) Classifiers based on genes pre-selected from regularization (instead of DEGs).

As explained above, the original dataset was split into three smaller datasets due to 
the existing class imbalance. For each dataset used, samples were randomly divided into 
a training set (for model construction) and a test set (for model evaluation), comprising 
70% and 30% of the data, respectively. To obtain statistically reliable predictive meas-
urements, 10-fold cross-validation was performed on the training set to optimize the 
� parameter in regularized logistic regression. Regarding decision trees, the minimum 
number of observations that must exist in a node in order for a split to be attempted 
and the minimum number of observations in the final node were fixed (minsplit = 4; 
minbucket = minsplit/3, respectively). After testing manually some values, these 
were the ones that gave the best estimated tree. Also, a 10-fold cross-validation was used 
across all runs to tune maxdepth and estimate the best tree, guaranteeing models’ com-
parison. This estimation procedure and hyper-parameter optimization was performed 
using the R software package rpart. For support vector machine, random forest and 
logistic regression classifiers, the train function from caret package was used to 
perform hyper-parameter optimization from a training set using the default 10-fold 
cross-validation. To mitigate the variability of these procedures, train and test sets were 
randomly generated 100 times, keeping the same fixed split (70%-30%).

For the EN model the parameter that controls sparsity was set to α = 0.2 and for 
iTwiner α = 0.05 , which selected an adequate number of variables to be further ana-
lyzed and interpreted. Notwithstanding, different α parameters may be tested to select 
different gene set sizes, using the code made available.

To evaluate the models’ performance, depending on the class predicted by the clas-
sifier and the true class of the patient (non-metastatic - P or metastatic - PM), four 
different results can be obtained: True positive (TP) - patient predicted as positive (non-
metastatic) and the patient was non-metastatic; False positive (FP) - patient predicted as 
positive (non-metastatic) but the patient did metastasize; True negative (TN) - patient 
predicted as negative (metastatic) and the patient metastasized; False negative (FN) 
- patient predicted as negative (metastatic) but the patient did not metastasize. Using 
these results, the following measures on the test set were used as indicators of the per-
formance of the classifiers: Accuracy (fraction of correct predictions - Acc), number of 
misclassifications (Miscl), Sensitivity (fraction of actual positive cases), Specificity (frac-
tion of actual negative cases) and AUC (area under the ROC curve). The median values 
of all performance indexes obtained for train and test sets across the 100 runs were used 
for comparison.
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To perform the analysis described above, glmnet [40] package was used in R statisti-
cal software. The q vector was introduced as a penalty factor in the glmnet function.

Results and discussion
Different gene expression profiles are expected in early-stage patients that will metas-
tasize compared to non-metastatic patients, as a consequence of molecular, biochemi-
cal, and genetic variations that make metastatic cells able to migrate from the primary 
tumor to other body sites [41]. In this work, several classification and feature selection 
strategies based on RNA-seq data were evaluated to distinguish early-stage (II-III) CRC 
patients that metastasize from those that do not, and to find a subset of genes that may 
be predictive of CRC metastasis.

Exploratory analysis

The data used to perform this analysis is described in Table 1. As explained before, the 
full dataset was divided into three. These were analyzed individually and patients were 
divided into several groups regarding important clinical factors such as sex (Female and 
Male), tissue (Colon and Rectum), stages of the disease (II and III), sidedness (Right, 
Left), and age. The statistical significance of the differences between groups P and PM 
for each clinical factor can be found in Table 1. Most clinical factors yielded no signifi-
cance in the differences between groups. This is an important step to guarantee that fur-
ther differences found between P and PM groups are related to gene expression data and 
not to possible clinical confounding factors.

Afterward, to assess if there were differences in the survival probability regarding 
clinical factors, survival analysis was performed (Fig.  2) for each dataset used, and 
the significance of the differences was determined via the log-rank test. As expected, 
stage III of the disease (more advanced stage), was related to a higher risk of death 

Fig. 2 Survival curves for each dataset used, regarding different stages—II vs. III (top line), class—P vs. PM 
(mid line) and sidedness—Right vs. Left (bottom line)
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compared to stage II. This was observed in all datasets, however, only DATASET1 
had significant results (p value = 0.0091). Also, PM patients showed worst survival 
probability when compared to P patients, significant in all datasets (p value < 0.001). 
Finally, regarding sidedness, no statistically significant results were found. However, 
for DATASET1 and DATASET2, there was a tendency for the right side to be related 
with worst survival probability, as shown in the literature [42].

Differential gene expression analysis was performed in all datasets to find differen-
tial expressed genes (DEGs) between P and PM patient groups. In DATASET1, a total 
of 9533 DEGs were found. Among those, 1589 were up-regulated and 7944 down-
regulated in PM patients. In DATASET2, 1840 DEGs were found, 835 up-regulated 
and 1005 down-regulated in PM. Finally, 138 DEGs were found in DATASET3, 39 
up-regulated and 99 down-regulated. Given the high number of DEGs found in each 
dataset, a smaller gene set containing only the fifty DEGs that exhibited the lowest 
p-values between the two tissues was created, for ease of model building and inter-
pretation. The list of ranked genes can be found in Table 2. To compare if there were 
DEGs found in common between datasets, a Venn diagram was constructed (Fig. 3).

The DEGs found in common between datasets are represented in Table  3, where 
log fold change (LogFC) is also shown. Negative values refer to down-regulated genes 
and positive values to up-regulated genes in PM patients. As we can see, twelve 
genes were considered DEGs in at least two datasets between tissues of early-stage 
metastatic patients and non-metastatic, with 3 DEGs in common between all of the 
datasets tested, GBP4, IDO1, IGHV4-34. Interestingly, all these three genes have 
important implications in immune regulation, highly relevant for cancer progression 
[43–45]. Several of the other genes identified have previously been involved in cancer 
cells migration, invasion and metastasis such as LRP4, LGR6, APOL1 and CXCL11 
[46–49].

Fig. 3 Venn’s diagram comparing fifty DEGs found in each dataset, that exhibit the lowest p-values between 
the P and PM groups of patients
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Table 2 List of the top fifty genes with lowest p-value found between P vs. PM, regarding different 
gene expression analysis, subsequently used for classification analysis in each dataset tested

DATASET1 DATASET2 DATASET3

LRP4 CHGA SPOCK2

AXIN2 TPH1 LGR6

MIR3197 VWA5B2 ORM1

TFF2 STXBP5L H2BS1

RNU7-77P EGFR MTRNR2L12

GBP4 IDO1 NELL2

RNU6-83P PEG3 CXCL11

IDO1 MIR3978 IDO1

RNU6-769P NLRP2 SLCO1B1

LGR6 PTPRN SLCO1B7

RNU6-580P RNU6-1010P CD8A

RNU6-196P RIMS2 CNN1

S100A12 CPLX2 HTR1D

RNU6-1082P LRP4 ACTG2

MIR567 MIR5003 SLC38A11

SNORD66 NELL2 ABCA12

CD8B IGLV10-54 HLA-DRB5

KIT RNU6-196P ASB4

MIR6895 IGHV4-34 GBP4

WIPF3 ADGRV1 CALB1

MIR559 RET APOL1

RNU6-1176P CXCL11 FBXO39

BIRC3 FMN2 DES

DUOX2 GBP4 CRYAB

MIR28 SCN3A IGHV4-34

ZPR1 CYP3A7 ITGAE

RNU6-1111P USH2A MIR155HG

RNU6-593P SORCS2 TNNT2

SLC28A2 MUC16 PLAAT4

RNU6-912P RNU6-1208P OSR2

RNU2-69P RNA5SP241 IGHD

RNU6-310P MX1 DTHD1

SNORA36B MAP6 GZMH

RNU6-223P SHISA2 LINC02323

RNU2-24P RNU6-122P MGP

ATAD3C MAP2 SLFN12L

SCARNA23 RNU6-677P CD8B

MIR4639 CCDC158 SNORD116-14

RNU5B-1 TTLL6 KLK7

RNA5SP179 CDHR3 FABP3

RNU6-807P SYT16 CX3CL1

RNU7-73P KIF5C TNNC2

TAP1 MIR7-3HG MYL9

IGHV4-34 WIPF3 TIGIT

CD8A CMPK2 AIM2

S100A8 RUNDC3A THEMIS

RNU7-19P AIRE IFI44L

RNU7-70P NCAM1 CD7
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Classification based on the DEGs

To classify primary patients that metastasize, five distinct classification methods were 
used: decision trees (DT), random forest (RF), linear and radial support vector machine 
(svmL and svmR, respectively), and logistic regression (LR). Due to high-dimension-
ality problems, the full gene expression dataset cannot be directly used. Therefore, we 
decide to perform feature selection using only DEGs found between early-stage patients 
that metastasize and those that do not metastasize. This is a common approach used to 
reduce feature dimension before classification. Since the number of DEGs found in each 
dataset was different, we used the 50 DEGs with the lowest p-value described above as 
means to use the same gene dataset dimension as input to all classifiers in all datasets 
tested. After training the classifiers 100 times, several performance evaluation metrics 
were calculated in the test set, such as accuracy, misclassifications, sensitivity, specific-
ity, and area under the ROC curve (AUC). The median results of all runs obtained for 
each dataset in the test set are displayed on Table 4 (all performances for train and test 
sets may be found in the Additional file 1: Table S1). Also, pairwise comparisons of the 
accuracy obtained for classifiers may be found on Additional file 1: Table S2. It is shown 
that the results are similar between the different methods tested. Nonetheless, RF was 
the best classifier obtained, presenting higher accuracy (0.72, 0.71, and 0.71) and AUC 
(0.72, 0.71, and 0.69) in all datasets tested, and the lowest number of misclassifications 
(5) in the test set.

Table 2 (continued)

DATASET1 DATASET2 DATASET3

RNU6-767P MIR552 LINC02446

APOL1 CAMK2B WARS1

Table 3 DEGs found in common at least in two datasets used with fold change regarding primary 
patients that will metastasize (PM). logFC - log fold change; Multiple testing correction is performed 
by applying the Benjamini-Hochberg method on the p-values, to control the false discovery rate 
(FDR)

DATASET1 DATASET2 DATASET3

LogFC FDR LogFC FDR LogFC FDR

GBP4 −2.45 2.34e−09 −2.52 1.72e−07 −2.07 1.63e−03

IDO1 −3.19 2.34e−09 −3.20 6.97e−09 −2.45 1.91e−04

IGHV4-34 3.55 2.80e−04 4.47 8.68e−08 3.63 2.48e−03

LRP4 −2.57 1.04e−05 −2.66 9.23e−05 – –

RNU6-196P 3.60 4.69e−05 3.88 9.23e−05 – –

WIPF3 −1.99 9.37e−05 −1.55 5.03e−04 – –

LGR6 −1.91 3.76e−05 – – −2.03 8.07e−05

CD8B −1.81 8.73e−05 – – −1.69 5-09e−03

CD8A −1.62 2.08e−04 – – −2.13 4.20e−04

APOL1 −1.86 2.08e−04 – – −1.96 1.78e−03

NELL2 – – −2.76 9.23e−05 −3.09 1.78e−04

CXCL11 – – −3.06 1.00e−05 −3.01 1.78e−04
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Regularized logistic regression

The second approach tested to distinguish early-stage CRC patients that metastasize 
from those that do not, was to use regularized LR with different types of penalization for 
feature selection: Elastic net (EN) and the correlation-based regularizer iTwiner. The test 
set results obtained for these methods applied to the full dataset are described in Table 5 
(results for train and test sets may be found in the Additional file 1: Table S3).

The performance of these methods was similar to the classifiers tested above, where 
higher accuracy in test set was obtained by the iTwiner method (mean Acc = 0.69 ). 
Interestingly, most of the misclassifications in DATASET2 and DATASET3 using both 
approaches were false negatives (FN), meaning that these methods classified wrongly 
patients that do not metastasize in patients that metastasize. Since non-metastatic 
patients can indeed metastasize in the future it would be of great value to do a follow-up 
on these patients that were labeled wrongly by these methods.

The median number of selected variables (genes) by the two methods (across the 
100 runs) used to separate the two groups (P vs. PM) was 48 for EN and 38 for iTwiner 

Table 4 Median classifiers performance results (and standard deviation in parenthesis) obtained 
for test sets for the 100 runs tested using five classification methods applied to the fifty DEGs with 
lowest p-value

DT—decision trees; svmL—linear support vector machine; svmR—radial support vector machine; LR—logistic regression; 
RF—random forest; D1—DATASET1; D2—DATASET2; D3—DATASET3; x̄—datasets mean; Acc—accuracy; Miscl—
misclassifications; FN—false negatives; Sensitivity—fraction of actual positive cases (P); Specificity—fraction of actual 
negative cases (PM); AUC—area under the ROC curve

Acc Miscl/FN Sensitivity Specificity AUC 

DT

D1 0.61(0.098) 7(1.764)/3(1.465) 0.67(0.163) 0.56(0.167) 0.61(0.092)

D2 0.65(0.103) 6(1.746)/3(1.490) 0.63(0.186) 0.78(0.147) 0.65(0.102)

D3 0.59(0.101) 7(1.717)/3(1.371) 0.63(0.171) 0.67(0.176) 0.59(0.095)

x̄ 0.62 - 0.62 0.67 0.62

svmL

D1 0.67(0.102) 6(1.844)/3(1.581) 0.67(0.176) 0.78(0.209) 0.67(0.102)

D2 0.71(0.092) 5(1.566)/3(1.589) 0.63(0.199) 0.78(0.152) 0.71(0.087)

D3 0.71(0.083) 5(1.415)/4(1.816) 0.50(0.227) 0.89(0.137) 0.69(0.088)

x̄ 0.70 – 0.60 0.82 0.69

svmR

D1 0.67(0.101) 6(1.817)/3(1.662) 0.67(0.185) 0.56(0.199) 0.67(0.094)

D2 0.59(0.112) 7(1.909)/2(2.567) 0.75(0.321) 0.56(0.222) 0.61(0.114)

D3 0.53(0.090) 8(1.537)/6(1.798) 0.25(0.225) 0.89(0.221) 0.51(0.084)

x̄ 0.60 – 0.56 0.67 0.60

LR

D1 0.67(0.092) 6(1.663)/3(1.282) 0.67(0.142) 0.67(0.163) 0.67(0.092)

D2 0.65(0.085) 6(1.441)/3(1.299) 0.63(0.162) 0.78(0.132) 0.64(0.082)

D3 0.65(0.105) 6(1.785)/3(1.428) 0.63(0.178) 0.72(0.188) 0.65(0.101)

x̄ 0.66 – 0.64 0.72 0.65

RF

D1 0.72(0.089) 5(1.602)/3(1.132) 0.72(0.126) 0.78(0.140) 0.72(0.089)

D2 0.71(0.090) 5(1.524)/2(1.329) 0.75(0.166) 0.78(0.140) 0.71(0.091)

D3 0.71(0.102) 5(1.731)/4(1.450) 0.50(0.181) 0.89(0.158) 0.69(0.103)

x̄ 0.71 – 0.66 0.82 0.71
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(Table 5). Also, the number of genes selected in at least 50% of the 100 runs tested 
in EN was smaller when compared to iTwiner, indicating that the iTwiner method is 
more stable since more genes are consistently selected as important for the classifi-
cation of early-stage patients that metastasize. Moreover, to assess which genes are 
being recurrently selected by the methods, independently of the dataset used, a Venn 
diagram was constructed (Fig.  4). Here, we compared for each regularizer (EN and 
iTwiner) the top fifty genes selected in each dataset (Table 6), as the most likely genes 
to be metastatic biomarkers in CRC patients. Interestingly, only a few biomarkers 
were found to be DEGs between the P and PM groups, represented in bold the down- 
and in  underline the up-regulated genes in the PM group. Also, we can see that using 

Table 5 Median values (and standard deviation in parenthesis) of the performance metrics in test 
set by regularized LR methods across 100 runs applied to the full dataset

D1—DATASET1; D2—DATASET2; D3—DATASET3; x̄—datasets mean; # Genes—number of genes selected by the methods; 
Acc—accuracy; Miscl—misclassifications; FN—false negatives; Sensitivity—fraction of actual positive cases (P); Specificity—
fraction of actual negative cases (PM); AUC—area under the ROC curve; # Common genes—number of genes selected in 
common in at least 50% of the runs

# Genes Acc Miscl/FN Sensitivity Specificity AUC # 
Common 
genes

EN

D1 59(32.63) 0.67(0.093) 6(1.667)/3(1.133) 0.67(0.126) 0.67(0.142) 0.67(0.093) 8

D2 45(21.34) 0.59(0.102) 7(1.732)/5(1.387) 0.38(0.173) 0.78(0.166) 0.58(0.095) 4

D3 39(19.76) 0.59(0.074) 7(1.257)/6(1.135) 0.25(0.142) 0.89(0.118) 0.57(0.072) 6

x̄ 48 0.62 – 0.43 0.78 0.61 6

iTwiner

D1 33(21.98) 0.78(0.075) 4(1.343)/4(1.362) 0.56(0.151) 1.00(0.036) 0.78(0.075) 19

D2 42(21.11) 0.65(0.056) 6(0.946)/6(0.904) 0.25(0.113) 1.00(0.040) 0.63(0.058) 25

D3 39(20.65) 0.65(0.050) 6(0.847)/6(0.783) 0.25(0.098) 1.00(0.040) 0.63(0.052) 30

x̄ 38 0.69 – 0.35 1 0.68 25

Fig. 4 Venn’s diagram comparing the 50 genes that are selected more times by the regularization methods 
for each dataset tested. a Elastic net; b iTwiner
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iTwiner, a higher number of genes is selected in common across the three datasets 
tested, which once more stands as evidence of improved stability and robustness of 
the selected feature sets, irrespective of the dataset used.

Looking closely at the genes selected by each classifier in the different datasets tested 
(Table 6), EN only selected RAC1P3 in common to all datasets. This gene is a pseudo-
gene of the Rac family of small GTPase whose role in cancer is still unknown. Regard-
ing iTwiner, six genes were selected by the three datasets tested, RAC1P3, XRCC6P2, 
EEF1B2P6, HSPD1P7, TRBV11-1, HORMAD2. The majority of these genes are pseudo-
genes with an unknown role in cancer. However, HORMAD2 has been reported to have 
tumor suppressor functions, and its expression was seen down-regulated in cancer [50]. 
Here we showed that HORMAD2 gene was down-regulated in early-stage patients that 
metastasize (represented in bold in Table 6).

Classification based on regularized-selected genes

The final procedure to find a set of biomarkers involved in metastasis processes of early-
stage CRC patients was to use classification methods based on the features previously 
identified by regularized LR. In particular, using the genes pre-selected by regularization 
(EN, iTwiner) as an alternative to the DEGs (Fig. 1, method 3), to try to improve the clas-
sification performance.

Here, the five classifiers used earlier (DT, svmL, svmR, LR, and RF) were applied to 
the two smaller gene sets obtained by regularized LR. To have the same dataset dimen-
sion as before, the fifty genes selected by EN and iTwiner penalties ranked in Table  6 
were used as input to the classifiers. This was done to each dataset as previously. Per-
formances obtained for classifiers train and test sets using genes pre-selected by EN and 
iTwiner penalties may be found on the Additional file 1: Tables S4 and S6, respectively. 
Pairwise comparisons of the accuracy obtained for classifiers may be found on Addi-
tional file 1: Tables S5 and S7.

Regarding classifiers applied to gene sets based on EN penalties (Table 7), for all data-
sets tested, the best results in test set were obtained using svmR ( Acc = 0.78, 0.76, 0.76 ) 
and RF ( Acc = 0.78, 0.76, 0.76 ) methods. Also, in the RF method, the specificity of the 
results was higher, i.e., most of the misclassifications were FN. This means that the clas-
sifier labeled patients as metastatic even though they were non-metastatic at the three 
years follow-up time.

Afterward, we tested the same classifiers applied to a different gene set based on 
iTwiner penalization (Table 8). The best accuracy was obtained by RF classifier as before 
( Acc = 0.86, 0.82, 0.76 ). However, using this iTwiner penalization improved the specific-
ity of the classifier (Specificity = 1 for all datasets).

Table 9 presents the mean performance results for all the tested combinations of clas-
sifiers and feature selection methods: DEGs found between P and PM patient group 
(Table 9, DEG +), genes pre-selected by EN regularizer (Table 9, EN +) and genes pre-
selected by the iTwiner (Table 9, iTwiner +). For all gene selection methods tested, the 
best performance classifier was RF showing the highest accuracy and specificity. Over-
all, using the genes found by regularization, considering different penalty vectors (and 
so different information used for selection), instead of using DEGs found between 
groups, improved in a significant way the accuracy of the classifiers (Table 9). A pairwise 
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Fig. 5 Boxplots comparing accuracy (Acc) obtained by the different approaches tested applied to each 
dataset. a Decision trees (DT); b linear support vector machine (svmL); c radial support vector machine 
(svmR); d random forest (RF); e logistic regression (LR)

Table 7 Median values (and standard deviation in parenthesis) obtained in test set for the five 
classification methods using fifty most frequently genes pre-selected by LR with EN penalization

DT—decision trees; svmL—linear support vector machine; svmR—radial support vector machine; LR—logistic regression; 
RF—random forest; D1—DATASET1; D2—DATASET2; D3—DATASET3; x̄—datasets mean; Acc—accuracy; Miscl—
misclassifications; FN—false negatives; Sensitivity—fraction of actual positive cases (P); Specificity—fraction of actual 
negative cases (PM); AUC—area under the ROC curve

Acc Miscl/FN Sensitivity Specificity AUC 

DT

D1 0.72(0.094) 5(1.698)/2(1.251) 0.78(0.139) 0.67(0.160) 0.72(0.094)

D2 0.65(0.093) 6(1.577)/3(1.282) 0.63(0.160) 0.67(0.168) 0.65(0.087)

D3 0.65(0.119) 6(2.021)/3(1.403) 0.63(0.175) 0.67(0.172) 0.65(0.098)

x̄ 0.67 – 0.68 0.67 0.67

svmL

D1 0.72(0.081) 5(1.467)/4(1.439) 0.56(0.160) 0.89(0.118) 0.72(0.081)

D2 0.71(0.080) 5(1.355)/3(1.323) 0.63(0.165) 0.89(0.112) 0.70(0.082)

D3 0.71(0.093) 5(1.579)/3(1.463) 0.63(0.183) 0.78(0.130) 0.71(0.091)

x̄ 0.71 – 0.61 0.85 0.71

svmR

D1 0.78(0.101) 4(1.812)/2(1.043) 0.78(0.116) 0.67(0.196) 0.78(0.101)

D2 0.76(0.095) 4(1.612)/1(0.964) 0.88(0.120) 0.67(0.184) 0.77(0.092)

D3 0.76(0.087) 4(1.480)/2(1.369) 0.75(0.171) 0.78(0.154) 0.76(0.088)

x̄ 0.77 – 0.80 0.71 0.77

LR

D1 0.72(0.098) 5(1.757)/3(1.255) 0.67(0.139) 0.78(0.156) 0.72(0.098)

D2 0.71(0.092) 5(1.570)/3(1.331) 0.63(0.166) 0.78(0.146) 0.70(0.093)

D3 0.76(0.090) 4(1.535)/2(1.303) 0.75(0.163) 0.78(0.133) 0.76(0.091)

x̄ 0.73 – 0.68 0.78 0.73

RF

D1 0.78(0.096) 4(1.722)/3(1.143) 0.67(0.127) 0.89(0.127) 0.78(0.096)

D2 0.76(0.078) 4(1.325)/2(1.037) 0.75(0.130) 0.89(0.107) 0.76(0.079)

D3 0.76(0.081) 4(1.384)/3(1.351) 0.63(0.169) 0.89(0.092) 0.76(0.085)

x̄ 0.77 – 0.68 0.89 0.77
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comparison using Wilcoxon rank sum test with Benjamini & Hochberg p-value correc-
tion was performed to assess the statistically significant differences between the groups 
(Additional file 1: Table S8).

Moreover, for most classifiers tested (DT, svmL, and RF), if the selection of genes is 
based on correlation matrices (iTwiner), the performance of the models increases sig-
nificantly, leading to the most accurate results. To better visualize these, Fig.  5 shows 
boxplots of the classifiers’ accuracy obtained for all gene selection methods applied to 
each dataset tested. Overall, when gene sets were obtained by regularization (EN + 
and iTwiner +), higher accuracy was obtained. This is well observed in the RF classifier 
(Fig. 5d).

Conclusions
CRC is one of the leading causes of cancer-related deaths worldwide, being metastasis 
the major cause in these patients. Therefore, it is crucial to accurately diagnose CRC at 
an early-stage and understand the molecular mechanisms underlying metastasis. Sev-
eral studies have tried to understand tumor biology and metastasis mechanisms by 

Table 8 Median values (and standard deviation in parenthesis) obtained in test set for the five 
classification methods using fifty most frequently genes pre-selected by LR with iTwiner penalization

DT—decision trees; svmL—linear support vector machine; svmR—radial support vector machine; LR—logistic regression; 
RF—random forest; D1—DATASET1; D2—DATASET2; D3—DATASET3; x̄—datasets mean; Acc—accuracy; Miscl—
misclassifications; FN—false negatives; Sensitivity—fraction of actual positive cases (P); Specificity—fraction of actual 
negative cases (PM); AUC—area under the ROC curve

Acc Miscl/FN Sensitivity Specificity AUC 

DT

D1 0.78(0.096) 4(1.721)/2(1.226) 0.78(0.136) 0.78(0.146) 0.78(0.096)

D2 0.71(0.085) 5(1.453)/3(1.344) 0.63(0.168) 0.78(0.143) 0.70(0.085)

D3 0.65(0.111) 6(1.882)/3(1.496) 0.63(0.187) 0.78(0.159) 0.65(0.108)

x̄ 0.71 – 0.68 0.78 0.71

svmL

D1 0.83(0.071) 3(1.284)/3(1.288) 0.67(0.143) 1.00(0.022) 0.83(0.071)

D2 0.76(0.089) 4(1.152)/3(1.218) 0.63(0.152) 1.00(0.085) 0.75(0.092)

D3 0.71(0.092) 5(1.568)/4(1.256) 0.50(0.157) 0.78(0.130) 0.69(0.084)

x̄ 0.77 – 0.60 0.93 0.76

svmR

D1 0.78(0.089) 4(1.602)/2(1.015) 0.78(0.113) 0.78(0.153) 0.78(0.089)

D2 0.71(0.097) 5(1.656)/2(1.326) 0.88(0.120) 0.78(0.188) 0.72(0.096)

D3 0.59(0.109) 7(1.487)/4(2.259) 0.50(0.282) 0.78(0.154) 0.58(0.107)

x̄ 0.69 – 0.72 0.78 0.69

LR

D1 0.72(0.094) 5(1.687)/3(1.431) 0.67(0.159) 0.78(0.130) 0.72(0.094)

D2 0.65(0.097) 6(1.652)/4(1.406) 0.50(0.176) 0.89(0.151) 0.64(0.097)

D3 0.65(0.096) 6(1.633)/4(1.456) 0.50(0.182) 0.67(0.173) 0.63(0.092)

x̄ 0.67 – 0.56 0.78 0.66

RF

D1 0.86(0.063) 3(1.132)/2(1.104) 0.78(0.123) 1.00(0.025) 0.86(0.063)

D2 0.82(0.058) 3(0.983)/3(1.003) 0.63(0.125) 1.00(0.040) 0.81(0.061)

D3 0.76(0.075) 4(1.267)/4(1.135) 0.50(0.142) 1.00(0.102) 0.75(0.076)

x̄ 0.81 – 0.64 1 0.81
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comparing early-stage versus metastatic tumors. We explore the relevance of studying 
early-stage (II-III) tumors that do not metastasize versus those that metastasize, in three 
years of follow-up. However, this is not an easy task since the high-dimensionality of 
gene expression data leads to problems in classification methods. As such, feature selec-
tion methods are important for selecting informative genes prior to classification, to 
improve their accuracy.

Here we present two major contributions to the discovery of metastatic biomarkers 
in CRC based on classification and feature selection. The first contribution is a new net-
work-based feature selection method, iTwiner, that promotes the selection of genes with 
distinct correlation patterns in metastatic and non-metastatic patients, and has shown 
to significantly increase the classifiers’ predictive performance. Moreover, the proposed 
iTwiner regularizer selected the most stable and robust gene sets, including tumor sup-
pressor genes and genes involved in several cancer processes like tumor growth and 
metastasis.

The second contribution proposes using gene sets pre-selected by regularized LR 
(via EN and iTwiner) as input features in the classification learning task, with proven 
improved performance compared to using DEGs as features, across many datasets and 
classifiers tested. Correlation-based penalization via the iTwiner penalty selected the 
best gene set for accurately distinguishing the two groups of patients, placing iTwiner as 
a promising strategy in the classification of CRC patients based on RNA-seq data and for 
the disclosure of biomarkers of CRC metastasis.

As future work, other types of classifiers may be tested, such as Gradient Boosting, 
Gaussian Process or neural networks, and since different hyper-parameter values may 

Table 9 Mean performance metrics values of the three datasets tested (test set) obtained for the 
classification methods applied to different gene sets based on DEGs, EN and iTwiner

Acc—accuracy, Sensitivity—fraction of actual positive cases (P); Specificity—fraction of actual negative cases (PM), AUC—
area under the ROC curve

Combined methods Acc Sensitivity Specificity AUC 

DEGs+
DT 0.62 0.62 0.67 0.62

svmL 0.70 0.60 0.82 0.69

svmR 0.60 0.56 0.67 0.60

LR 0.66 0.64 0.72 0.65

RF 0.71 0.66 0.82 0.71

EN +
DT 0.67 0.68 0.67 0.67

svmL 0.71 0.61 0.85 0.71

svmR 0.77 0.80 0.71 0.77

LR 0.73 0.68 0.78 0.73

RF 0.77 0.68 0.89 0.77

iTwiner +
DT 0.71 0.68 0.78 0.71

svmL 0.77 0.60 0.93 0.76

svmR 0.69 0.72 0.78 0.69

LR 0.67 0.56 0.78 0.66

RF 0.81 0.64 1.00 0.81
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affect the classifiers’ performance, a more in depth investigation on optimization and 
tuning of parameters should be addressed. Also, studying the output of the binary clas-
sifiers and comparing those with genes selected by regularization methods would be an 
interesting next step, followed by gene function analysis to describe the biological role of 
genes and find potential enriched mechanisms and pathways.
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