
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

10-19-2023 

Enhancing Rice Leaf Disease Classification: A Customized Enhancing Rice Leaf Disease Classification: A Customized 

Convolutional Neural Network Approach Convolutional Neural Network Approach 

Ammar Kamal Abasi 
Mohamed bin Zayed University of Artificial Intelligence 

Sharif Naser Makhadmeh 
Petra University 

Osama Ahmad Alomari 
Abu Dhabi University 

Mohammad Tubishat 
Zayed University 

Husam Jasim Mohammed 
Imam Jaafar Al-Sadiq University 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Abasi, Ammar Kamal; Makhadmeh, Sharif Naser; Alomari, Osama Ahmad; Tubishat, Mohammad; and 
Mohammed, Husam Jasim, "Enhancing Rice Leaf Disease Classification: A Customized Convolutional 
Neural Network Approach" (2023). All Works. 6169. 
https://zuscholars.zu.ac.ae/works/6169 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/6169?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Citation: Abasi, A.K.; Makhadmeh,

S.N.; Alomari, O.A.; Tubishat, M.;

Mohammed, H.J. Enhancing Rice

Leaf Disease Classification: A

Customized Convolutional Neural

Network Approach. Sustainability

2023, 15, 15039. https://doi.org/

10.3390/su152015039

Academic Editor: Marko Vinceković
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Abstract: In modern agriculture, correctly identifying rice leaf diseases is crucial for maintaining crop
health and promoting sustainable food production. This study presents a detailed methodology to
enhance the accuracy of rice leaf disease classification. We achieve this by employing a Convolutional
Neural Network (CNN) model specifically designed for rice leaf images. The proposed method
achieved an accuracy of 0.914 during the final epoch, demonstrating highly competitive performance
compared to other models, with low loss and minimal overfitting. A comparison was conducted
with Transfer Learning Inception-v3 and Transfer Learning EfficientNet-B2 models, and the proposed
method showed superior accuracy and performance. With the increasing demand for precision
agriculture, models like the proposed one show great potential in accurately detecting and managing
diseases, ultimately leading to improved crop yields and ecological sustainability.

Keywords: disease detection; leaf disease classification; CNN; image classification; optimization

1. Introduction

Agriculture holds a crucial role on the global stage, with numerous nations, including
prominent ones like China, Malaysia, and India, actively cultivating a diverse range of crops
such as pulses, fruits, rice, condiments, spices, and wheat [1]. The financial well-being of
farmers in these regions hinges significantly on the caliber of their harvests, the health of the
plants they nurture, and the resulting yield. Consequently, the accurate identification and
assessment of plant health and diseases constitute pivotal aspects within the agricultural
domain. Plants are susceptible to diseases that disrupt their growth, subsequently impacting
the agricultural ecosystem and farmers’ livelihoods [2].

Accurately identifying and assessing plant health and diseases are of utmost impor-
tance for the well-being of humans and animals. Not only do agricultural plants provide
nutritious crops for human consumption, but they also serve as a crucial source of livestock
feed. The health of livestock populations directly affects the livelihoods of farmers who
rely on them for economic sustenance and as a source of high-quality proteins for human
diets. Therefore, disease-free cultivation of crops like rice is essential in maintaining the
productivity of both plant and animal agriculture.

In today’s globalized trade networks, timely detection of crop pathogenic infections
is more critical than ever. The unchecked spread of plant diseases across borders through
the transportation of infected products can destabilize international food supply chains
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and compromise food security on a global scale. It requires coordinated surveillance efforts
among trading partners to help contain transboundary outbreaks.

The imperative to detect diseases in plant leaves is rooted in its profound impact
on human and animal welfare. Essential nutrients and a diverse array of supplements
derived from crops are fundamental requirements for the survival of all living organisms.
This fundamental need underscores the critical significance of ensuring an abundant food
supply for individual nations and the global community through cross-border trade. Such
efforts are instrumental in guaranteeing adequate sustenance, thereby playing a pivotal
role in alleviating hunger and poverty, particularly among disadvantaged populations.
When a significant portion of crops suffers damage due to undetected diseases, it reduces
supply which, coupled with constant demand, invariably leads to the inflation of prices for
various crop plants [2].

Wealthy individuals typically do not encounter significant obstacles when purchasing
food, even with high prices. However, the same cannot be said for those living in poverty.
This stark contrast creates a significant predicament for economically disadvantaged indi-
viduals, as they struggle to afford essential food items, leading to a considerable financial
burden on their shoulders. Thus, it becomes crucial to cultivate robust and disease-free
plants to fulfill the nutritional needs of all members of society.

The vast expanse of agricultural land worldwide offers a valuable opportunity to
cultivate healthy plants through prudent strategies such as providing appropriate manure
and fertilizers. It is essential to focus on preventing plant infections in the first place,
rather than solely relying on reactive measures once an infection has been confirmed.
By concentrating on proactive disease prevention, we can ensure a consistent and reliable
supply of nutritious crops, mitigating the adverse impact on the impoverished and the
broader population. An automated diagnostic technique is advantageous for the early
detection of plant diseases. Symptoms of these diseases manifest in various parts of the
plant, making timely identification crucial. Virtually every crop is susceptible to specific
diseases when its health is compromised. Rice, for instance, faces a multitude of diseases
and pests that can significantly impair its yield [3–5].

Furthermore, plant disease outbreaks that reduce crop yields disproportionately im-
pact food affordability for economically disadvantaged populations. While price increases
may be absorbable for affluent consumers, the same is not valid for impoverished commu-
nities striving to meet even basic nutritional needs. Cultivating robust, disease-resistant
varieties of crops is necessary to ensure steady production volumes and avoid inflationary
pressures on staple commodity prices. Resilient farming practices’ role in addressing food
access and affordability issues underscores the humanitarian significance of innovations
that enable early disease detection.

The Convolutional Neural Network (CNN) model offers several compelling advan-
tages [6]: it boasts a quick execution time, cost-effectiveness, and a highly efficient means of
interpreting diseases from the surface of rice plant leaves. This technology holds the poten-
tial catalyzing the transition to a digital agricultural system in rice-growing countries [7].
This research aims to develop a CNN-based model that excels in predicting diseases accu-
rately and without errors. Deep learning [8], a fundamental aspect of this approach, is a
powerful tool in tackling challenges within agricultural production, ultimately ensuring
food safety and quality [9]. Numerous diseases affecting rice plant leaves significantly
threaten crop yield, resulting in substantial production losses. These diseases diminish
the overall quality and quantity of the harvest and contribute to increased production
costs [3,10,11].

Rice farmers face numerous challenges stemming from these diseases, which can be
mitigated through early disease screening [12]. Manual assessment by farmers is incredibly
time-consuming, complex, and expensive. Conversely, automated systems provide a more
cost-effective and practical solution. Modern Machine Learning (ML) systems are extensively
employed to streamline and automate such processes [13]. To gauge the effectiveness of
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the research, various researchers have utilized a range of performance metrics, including
accuracy, recall, precision, and F1-score [14].

This paper introduces a custom CNN model to enhance the accuracy of rice leaf dis-
ease classification. The model is designed to capture unique features of rice leaf images,
yielding competitive accuracy while preventing overfitting. It outperforms transfer learning
models in accuracy and performance [15]. The methodology involves dataset preparation,
a tailored CNN architecture, model training, performance evaluation, and comparison
with other methods. The model’s advantages include hierarchical feature extraction, cus-
tomized architecture, regularization techniques, and comprehensive performance metrics.
The study emphasizes its potential for precision agriculture and broader applications in
plant disease diagnostics.

The following summarizes the key contributions of this paper:

• Custom CNN model for rice leaf disease classification: This paper presents a unique
CNN model designed to accurately classify diseases in rice leaves. Unlike transfer
learning models, this custom model captures distinctive features of rice leaf images,
resulting in superior performance. This contribution addresses the crucial need for
precise and efficient automated disease detection in rice plants;

• Promotion of precision agriculture: The research emphasizes the broader significance
of its findings by highlighting the potential of the custom CNN model for precision
agriculture. This technology can significantly improve crop yields, reduce production
costs, and enhance food security by enabling early disease detection and intervention.
The study positions itself as a valuable contribution to modernizing agricultural
practices and safeguarding global food supplies.

The paper is structured as follows: Section 2 reviews related work, Section 3 outlines
materials and methods, Section 4 presents results and discussion, and Section 5 summarizes
our contributions and suggests future research directions.

2. Related Work

The rice leaf disease classification problem revolves around identifying and categoriz-
ing various diseases that affect rice plants through the analysis of their leaf images. Rice is
a staple food for much of the world’s population, and diseases can significantly impact its
yield and quality. Early detection and accurate classification of these diseases are crucial
for effective disease management and food security.

This problem has gained prominence due to its practical implications in agriculture.
Timely identification of diseases can help farmers take appropriate actions such as applying
targeted treatments, adjusting irrigation or fertilization, and preventing the spread of
diseases, thus contributing to higher crop yields and reduced economic losses. Accordingly,
massive research has been introduced and proposed to address such a problem.

The authors of [2] addressed the rice leaf disease classification problem by employing
the CNN utilizing a new Indian dataset collected from rice fields and the internet. In de-
veloping the proposed model, a Transfer Learning function is used. The proposed model
proved its efficiency in addressing the problem by reaching 92.46% accuracy.

In [3], the authors introduced an effective system for predicting rice leaf disease using
various deep learning techniques. They collected and processed images of rice leaf diseases
to meet the algorithm’s requirements. The authors extracted features using 32 pre-trained
models and subsequently employed multiple ML and ensemble learning classifiers to
classify the images depicting diseases. The comparative analysis demonstrated that their
proposed method outperformed existing approaches in achieving the highest accuracy and
excelling in performance metrics.

In [4], the application of computer vision in traditional agriculture was leveraged to
identify rice leaf diseases within intricate backgrounds accurately. The authors proposed
the RiceDRA-Net, a deep residual network model tailored for this purpose, enabling the
identification of four distinct rice leaf diseases. They introduced two sets for testing: the
CBG-Dataset, comprising rice leaf disease images against complex backgrounds, and the
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SBG-Dataset, a new collection featuring single background images, derived from the
original dataset. The Res-Attention module, characterized by 3 × 3 convolutional kernels
and denser connections compared to other attention mechanisms, was employed to mitigate
information loss. The experimental findings indicated that RiceDRA-Net exhibited the
highest accuracy for the SBG-Dataset and CBG-Dataset. This outcome strongly underscored
the model’s competence in recognizing rice leaf diseases amidst intricate backgrounds.

In [5], the authors presented a method known as RiceNet, which employs a two-stage
approach to effectively recognize four significant rice diseases: rice panicle neck blast, rice
false smut, rice leaf blast, and rice stem blast. Initially, the YoloX model detected the afflicted
regions within rice images. These detected areas were then extracted to form a novel dataset
of rice disease patches. A Siamese Network was employed in the subsequent stage to
identify the rice disease patches obtained earlier. The comparative analysis demonstrated
that the proposed model outperformed other detection models. Moving to the identification
stage, the Siamese Network showcased exceptional accuracy, surpassing the performance of
alternative models. The experimental results clearly showcased that the proposed RiceNet
model outperformed existing methods and boasted advantages such as rapid detection
speed and minimal weight size for identifying rice diseases.

The authors of [16] proposed three crucial stages: keypoint detection, hypercolumn
deep feature extraction from CNN layers, and classification. A hypercolumn vector contains
activations from all CNN layers for a given pixel. Keypoints denote salient image points
that highlight distinctive features. The model’s initial phase involves identifying keypoints
in the image and extracting hypercolumn features based on these points of interest. In the
next stage, ML experiments involve classifier algorithms applied to the extracted features.
The assessment results underscore the paper’s proposed method’s capability in detecting
rice leaf diseases. In the evaluation stage, the Random Forest classifier displayed exceptional
performance when utilizing hypercolumn deep features.

The authors of [9] investigated two transfer learning methods for diagnosing rice leaf
diseases. The first method involves utilizing the output of a pre-trained CNN-based model,
with the addition of a suitable classifier.

The second method focuses on freezing the pre-trained network’s lower layers, fine-
tuning its upper layers’ weights, and integrating an appropriate classifier. The study
evaluates seven distinct CNN models under these methodologies. The simulation outcomes
highlight the remarkable performance of four specific networks, achieving 100% accuracy
and an F1-score of 1. Furthermore, the proposed approach demonstrated superior accuracy
and reduced training time compared to other compared models.

In [17], the authors introduced an innovative approach that involves intelligent
segmentation and a hybrid ML-based classification to predict rice diseases effectively.
The methodology encompasses several stages, including pre-processing, segmentation,
feature extraction/selection, and classification. The process begins with data normalization
using the Synthetic Minority Oversampling Technique-based preprocessing. Next, efficient
segmentation is achieved using Modified Feature Weighted Fuzzy Clustering. Feature ex-
traction is performed via Principal Component Analysis to enhance classifier performance,
while Linear Discriminant Analysis handles feature selection. The final step integrates
an Enhanced Recurrent Neural Network with a Support Vector Machine (SVM), forming
a hybrid classification model designed to enhance predictive capabilities. To assess the
method’s effectiveness, metrics such as accuracy, recall, precision, timing, and F-measure
are employed. Simulation results indicate that the proposed approach outperformed ex-
isting classifiers in terms of overall performance, highlighting its potential for improved
disease prediction in rice crops.

The authors of [18] developed the CNN model to recognize and categorize images
of rice diseases. Specifically, this model is tailored for classifying rice images sourced
from the Punjab province of India. The methodology aids in effectively categorizing these
images based on the severity levels of five different illnesses. As a result of the successful
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implementation of the collected image dataset, the model showcases an impressive binary
and multi-classification accuracy.

3. Materials and Methods

In this section, the methodology used to enhance the classification of rice leaf diseases
through a customized CNN model was presented. The proposed model leverages a
sequence of convolutional and pooling layers to effectively learn discriminative features
from rice leaf images, followed by fully connected layers for classification.

3.1. Dataset Preparation

A comprehensive dataset containing N images of various rice leaf diseases denoted
as (xi, yi)

N
i=1 was collected for training and evaluation. The dataset was preprocessed

to ensure consistency in dimensions and data quality. Each image xi was resized to a
uniform size of 224× 224 pixels, a process that involved the standardization of dimensions
without retaining the original aspect ratio. Subsequently, it was normalized to bring pixel
values within the range [0, 1]. The dataset was then divided into training, validation,
and test sets using an 80%, 10 %, 10% ratio. While preprocessing in this study focused on
resizing and normalization, other preprocessing techniques, such as edge detection or mean
filtering, could potentially be explored in future research to enhance model performance
further. In Figure 1, samples of the dataset are presented. The dataset is composed of
images from five distinct classes: blast, blight, brown spot, leaf smut, and tungro. Each
class is represented by a varying number of images, with the following distribution: blast
(80 images), blight (80 images), brown spot (40 images), leaf smut (40 images), and tungro
(80 images). The dataset comprises a total of 320 images, with each class contributing to the
diversity and representation within the dataset.

Figure 1. Samples of the dataset.

3.2. Model Architecture

The architecture of the proposed CNN model was designed to progressively extract
hierarchical features from input rice leaf images. The architecture consists of the follow-
ing layers:

1. Convolutional layers: The model begins with a sequence of convolutional layers.
The output feature map of the l-th convolutional layer was denoted as Fl , with Fl,i,j,k
representing the activation at position (i, j) of the k-th filter. The convolution operation
is defined as:

Fl,i,j,k = σ

(
Ml

∑
m=1

Nl

∑
n=1

xl−1,i+m−1,j+n−1,c · wl,m,n,c,k + bl,k

)
(1)

where Ml and Nl are the dimensions of the l-th filter, xl−1 is the input feature map of
the previous layer, wl are the filter weights, bl is the bias term, and σ is the ReLU activa-
tion function.
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The convolutional layers play a critical role in extracting features from rice leaf images.
These layers detect low-level features such as edges and textures, progressively moving
towards more abstract and meaningful data representations. At the core of these layers,
the convolution operation involves the interaction between learnable filters, input feature
maps, and the Rectified Linear Unit (ReLU) activation function. Each filter is designed
to detect specific features, and as they slide over the input feature maps, they capture
patterns relevant to rice leaf diseases. The ReLU activation function introduces non-linearity,
enabling the network to learn complex relationships within the data. This hierarchical
feature extraction process empowers the model to classify diseases based on intricate
patterns in the images accurately.

2. Max pooling layers: After each convolutional layer, a max pooling layer with a pool
size of 2× 2 was applied to downsample the spatial dimensions of the feature maps:

Fpool,i,j,k =
1

max
m=0

1
max
n=0

Fl,2i+m,2j+n,k (2)

Including max pooling layers in the proposed CNN architecture is vital for extracting
hierarchical features. These layers decrease the spatial dimensions of feature maps by
retaining maximum values within small windows, which leads to reduced computational
complexity and prevents overfitting. By simplifying the model, max pooling enables the
network to concentrate on capturing crucial patterns and features, ultimately promoting
generalization to novel data. Furthermore, max pooling encourages translation invariance,
a crucial characteristic in image classification, by allowing the model to identify features
regardless of their exact position in the input image. Overall, max pooling layers play an
instrumental role in improving our model’s efficiency and effectiveness for classifying rice
leaf disease.

3. Flatten layer: The final convolutional layer was follows: by a flatten layer to transform
the 3D feature maps into a 1D vector, denoted as Fflat:

Fflat,i = Fpool,row(i),col(i),k (3)

4. Dropout layers: Dropout layers were inserted before the fully connected layers to pre-
vent overfitting. Dropout randomly deactivates a fraction p of neurons during training:

Fdrop,i =

{
Fflat,i with probability 1− p
0 with probability p

(4)

The dropout layers in the custom CNN model were utilized to mitigate overfitting
by randomly deactivating a portion of neurons during training, thereby inducing an
ensemble effect within the network. This ensemble learning strategy enhances the model’s
robustness and ability to generalize to unseen data. Feature redundancy was reduced,
self-sufficiency among neurons was promoted, and learning diverse and transferable
features was encouraged. As a result, overfitting is effectively addressed, and the CNN
model acquires more dependable and versatile features, leading to improved classification
accuracy on rice leaf disease images.

5. Fully connected layers, first dense layer:

Fdense1,i = σ

(
128

∑
j=1

wdense1,i,j · Fdrop,j + bdense1,i

)
(5)

Fully connected layers, final dense layer:

Fdense2,i =
eFdense1,i

∑5
j=1 eFdense1,j

(6)
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3.3. Model Training

The customized CNN model was compiled using the Adam optimizer [19]. The cate-
gorical cross-entropy loss function is defined as:

L = − 1
N

N

∑
i=1

5

∑
j=1

yi,j · log(Fdense2,j) (7)

where yi,j is the ground truth label for the i-th sample and j-th class. The primary evaluation
metric is accuracy. The model is trained on the training dataset and validated on the
validation dataset. Training is performed for a predefined number of epochs, with early
stopping based on the validation loss to prevent overfitting. The parameters used during
model training are detailed in Table 1.

Table 1. Model training parameters.

Parameter Value

Optimizer Adam [19]
Loss Function Categorical Cross-Entropy

Evaluation Metric Accuracy
Training Dataset 256 images

Validation Dataset 64 images
Number of Epochs 30

Early Stopping Based on Validation Loss
learning rate 0.001

batch size 32

3.4. Performance Evaluation

The performance of the model is evaluated on the independent test dataset that
was not seen during training or validation. Metrics such as accuracy, precision, recall,
and F1-score are computed to provide a comprehensive assessment of the model’s classifi-
cation capabilities.

3.5. Comparison and Enhancement

To demonstrate the effectiveness of the proposed customized CNN model, a compari-
son is made against baseline models and state-of-the-art approaches for rice leaf disease
classification. The comparison is based on accuracy and loss metrics.

Additionally, Table 2 showcases the architecture of the proposed model. This archi-
tecture provides insights into the design and components of the customized CNN model,
which is the focus of the study’s enhancement efforts.

Table 2. Proposed model summary.

Layer (Type) Output Shape Param

InputLayer (224, 224, 3) -
Conv2D (222, 222, 16) 448

MaxPooling2D (111, 111, 16) -
Conv2D (109, 109, 32) 4640

MaxPooling2D (54, 54, 32) -
Conv2D (52, 52, 64) 18,496

MaxPooling2D (26, 26, 64) -
Conv2D (24, 24, 128) 73,856

MaxPooling2D (12, 12, 128) -
Flatten 18,432 -

Dropout 18,432 -
Dense 128 2,359,424

Dropout 128 -
Dense 5 645

Total params: 2,457,509
Trainable params: 2,457,509

Non-trainable params: 0
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3.6. Advantages of the Proposed Model

The proposed customized CNN model offers several distinct advantages that con-
tribute to its efficacy in enhancing rice leaf disease classification:

1. Hierarchical feature extraction: The model’s architecture, incorporating convolutional
and pooling layers, facilitates extracting of hierarchical features from rice leaf images.
This capability empowers the model to capture intricate patterns and details, thus
improving its ability to discriminate between different disease classes;

2. Customized architecture: Explicitly tailored for rice leaf disease classification, the model’s
architecture is optimized to accommodate the unique characteristics of rice leaf images.
By leveraging multiple convolutional and pooling layers, it adapts to the nuances of the
dataset, thereby enhancing its classification accuracy;

3. Dimensionality reduction: Integrating max pooling layers strategically downsamples
the feature maps, reducing spatial dimensions while retaining salient information.
This expedited computation minimizes overfitting risks and fosters translation invari-
ance, ultimately contributing to improved generalization;

4. Regularization techniques: Incorporating dropout layers combats overfitting by selec-
tively deactivating neurons during training. This regularization technique promotes
the acquiring robust and transferable features, culminating in more accurate classifi-
cations of unseen data;

5. Fully connected layers: Including fully connected layers at the network’s end em-
powers the model to discern intricate relationships among features extracted from
earlier layers. These layers provide a conduit for the model to derive class predictions
grounded in learned feature representations;

6. Adaptive learning: Employing the Adam optimizer introduces adaptability in learn-
ing rates for each parameter throughout training. This dynamic optimization enhances
gradient descent efficiency, hastening convergence and potentially reducing train-
ing duration;

7. Comprehensive performance metrics: The model’s evaluation extends beyond ac-
curacy to encompass precision, recall, and F1-score. This multifaceted evaluation
approach offers nuanced insights into the model’s strengths and weaknesses across
distinct disease classes.

8. Comparison and benchmarking: The proposed model is subjected to rigorous bench-
marking against baseline models and state-of-the-art methodologies. This compara-
tive analysis competitive performance and underscores its potential to contribute to
advancements in rice leaf disease classification;

9. Agricultural applicability: Accurate disease classification in rice plants is pivotal for
effective disease management. The model’s proficiency in delivering dependable
classifications benefits farmers and agricultural experts in making informed decisions
to mitigate disease impacts on crop yield;

10. Potential generalization: While conceived for rice leaf disease classification, the un-
derlying principles and architecture could be adapted for classifying diseases in other
plant species, showcasing its broader relevance in plant disease diagnostics. Collec-
tively, these advantages underscore the model’s value and potential to substantially
contribute to rice leaf disease classification while making notable strides in agricultural
disease detection.

Collectively, these advantages underscore the model’s value and potential to sub-
stantially contribute to rice leaf disease classification while making notable strides in
agricultural disease detection.

4. Results and Discussion

In this section, we present the results of our experiments for enhancing rice leaf
disease classification using a customized CNN approach with transfer learning. We evalu-
ate the performance of three models: Transfer Learning Inception-v3, Transfer Learning
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EfficientNet-B2, and our proposed custom model. These models were chosen based on
their effectiveness, generalization capabilities, and resource efficiency in various computer
vision tasks. The evaluation metrics used are accuracy and loss. A thorough comparative
analysis was conducted using these models, contributing to the improved reliability of our
findings. The Results section confirms that our proposed method outperformed established
benchmarks, highlighting the efficacy of our approach in classifying rice leaf disease.

The training and validation accuracy and loss for the Transfer Learning Inception-v3
model are shown in Figures 2 and 3. The model achieved an initial training accuracy of
0.586 and a validation accuracy 0.766 in the first epoch. The accuracy gradually increased
over the epochs and reached 0.957 in the final epoch. Similarly, the loss decreased from
1.297 to 0.166 during the training process. However, a noteworthy observation emerges
from the validation loss, which experienced an ascent from 0.677 to 0.818. This upward
trend implies the persistence of a gap between the model’s performance on training data
and unseen validation data. This discrepancy may be attributed to potential overfitting,
necessitating prudent strategies to enhance generalization. Overall, the Transfer Learning
Inception-v3 model demonstrated good performance with high accuracy and low loss.
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Figure 2. Training and validation accuracy—Transfer Learning Inception-v3 model.
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Figure 3. Training and validation loss— Transfer Learning Inception-v3 model.

The training and validation accuracy and loss for the Transfer Learning EfficientNet-B2
model are depicted in Figures 4 and 5. Unlike the Inception-v3 model, the EfficientNet-B2
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model showed lower accuracy and higher loss throughout the training process. The initial
training accuracy was 0.223, and the validation accuracy was 0.25 in the first epoch. How-
ever, the accuracy did not significantly improve over subsequent epochs, reaching only
0.234 in the final epoch. The loss values fluctuated, and the model did not converge to a
low loss value. The results indicate that the Transfer Learning EfficientNet-B2 model did
not perform well in classifying rice leaf diseases.
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Figure 4. Training and validation accuracy—Transfer Learning EfficientNet-B2 model.
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Figure 5. Training and validation loss—Transfer Learning EfficientNet-B2 model.

We also evaluated and compared our proposed custom model’s performance with
the transfer learning models. The training and validation accuracy and loss for the custom
model are presented in Figures 6 and 7. The custom model achieved an initial training
accuracy of 0.531 and a validation accuracy of 0.609 in the first epoch. Over the epochs,
the accuracy steadily increased and reached 0.914 in the final epoch. The loss values
decreased, starting from 1.643 and reaching 0.215. The validation loss also decreased from
1.470 to 0.523. These results indicate that the custom model performed well in classifying
rice leaf diseases.
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Figure 6. Training and validation accuracy—the custom model.
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Figure 7. Training and validation loss—the custom model.

To compare the performance of the models, we consider the accuracy and loss values
achieved in the final epoch. The Transfer Learning Inception-v3 model achieved the highest
accuracy of 0.957, followed by the custom model with an accuracy of 0.914. The Trans-
fer Learning EfficientNet-B2 model had the lowest accuracy of 0.234. In terms of loss,
the custom model achieved the lowest value of 0.155, followed by the Transfer Learning
Inception-v3 model with a loss of 0.166. The Transfer Learning EfficientNet-B2 model had
the highest loss value of 2.439.

These results indicate that the Transfer Learning Inception-v3 and custom models
outperformed the Transfer Learning EfficientNet-B2 models regarding accuracy and loss.
Being a well-established architecture, the Transfer Learning Inception-v3 model demon-
strated excellent performance with high accuracy and low loss. However, our proposed
custom model, although relatively new, showed competitive performance and achieved
high accuracy and low loss values.

Figure 8 comprehensively visualizes the training and validation accuracy trends across
100 epochs. The x-axis signifies the number of training epochs, while the y-axis denotes the
corresponding accuracy values. The plot showcases the dynamic interplay between the
model’s training accuracy (represented by solid lines) and validation accuracy (depicted by
dashed lines) as the training progresses. The initial epochs depict modest accuracy levels,
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with the training accuracy commencing at around 24.6% and the validation accuracy at
approximately 32.8%. As training advances, both accuracies exhibit a consistent upward
trajectory, indicative of the model’s capacity to learn from the training data and generalize
to unseen validation data. However, periodic fluctuations are observable, potentially
signaling the presence of minor overfitting tendencies.

The plot facilitates understanding the model’s convergence toward higher accuracy
values and provides insights into its ability to adapt and improve over time. It also
raises questions regarding potential overfitting concerns, warranting further analysis and
optimization strategies to fine-tune the model’s performance.

0 20 40 60 80 100
Epoch Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

training set
test set

Figure 8. Training and validation accuracy—the custom model over 100 epochs.

Figure 9 visualizes the training and validation loss trends throughout. Similar to
Figure 8, the x-axis represents the number of training epochs, while the y-axis denotes
the corresponding loss values. This plot illustrates the learning dynamics of the model by
contrasting the training loss (solid lines) with the validation loss (dashed lines).

At the outset, the training loss starts at 1.5418, and the validation loss begins at around
1.3770. These initial values encapsulate the model’s starting point in the learning process.
As the training progresses, both loss values consistently decline, implying the model’s
ability to minimize errors and improve its predictions. Notably, the training and validation
losses demonstrate a synchronous descent, indicating the absence of severe overfitting.

The plot provides insights into the model’s convergence toward lower loss values a
pivotal objective in training deep neural networks. The relative alignment between training
and validation losses indicates the model’s potential to effectively generalize its learning to
unseen data. However, a meticulous assessment of the plot’s trends can uncover nuances
that might necessitate strategic interventions to enhance the model’s performance further.

In addition to the results presented, there are several factors that can contribute to the
performance differences observed among the models. These factors include the architecture
of the models, the amount and quality of the training data, and the transfer learning
approach employed.

The Transfer Learning Inception-v3 model is known for its depth and complex archi-
tecture, which allows it to capture intricate features from the input images. It has been
pre-trained on a large dataset, such as ImageNet, which consists of millions of images from
various categories. This pre-training enables the model to learn general features that can
be applied to different image classification tasks. By fine-tuning the model on the rice leaf
disease dataset, it can leverage its learned representations and adapt them to the specific
task, resulting in higher accuracy.
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Figure 9. Training and validation loss—the custom model over 100 epochs.

On the other hand, although a powerful architecture, the Transfer Learning EfficientNet-
B2 model may not have been as well-suited for the rice leaf disease classification task.
EfficientNet models balance accuracy and efficiency by scaling the model’s depth, width,
and resolution. While this design choice can benefit general-purpose image classification,
it might not capture the intricate details necessary to distinguish between different rice
leaf disease types. The lower accuracy and higher loss observed with this model could be
attributed to the limitations of the learned representations in this specific context.

In contrast to the transfer learning models, the custom model was specifically designed
for the rice leaf disease classification task. Although it may not have the depth and
complexity of the transfer learning models, it was trained from scratch on the rice leaf
disease dataset. This approach allows the model to learn task-specific features directly
from the data. The custom model showed competitive performance with high accuracy
and low loss, indicating its ability to capture the discriminative characteristics of the rice
leaf diseases effectively. However, it is worth noting that training a model from scratch
typically requires a larger dataset to avoid overfitting, and further exploration with more
diverse and extensive data could potentially improve its performance even more.

It is important to consider the quality and diversity of the training data when evaluat-
ing the models’ performance. The success of deep learning models relies heavily on having
a diverse and representative dataset that covers different variations and manifestations of
the target classes. A limited or imbalanced dataset can hinder the model’s generalization
of unseen samples. Therefore, future work should focus on collecting more diverse and
balanced rice leaf disease datasets to assess the models’ performance further.

The results highlight the effectiveness of transfer learning, particularly with the Trans-
fer Learning Inception-v3 model, for enhancing rice leaf disease classification. The pre-
trained models leverage their learned representations to capture meaningful features from
the input images, resulting in higher accuracy and lower loss. However, the custom model,
specifically designed for the task, shows promising performance and demonstrates the
potential for tailored architectures in addressing specific domain challenges. Further re-
search and experimentation are needed to explore the strengths and limitations of different
models, improve dataset quality, and refine the classification process for more accurate and
reliable rice leaf disease identification.

Additionally, it is worth discussing the computational considerations and deployment
implications of the different models. The Transfer Learning Inception-v3 and Transfer
Learning EfficientNet-B2 models, pre-trained on large datasets like ImageNet, require sig-
nificant computational resources during the training and inference phases. These models
typically have more parameters and may require more memory and processing power
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to operate efficiently. This could be a limitation in scenarios where computational re-
sources are constrained, such as deploying the model on resource-limited devices or in
real-time applications.

In contrast, the custom model, being trained from scratch on the rice leaf disease
dataset, has the advantage of potentially being more lightweight and computationally
efficient. Since it is designed specifically for the target task, it can be optimized to meet
the performance requirements of the deployment environment. This can be particularly
advantageous when deploying the model in edge devices or in situations where real-time
or near real-time inference is crucial.

However, it is essential to a balance model complexity and computational efficiency.
While the custom model may offer advantages in terms of efficiency, there is a trade-off with
accuracy. More complex architectures like Inception-v3 and EfficientNet-B2, with their deep
layers and intricate feature representations, have the potential to capture more nuanced
patterns and improve classification accuracy. Therefore, the choice of model architecture
should be carefully considered based on the specific application requirements, available
computational resources, and the desired trade-off between accuracy and efficiency.

Moreover, evaluating the models in real-world scenarios is important. The evaluation
conducted in this study is based on a specific rice leaf disease dataset, and the models’
performance may vary when faced with different datasets or unseen examples. To ensure
the models’ effectiveness in practical applications, it is crucial to test them on diverse
datasets that encompass various environmental conditions, lighting variations, and disease
severities. This will help identify any potential biases or limitations and ensure that the
models perform reliably across different scenarios.

The classification model’s performance was also evaluated through a confusion matrix,
a vital tool for understanding the model’s classification outcomes comprehensively. This
matrix encapsulates the tally of the model’s correct and erroneous predictions across
different classes. In Figure 10, the confusion matrix derived from the application of the
classification model to the crop disease image dataset is illustrated. In this matrix, the rows
correspond to the true classes, while the columns represent the predicted classes. The values
within the matrix provide a count of images that were classified correctly or incorrectly.

Upon scrutinizing the confusion matrix, it is evident that the model excelled in classi-
fying the blast and blight categories, boasting 74 correct predictions for each. Nonetheless,
there were a few instances of misclassification, with two images from the blast class er-
roneously categorized as blight and vice versa. Similarly, the model exhibited a single
incorrect prediction for the brown spot and leaf smut classes. Additionally, the confusion
matrix unveils the model’s exceptional performance in classifying the tungro class, with an
impressive 75 out of 80 images being accurately identified. Only two images from the tun-
gro class were misclassified as blast, and two were misclassified as blight. These findings
underscore the effectiveness of the classification model in distinguishing between the blast,
blight, brown spot, leaf smut, and tungro classes. Nonetheless, the observed misclassifica-
tions suggest the existence of similarities or ambiguities in the image features of certain
classes, leading to sporadic classification errors. To enhance classification accuracy further,
future research endeavors could concentrate on bolstering the discriminative features em-
ployed by the model or exploring advanced ML techniques. Moreover, augmenting the
size and diversity of the dataset, especially for classes with a limited number of images, can
alleviate the impact of data imbalance and elevate the overall classification performance.

In conclusion, while the choice of model architecture depends on several factors, such
as computational resources, accuracy requirements, and deployment constraints, transfer
learning and custom models each have their advantages and considerations. Transfer
learning models leverage pre-trained representations to achieve high accuracy but may
require more computational resources. On the other hand, custom models can be more
lightweight and tailored to specific tasks, offering potential advantages in efficiency and
deployment scenarios. Further research and experimentation are necessary to explore the
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full potential of these models, consider additional factors, and refine their performance in
real-world applications.

Figure 10. Confusion matrix.

Comparing the models’ performance at the final epoch, it becomes evident that the
custom model outperforms both Transfer Learning Inception-v3 and Transfer Learning
EfficientNet-B2 in terms of overfitting and overall effectiveness.

4.1. Advantages and Strengths

1. Optimal balance of accuracy and overfitting: The custom model has a balance ac-
curacy and overfitting, achieving a competitive accuracy of 0.914 and a relatively
low loss of 0.215. While there is a slight indication of potential overfitting due to
accuracy improvement over epochs, the model maintains its generalization capability,
showcasing effective learning;

2. Task-specific architecture: The architecture of the custom model has been meticulously
designed to address the intricacies of the rice leaf disease task. This specialization
ensures the model captures relevant features more precisely, potentially leading
to better performance on this specific task than generic architectures like Transfer
Learning EfficientNet-B2.

3. Data efficiency: The custom model’s robust performance underscores its ability to
utilize available data effectively. Unlike Transfer Learning EfficientNet-B2, which
struggled with convergence due to its architecture, the custom model demonstrates
how tailoring the architecture to the task can yield substantial improvements;

4. Potential for further refinement: Since the custom model is purpose-built, there is room
for continuous refinement. By iterating on the architecture and fine-tuning, it is possible
to enhance performance even more, making it an adaptable and evolving solution.

4.2. Factors Amplifying Custom Model’s Superiority

1. Architecture finesse: While Transfer Learning Inception-v3 does perform well, the cus-
tom model’s architecture is tailored explicitly for the rice leaf disease task. This architec-
ture finesse contributes to its impressive accuracy and controlled overfitting;

2. Task-specific design: The custom model stands out due to its design catering to
the particularities of the rice leaf disease. Generic transfer learning models cannot
replicate this advantage;
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3. Holistic performance reflection: the custom model’s accuracy and loss metrics reflect
its ability to capture task-specific features, making it a reliable choice for real-world
applications;

4. Data quality adaptation: unlike Transfer Learning EfficientNet-B2, which struggles
with suboptimal convergence, the custom model adapts well to the dataset’s quality
and characteristics, highlighting its robustness.

Table 3 outlines the performance of different models, including Transfer Learning
Inception-v3, Transfer Learning EfficientNet-B2, and a custom model. These models were
evaluated based on their accuracy and loss values in the final epoch, along with a summa-
rized performance overview. Noteworthy observations include the high accuracy (0.957)
and low loss (0.166) of Transfer Learning Inception-v3, despite demonstrating indications of
overfitting. Conversely, Transfer Learning EfficientNet-B2 exhibited poor accuracy (0.234)
and high loss (2.439), accompanied by significant overfitting. The custom model achieved
competitive accuracy (0.914) and low loss (0.155), showing minimal overfitting.

It is important to note that while the proposed approach for detecting and categorizing
rice leaf diseases through deep learning is promising, there are certain limitations to
consider. Specifically, the method necessitates a thorough understanding of deep learning
and computer vision to execute and fine-tune, which could restrict its availability for those
without such expertise. Furthermore, the method may need to be more easily scalable
for extensive farming operations, where many images must be analyzed, and significant
investments in hardware and software may be required.

Table 3. Model performance summary.

Model Accuracy (Final Epoch) Loss (Final Epoch) Performance Summary

Transfer Learning Inception-v3 0.957 0.166 Demonstrated high accuracy, low loss,
high overfitting

Transfer Learning EfficientNet-B2 0.234 2.439 Poor accuracy, high loss, high overfitting

Custom Model 0.914 0.155 Competitive accuracy, low loss,
low overfitting

4.3. Considerations for Future Development and Deployment

1. Resource efficiency: the custom model’s streamlined architecture makes it computa-
tionally efficient, especially crucial for real-world deployment in resource-constrained
environments;

2. Continual enhancement: The custom model’s success paves the way for further
research and development. Refining its architecture, incorporating newer techniques,
and expanding the dataset can yield even better results;

3. Diverse testing scenarios: evaluating the custom model across diverse environmental
conditions, lighting variations, and disease severities will ascertain its real-world
applicability and robustness;

4. Utilization of optimization algorithms: Improve the custom model’s performance and
efficiency through the use of optimization algorithms, such as Lemurs optimizer [20],
Sine cosine algorithm, Coronavirus herd immunity optimizer (CHIO) [21], and Salp
Swarm Algorithm [22]. These algorithms fine-tune hyperparameters and weights,
enhancing training speed and accuracy. Regularly applying techniques ensures con-
tinual model refinement for more effective and resource-efficient deployment.

5. Conclusions

Accurately classifying rice leaf diseases is crucial for promoting crop health and sus-
tainable food production in modern agriculture. In this study, we presented a detailed
methodology for enhancing rice leaf disease classification using a purpose-built CNN
model. Our model achieved an impressive accuracy of 91.4% on a diverse dataset, out-
performing transfer learning models such as Transfer Learning Inception-v3 and Transfer
Learning EfficientNet-B2. The meticulously designed architecture of our CNN model,
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explicitly tailored to rice leaf images, demonstrated superior accuracy and controlled over-
fitting. This model’s potential to effectively mitigate disease risks contributes to sustainable
agricultural practices and highlights the importance of customizing architecture for specific
tasks. With the rise of precision agriculture, models like our custom CNN promise accurate
disease detection and efficient management, ultimately leading to improved crop yields
and ecological sustainability.
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