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Prostate cancer (PC) is the third cause of cancer deaths in men in European Union. As such, 
PC exerts a substantial burden on the European health care systems and society. Efforts to find 
more effective ways of diagnosing and treating prostate cancer are of great value. Non-coding 
RNAs play an essential role in tumorigenesis, including the development of prostate cancer. Dis-
coveries of novel transcripts driving oncogenesis or transition towards castration resistance offer 
new potential diagnostic tools or therapeutic targets and advance the understanding of PC evo-
lution. The objective of this thesis was to study the patterns of interplay between the genomic and 
epigenomic data in previously found unannotated transcripts to determine whether the transcripts 
are subject of multi-layered transcriptional regulation. The relationships between expression, 
chromatin accessibility, and methylation were studied. The results were integrated with results 
from another project, involving promoter prediction and incidence of transcriptional activity-asso-
ciated histone modifications. The presence of binding sites of AR, the main player in PC, within 
the promoters was also investigated. Each individual step of analysis and multilayer data integra-
tion provided evidence for regulation of a small subset of unannotated transcripts. However, iden-
tification of individual putative novel transcripts was not successful. The study was not exhaustive, 
and more analyses could be done in attempt to find biologically significant novel transcripts. 
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1. INTRODUCTION 

The prostate gland is an exocrine organ accessory to the male reproductive system. 

Prostate cancer (PC) is a non-cutaneous malignancy of the prostate gland. It is the third 

cause of cancer deaths in men in European Union, and as such exerts a substantial 

burden on the European health care systems and society. Therefore, it is important to 

find effective ways to not only diagnose and treat the disease, but also to assess the 

risks of PC development and progression into castration-resistant form. The main chal-

lenge in PC research is the genetic heterogeneity, which increases as the disease pro-

gresses into more advanced stages. 

Recent studies have found that tumorigenesis, also in PC, is driven by non-coding 

long RNAs. Since the landscape of biologically significant non-coding genes has not 

been fully explored, studying so far unannotated transcripts present in prostate cancer 

might provide new insights into disease evolution and progression to castration-resistant 

stage. Ultimately, non-coding transcripts can become diagnostic markers, potentially 

more precise than the current ones, or targets of therapeutic strategies. Finally, exploring 

the landscape of non-coding genes involved in PC might improve our general under-

standing of the disease. 

In a previous study of a patient cohort including cases of benign prostate hyperplasia, 

untreated PC, and castration-resistant prostate cancer, two large subsets of unannotated 

transcripts had been identified. The objective of this thesis was to analyse transcriptomic 

data and several levels of epigenomic data to investigate whether they provide evidence 

that the newly identified transcripts encompassed a group of genes subject to transcrip-

tion regulation. Transcription regulation is a highly complex process, which requires co-

ordinated modulations on several levels of DNA structure and is a sign of biological sig-

nificance of its subject. Unannotated transcripts being targets of transcription regulatory 

mechanisms would constitute a set of putative novel transcripts, whose role in tumor-

igenesis could be further studied. Thus, the relationships between transcript expression, 

chromatin accessibility, DNA methylation, histone modifications and AR binding sites 

were studied in the unannotated transcripts on a genome-wide scale and in a sample-

specific manner. To the knowledge of the author, a similar study has not been performed 

to date. 
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2. BACKGROUND 

2.1 Prostate cancer 

The prostate gland is an exocrine organ accessory to the male reproductive system, 4-

cm in diameter, located under bladder and around urethra. Anatomically, it consists of 

four zones, which can be seen in Figure 1. Histologically, the prostate is a branched duct 

gland. Superior to the base of the prostate, are seminal vesicles, which join with vas 

deferens to form ejaculatory ducts. The function of prostate is to secrete alkaline prostatic 

fluid, which increases volume to the semen, promotes sperm motility, and enhances the 

chance of conception [1]–[3] Coagulation of the semen is prevented by a glycoprotein, 

prostate-specific antigen (PSA), secreted into the glandular ducts. Normally, the level of 

PSA is much larger in the prostate than in the serum. However, development of cancer 

in the prostate degenerates the structure of the ducts, leading to active secretion of PSA 

out of the prostate, and consequently to dramatically elevated serum levels. Due to this 

fact, PSA is used as a biomarker in PC diagnosis and to follow the effectiveness of treat-

ment.  [3], [4] 

Prostate cancer is a non-cutaneous malignancy of the prostate gland [5]. Approximately 

70-80% of prostate cancer cases arise from the peripheral zone of the prostate, but re-

portedly, the most aggressive cancers and the ones with tendencies of spreading arise 

from the central zone (roughly only 2.5 % of all PC cases) [3]. Typically, PC does not 

present specific symptoms related to prostate anatomical region, although it may occur 

alongside obstructive symptoms of age-related benign prostatic hyperplasia (BPH) [2], 

which is a non-malignant disease characterized by proliferation of the epithelial and stro-

mal components of the prostate [6]. Genomic studies have revealed not only interpatient 

molecular heterogeneity between prostate cancer cases, but also intrapatient heteroge-

neity [7]–[9]. Each PC case reveals its own unique molecular composition, and within the 

tumor there are several disease foci, which either constitute separate tumors of inde-

pendent origin or lineages resulting from evolutionary branches from a common ancestor 

[8]. 
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Figure 1. Anatomy of the prostate (Adapted from [2]) 

From the early cell divisions in the zygote until death, human cells accumulate somatic 

point mutations in response to mutagenic stresses. The majority of such point mutations 

do not result in changes of the cell functioning and can arise due to aging. Certain mu-

tations, however, are proliferatively advantageous and drive pathological changes in the 

cell, showing some level of order. The early driver events, often shared between multiple 

cancers, include a small number of mutations and lead to development of pre-cancer 

states. The transition to cancer involves increased number of aberrant genes, and further 

evolution to more aggressive forms is shaped by rare driver mutations, characteristic for 

a given malignancy. The first mutations contributing to cancer evolution may happen 

decades before the diagnosis. [10] 

The evolution of prostate cancer in most cases is related to androgens and androgen 

receptor (AR) signalling pathway. Androgens, particularly testosterone and 5α-dihydro-

testosterone (DHT), play a central role in normal development and functioning of the 

prostate gland. They bind to AR, inducing its transcriptional activity. AR, in turn, is re-

sponsible for inducing transcription of genes involved in proliferation and apoptosis. PSA 

expression is also regulated by AR activity. This androgen/AR interaction has been 
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proven to remain crucial in prostate cancer. Because of PC’s dependence on the AR 

signalling pathway, the standard therapy for patients with advanced disease or meta-

static PC is androgen deprivation therapy. It can be performed either as surgical (or-

chiectomy) or medical castration, or as combined therapy, resulting in full androgen 

blockage. Medical castration involves either luteinizing hormone-releasing hormone ag-

onists/antagonists, which block testosterone production in testicles, or anti-androgens, 

which prevent androgen interaction with AR by competitive binding. Although initially an-

drogen deprivation therapy proves effective, which is indicated by no detectable pres-

ence of PSA in the serum, the disease eventually progresses to lethal castration resistant 

prostate cancer (CRPC). The transition to the advanced stage is a result of molecular 

changes in the cancer tissue, which lead to AR signalling reactivation and maintenance 

without the testicular androgens. It is achieved through AR overexpression, signal trans-

duction cascades, AR somatic mutations, modulation of the AR coregulators, ligand-in-

dependent AR activation, and steroidogenesis. CRPC tissues are able to synthesize tes-

ticular androgens from adrenal androgens and cholesterol. Thus, despite the lack of tes-

ticular androgen production, the levels of androgens inside a CRPC tumor are similar to 

the levels in a prostate of a healthy man, or even higher. [3]–[5] 

Next-generation AR inhibitors abiraterone and enzalutamide are increasingly used in the 

treatment of CRPC, however, some cases relapse with aggressive AR-negative forms 

of castration resistance. The exact mechanisms behind the emergence of such PC var-

iants are being studied and a histological classification has not yet been established, 

although several distinct forms have been mentioned in literature: neuroendocrine pros-

tate cancer [9], [11], [12], AR indifferent forms [12], [13], as well as forms dependent on 

different transcription factors (TFs), e.g. fibroblast growth factor, the glucocorticoid re-

ceptor or the pluripotent stem cell TF SOX2 [12]. 

In effort to better understand the mechanisms driving the evolution of cancer from normal 

prostate to PC to castration resistance and to define molecular signatures of the malig-

nancies, genomic alteration studies have been conducted widely [14]–[21]. However, 

these studies focus mainly on known protein-coding genes, while transcriptome studies 

from last two decades have revealed existence of tremendous number of non-coding 

ribonucleic acid (RNA) molecules in all investigated organisms, including human. [22], 

[23] In fact, only 1.5% of the genome displays the ability to code for proteins.[24]  
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2.2 Transcription 

Transcription is the process of converting DNA (deoxyribonucleic acid)-encoded genetic 

information into RNA-encoded information. It is a mechanism which is highly regulated 

through interactions of different factors, which will be further described in this section. In 

eukaryotes, transcription can be performed by one of the three major types of RNA pol-

ymerases, depending on a species of RNA being synthesized [25]–[27]:  

- RNA polymerase I transcribes ribosomal RNA (rRNA) genes.  

- RNA polymerase II is responsible for transcription of protein-coding genes, but 

also lncRNAs, snRNAs, and sniRNAs. 

- RNA polymerase III is recruited for transcription of 5S rRNA, small non-coding 

RNAs and transfer RNAs. 

The genes transcribed by RNA polymerases I and III are often referred to as “house-

keeping genes” due to the fact that they encode RNA molecules responsible for the basic 

functions of the cell. [26] Because this thesis focuses partly on protein-coding genes and 

lncRNAs, the following sections will focus on the transcription process and machinery 

specific for RNA polymerase II. [27]  

The set of all transcripts (RNAs) synthesized in a given moment in a given cell population 

(or tissue) is called a transcriptome. The composition of the transcriptome depends on 

the cell type, developmental stage, and the environment of the cells, and therefore it is 

subject to dynamic changes. [27] Investigating transcriptome provides information about 

the functioning of a cell type or tissue. The current method of choice to study the tran-

scriptome is RNA sequencing (RNA-seq), with the widely used platform being Illumina. 

[28]–[30] However, most experiment designs of RNA-seq do not sequence RNA mole-

cules directly, but rather the complementary DNA (cDNA), flanked by adapters appropri-

ate for a given application. The design depends on the type of RNA being of interest. 

[28] Typical workflow of RNA-seq experiment comprises the following steps: (1) extrac-

tion and purification of RNA from cell or tissue, (2) preparation of sequencing library, 

including fragmentation and linear or PCR amplification, (3) RNA sequencing, (4) RNA-

seq data processing, and (5) data analysis. The workflow introduces several sources of 

bias, the most prominent being amplification, and especially PCR amplification, which 

need to be addressed during data processing. [30] 

Next to whole-transcriptome sequencing, different protocols are available for specific re-

search questions, e.g. targeted RNA-seq for predetermined group of genes of interest, 

or single-cell RNA-seq for chosen cell types. Special methods can also be used to study 
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alternative splicing and gene fusions, small RNAs, and circular RNAs.  One useful tech-

nique, especially in case of single-cell sequencing, is molecular labelling using unique 

molecular identifiers (UMIs) to enable distinction of different products of PCR cycles. 

UMIs can be either intentionally designed sequences or random nucleotides, and they 

are usually inserted within adapter sequences. Moreover, when multiple cell types are 

being sequenced simultaneously, a barcode made of oligonucleotide beads for each of 

them can be introduced [28] 

While studying the abundance of transcripts can already increase understanding of cell 

state, RNA-seq reads usually are very short, and do not represent complete transcripts. 

A deeper insight into gene activity as well as identifying novel genes and gene isoforms 

is only possible with transcriptome assembly. It means reconstructing full-length genes 

from short RNA-seq reads. Mainly, two techniques have been defined to conduct assem-

bly: de novo and reference-guided assembly, and for each there are available bioinfor-

matics tools. As the name suggests, reference-guided assemblers use a reference ge-

nome to align RNA-seq reads with help of algorithms allowing spliced alignments (e.g. 

HISAT or STAR) and based on that reconstruct individual transcripts. [31] The steps of 

such approach can be seen in Figure 2. Step a) shows RNA-seq reads (grey blocks) 

aligned to a reference genome, using spliced alignment. Part b) represents a connectivity 

or splice graph, which includes all possible isoforms at a locus. Steps c) and d) show 

how alternative paths through the graph (blue, red, yellow and green) lead to merging 

compatible reads into isoforms. [32] The widely used tools performing reference-based 

assembly are Cufflinks, Bayesembler, StringTie, TransComb, and Scallop. [31] The ex-

istence of so many reference-guided assemblers is dictated by the ambiguity of the read 

mapping. This ambiguity arises from the alternative gene splicing and potential mapping 

of a single read to multiple locations in the genome. Thus, every assembler is based on 

a strategy of selecting the genomic sites the ambiguous reads should be mapped to. For 

example, abovementioned Cufflinks’s strategy is to generate the lowest number of tran-

scripts which covers the highest percentage of mapped reads. Bayesembler, in turn, 

uses Bayesian likelihood estimation to find the most probable combination of transcripts. 

Finally, StringTie constructs transcripts based on a flow graph. As a result, each assem-

bler produces different sets of transcripts from the same set of reads. [33] An assembler’s 

performance also depends on the complexity of the studied genome, and thus appropri-

ate algorithm should be chosen based on the application. [34] Also, the so-called en-

semble assemblers are available, which generate consensus assemblies based on the 

results produced by different algorithms. Examples of ensemble assemblers are Eviden-

tialGene and Concatenation. [33] 
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Figure 2.  Reference-based transcriptome assembly. (Adapted from [32]) 

 

On the other hand, de novo assemblers reconstruct transcripts solely based on the tran-

script sequences and their overlaps. The available tools for de novo assembly are Trinity 

and Oasis. [31] The steps of de novo assembly are visualized in Figure 3. In the first 

step, shown in part a), each read is split into substrings of length k (k-mers). The Figure 

uses 5-mers as an example. Then, in b) step, De Bruijn graph is formed from all the k-

mers to map overlaps between them. In step c), the adjacent nodes of the graph are 

collapsed into a single node when the first node has an out degree of one and the second 

node has an in degree of one. Step d) includes traversing four alternative paths (blue, 

red, yellow and green) through the graph to identify isoforms, similarly to the reference-

based approach. In the final step e), isoforms are assembled. [32] 
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Figure 3.  De novo transcriptome assembly. (Adapted from [32]) 

2.3 Non-coding RNA 

Non-coding transcripts are genomic elements which do not encode proteins but are tran-

scribed in a regulated manner. Numerous studies have demonstrated that non-coding 

RNAs have their own distinct functions and operating mechanisms, and they are involved 

in development, differentiation, and metabolism. [22], [24], [35], [36] Moreover, it has 

been reported that non-coding elements may have a greater cell specificity than coding 

genes. Finally, most of the single nucleotide polymorphisms (SNPs) in human diseases 

fall within the non-coding regions of the genome, which suggests the importance of those 

regions in emergence of pathological conditions. [36] 

Different classes of non-coding transcripts have been defined, and many of them are 

highly conserved: siRNAs, miRNAs, and piRNAs, however, long non-coding RNAs 

(lncRNAs) are poorly conserved.[24] Those transcripts are defined as polyadenylated 
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non-coding transcripts longer than 200 nt (nucleotides) that are transcribed by RNA pol-

ymerase II and are associated with epigenetic signatures common to protein-coding 

genes. These signatures will be discussed later in this chapter. However, this group of 

transcripts is characterized by the heterogeneity in terms of genomic origin and based 

on that several subtypes of lncRNA have been distinguished. Among the processes in 

which lncRNAs are involved is epigenetic transcriptional regulation, modulating tumor 

suppressor activity, regulation of mRNA processing and translation, and RNA-RNA in-

teractions. [22] 

The discovery of the biological significance of non-coding RNAs has led to studies on 

their involvement in tumorigenesis. The developments in the field have revealed that 

non-coding RNAs, especially lncRNAs, drive evolution of cancers. [22]–[24] Investigation 

of lncRNAs in prostate cancer resulted in identification of several lncRNAs specific to 

PC. PCGEM1 and PRNCR1 were found to be regulated by AR and overexpressed in 

prostate cancer. [37], [38] As a highly PC-specific lncRNA, PCA3 has been demonstrated 

to have a potential as a PC diagnostic marker. [39] PCAT-1 was identified as a transcrip-

tional repressor in prostate cancer. [40] SChLAP1 was shown to negate the tumor-sup-

pressive functions of the SWI/SNF complex, which means that this lncRNA plays an 

important part in tumor progression to lethal stage.[41] PCAT5 has been found to be an 

ERG-regulated oncogene that impacts cell proliferation pathways.[23] EPCART was 

found to enhance mobility and proliferation of prostate cancer cells. [42] 

Although the evidence of the biological functionality of lncRNAs has been accumulating 

over last two decades, researchers have emphasized that the non-coding transcriptome 

has not been fully explored and there is space for discoveries of novel functional non-

coding RNAs. [23], [43] At the same time, the large amount of non-coding genomic ma-

terial has raised questions whether transcription is always a result of an orchestrated, 

meaningful biological process, or is part of it a product of a “leaky transcriptional system”, 

non-specific RNA-polymerase activity? And how can we identify a new gene? [22] 

Prensner and Chinnaiyan, 2011 listed features of a distinct lncRNA. According to them, 

what makes a transcript distinguishable from the transcriptional background is: (1) ex-

pression in a tissue-specific manner; (2) the presence histone marks associated with 

transcriptional activity (especially H3K4me3 at the gene promoter, and H3K36me3 

throughout the gene body); (3) transcription through RNA polymerase II; (4) regulation 

by well-established TFs; (5) polyadenylation, and (6) frequent splicing of multiple exons 

via canonical genomic splice site motifs. [22] In other words, there must be evidence on 

different levels that the expression of a given transcript undergoes similar regulatory 

modifications to those accompanying protein-coding gene expression. 
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2.4 Promoter 

Returning to the transcription and its regulation, for the RNA polymerase II to initiate the 

process, the presence of a specific sequence in the vicinity of a gene, called promoter, 

is required. [44] Gene expression is orchestrated by specific sequences of DNA, which 

are called regulatory elements. Promoters are such regulatory elements that contain 

specific motifs, or short sequence features, recognized and bound by TFs, which enable 

the assembly of pre-initiation complex, or basal transcription machinery. [45], [46] Often, 

two segments of promoter sequence are discussed, core promoter region, being in the 

close vicinity to the transcription start site (TSS), and extended promoter region. [45] The 

core promoter is described in latest literature as stretching from -40 to +40 bp from the 

TSS. [44], [47] TSS is usually referred to as position +1 and it is the first nucleotide 

transcribed to RNA, defining the 5’-end of a gene. [26], [44] The extended promoter has 

been defined differently in the literature, but in this study, I followed the definitions used 

by Uusi-Mäkelä and colleagues [48]: -1000 to +100 bp from TSS, and a wider -2000 to 

+100 bp. 

Even though TSS is referred to as the first transcribed nucleotide, in fact there is no 

single specific nucleotide which serves this function. Instead, there are many TSSs situ-

ated near each other within some 70 bp stretches of genomic DNA. Furthermore, genes 

can have more than one TSS region, and this is the case for most of the human protein-

coding genes, which results in complex proteome. [26] 

The basal transcription machinery forms at the TSS from various regulatory proteins with 

RNA polymerase II at its core. This requires previous binding of activator proteins to 

enhancer regions. In promoters containing TATA-box motif, they recruit chromatin re-

modelling factors, which subsequently allows associating of TATA-binding protein (TBP) 

with TATA-box. TBP is the essential component of the machinery, as it bends DNA, and 

binds TAFs (TBP-associated factors), forming TFIID. Genomic DNA wraps around TFIID 

in a similar fashion it is wrapped around a nucleosome, and this is a signal for other TFs, 

TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II that they can associate to form 

the rest of the transcription machinery. The formation of the machinery is illustrated sche-

matically in Figure 4.  

A subunit of TFIIH hydrolyses ATP needed to open double helix and separate DNA 

strands and passes the template strand to RNA polymerase II. TFIIE stabilizes the 

melted DNA, so that polymerase can proceed along the strand in the 3’ – 5’ direction. 

Carboxy terminal domain (CTD) of the RNA polymerase II is phosphorylated by TFIIH, 
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and different phosphorylation patterns ignite different steps of transcription by associat-

ing different factors. And so, transition to elongation, polyadenylation, and transcription 

termination are triggered by those patterns. The primary transcript undergoes 5’ capping 

and addition of Poly(A) tail so that it is protected from digestion by exonucleases. [25]–

[27] Transcription continues until transcription termination site (TTS) located at the 3’-

end of the gene, where RNA polymerase II disassociates from the DNA template. [26] 

 

Figure 4.  A schematic illustration of the basal transcription machinery assembly. 
(Adapted from [26]) 
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The structure of core promoters has been studied extensively due to its importance in 

the process of transcription and the predictability of its location. Consequently, they are 

the best-characterized regulatory sequences. [49] It has been found that some motifs 

are frequently conserved in the promoter sequence, however, some promoter may not 

include any of them and have more unique structure.[44], [47]. These motifs are respon-

sible for binding the components of the pre-initiation complex. The most common ones 

are [44]: 

At the TSS: 

1. Inr – initiator, the most prevalent element of core promoters, encompasses TSS 

and is bound by subunits of TFIID, essential for the transcription initiation. Its 

presence is crucial for the downstream functional elements: DPE, MTE, Bridge I, 

and Bridge II. 

2. TCT – the polypyrimidine initiator motif, functional in rRNA transcription and in-

volved in translation regulation. 

3. XCPE1 and XCPE2 – the X gene core promoter element 1 and the X gene core 

promoter element 2. They drive RNA polymerase II transcription, the preceding 

one with assistance of co-activators, and the latter on its own. 

Upstream from TSS: 

4. TATA-box – the first core promoter motif that has been identified, located up-

stream from TSS. Its name is a short version of its consensus sequence. Initially 

thought to be always present in promoters, currently it has been recognized that 

only minority of promoters depends on the functionality of this motif. It binds TBP, 

a unit of TFIID. 

5. BRE – the TFIIB recognition elements, present directly upstream or downstream 

from TATA-box, but lack of TATA-box does not rule out its presence. They bind 

TFBII and interact with TATA-box to regulate transcription. 

Downstream from TSS: 

6. DPE – downstream core promoter element, prevalent in developmental gene net-

works. It is a recognition site for TFIID. 

7. MTE – the motif ten element, most often observed with DPE, however, they are 

also observed independently. Similarly to DPE, it is recognized by TFIID.  

8. Bridge I and Bridge II – consist of sub-regions of DPE and MTE. Similarly to DPE 

and MTE, they are usually enriched in promoters without TATA-box. 
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9. DCE – the downstream core promoter, present in the promoters of the human 

adult β-globin. Distinct from the previous downstream motifs, bound by different 

sub-units of TFIID, and usually accompanied by TATA-box. 

Figure 5 presents a schematic picture of the core promoter motifs listed above. 

 

 

Figure 5.  Schematic illustration of the most common core promoter elements. 
(Adapted from [44]) 

 

Proximal promoter regions might also include a CG-rich sequences upstream from the 

TSS. [50], [51]  

Promoters are a subset of more generally defined enhancers. Enhancers contain binding 

sites of distal binding TFs, which recruit co-activator proteins to promote the transcrip-

tional activity of their target gene. Unlike promoters, enhancers are located further away 

from the TSS both upstream and downstream. Still, they must be contained within the 

same topologically associated domain (TAD) as the gene they regulate. And since TADs 

are on average 1Mb long, some enhancers might be distant from their target gene. They 

are brought to the TSS of that gene through looping events of the DNA, which are medi-

ated by complexes of protein cohesion and CCCTC binding factor, and which bring the 

enhancer-bound TFs into TSS’s vicinity. The functioning of enhancers is not only de-

pendent on cooperative binding of multiple regulatory proteins, but also on different 

epigenomic states. One enhancer may have opposite effects in different tissues. [26] 

Moreover, the number of enhancers, and the repertoire of the TFs recruited to them is 

dependent on the cell type, which plays the major role in cell specificity. Together, pro-

moters and enhancers comprise cis-acting elements, whereas trans-acting proteins are 

those regulatory molecules which affect the transcription but come from another gene. 

[25] 
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In vivo identification of promoters or TSS sites is possible. Transient transfection pro-

moter activity assay measures the effect of a putative promoter sequence on its target 

gene; however, the method has been criticized for omitting the genomic and epigenomic 

context as well as providing incomplete information about the promoter sequence itself. 

[45] The available techniques for in vivo TSS determination are OligoCap, CAGE, deep-

CAGE and PEAT, however, it has been pointed out that they are too costly to be widely 

applied, while the results are not always to researchers’ satisfaction. [46] Moreover, the 

annotation of promoters and TSS is still incomplete, and limited to small number of spe-

cies. [46] The advancing knowledge of the sub-sequences of the promoters, increasing 

availability of high-throughput sequencing (HTS), and the incorporation of machine learn-

ing approaches into bioinformatics led to numerous attempts of in silico prediction of 

promoter sequences, which would allow identification of promoters also for novel tran-

scripts or for organisms which lack annotations. The algorithms have mostly focused on 

core promoter identification, and have been based on models using parameters such as 

(starting from the oldest approaches): 

- enrichment of known promoter motifs, e.g., PromFind [52] 

- thresholds computed from conversion tables based on the sequence features, 

e.g., EP3 [53] and PromPredict [54] 

- TSS signal computed with help of linear chain conditional random fields [46]. 

The accuracy of the early algorithms was low.[46] After employment of machine learning 

and deep learning methods, the recall rates have improved, and algorithms using those 

methods are currently the best ones for promoter prediction. Nevertheless, discussion 

about possible ways of further enhancement continue. For example, it has been pointed 

out that reducing feature vector dimensionality by more strict feature selection or adding 

resampling step might improve machine learning algorithms’ performance. [55] 

2.5 Chromatin accessibility 

For transcription to happen, the transcriptional machinery needs access to the sequence 

of promoter and enhancer of a gene to be transcribed. The fundamental structural or-

ganization of DNA is chromatin consisting of repeating nucleosomes, which are com-

posed of approximately 147 bp of DNA wrapped around an octamer of histone proteins. 

In this form, DNA is packaged within the nucleus, is protected from damage, and can be 

equally distributed during cell division. Nonetheless, such organization limits sequence 

accessibility and constitutes an obstacle for cellular DNA-based processes, including 
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transcription. [56] For the transcription to occur in an efficient way, the chromatin needs 

to be transformed into more accessible form. [57] 

Chromatin accessibility can be defined as the degree to which nuclear macromolecules 

are able to physically contact chromatinized DNA. Approximately 2-3% of the genome is 

accessible at a given time point. Accessibility is defined by the presence and positioning 

of nucleosomes, and by the occupancy of other DNA-associated factors such as TFs 

and architectural proteins. [58] But it is the nucleosomes that play the central role in 

regulating the transcriptional competence of various chromatin regions. During transcrip-

tion, they constitute a barrier for the DNA Polymerase II. If a nucleosome is located at 

the promoter region of a gene, it prevents the DNA Polymerase II from loading DNA 

template and the assembly of the pre-initiation complex is blocked at that site. In addition, 

a single nucleosome suffices to disable transcriptional elongation. [56]  

Nucleosome density varies in different regions of DNA sequence. In the core promoter 

regions just upstream the TSS, there are short stretches of DNA where the nucleosome 

density is very low. These stretches are called nucleosome-depleted regions (NDRs). 

[59], [60] NDRs occur also in the regulatory regions of DNA such as enhancers. Among 

factors responsible for the maintenance of nucleosome depletion within NDRs are 

BRG1/BRM-associated factor (BAF) and promoter-proximally paused RNA polymerase. 

[58] 

Sequences downstream from TSS typically contain regularly spaced nucleosomes (well-

positioned nucleosomes) with the regularity gradually fading as the distance from TSS 

increases, however, such trend is not universally observed. In fact, there are two main 

configurations associated with promoters. Constitutive promoters, which usually do not 

contain a TATA-box, frequently display the nucleosome pattern described above. [59] 

Those promoters include bending-resistive sequences, which makes them thermody-

namically unfavourable for nucleosome formation. [56], [59] NDRs of constitutive pro-

moters provide non-competitive conditions for the transcriptional machinery to assemble, 

and they frequently contain TF binding sites. Certain constitutive promoters might also 

bind TFs to enhance the expression level of the genes they regulate. [59] 

A different nucleosome configuration has been observed in inducible promoters. These 

promoters frequently comprise TATA-box, but that motif and the TSS are typically oc-

cluded by nucleosomes when the target genes are repressed. Activation of such genes 

is triggered by environmental or developmental stimuli, and in response an activator, 

whose binding site typically is exposed, is recruited to the promoter, after which nucleo-

somes upstream from TSS are disassembled and TATA-box is rendered accessible to 
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TBP and the transcriptional machinery. Returning to the silenced state means chromatin 

reinstatement, although gene repression is not unequivocal to nucleosome occlusion 

and can be induced by other mechanisms, which are discussed in the coming chapters. 

The dynamic expression range of genes regulated by inducible promoters is larger than 

that of constitutive promoters. [59]  

To achieve the desired nucleosome rearrangement, activator of inducible promoters is 

assisted by chromatin modulating mechanisms: histone modifications, which alter nucle-

osome composition, chromatin remodelling, which changes nucleosome positioning, and 

linker histones. Histone modifications entail both post-translational histone alterations as 

well as histone variant replacements. They are the best-studied modulators of nucleo-

some positioning, and they play an essential role in transcriptional activity as they mark 

active and repressed genes by changing the way histones interact with DNA. Non-ca-

nonical histone variants are installed more frequently at promoters and enhancers and 

might enhance TF binding and initiation of chromatin remodeling. [58] Histone modifica-

tions will be discussed in more details in the later chapters. [56] 

Chromatin shape is also modulated by histone chaperones and nucleosome remodelers. 

Histone chaperones are responsible for the delivery of histone dimers to the sites where 

nucleosomes should be assembled after replication, or where nucleosomes have been 

ejected during transcription and need to be reinstalled. [61] However, it is the nucleo-

some remodelers that play the key role in reshaping chromatin accessibility, as they can 

move, slide, evict or even assemble nucleosomes using energy from ATP hydrolysis. 

[56], [62] Typically they form multi-subunit macromolecular complexes, and based on 

their ATPase domain, nucleosome remodelers can be classified into four main groups: 

SWI/SNF (SWItch/Sucrose NonFermentable), ISWI (imitation switch), INO80 (inositol-

requiring mutant 80), and CHD (Chromodomain Helicase DNA binding). [56], [63], [64]  

The members of SWI/SNF remodeler family are primarily responsible for nucleosome 

ejection. [56], [64] Those remodelers do not act in sequence-specific manner, but rather 

are recruited by TFs to the site of activation. [64] ISWI remodelers facilitate the matura-

tion of nucleosomes from the prenucleosomes (initially associated histones and DNA). 

In addition, the phasing of mature nucleosomes is maintained by them. [65] INO80 com-

plexes are also responsible for nucleosome spacing and they cooperate with ISWI com-

plexes in arranging the nucleosomes downstream from TSS. Another function of INO80 

remodelers is histone variants replacement. [66] CHD family is the least understood from 

the families of chromatin remodelers, but some members of this family might facilitate 

transcription-related nucleosome turnover, while other members seem to perform inhib-

itory functions in the process of transcription. [56] 
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Linker histones and other architectural proteins also regulate chromatin accessibility. 

They are responsible for nucleosome arrangement and for heterochromatin formation. 

According to the current knowledge, linker histones modulate DNA nucleosome exit an-

gle, which enables chromatin packaging into less accessible forms. Histone H1 belongs 

to the family of linker proteins, and most probably maintenance of heterochromatin de-

pends on it. The higher order of chromatin fiber geometry is believed to also contribute 

to the nucleosome positioning. [58] 

Furthermore, torsion arising during transcription also affects nucleosome barrier. The 

elongating activity of transcriptional machinery generates bidirectional torsional forces: 

positive torsion ahead of and negative torsion behind the elongating Polymerase II. This 

torsion reorganizes chromatin and destabilizes nucleosomes standing on the way of the 

Polymerase II to promote elongation, while simultaneously enhancing nucleosome reas-

sembly in the regions already transcribed to maintain chromatin integrity. [56] It has been 

demonstrated that the bodies of actively transcribed genes are not accessible right from 

the initiation of the process, but instead they are gradually exposed as the elongation 

proceeds. In addition, a proper positioning of nucleosomes might promote transcription 

elongation. These discoveries suggest that nucleosomes do not play solely inhibitory 

role but are in the center of accessibility regulatory mechanisms. [58] 

Although accessibility of promoters and enhancers is necessary for transcription to hap-

pen, their open state is not equivocal to transcriptional activity of the gene they regulate. 

Therefore, chromatin accessibility is required for transcription, but is not sufficient for the 

process to be initiated and does not determine the state of activity. However, studying 

the accessible regions provides an insight into the landscape of potential regulatory re-

gions in the genome. [58]  

There are several methods available for measuring chromatin accessibility, one of the 

most widely adopted being assay for transposase-accessible chromatin using sequenc-

ing (ATAC-seq). [58] This protocol was first introduced in 2013 by Buenrostro and his 

lab, and it uses genetically engineered Tn5 transposase to ligate sequencing adapters 

to the regions of open chromatin. PCR-amplified fragments are then paired-end se-

quenced. [67], [68] This method can be used with even a small amount of genomic ma-

terial [68], and it has been reported to be simple, robust, and fast [58]. Unfortunately, 

only one tool for ATAC-seq peak calling has been developed, and the standard way to 

perform the analysis is to use tools originally designed for ChIP-seq and DNase-seq, 

especially MACS2 and HOMER, despite no systematic evidence that they produce ac-

curate results.  [67]  Chromatin accessibility measurement is often paired with RNA abun-

dance measurement to study the influence of accessibility on gene expression [69], but 
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recently there is an increasing interest in integrating ATAC-seq data with other epigenetic 

data to better understand the mechanisms behind different states of given cell type [58].  

Chromatin organization is not a static binary condition, but it is a dynamic continuum that 

varies along the genomic sequence. The different stages of chromatin accessibility are 

the molecular representation of epigenetics. [26] 

2.6 Epigenetics 

The term epigenetics refers to an extra layer of instruction upon DNA on how the genes 

are read and expressed. [70]  Epigenetic changes are heritable, and they alter gene 

expression or phenotype through chromatin modifications, while keeping the genotype 

unchanged. [62], [70] The epigenome entails all chromatin modifications in a given cell 

type, and this includes DNA methylation, post-translational histone modifications, and 

binding of the transcription factors to the DNA, which interact and determine transcrip-

tome and consequently proteome of a given cell type. [12], [26], [70]  

All the levels of epigenomic chromatin organization can be interpreted as superimposed 

layers, visualized in Figure 6. They constitute a complex coordinated mechanism of gene 

activation and deactivation, which is essential in cellular differentiation and reprogram-

ming. However, a major part of the epigenomic landscape is highly dynamic, as it re-

sponds to developmental and environmental stimuli. [26], [62] Many epigenomic 

changes can be reversed through inhibitory action of chromatin-modifying enzymes and 

modification reader proteins. [62] 

Studying epigenetics in healthy and pathologically altered tissues has become possible 

with the emergence of new advances technologies, e.g., chromatin immunoprecipitation 

using high-throughput sequencing (ChIP–seq). Characterization of epigenomic profiles 

has been instrumental in establishing DNA regulatory elements such as promoters or 

enhancers but has also resulted in deeper understanding of disease progression paths. 

[62] Consequently, multiple studies have revealed that epigenetic abnormalities contrib-

ute to development of cancers, including prostate cancer. [12], [48], [60], [71] Studies on 

cancer epigenomic profiles carry a significant potential of clinical translation, as new bi-

omarkers or therapeutic targets have been and still might be discovered in the future. 

[60] 

The following three chapters describe different levels of epigenome, their role in tran-

scriptional regulation, and how they are altered in cancer initiation and progression. Alt-

hough epigenome comprises also other chromatin modifications, they are not discussed 

here, as it is beyond the scope of this work. 
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Figure 6.  Layers of chromatin organization. (Adapted from [26]) 

 

2.6.1 DNA methylation 

The best-studied layer of chromatin organization is DNA methylation. It plays an essen-

tial role in the correct establishment of gene expression patterns. [51] DNA methylation 

means an epigenetic modification in which a methyl group is enzymatically added to DNA 

methyltransferase (DNMT) on the 5’-carbon of the pyrimidine ring in cytosine. [50] It is 

perpetuated through both mitotic divisions and meiotic divisions by maintenance DNA 

methyltransferases. [72] DNA methylation, next to transcription factors, is one of the el-

ements of the epigenetic memory, which manifests itself in cells’ ability to maintain the 

information about tissue characteristics. [73]  

In mammals, DNA methylation is mainly observed in CpG dinucleotides within stretches 

of repetitive DNA, which are hypermethylated already during early embryogenesis, and 

in regions known as CpG islands. [26], [51], [72]  CpG islands constitute 200 bp long 

regions containing more than 55% of GC and with an expected GC content to observed 
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GC content ratio greater than 0.65. [50] They are mainly associated with gene promoters. 

[50], [51] High DNA methylation level at the promoter rich in CpG islands is associated 

with transcriptional repression, and thus the methylation level is inversely correlated with 

the expression of the gene being regulated by that promoter. [26], [50], [51] Methylation 

of gene promoter regions is also known to play an essential role in genomic imprinting, 

e.g., silencing a parental allele, or in X-chromosome inactivation in females. [50], [51] 

CpG containing promoters maintain the phased positioning of nucleosomes. [59] The 

expression of genes with no CpG islands in their promoter is regulated by other mecha-

nisms, e.g., binding of TFs to enhancers. [26]  

Approximately 40% of CpG islands is intragenic or intergenic. [50] Intragenic CpG islands 

are found in highly expressed, active genes, and for those methylation level is positively 

correlated with the gene expression. [26], [50], [72] The intergenic CpG islands are in-

volved in regulation of non-coding RNAs transcripton. [50]  

While DNA methylation at a given locus is mostly a stable silencing mark, approximately 

15-20% of all CpG islands in the human genome undergoes dynamic changes in meth-

ylation in a healthy organism. [26], [74] Those dynamically methylated regions are typi-

cally located away from TSS and overlap distal regulatory elements. They are referred 

to as differentially methylated regions (DMRs), and they gain or lose the methyl group in 

a lineage-specific manner and establish the identity of a tissue. [74] 

Although DNA methylation has been studied extensively, the precise mechanism behind 

its influence on the chromatin remodelling processes and gene expression is not yet 

clear. However, three groups of epigenetic modifiers are known to modulate and interpret 

DNA methylation: writers, readers, and editors. Proteins from DNMT family, such as 

DNMT1, DNMT3A and DNMT3B, constitute the group of writers, and they establish and 

maintain methylation patterns during developmental stages and in the process of cellular 

differentiation. Readers comprise a wide group of proteins from various families: methyl-

CpG-binding domain (MBD) proteins, the Kaiso family proteins and the SET- and Ring 

finger-associated (SRA) domain family proteins. Those proteins specifically bind CpG 

dinucleotides and are instrumental in the close regulatory interplay between DNA meth-

ylation and histone modifications. As a result, they influence chromatin packaging into 

heterochromatin, nucleosome remodelling, histone modifications, and higher order chro-

matin organization, which are discussed in other parts of this thesis. As discussed earlier, 

MBD proteins belong to SWI/SNF family of nucleosome remodelers. The last group of 

epigenetic modifiers, editors, is formed by proteins from the ten–eleven translocation 

(TET) protein family, whose activity has been suggested to lead to promotion of demeth-

ylation. [75] 



21 

 

In addition to the interactions with modifying proteins, DNA methylation is known to be 

involved in bidirectional relation with TFs. The presence of cytosine methyl groups is 

recognized by TFs, and it modulates TFs binding capability. Depending on a TF and the 

genomic context, binding of TFs to their recognition motif can be inhibited or enhanced 

by methylation [73], [74]. On the other hand, binding of certain TFs prevents cytosine 

methylation, e.g., at active promoters. [72], [74] It has not been established whether 

methylation is a consequence or the cause of TF binding. [74]  

As mentioned above, DNA methylation is tightly connected to histone modifications. 

These two levels of epigenome regulate gene expression through close interactions. 

Generally, a pattern of dependency has been observed between histone acetylation and 

deacetylation, and DNA methylation. Acetylation of histones by histone acetyltransfer-

ases (HATs) co-occurs with lack of cytosine methyl groups, marking the regions of tran-

scriptionally active chromatin. Deacetylation of histones by histone deacetylases 

(HDACs) and histone methylation by lysine methyltransferases (KMTs) typically is fol-

lowed by DNA methylation, marking the regions of transcriptionally repressed chromatin. 

[26] Histone modifications are discussed in more detail in the next chapter of this section. 

Abnormalities in methylome are result of aging [50], [76], but they have been also iden-

tified in cancer [51], [60], [76], [77]. Such changes include both gain and loss of DNA 

methylation, referred to as hyper- and hypomethylation, respectively, which result in ab-

errant transcriptional outcome. [76]  

Among the abnormalities that attracted the most attention of researchers is hypermeth-

ylation in normally unmethylated gene promoter CpG islands, which results in transcrip-

tional repression and loss of gene function, and often happens in tumor suppressor 

genes. Moreover, other hypermethylated genes might aggregate in the same signaling 

pathways, contributing to cancer initiation and complementing single driver genomic mu-

tations. The gain of methylation in promoters has also been linked to repression of mul-

tiple microRNAs and other non-coding RNAs. This kind of changes might activate the 

modes of cellular signaling that promote invasiveness and metastasis. Downregulation 

of certain microRNA families might lead to overexpression of DNA methyltransferases, 

potentially allowing the gain of methylation in gene promoters. [60] 

However, on the genome-wide level, the most widespread methylome aberration in can-

cers is DNA hypomethylation. [74] Hypomethylated regions span megabases of genomic 

DNA on multiple chromosomes. These large domains of losses and gains are associated 

with late-replicating, lamin-associated nuclear regions that contain the majority of the 



22 

 

genes with bivalent, chromatin promoter domains, which are highly vulnerable to abnor-

mal CpG island DNA hypermethylation in cancer. [60] 

Aberrant methylation of certain genes has been associated with BPH and with prostate 

cancer progression. Promoter hypermethylation of critical tumor-suppressors such as 

APC and RASSF1 have been reported in prostate cancer. Genome-wide hypomethyla-

tion has been observed in advanced and metastatic PC. [78] A study in 2021 [79], using 

whole genome bisulfite sequencing, found abnormalities in methylation profiles associ-

ated with Polycomb repressed regions and in promoters associated with bivalency. In 

addition, it was discovered that the changes enriched for binding motifs of AR and MYC, 

and that dynamic DNA methylation patterns observed in the normal luminal cell differen-

tiation program were significant targets of aberrant methylation in PC. [79] Recently, 

Tonmoy and colleagues identified abnormal expression of lncRNAs related to poor prog-

nosis of PC patients, resulting from aberrant methylation patterns. [80] These findings 

are in line with the general abnormal patterns reported in cancer methylomes. 

The experimental methods of genome-wide characterization of DNA methylation can be 

divided into three main groups based on the mechanism used to detect methylated cy-

tosines [81]:  

1.) methods based on restriction enzymes,  

2.) methods based on affinity enrichment, 

3.) methods based on bisulfite conversion.  

The methods most relevant in the context of this thesis are affinity-based methods, in 

particular methylated DNA immunoprecipitation (MeDIP). This technique takes ad-

vantage of an antibody specific for methylated cytosines to immunocapture methylated 

genomic fragments. [77] MeDIP is usually coupled with HTS to evaluate the relative en-

richment of methylated DNA cross the genome. However, it is noteworthy that the anal-

ysis of data produced by MeDIP-seq is not straightforward – it requires normalization 

steps to compensate for the bias introduced by CpG-rich fragments, which results in 

underrepresentation of regions with low CpG content. Currently, methods based on bi-

sulfite conversion coupled with sequencing are regarded as the gold standard for DNA 

methylation detection. [81] 

The experimental methods are still sometimes coupled with methylation arrays. Despite 

the fact that the HTS offers a great advantage of genome-wide signal detection, it has 

not rendered the arrays completely irrelevant. Even though arrays produce information 

about only single-site methylations, their sensitivity, specificity, and reproducibility are on 
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a level inaccessible yet by the HTS, and thus they are still widely used, for example in 

cancer methylome studies. [81] 

2.6.2 Histone modifications 

Methylated DNA attracts different transcriptional activator and repressor complexes, in-

cluding histone modifying and chromatin remodeling enzymes that regulate chromatin 

structure. As discussed earlier, nucleosomes constitute a fundamental subunit of chro-

matin structure. A nucleosome contains an octamer formed by two copies of each of the 

core histones H2A, H2B, H3, and H4. Additional histone H1, belonging to the family of 

linker histones, binds to the DNA where the turns around a nucleosome start and end. 

[50] Such formation of a nucleosome and H1 is called chromatosome[26], and it can be 

seen in Figure 7. Unlike transcription factors, histones do not bind to specific sequences 

of genomic DNA, but rather to its phosphate-sugar backbone. [26] 

The core histones are basic proteins composed of a globular domain and highly flexible 

unstructured N-terminal tails that protrude from the DNA wrapped nucleosome. The N-

terminal tails are subject to post-translational modifications. Those modifications entail 

phosphorylation, acetylation, and methylation, but here the focus will be put on two latter 

ones, as to date, they are best characterized. [50], [82] Histone acetylation is a catalytic 

addition of acetyl-coA to the ε-amino group on lysine side chains of histone tails. Histone 

methylation means an enzymatic addition of a methyl group to the residue lysine and 

arginine. Lysines can be mono-, di-, and trimethylated while arginines can be mono- and 

symmetrically or asymmetrically dimethylated. [50] Individual instances of histone marks 

have been associated with different regions of transcriptional activity or repression, alt-

hough the actual functionality of some of the marks has not been confirmed. [50], [82] 

On a general level, as has been mentioned in the chapter regarding DNA methylation, 

high level of histone acetylation is characteristic for euchromatin, whereas histone 

deacetylation is typical for heterochromatin. [50] Furthermore, promoters of genes which 

are actively transcribed are associated with enriched trimethylation on histone H3 lysine 

4 (H3K4me3) and lysine acetylation on histone H3 and H4. The bodies of actively tran-

scribed genes, in turn, are marked with enriched H3K36me3 and H3K79me3. Active 

proximal enhancers have their own histone modifications: H3K27ac and high levels of 

H3K4me1 relative to H3K4me3. Histone marks usually associated with gene repression 

are H3K9 methylation, H3K27me3, and H4K20me3. [82] In addition, marks associated 

with both silencing and activation, H3K4me3 and H3K27me3, can be found within the 

same gene promoter, albeit on different N-terminal tails, determining poised genes – 

those being in an intermediate state. Such regions have been referred to as bivalent 
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chromatin. [62] Histone modifications can be used to determine transcriptionally active 

promoters. [82] 

 

 

Figure 7.  A representation of a nucleosome. Green molecules correspond to H2A, 
orange molecules to H2B, red molecules to H3 and blue molecules to H4. The 
gray strand represents genomic DNA, whereas the brown molecule represents 

the linker histone H1. (Adapted from [26]) 

 

The approximated genomic locations of the histone marks associated with transcriptional 

activity are illustrated in a simplified way in Figure 8. In the figure, each colored peak is 

a visualization of what ChIP-seq signal shapes would look like for a given histone mark 

and where would it be situated in relation to NDRs, TSS (the arrow) and TTS. 

Similarly to DNA methylation, histone modifications are modulated and interpreted by 

enzymes. And so, writers deposit histone marks with help of cofactors, and erasers, an-

alogically, reverse the actions of writers. Readers, which frequently act as part of and in 

cooperation with large protein complexes, bind to modified histones and initiate appro-

priate reactions to the marks. Furthermore, readers contain multiple domains, which rec-

ognize different histone marks, which makes them capable of reading several marks at 

the same time. Due to this feature, it is believed that histone marks readers could be 

attracted by entire combinations of marks, and not by single modifications. [82] In the 
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group of writers are histone acetyltransferases (HATs) that catalyze acetylation, and his-

tone methyltransferase (HMT) enzymes, which perform histone methylation. Erasers in-

clude histone deacetylases (HDACs), which remove acetyl marks on lysine to restore 

the positive charge, and lysine-specific demethylase 1 (LSD1), an amine oxidase that 

catalyzes lysine demethylation and releases the product hydrogen peroxide. Arginine 

demethylation is not as straightforward and involves protein arginine deiminase 4 

(PADI4). PADI4 does not perform a complete demethylation, so that histone replacement 

or further demethylation by aminotransferases is required. [50] 

 

 

 

Figure 8. Genomic localization of histone H3 modifications associated with active 
transcription. Colored peaks visualize ChIP-seq signal shapes which would cor-
respond to individual histone marks in a eukaryotic gene. The arrow represents 

TSS. (Adapted from [82]) 

 

There are three main modes of influence that histone marks exert on transcription. First, 

they prevent binding of DNA-associated proteins such as TFs, disabling their enhancing 

functions. Next, they may associate with proteins, which promote or repress gene acti-

vation. Finally, they directly affect chromatin structure. [50] Acetylation neutralizes the 

charge of histones, which breaks electrostatic interactions between histones and DNA, 

decreasing the level of chromatin packaging and increasing chromatin accessibility. His-

tone methylation, in turn, does not affect the charge of histones. [83] Moreover, histone 

marks can also impact one another. [82] 

Abnormal accessibility to target DNA sequences causes loss or mutations of enzymes 

responsible for histone mark modulation, which, in turn, might lead to changes in histone 

modification patterns. Such changes in regulatory segments of DNA results in transcrip-

tion dysregulation and alterations in gene expression programs. [50], [83] In addition, 
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aberrant histone modification profiles are associated with genome instability and defec-

tive chromosome segregation. All these anomalies might contribute to cancer develop-

ment. [83]   

Chromatin immunoprecipitation followed by sequencing (ChIP–seq) has become the 

standard method for genome-wide profiling of DNA-binding proteins such as TFs, his-

tone modifications or nucleosomes. [84], [85] The main steps of a ChIP-seq experiment 

include 1) crosslinking the DNA-binding protein of interest to DNA in vivo by treating cells 

with formaldehyde; 2) chromatin sonication into small (200-600 bp) fragments; 3) im-

munoprecipitation of DNA-protein complex with protein-specific antibody 4) DNA purifi-

cation; 5) fragment amplification; 6) sequencing. ChIP-seq offers higher resolution, fewer 

artefacts, greater coverage and a larger dynamic range than its predecessors, such as 

ChIP–chip. [84] Nonetheless, this technique introduces also several difficulties. The most 

important one is the dependency on the quality of antibody. Moreover, prior to ChIP-seq 

experiment, one must know that a histone modification or DNA-binding protein is present 

to choose appropriate antibody. Finally, the protocol requires a significant amount of ge-

netic material. [85] 

Gene Transcription Regulation Database (GTRD) is an initiative started in 2011 that aims 

to provide uniform annotation and integrative analyses of all HTS data from publicly avail-

able repositories GEO and SRA that are related to transcription regulation and are widely 

utilized by the researchers in the field. It is a source of annotated and processed data 

from ChIP-seq, ChIP-exo, DNase-seq, MNase-seq, ATAC-seq and RNA-seq experi-

ments available for non-commercial use. [86] Data from GTRD can be used for an inte-

grative data analysis when a specific layer of epigenomic information would be useful to 

validate observed trends, but it is missing for the studied sample cohort. 

Another chromatin remodeling mechanism involving histones is histone variant replace-

ment. Histone variants are proteins that correspond to core histones, called canonical, 

but whose amino acid composition is encoded by different genes and thus differs from 

the canonical paralogues. [83], [87] As described above, the canonical histones are re-

sponsible for transcription regulation and chromatin organization. However, histone var-

iants have many different functions, but in the context of transcription, they are recruited 

to the transcription initiation sites or termination sites to facilitate the respective stages 

of the process. [87] 

2.6.3 Transcription factors 

Gene transcription programs are driven by transcription factors, whose sequence-spe-

cific binding to DNA recruits activating or repressing coregulators. [82] Approximately 8% 
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of human protein-coding genes encode for transcription factors. [26] A transcription fac-

tor is a protein that recognizes and binds one or more specific motifs in the DNA se-

quence, called transcription factor biding sites (TFBSs), located in the regulatory regions 

of genes, and through this promotes or inhibits the transcription of the target gene. 

TFBSs are short, ranging from 5 to 20 bp and they are not necessarily exclusively bound 

by a single TF. [88] TF recruitment is either initiated by intracellular processes such as 

development and differentiation, or as a response to an extracellular stimulus. TF activity 

changes when its abundance in a cell is altered through transcription, translation or post-

translational regulation, or when its binding sites accessibility changes. Furthermore, TF 

activity is affected by the availability of coactivators. [89] Despite the fact that certain TFs 

can bind to their cognate motifs within nucleosomal DNA, albeit often with lower affinity 

[59], over 90% of the regions containing known TFBSs are located within open chroma-

tin. Thus, open chromatin typically reflects the presence of aggregate TF binding, and - 

as has been already stated before - marks putative regulatory regions associated to 

genes. [58] Binding of a single TF can facilitate chromatin opening for other TFs or pre-

vent other TFs from binding. [89] Transcription factors enable cell differentiation by add-

ing a new layer of expression instructions for cells containing identical genomic code. 

[58], [88]  

In TFs structure, two important elements can be distinguished: one or multiple DNA-

binding domains (DBDs), which anchor one or more activation domains (AD), distinct 

from DBDs. Structured DBDs are responsible for the recognition and binding of the cog-

nate motifs, and they have been studied extensively. Their structural features have be-

come the criterion of TF classification, and thus we have zinc-coordinating, basic helix-

loop-helix, basic-leucine zipper, or helix-turn-helix DNA-binding transcription factors. [90] 

DBDs recognize the motifs via two protein-DNA mechanisms: base readout and shape 

readout. The first mechanism entails physical interactions between the amino acid side 

chains and the accessible edges of the base pairs, e.g., direct hydrogen bonds, water-

mediated hydrogen bonds and hydrophobic contacts. The shape readout, in turn, in-

cludes recognition of the static and dynamic structural features of the DNA binding sites, 

such as sequence-dependent DNA bending, unwinding, and the electrostatic potential. 

[91] 

The function of less studied ADs, in turn, is to cooperate with coactivators to modulate 

transcription. They are low-complexity, intrinsically disordered regions categorized 

based on their amino-acid composition into acidic, proline, serine/threonine, or glutamine 

rich ADs. One of the coactivators interacting with TF activation domains is Mediator com-

plex. [90] Mediator complex, or Mediator of RNA polymerase II transcription, is a multi-
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subunit protein complex recruited by TFs to the enhances of transcriptionally active 

genes. It promotes the assembly of pre-initiation complex at the core promoter and con-

stitutes a physical bridge between enhancer and promoter bound TFs. Furthermore, Me-

diator stimulates phosphorylation of the DNA Polymerase II, allowing the transition of the 

latter one from transcription initiation to elongation. In the context of TFs, the key role of 

Mediator complex is forwarding – mediating - signals from TFs present at gene regulatory 

regions to the transcription machinery. [92] However, not all TFs couple their activity with 

Mediator complex. 

The members of a family of TFs called nuclear receptors do not prefer cooperation with 

Mediator complex, but rather act together with coactivators. Nuclear receptors belonging 

to ligand-induced TFs get activated through binding to specific ligands. Certain nuclear 

receptors reside in the cytoplasm, where they are associated with chaperones until the 

required ligand arrives and binds to the TF, releasing the chaperons. Activated TF-ligand 

complexes can be transported to the nucleus. One of the ligand-induced nuclear recep-

tors is AR, which was discussed in chapter “Prostate Cancer”. However, most of the 

nuclear receptors are located and activated in the nucleus and do not require such com-

plicated process to get triggered. Signal transduction of the nuclear receptors sometimes 

disrupt other signaling pathways, causing post-translational modifications of nuclear re-

ceptors or their coactivators. [26] 

The significance of TFs for the efficiency of transcription is reflected in the fact that sole 

chromatin accessibility at the enhancers and promoters does not result in substantial 

RNA production. The abundance of transcripts is not even significantly increased when 

the transcriptional machinery has assembled on the promoter. It is the binding of an 

activating TF that triggers upscaled transcription. [26] 

ChIP-seq, which was already mentioned in the context of experimental methods availa-

ble for histone mark investigation, is currently also the “golden standard” to study TF 

binding sites on a genome-wide scale. [93] In addition, sequence-based computational 

methods have been developed to model TFBSs. A plethora of algorithms is currently 

available, and most of them are based on Position Weight Matrices (PWMs). [91], [93] 

PWM describes the preference for all four nucleotides at each position of TFBS motif in 

form of a 4xn matrix, where n is the length of the motif. [93] PWMs can be easily and 

intuitively visualized as TFBS motif logos. [91] A logo plot represents the relative fre-

quency of each nucleotide by stacking characters corresponding to them on top of each 

other, with the height of each character proportional to its relative frequency. The char-
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acters are ordered by their relative frequency, and the total height of the stack is deter-

mined by the information content of the position. [94] An example of a typical sequence 

logo can be seen in Figure 9. 

 

Figure 9. Standard sequence logo plot (Adapted from [94]) 

Studying the genomic maps of TFBSs provides an insight into gene regulatory networks. 

[88], [89] Since genes and proteins do not work in isolation, but rather in coordinated 

systems, definition of the relations between genes and gene products has become a 

focal point in the field. Gene regulatory networks are the emerging results of such efforts, 

and they can be defined as the summarized activity of a TF set connected to its targeted 

genes. Maintaining cell-type specific transcriptional states and stimuli responses is pos-

sible due to the coordinated activity of gene regulatory networks. Nonetheless, the pre-

cise functional principles of gene regulatory networks are not yet understood. [89] TF 

recruitment at the core promoter regions rendered its sequence one of the focus points 

in the studies of TFBSs. (de Medeiros Oliveira et al., 2021) 

Multiple databases collect motifs of known transcription factors, which have been inferred 

from in vitro and in vivo experiments, including ChIP-seq. [89] One such database is 

JASPAR, an open-access source of curated, non-redundant TF-binding profiles stored 

as PFMs for TFs across multiple species in six taxonomic groups. With the start of 2022, 

the nineth release of the database was published. [95] Data available in databases like 

JASPAR can be used to predict putative binding sites of TFs of interest in a studied 

genome. However, the presence of a binding motif in the sequence alone does not reflect 
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the actual binding of a TF, and so such predictions are limited by high false discovery 

rates. [89] 

Transcription factors have been associated with the evolution of human diseases, and 

to date more than 150 transcription factors have been identified to be directly responsible 

for nearly 300 diseases, and more discoveries are yet to come. Many TFs are encoded 

by oncogenes, e.g., MYC (MYC proto-oncogene, BHLH transcription factor), or by tumor 

suppressor genes, e.g., TP53, whose abnormal regulation and activity leads to diseases. 

[26] Certain TFs and their aberrant transcriptional activity have been identified to drive 

prostate cancer emergence and progression. [96] The most important TF in the context 

of PC is the nuclear receptor transcription factor, AR, responsible for the growth of PC in 

the initial stage of the disease [96], but also essential in the progression to castration 

resistance [97]. The cancer driving mechanism of AR was described in chapter “Prostate 

Cancer”.  

Recent developments in prostate cancer studies revealed that three pioneer transcription 

factors facilitate AR-driven transcriptional programs: Forkhead Box A1 (FOXA1), Home-

obox B13 (HOXB13), and GATA-binding factor 2 (GATA2). Normal prostate develop-

ment and AR functioning are dependent on those TFs, however, they have been found 

to also promote AR oncogenic activity. Interestingly, there is evidence that AR-independ-

ent functionality of FOXA1, HOXB13, and GATA2 might inhibit some stages of PC de-

velopment. One way or another, these three TFs are important in PC disease. [98] 

ETS-related gene (ERG) is a member of the E-26 transformation-specific (ETS) family 

of transcription factors, which in normal conditions, is not expressed in prostate epithelial 

tissue. However, due to a gene fusion with the androgen-driven promoter of the 

TMPRSS2 gene, it is persistently overexpressed in many PCs, especially in the ad-

vanced tumors with high Gleason score. Furthermore, ERG overexpression is associ-

ated with metastasis and poor prognosis. [99] 

Abovementioned transcription factor c-MYC (MYC) also plays a role in PC development, 

and its expression levels are high at the early stages of the disease, as well as in the 

advanced PC. MYC interacts with other transcription factors prominent in PC develop-

ment, AR and FOXA1, but also with the DNA Polymerase II to disrupt normal AR tran-

scriptional activity. Consequently, MYC activity leads to the emergence of cancer, and 

then to the progression into castrate-resistant and metastatic state. [100] 
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2.7 Previous work and the starting point 

In 2015, Ylipää and colleagues [23] assembled and studied the transcriptome of BPH, 

PC and CRPC samples from Tampere Prostate Cancer cohort to characterize the differ-

ences between the pathological states. They were particularly interested in discovering 

novel long non-coding transcripts, specific for PC and CRPC. They annotated transcripts 

based on the exonic and intronic sequences in human reference transcriptomes, and 

classified transcripts into three groups: protein-coding, previously annotated lncRNA, 

and a large group of “novel loci of expression”, which comprised of 99 120 transcripts. 

Novel transcripts were further broken down into two categories: intragenic, which were 

found to be fully contained in an intron, and intergenic, which did not overlap with any 

exonic or intronic sequences. They applied strict filtering on the data of novel transcripts 

and focused on differentially expressed transcripts. While they described differences in 

the transcriptomic profiles of PC and CRPC, identified a small group of putative and 

defined novel lncRNA named PCAT5, they did not study the unannotated transcripts as 

a group. Nevertheless, the data produced by that study inspired questions: why is there 

so much transcription from the unannotated regions? Is there a group of unannotated 

transcripts, which are biologically meaningful, and thus, whose transcription is regu-

lated? 

The studies on the same cohort were continued, and in 2020, Uusi-Mäkelä and col-

leagues [48] performed an integrative analysis of chromatin accessibility with transcrip-

tome, methylome, and proteome profiles of the same samples. They identified chromatin 

alterations related to the disease progression towards CRPC. Moreover, they investi-

gated the TF binding patterns and used correlation studies to find putative regulatory 

elements for cancer-associated genes and described their influence on the cancer phe-

notype. However, they focused on the protein-coding genes. Nevertheless, the ATAC-

seq and MeDIP-seq data obtained for the needs of their study provided the epigenomic 

information that opened new possibilities to investigate the unannotated transcripts iden-

tified previously by Ylipää et al. Both works provided the material for starting point for 

this thesis. 
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3. MOTIVATION AND OBJECTIVES 

Prostate cancer is the third cause of cancer deaths in men in European Union, with the 

predicted mortality rate for 2022 being 9.49 per 100 000 citizens [101]. As such, PC con-

stitutes a significant part of the cancer incidence as well as cancer-related mortality and 

exerts a substantial burden on the European health care systems and society. Thus, 

efforts to find more effective ways of diagnosing and treating prostate cancer are of great 

value. Recently, it has been discovered that non-coding RNAs play an essential role in 

tumorigenesis, including the development of prostate cancer. To enable further ad-

vances in the understanding of prostate cancer, it is crucial to investigate the non-coding 

genomic elements of the normal prostate and prostate cancer to find their involvement 

in the disease initiation and progression. Potential discoveries of novel transcripts driving 

oncogenesis or castration resistance not only provide new insights into PC evolution and 

enrich our knowledge of tumor heterogeneity, but also might result in new, highly specific 

diagnostic and prognostic markers, or therapeutic targets. 

The objective of this thesis was to integrate transcriptomic data and several levels of 

epigenomic data to investigate whether they provide evidence that non-coding tran-

scripts identified in the studied sample cohort are targeted by regulatory mechanisms 

similar to those orchestrating protein-coding gene transcription. Thus, the goal was to 

study if the epigenomic signatures characteristic for RNA Polymerase II transcription 

could be observed for the set of unannotated transcripts. The detailed aims of this inves-

tigation included: 

1. Studying the relationship between chromatin accessibility and transcript expres-

sion 

2. Examination of the relationship between expression, chromatin accessibility, and 

methylation 

3. Verification of promoters of novel transcripts through promoter prediction algo-

rithms * 

4. Analysis of the presence of histone modifications related to transcriptional activity 

in the promoters of unannotated transcripts * 

5. Investigation of the presence of AR TF binding sites in the promoters of the tran-

scripts 
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Steps 3 and 4 marked with an asterisk were in part performed within a course project 

work. Some of the results have been reported previously, so they do not constitute a part 

of this thesis, and whenever this is the case, it is emphasized in the text. However, all 

the results are relevant in the context of this study, and thus are also presented in the 

thesis to provide a full picture of the analysis performed on this dataset. 

To the knowledge of the author of this thesis, there is currently no publication focused 

on studying unannotated transcripts in the prostate and prostate cancer in a similar way, 

which means that this thesis sheds new light and highlights the possibilities in research 

conducted on the role of non-coding genomic elements in prostate cancer. 
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4. MATERIALS AND METHODS 

This section explains the source and condition of the biological samples from which se-

quencing data was generated. Next, each chapter corresponds to a step of analysis and 

describes the type and source of data utilized at that stage, and the methods applied to 

analyse the data. 

4.1 Samples and datasets 

The sample group consisted of 10 benign prostatic hyperplasia (BPH) samples repre-

senting non-cancerous prostate tissue, 16 untreated prostate cancer (PC) samples, and 

11 castration-resistant prostate cancer (CRPC) samples representing advanced prostate 

cancer. Samples were acquired from Tampere University Hospital as fresh frozen tissue 

specimen, obtained either through transurethral resection or radical prostatectomy [23]. 

The datasets from previous studies that were used in this thesis were RNA-seq, ATAC-

seq, and MeDIP-seq. 

4.2 ATAC-seq data processing 

The transcriptome assembly from Ylipää et al., 2015, as well as their classification of 

transcripts were used to define the main object of interest in this thesis. Their whole 

transcriptome paired-end sequencing was performed on the Illumina HiSeq 2000 and 

the assembly was done with Cufflinks using NCBI 37.2/hg19 genome build. The tran-

scripts categorized as intergenic and intragenic became the focus of this study, and the 

results of analysis of data related to them was compared to the results of coding and 

lncRNA transcripts for reference. For simplicity, coding and lncRNA transcripts will be 

further collectively referred to as “annotated transcripts”, and intergenic and intragenic 

transcripts will be referred to as “unannotated” transcripts. 

In the study by Uusi-Mäkelä et al., 2020, the same transcriptome was aligned to GRCh38 

using LiftOVer. The new alignment was then used in this thesis. Transcripts from mito-

chondrial genomic regions were filtered out. 

Uusi-Mäkelä et al. also performed assay for transposase-accessible chromatin sequenc-

ing (ATAC-seq) from the same samples. ATAC-seq reads were aligned using Bowtie2 

version 2.3.4.1 against GRCh38 reference genome, and peak calling was done with 
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MACS2 v2.1.0. Final ATAC-seq peak quantification included background correction, nor-

malization and bias correction compensating for sample collection procedures, which all 

are described in their article [48]. ATAC-seq peaks quantified this way were used in the 

initial analysis steps. 

4.3 Finding distances from TSS to nearest ATAC-seq peak 

Majority of the analytical work in this and further steps was performed using R program-

ming language version 4.1.2 in RStudio Workbench 2021.09.2 Build 382.pro1 with cus-

tom scripts. To find the closest peak from each transcripts’ transcriptional start site (TSS) 

along with its distance, bedtools closest -D was used. The distance distributions with 

respect to TSS were further analysed in R. 

4.4 Quantification of ATAC-seq peaks in individual samples 

The transcript counts were manually normalized in R to obtain transcripts per million 

(TPM) counts. TPM can be obtained by applying the following formula [102]: 

𝑇𝑃𝑀 =  106 ∗  
𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑙𝑒𝑛𝑔𝑡ℎ⁄

𝑆𝑢𝑚(𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑙𝑒𝑛𝑔𝑡ℎ⁄ )
 

TPM is dependent on the transcriptome composition in a sample, and it describes the 

relative abundance of a transcript among the sample population of sequenced tran-

scripts. TPM is not suitable for differential analysis between samples, but it is a good 

measure for within-sample gene expression comparisons. [102] This thesis compares 

the transcriptome and epigenome profiles of different transcript groups to study their 

similarities within individual samples, and therefore, TPM was chosen as the measure of 

transcript abundance. 

In addition, this step required sample specific ATAC-seq peak quantification. Quantifica-

tion was performed by following the method described by Uusi-Mäkelä et al., 2020, but 

only until background correction step. Because the quantification was done for individual 

samples, median-of-ratios normalization or correction to account for acquisition bias 

were not needed. This processing was done using custom scripts in Python 3.9.7. Dis-

tribution of the distances to the nearest peak from TSS was again checked for individual 

samples. Then, the overlaps between the promoters and the sample specific peaks were 

called using bedtools intersect -wo. From this step onwards, whenever ATAC-seq peaks 

are mentioned, the individually quantified sample-specific peaks are meant. 
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After that, the peaks falling within the promoters of the transcripts were compared to an 

ATAC-seq blacklist from Buenrostro lab [105] containing artifact regions from mitochon-

drial homologs. The tool used for this purpose was bedtools intersect. The peaks which 

intersected the artifact regions were filtered out, and transcripts whose promoters con-

tained those peaks were excluded from further analysis. 

4.5 Correlation between accessibility and expression 

Then, the correlations between ATAC-seq peak intensity and the expression levels were 

computed for each transcript type in each sample in R with cor.test command with 

method parameter set both to "pearson" and "spearman", corresponding to Pearson’s 

correlation and Spearman’s correlation, respectively. Pearson’s correlation, or Pearson’s 

product-moment correlation, is a measure of linear dependence between two variables, 

and is the most commonly used for studying the relationship between gene expressions. 

[103] However, it works well only for linearly related variables [103] with no or small 

number of outliers [104]. Spearman’s correlation, or Spearman’s rank correlation, is a 

nonparametric measure of monotonic dependence between two variables [103], suitable 

for heavy-tailed datasets [104]. Since there were significant outliers in the data (tran-

scripts with very high expression or very high peak intensity), Spearman’s correlation 

was chosen as the main measure of relationship between chromatin accessibility and 

transcript abundance. The promoters were defined as 1000 bp upstream - 100 bp down-

stream from the TSS (which was adapted from Uusi-Mäkelä et al., 2020). 

4.6 MeDIP-seq data processing and correlation between meth-

ylation and expression 

MeDIP-seq reads were aligned to GRCh38 using Bowtie2, and subsequently quantified 

and normalized, however, that quantification was not used in this thesis. Instead, the 

result of QSEA (Quantitative Sequencing Enrichment Analysis) tool quantification was 

utilized in this thesis. Such quantified signal was then overlapped with the transcripts’ 

promoter regions. To obtain a methylation level of each promoter, a weighted average 

was computed based on the length of overlaps. Then, the correlations between methyl-

ation and expression were computed in R using cor.test.  
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4.7 Promoter prediction based on sequence composition 

Three publicly available promoter prediction tools were chosen for promoter prediction: 

EP3, PromPredict, and TSSFinder. EP3 (Easy Promoter Prediction Program) is an algo-

rithm created to identify the core regions of gene promoters in eukaryotic organisms, 

including human, written in Java and publicly available as an online tool, but also for 

download with a graphical user interface, or as a command line tool. It takes a FASTA 

file with a single sequence as its input. The algorithm calculates numerical profiles of the 

nucleotide sequence using experimentally validated conversion tables for sequence fea-

tures, obtained from literature. The features that comprise the profile are stacking energy, 

propeller twist, nucleosome position preference, bendability, A-philicity, protein induced 

deformability, duplex stability disrupt energy, duplex stability free energy, DNA denatur-

ation, DNA bending stiffness, B-DNA twist, protein-DNA twist, and stabilizing energy of 

Z-DNA. Then, averages of these profiles are computed for both the entire genome and 

for 400 bp windows. Thresholds are computed based on the whole genome profiles (for 

human, it is the whole genome average plus three standard deviations), and if a window’s 

profile exceeds the thresholds, it is called as a putative core promoter. The formula for 

thresholds and the size of the window were established empirically by the creators of the 

tool. [53] The outcome is a list of 400 bp long core promoter predictions along with their 

genomic locations. The predictions are not linked to any genes. EP3 version 1.10 (the 

most recent version) with user interface was used to predict promoters. The tool is avail-

able at the site: http://bioinformatics.psb.ugent.be/webtools/ep3. 

PromPredict is a promoter prediction algorithm implemented in PERL, utilizing the struc-

tural properties of DNA sequence. It was initially developed for bacterial organisms, and 

was gradually tweaked to be applicable to eucaryotes, including human. PromPredict 

evaluates relative free energy of neighboring regions within fragments 500 bp upstream 

and 500 bp downstream from TSS locations taken from public databases. Average free 

energy is computed for overlapping 100 nucleotide fragments (frameshift of one nucleo-

tide). This average, and a relative free energy difference between neighboring fragments 

is compared to predefined thresholds determined from the entire 1001 nucleotide win-

dow based on its GC content, to call putative promoter sequence. The program’s input 

is a FASTA file with a single sequence, and the output is a text file with the start and end 

of the predicted promoter regions along with the least stable position (lsp) in the predicted 

regions. The output promoter regions are not linked to genes. [54], [106], [107] Windows 

executable (genome sequence > 10MB) Version 1 was downloaded from the tool’s web-

site, and the program was used for promoter prediction. The online version of the tool 
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and executables for download can be found at the site: http://nu-

cleix.mbu.iisc.ernet.in/prompredict/prompredict.html. 

TSSFinder is the newest of the three tools. It is not strictly speaking a promoter prediction 

program, but rather TSS prediction tool employing machine learning techniques. It ap-

plies linear chain conditional random fields to model the sequence structure of a proximal 

and core promoter region (2000 nucleotides) and based on that model it localizes TSS 

signal closest to the start codon of an annotated gene. It offers a pretrained model for 

human genome, as well as for other organisms.[46] As input files, it needs a FASTA file 

with the sequence of interest, as well as a BED file with a list of the genes of interest. It 

produces a new BED file with a list of predicted TSS positions and their genes, and 

another BED file with a list of TATA boxes localized within the analyzed promoters. It is 

available as an online tool or to be downloaded at the site: http://sucest-

fun.org/wsapp/tssfinder/. Its precompiled package for Linux was downloaded and used 

for TSS prediction. 

4.8 Studying the presence of histone modifications associated 

with transcriptional activity within estimated promoters 

First, a list of histone marks associated with transcriptional activity was compiled from a 

literature survey. Next, the genomic loci of such modifications were obtained from Gene 

Transcription Regulation Database (GTRD) as bigBed tracks with MACS2 peaks for 

hg38. BigBed files were converted to BED files using USCS program bigBedToBed and 

were subsequently compared to the estimated ranged of promoters using bedtools inter-

sect -wo. Appendix A presents the ChIP-seq experiments from GTRD database used, 

and the functional association of the histone marks selected for the analysis. 

4.9 Transcription factor AR binding sites 

The loci of binding sites were obtained from JASPAR2020 database [108], and the latest 

dataset was chosen. The presence of the motifs in hg38 genome was studied with TFB-

STools R package version 1.32.0. The locations of the motifs were subsequently com-

pared to the locations of promoters of each transcript group using GenomicRanges pack-

age’s function findOverlaps. 
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5. RESULTS 

5.1 Co-occurrence of transcripts and ATAC-seq peaks on the 

genome-wide level 

As was mentioned in the Background section chapter 2.7, this study was possible thanks 

to two previously published studies conducted by members of the author’s research 

group [23], [48].  To investigate whether the novel transcripts could be regulated by chro-

matin accessibility, RNA-seq and ATAC-seq data were used, and both datasets were 

obtained from the abovementioned studies. 

Transcriptome assembly generated by Ylipää et al. contained transcript counts of 60 662 

protein-coding transcripts, 49 517 LNC annotated transcripts, 66 280 newly identified 

unannotated intergenic transcripts, and 32 704 newly identified unannotated intragenic 

transcripts. After filtering out the transcripts mapping to mitochondrial genome, the num-

ber of protein-coding transcripts decreased to 60 625. As the vast majority of the novel 

transcripts did not have strand information, every step of analysis including novel tran-

scripts, was performed twice, first assuming the transcripts were on plus strand, and then 

assuming they were on minus strand. 

The relation between chromatin accessibility and expression was first studied on the 

genome-wide level. To see how many transcripts were located in the proximity of an 

ATAC-seq peak, the distribution of distances from TSS to the nearest peak was plotted. 

Figure 10 presents the distributions. The ATAC-seq peaks used in this preliminary anal-

ysis were from the set of unified peaks called and quantified by Uusi-Mäkelä in 2020. 

The graph in the left top corner presents the distribution of all transcripts when the unan-

notated transcripts with no strand had been assigned minus-sense strand, then next to 

it is the graph of all transcripts when the unannotated transcripts with no strand had been 

assigned plus-sense strand. The other graphs represent the distributions of each tran-

script type separately, with the distinction of strand assumptions for the unannotated 

transcripts. The distributions have similar shapes in all graphs, although the number of 

unannotated transcripts with a peak nearby their TSS is not as high as for annotated 

transcripts. Nevertheless, the density of distances reaches its peak around the TSS and 

decreases exponentially and symmetrically both upstream and downstream from the 

TSS in each transcript group.  

Figure 11 presents the percentages of transcripts with peaks at different distances from 

TSS in form of pie charts. The orange parts represent the promoters, as defined in this 
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study. The first significant observation can be made based on these two illustrations – 

the percentage of unannotated transcripts with an ATAC-seq peak in the promoter was 

lower than in the annotated transcripts, and lower than when all transcripts were consid-

ered together. This means that a lower fraction of promoters of unannotated transcripts 

was accessible in comparison to the annotated transcripts. Thus, already at this point we 

could hypothesize that a much lower number of unannotated transcripts would be ex-

pressed and would display other epigenomic marks of transcriptional activity than in the 

groups of protein-coding transcripts and LNC annotated transcripts. The pie charts also 

confirm the symmetrical shapes of the distribution density plots, as the percentages of 

peaks at the same distances downstream and upstream from TSSs are similar. In addi-

tion, the strand assumption does not change the distribution. 

 

Figure 10. Distribution of the distances from TSS to the nearest ATAC-seq 
peak 
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Figure 11. The percentages of transcripts with the nearest ATAC-seq peak 
within different distances from TSS. The percentages are rounded to the near-

est integer. 

 

5.2 The relationship between chromatin accessibility and ex-

pression in individual samples 

5.2.1 Sample-specific ATAC-seq peaks 

In order to investigate sample-specific occurrence of chromatin accessibility and expres-

sion, ATAC-seq peaks needed to be quantified in individual samples. From this point 

onward, the sample-specific ATAC-seq peaks were used in each step of the analysis. 

Figure 12 shows the number of obtained ATAC-seq peaks within each studied sample. 

As can be seen, the number varied a lot between individual samples, revealing samples 
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with both plenty of accessible regions and scarcity of them within the same sample 

groups. Therefore, the numbers of peaks in each group were more closely investigated. 

 

Figure 12. The number of ATAC-seq peaks in individual samples. 

 

The similarity of the means between the sample groups was tested statistically. Shapiro 

normality test was performed for each sample group peak number distribution with the 

threshold set to 0.05. According to the test results, normality could be assumed for all 

three sample groups (p-values BPH: 0.9473; PC: 0.2253; CRPC: 0.3904). Based on the 

assumption of normality, one-way ANOVA test was used. The null hypothesis was that 

there was no significant difference between the numbers of peaks of the three sample 

groups, and the alternative hypothesis was that the mean of at least one group was 

different. Chosen threshold was 0.05. Obtained p-value was 0.733, much higher than 

the threshold, and thus based on this result there was no reason to suspect significant 

differences between the numbers of ATAC-seq peaks in the sample groups. 

The distribution of the numbers of the peaks within each sample group was inspected 

also visually. Figure 13 presents graphical representations of the distribution in BPH, 

CRPC, and PC. It was observed that CRPC group displayed the highest level of varia-

bility, and PC group the lowest, even though this group contained the most significant 

outlier, PC 17163, with the highest number of peaks not only among PC samples, but in 

the entire cohort. The highest and the lowest number of peaks in BPH group were both 
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lower than the respective values in the other two sample groups. Based on this plot, 

some initial conclusions were made. First, chromatin accessibility is a highly hetero-

genous feature among CRPC samples, and possibly contributes to or results from high 

genetic heterogeneity of advanced PC. While chromatin accessibility seems to be most 

homogenous in PC samples, it is BPH in which the extreme values are the lowest, which 

could mean higher level of regulation of chromatin accessibility and thus better control 

over proper gene expression. 

 

Figure 13. Violin plots representing the distributions of the number of peaks in 
each sample group. The blue shapes represent the density of the peak num-
bers in each sample group. The red dots represent the median numbers of 

peaks, and the black dots represent numbers of peaks in each individual sam-
ple. 

 

5.2.2 Co-occurrence of ATAC-seq peaks and expression 

To study whether chromatin accessibility and expression occurred together, the sample-

specific peaks had to be associated with individual transcripts. Thus, the genomic loca-

tions of sample-specific ATAC-seq peaks were intersected with the estimated promoter 

regions. The transcripts whose promoter overlapped a peak, were marked as “ON” 

genes and the transcripts with no peak overlapping their promoter were marked as “OFF” 

genes. Those transcripts, whose promoters overlapped peaks, which fell within the 

blacklisted regions producing mitochondrial artifacts, were removed from the group of 
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ON genes. This meant removal of 361 protein-coding genes, 156 LNC annotated tran-

scripts, 17 intergenic transcripts with plus-strand assumption and 37 with minus-strand 

assumption, and 9 intragenic transcripts with plus-strand assumption and 10 with minus-

strand assumption. 

The highest percentage of ON transcripts was found in protein-coding transcript set, and 

it was between 21 and 22%. The percentage of LNC annotated transcripts with a peak 

in their promoter was approximately 13% in all three conditions. Finally, the mean per-

centage of ON transcripts in unannotated transcripts oscillated between 2 and 3%, thus, 

it was much lower than in other transcript categories. These percentages were lower 

than the percentages from Figure 11. There, the unified set of peaks was used to study 

the distances to the nearest peak in every sample. The reason for this is the fact, that in 

reality less peaks were found in many of the samples, so less peaks could fall within 

promoters. The mean percentages of “ON” and “OFF” genes in each transcript group in 

each condition when sample-specific peaks were used, can be found in Appendix B. 

As was explained in the Background section, chromatin accessibility allows protein-DNA 

interactions, and thus also more efficient transcription. Therefore, it was investigated 

whether on a general level the mean abundance of ON genes was higher than the mean 

abundance of OFF genes. A series of Wilcoxon rank sum tests was performed to test 

the hypothesis in each transcript type for each condition separately. In every case, test-

ing confirmed that ON transcripts were significantly more expressed than OFF transcripts 

with significance level 0.01. In addition, the mean expression levels in unannotated tran-

scripts did not differ between the two strand assumptions both for ON genes and for OFF 

genes. 

Also, it was tested whether the number of peaks in gene promoters and the number of 

expressed genes (TPM > 0) in each sample were independent from one another. Chi-

squared independence test showed with confidence level 0.01 that these two variables 

were not independent in any of the samples, but only for protein-coding transcripts and 

LNC annotated transcripts. For intergenic transcripts, these two variables were inde-

pendent (p-value > 0.01) in BPH 656 and BPH 671 with plus-sense, and in BPH 656 with 

minus-sense assumption. The expression of intragenic transcripts turned out to be inde-

pendent from the peaks in many more samples: with plus-sense assumption in samples 

BPH 656, BPH 671, BPH 677, BPH 689, CRPC 261, CRPC 539, PC 6174, and PC 9324; 

and with minus-sense assumption in the same BPH and CRPC samples, but in addition 

also in BPH 651, BPH 688, and CRPC 697, and in no PC sample. 
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Finally, the correlation between the total number of peaks and the total number of ex-

pressed transcripts in each sample group was tested with significance level of 0.01, how-

ever, the results of the tests were not significant. 

These initial steps showed that chromatin was accessible in the vicinity of TSSs of a 

subset of unannotated transcripts, and that the expression of those transcripts was gen-

erally higher than of those transcripts, which were further away from the nearest peak. 

However, that subset contained much lower number of transcripts then the correspond-

ing subset of protein-coding, or even LNC annotated transcripts. Moreover, in contrast 

to annotated transcripts, the number of expressed unannotated transcripts was not al-

ways dependent on the number of peaks in promoters.  

5.2.3 Correlation between accessibility and expression 

To study whether higher chromatin accessibility resulted in higher expression, the corre-

lation between these two features was investigated. Spearman’s correlation was primar-

ily taken into consideration due to the fact that it is more robust against significant outli-

ers, present in the dataset. First, the correlation between the ATAC-seq peak intensity 

and expression was tested for all ON transcripts. Table 1 presents the mean correlation 

estimates for each transcript group in each condition, and Figure 14 presents the distri-

bution of the p-values. 

Transcript group BPH CRPC PC 

Spearman correlations 

Intergenic (+) 0.09 0.12 0.11 

Intergenic (-) 0.09 0.11 0.12 

Intragenic (+) 0.12 0.12 0.15 

Intragenic (-) 0.09 0.11 0.13 

Coding 0.18 0.21 0.19 

LNC annotated 0.11 0.14 0.11 

Pearson correlations 

Intergenic (+) 0.01 0.04 0.02 

Intergenic (-) 0.02 0.04 0.03 

Intragenic (+) 0.02 0.03 0.05 

Intragenic (-) 0.01 0.01 0.06 

Coding 0.00 0.01 0.00 

LNC annotated 0.00 0.02 0.01 

 

Table 1. Mean Spearman’s and Pearson’s correlation estimates for each transcript 
group in each condition. 
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Figure 14. P-values from Spearman’s correlation tests between ATAC-seq 
peak intensity and expression for all ON transcripts. The dashed red line marks 

the significance level 0.01. 

Pearson’s estimates were really low and rarely significant; thus, the further discussion 

focuses on the Spearman’s correlations. All Spearman’s correlation estimates computed 

for protein-coding transcripts were significant. They were mostly moderate, but always 

positive. In general, expression and chromatin accessibility positively correlated in pro-

tein-coding transcripts. Most of the results in the set of LNC annotated transcripts were 

significant, but there were exceptions: BPH 671, PC 14670, and PC 8438. Still, all esti-

mates were positive, although rather weaker than in coding transcripts. 

In all three sample groups most of the Spearman’s correlations for intergenic transcripts 

were significant and were weak or moderate. With plus-sense assumption, there was 

only one negative correlation, which, however, was negligible (BPH 671: -0.0147, p-

value 0.7568). With minus-sense assumption there were two negative correlations, both 

very weak, and one for the same sample as with the other assumption (BPH 671: -

0.0107, p-value 0.8202, and CRPC 261: -0.0344, p-value 0.2831). On average, correla-

tions were minimally higher with minus-sense assumption in PC samples, whereas in 
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CRPC samples correlations were minimally higher with plus-sense assumption, how-

ever, the differences were rather modest. The sense assumption did not change the 

mean correlation estimate in BPH samples. Expression in cancerous samples seemed 

to better correlate which chromatin accessibility than in BPH samples. 

The patterns of correlations in intragenic transcripts differed slightly from those in inter-

genic transcripts, and the sense assumption altered the results more evidently. Overall, 

the correlations were weak to moderate. There was only one negative estimate with both 

sense assumptions, and it was for BPH 671, in which correlations were also negative for 

intergenic transcripts. The percentage of significant correlations with minus-sense as-

sumption was higher in cancerous samples than in healthy samples. Also, in total, more 

p-values were insignificant, especially with minus-sense assumption, in comparison with 

intergenic transcripts. For all conditions, the estimates were higher in most of the sam-

ples with plus-sense assumption, and those differences were sometimes very big (e.g., 

for BPH 651, the difference between plus-sense correlation and minus-sense correlation 

was 0.1209, higher than many of the sample correlation estimates). Interestingly, in BPH, 

most of the minus-sense correlations were weaker than minus-sense correlations for 

intergenic transcripts, however, the opposite was observed for plus-sense correlations. 

Correlation estimates in PC and CRPC were not affected as much by the strand assump-

tion. The average CRPC correlation for intragenic transcripts was similar to correlation 

for intergenic transcripts, while the average PC correlation was higher than the one for 

intergenic transcripts. 

Indisputably, protein-coding transcripts displayed the strongest correlations. There were 

clear differences between coding and LNC annotated transcripts, but the estimates in 

intergenic and intragenic transcripts did not differ strongly form each other. Also, the 

sense assumption did not influence the correlations dramatically. The average correla-

tions in unannotated transcripts were quite similar to the average correlations in LNC 

annotated transcripts and were even stronger in PC samples. There were observable 

inter-state differences. The expression of annotated transcripts in CRPC correlated with 

chromatin accessibility more strongly than in other two states. That was not the case for 

unannotated transcripts. The strongest correlations of intergenic and intragenic tran-

scripts were mostly in PC samples. For all transcript groups, BPH displayed the weakest 

correlations. 

In addition to the correlation analysis, the number of expressed transcripts was plotted 

against the reported Spearman’s correlation estimates to see whether a higher number 

of expressed transcripts meant a stronger correlation between the accessibility and ex-

pression level. The discussed plots can be found in Appendix C. In annotated transcripts, 
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there was almost no relationship between the investigated features. However, the situa-

tion was more interesting in unannotated transcripts. In BPH samples with plus- and 

minus-sense assumptions the slope of the trendline was steep and negative for both 

intergenic and intragenic transcripts, which meant that more expressed transcripts in a 

sample meant weaker correlation between the expression level and chromatin accessi-

bility. In both cancer states with both sense assumptions, intergenic transcripts displayed 

weak negative dependency of the features. While for intragenic transcripts with plus-

sense assumption the trend in all cancer samples was weakly positive, with minus-sense 

assumption it reversed to strongly negative, especially in CRPC. 

Furthermore, the number of peaks in promoters was plotted against the Spearman’s cor-

relation estimates to investigate whether more peaks near TSS meant stronger correla-

tion between the accessibility and the expression level. The plots can be seen in Appen-

dix D. In plots for annotated transcripts the trendlines had a steep positive slope in all 

states. The plots for unannotated transcripts looked differently. In intergenic transcripts 

in BPH and PC the correlation seemed to be stronger in samples with more peaks in 

promoters, however, the trend was exactly reversed in CRPC samples, and it was true 

for both sense assumptions. In intragenic transcripts in BPH samples the relationship 

was similar to intergenic transcripts in BPH samples, but trendline with a steep negative 

slope was observed not only in CRPC, but also in PC. Thus, in annotated transcript sets 

the higher number of peaks in promoters did mean a higher correlation between acces-

sibility and expression, but in unannotated transcript sets such trend was true only in 

BPH, and in PC for intergenic transcripts. 

5.2.4 Thresholding and filtering 

Previous testing showed that on the general level chromatin accessibility in the promoter 

regions and expression were somewhat correlated. In attempt to better understand the 

dependency between the accessibility and expression, the correlation was also investi-

gated for different subsets of each transcript type obtained by applying data-derived 

thresholds to the expression level and accessibility. The main goal was to find out if the 

correlation would improve with increasing expression levels and accessibility. Such trend 

was not observed in any of the transcript types. Instead, the correlations changed from 

weak to strong and jumped between negative and positive values without any clear pat-

tern, and most often their p-values were insignificant. Perhaps, the dependency between 

the accessibility and expression cannot be simply explained through either linear or mon-

otonic relationship.  
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As an example, Table 2 presents the mean correlations for the subset of transcripts 

whose TPM was higher than the sample-specific upper quartile in a given transcript 

group. This criterion was chosen in attempt to restrict the analysis only to those tran-

scripts, for which chromatin accessibility co-occurred with observable expression. 

Transcript group BPH CRPC PC 

Spearman’s correlations 

Intergenic (+) -0.04 0.03 0.01 

Intergenic (-) -0.06 0.01 0.02 

Intragenic (+) 0.01 0.05 0.03 

Intragenic (-) 0.04 -0.09 0.05 

Coding -0.01 0.02 0.02 

LNC annotated -0.06 -0.04 -0.04 

Pearson’s correlations 

Intergenic (+) -0.05 0.00 -0.02 

Intergenic (-) -0.03 -0.01 -0.01 

Intragenic (+) 0.01 0.00 0.02 

Intragenic (-) 0.00 -0.07 0.08 

Coding -0.02 -0.01 -0.01 

LNC annotated -0.01 0.03 0.00 

 

Figure 15 shows the p-values for Spearman’s correlations from the same tests. As can 

be seen, some of the p-values in the protein-coding transcript set were significant, with 

the highest number in PC samples. There were less significant values in the set of LNC 

annotated transcripts. Nearly none of the estimates was significant for unannotated tran-

scripts. Since the p-values are not significant, the results are not conclusive. 

 

Table 2. Mean Spearman’s and Pearson’s correlation estimates for transcripts with 
TPM higher than sample-specific upper quartiles. 
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Figure 15. P-values from Spearman’s correlation tests for ON transcripts with 
TPM higher than sample-specific upper quartiles. The dashed red line marks 

the significance level 0.01. 

5.3 Integration of DNA methylation data 

The next analysis was done to explore the effect of DNA methylation within promoters 

on the expression level of the transcripts. First, it was studied whether estimated promot-

ers were methylated. The promoter ranges of transcripts were overlapped with methyla-

tion data, and a methylation level was computed for each of them as a weighted average 

of methylation levels of overlapping intervals. Since MeDIP-seq data was quantified and 

normalized using QSEA tool, methylation levels were values between 0 and 1. Two of 

the samples studied in earlier steps, CRPC 305 and CRPC 539, did not have MeDIP-

seq data, so they had to be excluded from downstream analysis.  

Some promoters displayed no level of methylation. PC seemed to have the highest pro-

portion of transcripts with some level of methylation within promoters of each transcript 

group. The highest fraction of methylated promoters was identified within protein-coding 

transcripts set, and the lowest in intragenic transcript set. The fraction of methylated pro-

moters in intergenic transcripts and LNC annotated transcripts was similar. Figure 16 

presents the percentages for each transcript group in each condition. 
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Figure 16. A bar plot presenting the percentages of transcripts whose promoter 
region was methylated in some degree with distinction of the conditions. The val-
ues are rounded to one decimal place. 

 

Mean methylation levels were computed in each sample for transcript group for those 

transcripts, whose promoters were methylated. Then, mean of means in each condition 

was computed to compare inter-state methylation levels. The least methylated promoters 

were the promoters of protein coding transcripts. The methylation levels of promoters of 

LNC transcripts were slightly higher than those of coding transcripts. The most methyl-

ated promoters were found in intergenic and intragenic transcripts, and the methylation 

levels in those two groups were very similar. The differences between states in all tran-

script groups were negligible. Table 3 presents the methylation levels for each transcript 

group in each condition. 
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State Intergenic 
(+/-) 

Intragenic 
(+/-) 

Coding LNC anno-
tated 

BPH 0.6338/ 

0.6344 

0.6319/ 

0.6318 

0.4342 0.4914 

PC 0.6292/ 

0.6304 

0.6257/ 

0.6255 

0.4436 0.5009 

CRPC 0.6220/ 

0.6228 

0.6174/ 

0.6179 

0.4389 0.4946 

 

Next step was investigating whether the presence of an ATAC-seq peak in the promoter 

meant low or no methylation. In order to do that, the proportions of promoters with a peak 

and low or no methylation (below or equal to 0.25 quantile of methylation levels in a 

transcript group in a sample) and those with a peak and high methylation level (equal to 

or above 0.75 quantile of methylation levels in a transcript group in a sample) were com-

pared in each transcript type. The average percentages in each condition can be seen 

in Figure 17. 

 

Figure 17. The percentages of transcripts with a peak in their promoter and 
high methylation level or low methylation level. 

In every transcript group, there were many more transcripts with an ATAC-seq peak in 

their promoters with low methylation level than transcripts with ATAC-seq peak and high 

methylation level. In annotated transcripts, this relationship was the strongest in PC sam-

ples, while in unannotated transcripts in BPH samples. While in other transcript groups 

Table 3. The mean values of sample mean methylation levels in each  transcript 
group in each condition, rounded to four decimal places. 



53 

 

the proportion of transcripts with accessible promoter and low methylation level consti-

tuted the majority of those transcripts, the corresponding percentage of protein-coding 

transcripts was nearly the same as those which were moderately methylated. Thus, in 

this regard, unannotated transcripts were more similar to LNC annotated transcripts. 

Nevertheless, the percentages of unannotated transcripts with accessible promoter and 

high methylation level were much greater than the corresponding percentages of anno-

tated transcripts. This proportion was always the largest in CRPC, although the differ-

ence between CRPC and two other conditions in intragenic transcripts was not as prom-

inent as in other transcript types. 

Also, the relation between the presence of an ATAC-seq peak, expression level, and 

methylation level was investigated. First, the methylated promoters were filtered into 

highly methylated ones and into those with low methylation level (the same definitions 

were used as described above. Then, it was studied what are the fractions of those sub-

sets with and without a peak, and then also the fractions with high expression (equal or 

above 0.9 quantile of a transcript group in a sample) and with low expression (equal or 

lower than 0.75 quantile of a transcript group in a sample). The results for transcripts 

with highly methylated promoters can be seen in Figures 18 and 19, whereas the results 

for transcripts with low methylation level within their promoters in Figures 20 and 21. 

In each transcript type, the vast majority of transcripts with high methylation did not have 

a peak in their promoter. Interestingly, this percentage was slightly higher in unannotated 

transcripts than in annotated transcripts, and the lowest fractions across all conditions 

were observed for the protein-coding transcripts. CRPC always had the highest fraction 

of highly methylated promoters with a peak, although the difference between CRPC and 

other conditions in unannotated transcripts was very small. The majority of highly meth-

ylated transcripts was characterized also by low expression level, especially in PC. The 

part of such transcripts was the smallest in LNC annotated transcripts. CRPC was the 

condition in which the fraction of highly methylated transcripts with low expression was 

the lowest, whereas the fraction of highly methylated transcripts with high expression 

was the largest, especially in unannotated transcripts. In PC and BPH, the percentage 

of highly methylated transcripts with high expression was the largest in LNC annotated 

transcripts. Such transcripts were the least abundant among the protein-coding tran-

scripts. 
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Figure 18. The percentages of highly methylated transcript promoters with 
and without an ATAC-seq peak. 

 

Figure 19. The percentages of highly methylated transcripts low and high ex-
pression level. 

Surprisingly, low methylation level within a promoter did not necessarily mean that an 

ATAC-seq peak was present. Furthermore, the relationship between these two features 

was different in unannotated transcript sets than in annotated transcript sets. Approxi-

mately 55% of annotated transcripts with low methylation also had a peak, but the frac-

tion of transcripts without a peak was lower by only a bit more than a dozen percentage 
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points. In contrast, most of the unannotated transcripts with low methylation did not have 

a peak. Similarly, low methylation did not mean high expression in any of the transcript 

groups - most of the transcripts with low methylation were not highly expressed. 

 

Figure 20. Percentages of promoters with low methylation level and an ATAC-
seq peak or no ATAC-seq peak. 

 

Figure 21. Percentages of promoters with low methylation level and high ex-
pression or low expression. 
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5.3.1 Correlation between methylation level and expression 

To investigate whether higher methylation level of promoters meant lower expression, 

the correlation between these two features was computed. For the transcripts with meth-

ylated promoters, the correlation between methylation and expression was tested with 

significance level 0.01. The mean correlation estimates for each transcript set in each 

condition can be seen in Table 4, and Figure 22 presents the p-values from the Spear-

man’s correlation tests. 

Transcript group BPH CRPC PC 

Spearman’s correlation 

Intergenic (+) -0.06 -0.01 -0.07 

Intergenic (-) -0.06 -0.02 -0.07 

Intragenic (+) -0.06 -0.01 -0.7 

Intragenic (-) -0.05 -0.02 -0.06 

Coding -0.24 -0.21 -0.27 

LNC annotated -0.16 -0.11 -0.18 

Pearson’s correlation 

Intergenic (+) 0.00 0.00 -0.01 

Intergenic (-) -0.01 0.00 -0.01 

Intragenic (+) -0.04 -0.03 -0.03 

Intragenic (-) -0.01 -0.01 -0.01 

Coding -0.03 -0.03 -0.03 

LNC annotated -0.01 -0.01 -0.01 

 

Methylation level and expression level were quite strongly anti-correlated in protein-cod-

ing genes. All estimates were significant and much higher than in unannotated tran-

scripts. Still, on average, PC samples had the strongest correlations and CRPC the 

weakest. Methylation and expression anti-correlated also in LNC transcripts. Once 

again, the strongest correlations were in PC samples and the weakest in CRPC samples. 

The average condition-specific estimates were lower than those of protein-coding tran-

scripts by approximately ten percentage points, and higher than those of unannotated 

transcripts by nearly the same number of percentage points. 

All Spearman’s estimates for intergenic transcripts in BPH and PC samples were nega-

tive, and nearly all were significant, with both sense assumptions. Three estimates in 

CRPC samples were positive and insignificant, also with both sense assumptions. All 

individual correlations were rather weak, and on average the weakest ones were in 

Table 4. Mean Spearman’s and Pearson’s correlations between methylation and ex-
pression. 
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CRPC, and the strongest in PC. Minus-sense assumption produced marginally stronger 

correlations. 

 

Figure 22. P-values from Spearman’s correlation tests between methylation 
and expression. The red dashed line marks the significance level. 

The results for intragenic transcripts revealed similar pattern as in intergenic transcripts 

in almost all regards. Again, all BPH and PC samples produced negative Spearman’s 

estimates. In some BPH samples the correlation was insignificant, especially with plus 

strand assumption. As in the former transcript set, CRPC produced the weakest correla-

tions on average, and in some samples methylation and expression were positively cor-

related, while in several other samples the correlation was insignificant. The studied fea-

tures were the most strongly correlated in PC samples. The average condition-specific 

correlations were slightly lower for intragenic transcripts than for intergenic transcripts. 

Nevertheless, in both unannotated transcript groups the overall correlation between 

methylation and expression was weak and negative. 

Based on these observations, it can be concluded that on the general level, the expres-

sion anti-correlated with methylation. But this feature seemed to be most characteristic 

for protein-coding genes and is not well pronounced in unannotated transcript groups or 

even in annotated non-coding transcripts. Moreover, in some samples, methylation and 

expression positively correlated. Since high methylation of inter- and intragenic CpG is-

lands is involved in regulation of non-coding transcripts, the studied sets of transcripts 

might include subsets regulated in this way, which decrease the overall anti-correlation 

between methylation and expression. 
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5.3.2 Correlation in ON and OFF transcripts 

In attempt to find subsets of transcripts positively and negatively regulated by methyla-

tion, data-derived thresholds were applied to the methylation levels and expression lev-

els. First, the correlation between methylation and expression was studied in transcripts 

with ATAC-seq peaks in their promoters (“ON”) and those without peaks (“OFF”). The 

mean correlation estimates for each transcript group in each condition are presented in 

Table 5, and the p-values from Spearman’s correlation tests are presented in Figure 23 

for ON transcripts, and in Figure 24 for OFF transcripts. 

 

Transcript group BPH CRPC PC 

Spearman’s correlation – ON transcripts 

Intergenic (+) -0.18 -0.08 -0.14 

Intergenic (-) -0.13 -0.07 -0.17 

Intragenic (+) -0.16 -0.13 -0.17 

Intragenic (-) -0.11 -0.09 -0.13 

Coding 0.04 -0.03 0.03 

LNC annotated -0.03 -0.06 -0.04 

Pearson’s correlation – ON transcripts 

Intergenic (+) -0.07 -0.01 -0.03 

Intergenic (-) -0.05 -0.02 -0.04 

Intragenic (+) -0.07 -0.03 -0.08 

Intragenic (-) -0.02 -0.03 -0.04 

Coding 0.01 0.00 0.01 

LNC annotated 0.01 0.00 0.01 

Spearman’s correlation – OFF transcripts 

Intergenic (+) -0.04 0.00 -0.05 

Intergenic (-) -0.05 0.00 -0.05 

Intragenic (+) -0.05 0.00 -0.05 

Intragenic (-) -0.04 0.00 -0.05 

Coding -0.10 -0.04 -0.11 

LNC annotated -0.07 -0.01 -0.07 

Pearson’s correlation – OFF transcripts 

Intergenic (+) 0.00 0.00 0.00 

Intergenic (-) -0.01 0.00 -0.01 

Intragenic (+) -0.04 -0.03 -0.03 

Intragenic (-) -0.01 -0.01 -0.01 

Coding -0.02 -0.01 -0.02 

LNC annotated -0.02 -0.01 -0.01 

 

Table 5. Mean Spearman’s and Pearson’s correlations between methylation and ex-
pression for ON and OFF transcripts. 
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Figure 23. P-values from Spearman’s correlation tests between methylation 
and expression in ON transcripts. The red dashed line marks the significance 

level 0.01. 

Correlation analysis in the category of ON transcripts produced quite surprising results. 

In annotated transcript sets, the mean correlations weakened in comparison to the mean 

correlations for the whole sets. Furthermore, for protein-coding transcripts, while weak, 

most of the correlations in BPH and PC samples were positive, and several were insig-

nificant. The average correlation was negative only in CRPC samples. Average correla-

tions for LNC transcripts were negative in all three conditions, but they were not much 

stronger than those for protein coding transcripts. Many estimates in this transcript group 

turned out to be insignificant, especially in BPH. 

In intergenic transcripts, in nearly all samples expression and methylation anti-correlated 

much more strongly than when the entire intergenic set was studied. Only in CRPC 542 

the correlation was positive, although weak (plus-sense 0.07/ minus-sense 0.06) and 

insignificant (p-value 0.0293/ 0.0468). In three more CRPC samples the correlation esti-

mates were insignificant (p-values higher than 0.01). On average, correlation was the 

weakest in CRPC samples with both sense assumptions, and while with plus-sense as-

sumption the condition with the strongest correlation was BPH, with minus-sense it was 

PC. Also, plus-sense assumption produced slightly stronger dependencies. But the over-

all trend for intergenic ON transcripts was moderate anti-correlation between methylation 

and expression. In intragenic ON transcripts, the trend was similar. In all samples meth-

ylation and expression anti-correlated, with strength comparable to intergenic transcripts. 

However, more of the estimates were insignificant across all conditions, with both strand 

assumptions. 
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Figure 24. P-values from Spearman’s correlation test between methylation 
and expression in OFF transcripts. The red dashed line marks the significance 

level 0.01. 

In OFF transcripts, the trends were quite different. Correlation of coding OFF transcripts 

was much weaker than for all coding transcripts, but surprisingly, it was stronger than for 

ON transcripts, even though often with opposite sign. Only in individual CRPC samples 

and one PC sample OFF correlations were weaker than ON correlations. There was just 

one insignificant estimate for sample BPH 689, which was also positive (0.015, p-value 

0.0315). Other positive correlations appeared only in individual CRPC samples. On a 

general level, the correlation between expression and methylation in OFF protein-coding 

transcripts was a bit higher than in other transcript sets, but it was still weak or moderate, 

and in several samples very weak. 

In LNC annotated transcripts the trend was similar as in protein-coding transcripts. OFF 

correlations were in general stronger than ON correlations, except in most of CRPC sam-

ples and individual BPH and PC samples, but weaker than in the whole LNC annotated 

transcript set. There were more insignificant estimates than among coding transcripts, 

one in PC 8131, and several within CRPC samples. There were four positive estimates, 

all within CRPC. In general, correlation in LNC annotated OFF transcripts was weaker 

than in protein-coding transcripts, but slightly stronger than in unannotated transcripts. 

Nevertheless, it was rather weak. 

In intergenic OFF transcripts, the correlation in most of the samples was even weaker 

than for the entire transcript group. Minus-sense assumption produced minimally 

stronger estimates than plus-sense assumption. All estimates were negative in BPH and 
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PC samples, but a few were positive in CRPC samples. Insignificant correlations were 

computed in some BPH and CRPC samples with plus-sense assumption, and in individ-

ual samples in all conditions with minus-sense assumption. The OFF correlations for 

intergenic transcripts were much weaker than ON correlations for this set. In general, the 

expression in OFF intergenic transcripts correlated weakly or very weakly with methyla-

tion level. 

Similarly, in intragenic OFF transcripts, the correlations were also weaker than for the 

whole group of intragenic transcripts. Plus-sense assumption produced slightly stronger 

correlations. Most of the estimates in CRPC were insignificant. In summary, expression 

in OFF intragenic transcripts correlated weakly or very weakly with methylation level and 

was often insignificant. 

Overall, OFF correlations were stronger than ON correlations in annotated transcripts, 

whereas this pattern was reversed in unannotated transcripts. Still, the correlation be-

tween expression and methylation was mostly negative, except for ON protein-coding 

transcripts. For those, the correlation was mostly positive, however, weak and often in-

significant. 

5.3.3 Thresholding of ON and OFF non-coding unannotated and 

annotated transcripts 

In the next step, the methylation and expression within ON and OFF transcripts were 

subjected to data-derived thresholding in attempt to find subgroups in which transcription 

might be regulated by methylation. Because the initial correlation analysis showed that 

correlations in unannotated transcripts were closer to correlations in LNC annotated tran-

scripts, these sets were studied together, whereas protein-coding transcripts were stud-

ied separately and less extensively. 

First, LNC annotated and unannotated ON transcripts (transcripts with a peak in their 

promoter) were studied. Four subsets were extracted based on the expression and meth-

ylation levels: (1) transcripts with high methylation and high expression, (2) transcripts 

with low methylation and high expression, (3) transcripts with low methylation and low 

expression, and (4) transcripts with low expression and high methylation. Then, a similar 

analysis was performed on OFF transcripts (without a peak in promoter), but only three 

subsets were studied: (1) transcripts with high methylation and high expression, (2) tran-

scripts with low methylation and high expression, and (3) transcripts with low expression 

and high methylation. 
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Unfortunately, correlation tests were mostly insignificant, or oftentimes they could not be 

computed due to low number of transcripts passing the thresholds, or due to expression 

being zero in too many transcripts. Thus, it was not possible to compare unannotated 

transcripts to LNC annotated transcripts based on the correlation between methylation 

and expression. Also, the results of each filtering constituted different percentages of the 

entire groups in unannotated transcripts and different in LNC annotated transcripts. How-

ever, the analysis produced some useful results, as it helped to define the initial lists of 

interesting unannotated transcripts, typically those with high expression (TPM > 30.00), 

often in multiple samples. Those lists can be found in Appendices E, F, and G. 

5.3.4 Thresholding of protein-coding ON transcripts 

Unlike for non-coding and unannotated transcripts, expression and methylation weakly 

correlated for protein-coding ON transcripts in BPH and PC samples. In attempt to ex-

plore the relationship between methylation and expression, two subgroups were ex-

tracted from protein-coding transcript set to study the trends in them: (1) highly ex-

pressed transcripts with low methylation, and (2) highly methylated transcripts with low 

expression. However, correlation tests of the first subsets did not produce a single sig-

nificant result, and only 12 estimates were significant in the second subset. 

5.4 Promoter prediction * 

The results of promoter prediction and association of predictions with transcripts and 

their promoters was previously reported as a part of a course project, and thus they do 

not constitute a part of this thesis’s work. However, integration of the results with other 

datasets and correlation analysis were done within the scope of this thesis. All mentioned 

results are relevant for the conclusion of this study, and therefore they are presented 

also here.  

To validate the promoters of studied transcripts, it was decided to perform promoter pre-

diction through genomic sequence feature analysis. Three programs were used to pre-

dict promoters: EP3, PromPredict, and TSSFinder. The total number of predictions pro-

duced by each tool genome-wide differed greatly (the lowest by EP3: 41 952, the largest 

by PromPredict: 5 262 288), and so did the average length of predicted promoters. While 

EP3 used predefined length of 400 bp to find putative promoters, and TSSFinder simply 

generated a list of TSS loci (1 bp), predictions produced by PromPredict differed in 

length, depending on the features of the predicted sequence, and the average length 

was 66 bp. Moreover, TSSFinder provided five pre-trained models to predict TSS loci. 

As the algorithm creators did not supply information on how to select the best fitting 



63 

 

model, all five models were used to generate predictions. Then, all results were com-

bined into a single list of predictions containing 125 949 unique TSS positions. Then, the 

results from all three tools were intersected and a unified list of unique predictions was 

obtained by filtering out the predictions which were not predicted by at least two tools, 

and by merging overlapping ranges. The list consisted of 31 496 unique intervals.  

 

 

Figure 25. The percentages of predicted promoters in each transcripts group. 
The numbers are rounded to one decimal place. 

 

Figure 25 shows the percentages of all transcripts in a given group constituted by the 

transcripts, whose previously defined promoters intersected promoter predictions. For 

simplicity, such promoters will be further referred to as predicted promoters, even though 

the predictions did not really cover the entire originally estimated ranges. Transcripts with 

predicted promoters were most prevalent among protein-coding transcripts, and the least 

prevalent among the unannotated ones, especially intragenic transcripts with minus-

sense assumption. Generally, minus-sense assumption led to less predictions for unan-

notated transcripts. 

Figure 26 presents the mean percentages of ON and OFF transcripts with prediction 

from each group in each condition. In all transcript groups, the proportion of ON tran-

scripts with predictions was much larger than the corresponding proportion of OFF tran-

scripts. On average, over 50% of promoters of annotated ON transcripts hit a promoter 
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prediction across all conditions. In contrast, only approximately 12% of coding OFF tran-

script promoters and 8% of LNC annotated transcript promoters were found to overlap a 

prediction.  

 

Figure 26. Mean percentages of ON and OFF transcripts, whose previously 
defined promoters intersected promoter predictions. 

 

These proportions were substantially lower for unannotated transcripts, and there were 

noticeable variations between sense assumptions. Approximately 20-25% of promoters 

of intergenic ON transcripts, and less than 20% of promoters of intragenic ON transcripts 

intersected a prediction. Promoters of unannotated OFF transcripts constituted only sev-

eral percent of the total numbers of OFF transcripts. Mean percentages were slightly 

higher in intergenic transcripts than in intragenic transcripts, and plus-sense assumption 

typically resulted in higher percentage. Based on the promoter predictions, approxi-

mately 20% of unannotated transcripts with accessible promoters seem to be preceded 

by sequences, whose structure resembles typical human core promoter. However, the 

direct influence of the putative promoters on the expression of those transcripts would 

need to be further confirmed by stronger evidence than just in silico promoter prediction. 

5.4.1 Correlations in ON transcripts with predicted promoters 

Next, the relationship between accessibility and expression was explored in ON tran-

scripts with predicted promoters through correlation tests with significance level 0.01. 
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Table 6 presents mean correlations, and Figure 27 presents the p-values from Spear-

man’s correlation tests.  

Transcript group BPH CRPC PC 

Spearman’s correlations 

Intergenic (+) 0.04 0.15 0.06 

Intergenic (-) 0.00 0.08 0.04 

Intragenic (+) 0.11 0.04 0.15 

Intragenic (-) 0.06 0.14 0.10 

Coding 0.10 0.15 0.12 

LNC annotated -0.01 0.06 0.01 

Pearson’s correlations 

Intergenic (+) 0.00 0.07 0.00 

Intergenic (-) -0.01 0.04 0.03 

Intragenic (+) -0.02 -0.03 0.02 

Intragenic (-) 0.01 0.06 0.06 

Coding -0.01 0.00 0.00 

LNC annotated -0.01 0.04 0.00 

 

In protein-coding transcripts, nearly all estimates were significant, positive, and moder-

ate. Estimates in other groups, including LNC annotated transcripts, were mostly insig-

nificant. 

 

 

Table 6. Mean correlation estimates between accessibility and expression for ON 
transcripts whose previously defined promoters overlapped promoter predic-

tions. 
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Figure 27. P-values from Spearman’s correlation test between accessibility 
and expression for ON transcripts whose previously defined promoters over-

lapped promoter predictions. The red dashed line marks the significance level. 

 

The relationship between methylation and expression in the subsets of ON transcripts 

with predicted promoters was studied as well. Table 7 presents the mean estimates for 

each condition, and Figure 28 shows the p-values from Spearman’s correlation tests 

(significance level 0.01).  

Transcript group BPH CRPC PC 

Spearman’s correlation 

Intergenic (+) -0.18 -0.19 -0.15 

Intergenic (-) -0.10 -0.12 -0.20 

Intragenic (+) -0.14 -0.12 -0.18 

Intragenic (-) -0.09 -0.09 -0.14 

Coding 0.10 0.03 0.09 

LNC annotated 0.03 -0.02 0.00 

Pearson’s correlation 

Intergenic (+) -0.07 -0.08 -0.04 

Intergenic (-) -0.03 -0.04 -0.11 

Intragenic (+) -0.03 -0.03 -0.07 

Intragenic (-) -0.01 0.01 -0.04 

Coding 0.02 0.01 0.01 

LNC annotated 0.01 0.00 0.00 

Table 7. Mean correlation estimates between methylation and expression for ON 
transcripts, whose previously defined promoters intersected promoter predic-

tions. 
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Figure 28. P-values from Spearman’s correlation tests between methylation 
and expression for ON transcripts, whose previously defined promoters inter-

sected promoter predictions. 

Nearly all of the correlation estimates for protein-coding transcript set were significant, 

but surprisingly they were positive in all conditions. While the mean correlation in BPH 

and PC was moderate, the mean correlation in CRPC was weak. For LNC annotated 

transcripts, there was hardly any monotonic relationship between methylation and ex-

pression, and nearly all correlations were insignificant. 

The results for intergenic transcripts depended on the sense assumption, both in terms 

of the number of significant p-values and the strength of correlations. Correlations in BPH 

and CRPC were stronger and more significant with plus-sense assumption, but in PC 

samples minus-sense assumption resulted in nearly all estimates being significant, and 

quite strong. The dependency in all individual samples was negative. The results for 

intragenic transcripts were consistently stronger with plus-sense assumption, and the 

largest mean was in PC samples. Several individual estimates with both sense assump-

tions were positive. Still, almost no estimates were significant.  

The analysis resulted in significant results only for protein-coding and unannotated inter-

genic transcripts. It revealed that while methylation and expression positively correlated 

in protein-coding transcripts, they anti-correlated in intergenic transcripts. 
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5.4.2 Shortlisted unannotated transcripts with promoter predic-

tions 

Section “Integration of DNA methylation data” concluded with short-lists of potentially 

interesting unannotated transcripts. Figure 29 presents the percentages of six subsets 

of shortlisted transcripts, whose previously defined promoters covered a promoter pre-

diction. For comparison, corresponding percentages of annotated transcripts passing 

similar thresholds were also computed and are shown in the Figure as well. 

 

Figure 29. Percentages of promoters hitting predictions within shortlisted 
groups. 

In all subsets, the part of predicted promoters was much higher in annotated transcripts 

than in unannotated transcripts. Protein-coding transcripts always had the highest rate 

of predicted promoters and reaching over 50% for ON transcripts with high expression 

and low methylation. Overall, the percentages of predicted transcripts were the highest 

in subsets of ON transcripts with high expression and low methylation across all tran-

script groups. Since supposedly these would be transcripts with accessible and un-

methylated CpG-rich promoters, allowing efficient transcription, such result is reassuring. 

The lowest rates of prediction were found in OFF transcripts with low expression and 

high methylation. There were quite big differences between the percentages of predicted 

promoters in unannotated transcripts, depending on the sense assumption. Typically, 

plus-sense assumption resulted in higher percentage of predicted promoters, but not 

always, e.g., higher percentage of intergenic ON transcripts with high expression and 

low methylation had their promoter predicted with minus-sense assumption. In most 

cases, the prediction rates were higher for intragenic than for intergenic transcripts. 
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5.4.3 GC content of the shortlisted transcripts with promoter 

predictions 

In addition to the promoter predictions, the output file from PromPredict contained the 

percentage of G and C bases of all analyzed 1000 nt windows, within which the predic-

tions fell. Since methylation occurs within promoters with high GC content, the fraction 

of GC within predicted promoters was studied and integrated with methylation, accessi-

bility and expression. Values produced by PromPredict were used to compute average 

GC content within all promoters of shortlisted transcripts, which intersected the predic-

tions. The overlaps between the promoter ranges and the PromPredict windows were 

found, and weighted average was computed from the GC % of each overlapping window, 

weights being the lengths of the overlaps. Figure 30 presents the mean GC content of 

predicted promoters for ON and OFF shortlisted transcripts in every transcript group. 

 

Figure 30. Mean GC content of promoters intersecting promoter predictions. 
Only promoters of previously shortlisted transcripts were studied. GC content 

presented as a percentage. 

The largest GC contents were found within promoters of transcripts with high expression 

and low methylation. GC content of ON transcripts in all these subsets exceeded 60%, 

and the content of OFF transcripts crossed 50%. Interestingly, the mean GC contents 

were quite uniform across all transcript groups. This result further confirms that the pro-

moters of these transcripts are rich in CpG islands, and their low methylation level al-

lowed high expression. Surprisingly, the promoters of transcripts with low expression and 

high methylation, which were assumed to be transcripts whose promoter methylation 

suppressed the expression, were not particularly rich in GC bases, thus the hypothesis 



70 

 

was not confirmed by this result. Promoters poorest in GC were the promoters of OFF 

transcripts with high expression and high methylation. 

5.5 Histone mark detection 

5.5.1 Histone marks associated with transcriptional activity* 

To obtain another level of evidence for transcription regulation, the presence of histone 

marks associated with promoters/enhancers of transcriptionally active genes was stud-

ied within the estimated promoter ranges. The results of analysis detecting the presence 

of histone marks associated with transcriptional activity within transcripts promoters was 

previously reported as a part of a course project, and thus they do not constitute a part 

of this thesis’s work. However, integration of the results with other datasets was done 

within the scope of this thesis. All mentioned results are relevant for the conclusion of 

this study, and therefore they are presented also here. 

Each histone mark associated with transcriptionally active genes was present to some 

degree in the promoters or gene bodies of the studied transcripts. Transcripts with at 

least one histone mark were pooled together, and the percentages of the entire transcript 

groups they constituted in each condition can be seen in Figure 31. These transcripts 

will be further referred to as (transcriptionally) active transcripts, despite the fact that a 

histone mark locus falling within their promoters or bodies does not unambiguously de-

termine their transcriptional activity. 

In general, there were less transcripts with histone modifications in BPH samples than in 

cancerous samples, but that might be caused by the fact that more experiments for can-

cerous samples were included in the analysis. The percentages of unannotated tran-

scripts with activity marks in cancerous tissue were more than two times greater than in 

benign tissue. This difference was smaller in annotated transcripts. However, both in 

cancer and BPH, protein-coding transcripts included the largest percentage of transcripts 

with activity marks, and intragenic transcripts included the lowest percentage of such 

transcripts. Overall, activity-associated histone marks were much less prevalent among 

unannotated than among annotated transcripts. 

Figure 32 presents the percentage of active transcripts which covered the loci of all stud-

ied activity histone marks within given condition. Interestingly, there were much less tran-

scripts with all activity marks in cancerous tissue, than in benign tissue. Consistently, the 

most abundant group of such transcripts was in protein-coding transcripts. There were 

barely any unannotated transcripts in cancerous tissue with all activity marks. Overall, it 
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was quite rare for all activity marks to occur within the promoter and body of one tran-

script. 

 

Figure 31. Percentages of transcripts whose promoters or bodies overlapped 
at least one activity-associated histone mark locus. 

 

 

Figure 32. Percentages of active transcripts whose promoters or bodies cov-
ered loci of all activity-associated histone modifications. 

5.5.2 Activity marks, chromatin accessibility and expression 

In the next step, co-occurrence of transcript expression, and chromatin accessibility and 

presence of activity-associated histone marks within promoter regions was studied in 
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attempt to find transcripts with multiple sources of evidence for transcription regulation. 

Since correlation analysis did not provide conclusive results in the previous analyses, 

another approach was taken. First, the fractions of ATAC-seq peaks in promoter regions 

accompanied by a histone mark within the same promoter, and the fractions of activity 

histone marks in promoters accompanied by an ATAC-seq peak within the same pro-

moter were investigated. Figure 33 presents the average percentages in each condition 

for each transcripts group. The results differed significantly between annotated and un-

annotated transcripts, as well as between cancer and normal prostate. In BPH samples 

in annotated transcripts, accessible promoter was almost always accompanied by an 

activity histone modification, whereas only approximately half of the histone marks oc-

curred within accessible promoters. The pattern was different for unannotated tran-

scripts. Less than 60% of peaks in intergenic transcripts, and less than 50% of peaks in 

intragenic transcripts were accompanied by an activity mark, while only approximately 

25% of histone marks occurred within accessible promoters for both groups.  

 

Figure 33. The fractions of ATAC-seq peaks accompanied by an activity asso-
ciated histone mark within the same promoter, and the fractions of activity his-

tone marks accompanied by an ATAC-seq peak within the same promoter. 

 

Interestingly, the fractions of ATAC-seq peaks occurring together with histone marks 

were consistently even higher in cancer samples, especially in PC, across all transcript 

groups, also unannotated, while the fractions of histone modifications within open pro-

moters were all lower in cancer than in BPH, especially in CRPC.  
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Then, since not all histone marks were accompanied by open chromatin, it was studied 

whether transcripts with a histone mark within their promoter were expressed (TPM > 0). 

Figure 34 presents the mean fractions of expressed transcripts in each condition within 

each transcript group. 

  

Figure 34. Mean percentages of transcripts with activity-associated histone 
marks, which were expressed.  

 

Again, the observed patterns are different in annotated and unannotated transcripts. The 

majority (between 70 and 80%) of annotated transcripts marked with histone modifica-

tions were expressed. The largest fraction of such transcripts was observed in BPH sam-

ples, and the smallest in PC, however, the differences between conditions were rather 

modest. In contrast, inter-state differences were greater for unannotated transcripts, es-

pecially between PC and CRPC, which had the lowest and the largest fractions of ex-

pressed transcripts, respectively. Still, the percentage of expressed transcripts in CRPC 

was only 40% - much lower than in annotated transcripts. In BPH it was approximately 

35-40%, whereas in PC only 25%.  

To further explore the relationship between activity histone marks, chromatin accessibil-

ity, and expression, it was studied how many of the transcripts with both accessible pro-

moter and a histone mark had high and how many had low expression (TPM > 0.9 quan-

tile of a transcript group in a sample, and TPM < 0.75 quantile of a transcript group in a 

sample, respectively). Figure 35 presents obtained results. 
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Figure 35. Fractions of the transcripts with an ATAC-seq peak and activity his-
tone mark within their promoters, whose expression was high (TPM > 0.9 quan-

tile) and low (TPM < 0.75 quantile). 

 

Surprisingly, transcripts with high expression did not constitute a big fraction of any of 

the transcript groups. Modified histones within accessible promoters did not mean high 

expression. Quite the opposite, the majority of transcripts with such features had low or 

no expression across all conditions. The largest fraction of highly expressed transcripts 

was always within protein-coding transcripts. Despite PC having the lowest fraction of 

expressed transcripts overall, highly expressed transcripts were most numerous in PC 

samples. The fraction of highly expressed intergenic transcripts nearly reached the level 

of protein-coding transcripts in PC. Interestingly, the fractions of highly expressed LNC 

transcripts were lower than the corresponding fractions of unannotated transcripts in all 

conditions. Expectedly, unannotated transcripts with low or no expression were much 

more prevalent than annotated transcripts. 

In summary, accessible promoter typically meant the presence of a transcriptional activ-

ity-related histone modification, especially in annotated transcripts and in cancer in all 

transcript groups. However, the presence of a histone mark was not equivalent to an 

accessible promoter. Activity histone marks were mostly observed in the promoters of 

expressed transcripts with annotations and were not indicative of expression of unanno-

tated transcripts. Finally, histone modification and accessible promoter within the same 

estimated region did not guarantee high expression. 
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5.5.3 Activity marks in shortlisted transcripts 

As was done with the promoter predictions, the presence of activity-associated histone 

marks was checked in the promoters of shortlisted transcripts, but this time only acces-

sible promoters were studied. Protein-coding and LNC annotated transcripts were stud-

ied for reference. Figures 36, 38, and 40 present the percentages of transcripts passing 

various thresholds with at least one histone mark in their promoter in BPH, PC, and 

CRPC, respectively. 

In BPH, histone marks were mainly found in transcripts with high expression and low 

methylation. Nearly all annotated transcripts passing these thresholds had a histone 

mark. High rates of histone marks were also observed for annotated transcripts with both 

high expression and high methylation. Nearly all protein-coding transcripts in this subset 

had a histone mark. Between 45-55% of unannotated transcripts with high expression 

and low methylation had also an activity-associated histone mark. In general, high meth-

ylation dramatically decreased the presence of histone marks in unannotated transcripts. 

As expected, histones marks in promoters of transcripts with low expression were rather 

rare in all transcript groups.  

 

Figure 36. Shortlisted transcripts with histone marks within their promoters in 
BPH samples. 

Then, it was checked how many of the transcript promoters within each subset were 

predicted. Figure 37 presents the results for BPH samples.  
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Figure 37. The percentages of shortlisted transcripts with histone marks and 
promoter predictions in BPH samples. 

 

Most of the predicted promoters belonged to the transcripts with high expression and low 

methylation in all transcript groups. Interestingly, more promoters were predicted for un-

annotated transcripts with minus-strand assumption. Although some 30% of protein cod-

ing and 15% of LNC annotated transcripts with high expression and high methylation 

were predicted, no promoters of such unannotated transcripts were predicted. 

Surprisingly, in PC samples histone marks were numerous not only within subsets of 

highly expressed transcripts with and low methylation. Also, high methylation and high 

expression occurred with histone marks frequently, in all transcript groups, but especially 

in protein-coding and intragenic transcripts with minus strand assumption. In those sub-

sets, the percentages of unannotated transcripts were nearly as high as the percentages 

of annotated transcripts. In general, the percentages in PC samples were the largest 

across all three conditions. Again, the subset with low expression had the least histone 

marks, but still more than the corresponding subsets in BPH samples. 
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Figure 38. Shortlisted transcripts with histone marks within their promoters in 
PC samples. 

Figure 39 presents the percentages of transcripts with histone marks in PC samples, 

whose promoters were predicted. Here, the results were very similar to the results in 

BPH samples. The percentages of protein-coding transcripts and LNC annotated tran-

scripts were nearly unchanged. However, in total, less promoters of unannotated tran-

scripts were predicted, even in the subsets with high expression and low methylation. 

 

Figure 39. The percentages of shortlisted transcripts with histone marks and 
promoter predictions in PC samples. 
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Finally, the percentages in CRPC followed a similar patter to the ones in PC samples, 

however, remaining somewhat lower than in PC. The proportions of intragenic transcripts 

with high expression and methylation marked with histone modifications were higher than 

in the subset of intragenic transcripts with high expression but low methylation, and for 

the first time the number was higher for plus-strand assumption. 

Figure 41 presents the fractions of transcripts with histone marks, whose promoters were 

predicted in CRPC samples. CRPC was the only condition, in which promoters of unan-

notated transcripts with both high expression and high methylation, and a histone mark, 

were predicted. Still, predictions were found only for minus-strand assumption. Surpris-

ingly, there were even more predictions for intragenic transcripts than for LNC annotated 

transcripts. The percentages in other subsets were comparable with the corresponding 

ones in PC samples. 

 

Figure 40. Shortlisted transcripts with histone marks within their promoters in 
CRPC samples. 
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Figure 41. The percentages of shortlisted transcripts with histone marks and 
predicted promoters in CRPC samples. 

5.5.4 Binding sites of transcription factor AR and shortlisted 

transcripts 

After transcripts marked with transcriptional-activity related histone modifications were 

identified, the remaining question was whether they were also the targets of AR tran-

scription factor, the main driver of prostate cancer development and progression.  Figure 

42 presents the findings in BPH samples. Approximately 35-50% of highly expressed 

transcripts with low methylation from all groups were targets of AR in BPH. Surprisingly, 

in the subsets with high expression, the fractions of annotated transcripts with AR binding 

sites were lower than those of unannotated transcripts. No intragenic transcripts with 

both high expression and methylation were found to bind AR. 

In addition, it was checked how many of those transcripts had a predicted promoter. 

Figure 43 shows that overall rate of predicted promoters was low or was zero in the 

subsets with high methylation level in all transcript groups. Especially, for unannotated 

transcripts high methylation typically meant no prediction. Some predictions were found 

for unannotated transcripts with high expression and low methylation. 
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Figure 42. Shortlisted transcriptionally active transcripts with AR binding sites 
within their promoters in BPH samples. 

 

 

Figure 43. Percentages of transcripts with AR binding sites and promoter pre-
dictions in BPH samples.  

 

As can be seen in Figure 44, in PC samples more of the transcriptionally active unanno-

tated transcripts had AR binding sites within their promoters, while the percentages of 

annotated transcripts remained relatively unchanged. The biggest difference can be 



81 

 

seen for intergenic transcripts in virtually all subsets. The fractions of intragenic tran-

scripts with high methylation and expression were very low, like in BPH samples. 

 

Figure 44. Shortlisted transcriptionally active transcripts with AR binding sites 
with their promoters in PC samples. 

 

Predicted promoter among those transcripts in PC samples was rather rare, except for 

annotated transcripts with high expression and low methylation. The fractions can be 

seen in Figure 45.  

Finally, Figure 46 presents the percentages of shortlisted transcripts in CRPC, whose 

promoters included AR binding sites. In this condition, the most notable change was 30-

40% of highly expressed and methylated intragenic transcripts with AR binding sites, in 

contrast to none or nearly none in the other two conditions, and a drop of corresponding 

percentage in intergenic transcripts. 
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Figure 45. Percentages of transcripts with AR binding sites, which had pro-
moter prediction in PC samples. 

 

 

Figure 46. Shortlisted active transcripts with AR binding sites in their promot-
ers in CRPC samples. 

 

The shortlisted transcripts being targets of AR in CRPC samples had the highest rates 

of predicted promoters, which can be seen from Figure 47. There were predictions in the 

subsets of unannotated transcripts with high methylation and expression, which did not 

take place in the other sample groups. 
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Figure 47. Percentages of transcripts with AR binding sites, which had pro-
moter prediction in CRPC samples. 
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6. DISCUSSION 

The results presented in this thesis imply that the transcription of unannotated transcripts 

could be regulated in a similar way to protein-coding and known LNC genes. Analysis of 

chromatin accessibility revealed that regions directly upstream from the TSS of a subset 

of the unannotated transcripts were accessible, and that the accessibility and expression 

of those transcripts were correlated, although not as strongly as in protein-coding genes. 

The correlation was stronger in PC and CRPC than in BPH, which was also true for 

annotated transcripts. However, in contrast to annotated transcripts, the number of ex-

pressed unannotated transcripts was not always dependent on the number of peaks in 

promoters. Interestingly, high expression did not always occur alongside an ATAC-seq 

peak in a promoter. 

Integrating DNA methylation revealed higher methylation levels within promoters of un-

annotated transcripts than within promoters of annotated transcripts. Similar to anno-

tated transcripts, methylation of promoters of unannotated transcripts, especially high 

level of methylation, typically meant no accessibility, and low expression. High methyla-

tion was not always associated with low expression. However, while expression in pro-

tein-coding transcripts with accessible promoters displayed a weak positive correlation 

with methylation, in the corresponding set of unannotated transcripts expression moder-

ately anti-correlated with methylation. For annotated transcripts with inaccessible pro-

moters, expression and methylation moderately anti-correlated, and for unannotated 

transcripts weakly anti-correlated, but only in BPH and PC, and there was no correlation 

at all in CRPC. One could hypothesize that methylation, or rather lack of it within the 

promoter, plays a more important role in regulation of expression of unannotated genes, 

at least when it comes to transcription activation and allowing chromatin opening. On the 

other hand, methylation is possibly more important in silencing of protein-coding genes 

than in activating them, thus higher and more significant correlation results for coding 

inaccessible transcripts. Furthermore, there is also a certain level of loss of dependency 

between methylation and expression in CRPC in comparison to other two conditions. 

Possibly, aggregation of mutations weakens the regulatory influence of methylation as 

the diseases progresses into castration resistance.  

On average, over 50% of accessible promoters of annotated transcripts hit a promoter 

prediction across all conditions, but only 20-25% of accessible promoters of unannotated 

transcripts were predicted. The percentages of inaccessible promoters that covered a 



85 

 

prediction were much lower in all transcript groups: approximately 12% of coding tran-

script promoters, 8% of LNC annotated transcript promoters, and 2-5% of unannotated 

transcript promoters. This was not completely surprising, since it was expected that the 

set of unannotated transcripts will contain only a limited number of biologically significant 

genes. In addition, promoter prediction programs are not able to predict all promoters, 

and can miss especially such promoters, whose sequence composition differs from 

known promoter patterns. While all above holds, the prediction rates within annotated 

transcript groups were also quite low. This might imply that in many cases the estimated 

promoter ranges do not correspond to the actual promoters and are located elsewhere. 

In addition, GC content analysis of predicted promoters indicated that the composition of 

predicted promoters with high expression and low methylation enclosed elevated per-

centages of GC in comparison to other subsets of transcripts, regardless of chromatin 

accessibility in all transcript groups. This suggests that the mentioned subsets of pro-

moters might be actual GC-rich promoters, whose low methylation allows more efficient 

transcription. The transcripts regulated by these promoters might be preferably con-

trolled by methylation, since both accessible and inaccessible promoters were found. 

Histone modifications associated with transcriptionally active promoters were not as 

prevalent within unannotated transcript promoters as within annotated transcript promot-

ers. They were more numerous both in CRPC and PC, than in BPH, for virtually all tran-

script groups. Most of the accessible promoters entailed also an activity mark, however, 

an activity mark in a promoter was not synonymous with accessibility, more so for unan-

notated transcripts than for annotated ones. While 75-80% of annotated transcripts with 

histone marks were expressed, the corresponding percentage of unannotated transcripts 

was much lower: from approximately 25% in PC, through 35-40% in BPH, to 45-50% in 

CRPC. While slightly more of annotated transcripts with histone marks were expressed 

in BPH than in other conditions, unannotated transcripts with histone marks were most 

often expressed in CRPC.  

Studying the presence of histone marks associated with the promoters of transcription-

ally active genes within subsets of transcripts with high and low expression showed that 

there exist some small subgroups of unannotated transcripts, whose transcription might 

be facilitated by the histone marks. Sometimes, their transcription might be also driven 

by AR. This mostly happens when the DNA methylation level is low, but not exclusively. 

High DNA methylation, in turn, seems to have a greater impact on the differences in 

expression levels and histone mark deposition between BPH, PC, and CRPC, and also 

between subsets of both annotated and unannotated transcripts. 
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Although, as discussed above, high methylation occurred with high expression, accessi-

bility, a histone mark, and even a TF binding site, in some cases high methylation 

seemed to hinder expression, despite all of the abovementioned factors which in theory 

allow transcription. That was true in all transcript groups, and it implies that there were 

subsets of transcripts, whose transcription was preferentially regulated by methylation. 

The rate of promoter prediction for annotated transcripts with all evidence for transcrip-

tion regulation was the highest for subsets with accessible promoters, high expression 

and low methylation. Still, the number of predicted promoters in those subsets consti-

tuted very low fraction of all annotated transcripts. In other subsets of annotated tran-

scripts, and in subsets of unannotated transcripts, there were either no promoter predic-

tions, or they constituted very low fractions of those subsets. 

Nevertheless, the analysis did not lead to findings of putative novel transcripts, which 

could be involved in PC development. The final set of transcripts with all evidence for 

transcription regulation was not really significantly expressed, despite passing data-de-

rived thresholds. Even though it was expected that the unannotated transcript groups 

included mainly noise, lack of significant results might be caused by the many limitations 

of this study. First, the transcriptome assembly and functional annotation used in anal-

yses were done some seven years ago, which is a long time in the dynamically advanc-

ing field of bioinformatics. More is known about genome every day, and new genomic 

annotations are published continually. It could be beneficial to perform at least the func-

tional annotation anew. Since data was not filtered a priori, finding data-based thresholds 

which would exclude non-significant information without being too conservative was 

challenging. Most of the studied transcripts were barely expressed or were expressed in 

single samples only. Considering the genetic heterogeneity, especially as the disease 

progresses, finding biologically relevant transcripts in such dataset is not an easy task. 

Moreover, the study focused on estimations of only proximal regulatory elements up-

stream from the TSSs, whereas the studied transcripts could be regulated by distal en-

hancers. In addition, it was assumed that the promoters of the unannotated transcripts 

would be structurally similar to the promoters of annotated coding and non-coding genes, 

however, this does not need to be the case. Analyses that could be performed to explore 

the dataset better, would be studying the binding sites of Polymerase II, studying chro-

matin accessibility and methylation within gene bodies, but also interactions within trans-

activating domains (TADs). Furthermore, only the binding sites of transcription factor AR 

were investigated. The binding sites of other TFs known to play an important role in 

prostate cancer could be also explored within the unannotated transcripts. Finally, ex-

perimental data used to study the presence of transcriptional activity-associated histone 
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modifications, as well as the binding sites of AR, were not specific for this sample group. 

Therefore, the results are not precise and some significant information might have been 

missed along the analysis.  
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7. CONCLUSIONS 

The purpose of this thesis was to study the interplay between the genomic and epige-

nomic patterns of transcriptional activity via chromatin accessibility, DNA methylation, 

histone modification marks, and transcription factor AR targeting, in two subgroups of 

previously identified unannotated groups of transcripts and compare them with patterns 

observed in protein-coding (and LNC annotated) genes. The aim was to find subsets of 

unannotated transcripts, whose epigenomic signatures imply RNA Polymerase II tran-

scription regulation, if such exist. Each individual layer of epigenomics, as well as multi-

layer data integration, provided evidence for regulation of a small subset of unannotated 

transcripts. However, identification of individual putative novel transcripts was not suc-

cessful. The analysis is by no means exhaustive, and possibly different approaches and 

filtering strategies could lead to more conclusive results. The analyses performed for the 

needs of this thesis do not unambiguously prove that there are or that there are no bio-

logically significant transcripts within the sets of unannotated transcripts of the studied 

sample cohort.  
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APPENDIX A: GTRD EXPERIMENTS USED IN HIS-
TONE MARK ANALYSIS 

Experi-
ment 

Cell 
type 

Treat-
ment 

Used 
for 

Target Associ-
ated with 

HEXP0

01174 

prostate 

gland 

None BPH H3K4me3 tran-

scription-

ally active 

gene pro-

moter re-

gions 

HEXP0

01249 

prostate 

gland 

None BPH H3K27ac active 

gene pro-

moters and 

enhancer 

regions 

HEXP0

01574 

prostate 

gland 

None BPH H3K36me3 actively 

transcrib-

ing genes, 

gene body 

HEXP0

02182 

prostate 

gland 

None BPH H3K4me1 ac-

tive cis-

regulatory 

enhancer 

elements 

HEXP0

01184 

22RV1 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K27ac active 

gene pro-

moters and 

enhancer 

regions 

HEXP0

02928 

LNCaP 

C4-2B 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K27ac active 

gene pro-

moters and 

enhancer 

regions 

HEXP0

14448 

LNCaP 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K4me3 tran-

scription-

ally active 

gene pro-

moter re-

gions 

HEXP0

14449 

LNCaP 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K36me3 actively 

transcrib-

ing genes, 

gene body 
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HEXP0

14454 

LNCaP 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K4me1 ac-

tive cis-

regulatory 

enhancer 

elements 

HEXP0

14455 

LNCaP 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K4me2 tran-

scription-

ally active 

genes; 

genes 

primed for 

future ex-

pression 

HEXP0

01980 

VCaP 

(prostate 

carcinoma) 

cell line 

None PC, 

CRPC 

H3K27ac active 

gene pro-

moters and 

enhancer 

regions 

 

Table 8. GTRD experiments used in analysis of histone marks falling within promot-
ers of the studied transcripts. Column “Used for” shows which sample group 
was studied using given experiment. Column “Associated with” explains the 

functional association of the enrichment of a given histone mark. 
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APPENDIX B: THE FRACTIONS OF “ON” AND 
“OFF” TRANSCRIPTS IN EACH TRANSCRIPT 
GROUP 

Condition Transcript 

type 

% of all tran-

scripts constituted 

by mean number of 

ON transcripts 

% of all tran-

scripts consti-

tuted by mean 

number of OFF 

transcripts 

BPH Intergenic (+) 2.75 97.25 

Intergenic (-) 2.82 97.18 

Intragenic (+) 2.19 97.81 

Intragenic (-) 2.31 97.69 

Coding 21.53 78.47 

LNC annotated 13.04 86.96 

PC Intergenic (+) 3.16 96.84 

Intergenic (-) 3.20 96.80 

Intragenic (+) 2.48 97.52 

Intragenic (-) 2.58 97.42 

Coding 21.78 78.22 

LNC annotated 13.28 86.72 

CRPC Intergenic (+) 3.19 96.81 

Intergenic (-) 3.25 96.75 

Intragenic (+) 2.46 97.54 

Intragenic (-) 2.57 97.43 

Coding 21.37 78.63 

LNC annotated 13.15 86.85 

Table 9. The percentages of ON and OFF genes of all transcripts in each transcript 
group, rounded to two decimal places. Plus and minus signs in the parenthe-

ses represent the sense assumption for unannotated transcripts. 
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APPENDIX C: THE RELATIONSHIP BETWEEN 
THE NUMBER OF EXPRESSED TRANSCRIPTS 
AND THE STRENGTH OF CORRELATION BE-
TWEEN CHROMATIN ACCESSIBILITY AND EX-
PRESSION 

Intergenic transcripts, plus-sense assumption: 

 
 

Intergenic transcripts, minus-sense assumption: 
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Intragenic transcripts, plus-sense assumption: 

 
 

Intragenic transcripts, minus-sense assumption: 
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Protein-coding transcripts: 
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LNC annotated transcripts: 
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APPENDIX D: THE RELATIONSHIP BETWEEN 
THE NUMBER OF ATAC-SEQ PEAKS IN PROMOT-
ERS AND THE STRENGTH OF CORRELATION BE-
TWEEN EXPRESSION AND CHROMATIN ACCES-
SIBILITY 

Intergenic transcripts, plus-sense assumption: 

 
 

Intergenic transcripts, minus-sense assumption: 
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Intragenic transcripts, plus-sense assumption: 

 
 

Intragenic transcripts, minus-sense assumption: 
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Protein-coding transcripts: 
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LNC annotated transcripts: 
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APPENDIX E: THE MOST EXPRESSED UNANNO-
TATED TRANSCRIPTS WITH ACCESSIBLE PRO-
MOTERS AND LOW METHYLATION 

Transcript 
group 

Sample Transcript Ex-
pression 

(TPM) 

MeDI
P 

Intergenic (+) PC 15760 PCAT-4-

155444754 

32.29 NA 

PC 470 PCAT-20-

45290869 

40.95 0.22 

Intergenic (-) PC 15760 PCAT-4-

155444754 

32.29 NA 

PC 9324 PCAT-8-

53713833 

31.07 NA 

Intragenic (+) BPH 456, 

BPH 652, 

BPH 689, 

BPH 701, 

CRPC 435, 

CRPC 489, 

CRPC 541, 

PC 12517, 

PC 15760, 

PC 17163, 

PC 19403, 

PC 4980, 

PC 6488 

PCAT-19-

3062174 

100.39, 

138.40, 

60.41, 

154.82, 

69.88, 

96.01, 

37.56, 

104.56, 

100.2, 

158.74, 

135.49, 

174.94, 

120.69 

0.10, 

0.10, 

0.11, 

0.05, 

0.06, 

0.14, 

0.13, 

0.11, 

0.08, 

0.10, 

0.12, 

0.11, 

0.10 

Intragenic (-) BPH 652, 

BPH 689, 

CRPC 348, 

CRPC 435, 

CRPC 489, 

CRPC 541, 

PC 17163, 

PC 470,  

PC 4980, 

PC 6174, 

PC 8131 

PCAT-19-

3062174 

138.4, 

60.41, 

39.09, 

69.90, 

96.01, 

37.56, 

158.74, 

184.88, 

174.94, 

180.20, 

56.26 

0.42, 

0.16, 

0.24, 

0.20, 

0.26, 

0.10, 

0.26, 

0.17, 

0.13, 

0.13, 

0.17 

PC 4980 PCAT-15-

71411687 

38.06 0.24 

Table 10. Highly expressed ON unannotated transcripts with low methylation level, 
whose TPM was higher than 30.00. 
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APPENDIX F: THE MOST EXPRESSED UNANNO-
TATED TRANSCRIPTS WITHOUT ATAC-SEQ 
PEAKS AND WITH HIGH METHYLATION IN PRO-
MOTERS 

Transcript 
group 

Sample Transcript 
name 

TPM MeDIP 

Intergenic (+) 
BPH 456, 

CRPC 543, 

PC 9324 

PCAT-14-

55229191 

59.67, 

34.26, 

67.47 

0.84, 

0.82, 

0.83 

BPH 656, 

CRPC 541, 

CRPC 697, 

PC 19403, 

PC 8131, 

PC 9324 

PCAT-12-

66057601 

 

2448.46, 

857.07, 

1259.15, 

68.11, 

1192.40, 

34980.81 

0.85, 

0.83, 

0.85, 

0.89, 

0.83, 

0.86 

BPH 701 PCAT-2-

238910283 

54.85 0.90 

CRPC 435 PCAT-4-

49149406 

33.36 0.98 

CRPC 543 PCAT-4-

28217189 

69.82 0.92 

PC 6488 PCAT-17-

18689998 

53.70 0.91 

PC 8131 PCAT-14-

19452114 

31.32 0.96 

Intergenic (-) 
BPH 456, 

BPH 651, 

BPH 652, 

BPH 659, 

BPH 688, 

BPH 701, 

CRPC 278, 

CRPC 435, 

CRPC 489, 

CRPC 541, 

CRPC 543, 

PC 12517, 

PC 14670, 

PC 15420, 

PC 15760, 

PC 17163, 

PC 17447, 

PC 18307, 

PCAT-14-

55229191 

 

59.67, 

34.47, 

34.54, 

56.11, 

48.86, 

47.81, 

37.54, 

44.31, 

50.13, 

31.76,  

34.3, 

30.83, 

43.69, 

69.65, 

68.05, 

53.21, 

86.56, 

44.38, 

0.97, 

1.00, 

0.97, 

1.00, 

0.97, 

0.94, 

0.94, 

0.97, 

0.96, 

0.95, 

0.96, 

0.97, 

0.92, 

0.97, 

0.97, 

0.96, 

0.97, 

0.96, 
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PC 19403, 

PC 470,  

PC 4980, 

PC 6174, 

PC 6488, 

PC 7875, 

PC 8438, 

PC 9324 

40.22, 

58.91, 

58.12, 

67.31, 

47.26, 

67.07, 

66.26, 

67.47 

1.00, 

0.97, 

1.00, 

1.00, 

0.97, 

1.00, 

0.97, 

0.96 

CRPC 697 PCAT-5-

29645537 

33.64 0.95 

CRPC 697 PCAT-12-

61471686 

38.23 0.93 

Intragenic (+) 
BPH 671 PCAT-14-

19373876 

33.49 0.89 

PC 15760 PCAT-18-

68277796 

33.45 0.91 

PC 19403 PCAT-14-

20700793 

42.42 0.83 

PC 470 PCAT-16-

80813353 

33.56 0.93 

Intragenic (-) 
BPH 689, 

BPH 701, 

CRPC 489, 

PC 15760, 

PC 18307, 

PC 470, 

PC 6174, 

PC 7875, 

PC 8131 

PCAT-X-

133596440 

92.34, 

62.09, 

42.27, 

94.21, 

49.36, 

60.05, 

52.57, 

75.72, 

38.91 

0.86, 

0.87, 

0.85, 

0.84, 

0.87,  

0.88, 

0.84, 

0.87, 

0.85  

CRPC 261 PCAT-X-

10730367 

31.74 0.93 

PC 19403 PCAT-14-

20700793 

42.42 0.83 

Table 11. Unannotated highly methylated OFF transcripts with particularly high expres-
sion level (TPM > 30.00). 



109 

 

APPENDIX G: THE MOST EXPRESSED UNANNO-
TATED TRANSCRIPTS WITHOUT ATAC-SEQ 
PEAKS AND LOW METHYLATION IN PROMOT-
ERS 

Tran-
script group 

Tran-
script 
name 

Samples 
in which 

transcript 
passed fil-

tering 

Mean 
TPM 

Sam-
ples in 

which TPM 
> 30.00 

Max 
TPM (Sam-

ple) 

Intergenic 

(+) 

PCAT-

12-

66057601 

CRPC: 1 623.08 CRPC: 1 899.61 

(CRPC 489) PC: 1 PC: 1 

PCAT-

13-

76592364 

BPH: 3 28.37 BPH: 1 96.45 

(PC 19403) CRPC: 7 - 

PC: 13 PC: 7 

PCAT-

17-

18689998 

BPH: 7 30.40 BPH: 1 288.13 

(PC 9324) CRPC: 8 CRPC: 1 

PC: 12 PC: 4 

PCAT-

17-

22521366 

BPH: 10 141.45 BPH: 6 911.99 

(BPH 688) CRPC: 8 CRPC: 7 

PC: 15 PC: 9 

PCAT-

18-

54406782 

BPH: 6 42.85 BPH: 2 125.47 

(PC 15760) CRPC: 5 CRPC: 2 

PC: 7 PC: 7 

PCAT-

4-

13252808

8 

All sam-

ples 

38.09 BPH: 4 144.89 

(PC 9324) CRPC: 1 

PC: 13 

PCAT-

9-

40090155 

All sam-

ples 

24.46 BPH: 1 52.42 

(PC 19403) CRPC: 1 

PC: 7 

Intergenic 

(-) 

PCAT-

12-

66057601 

BPH: 3 5351.79 BPH: 3 34980.81 

(PC 9324) CRPC: 2 CRPC: 2 

PC: 2 PC: 2 

PCAT-

13-

76592364 

All sam-

ples 

25.13 BPH: 1 96.45 

(PC 19403) PC: 8 

PCAT-

17-

22521366 

BPH: 10 141.45 BPH: 6 911.99 

(BPH 688) CRPC: 8 CRPC: 7 

PC: 15 PC: 9 

PCAT-

18-

54406782 

BPH: 2 35.88 BPH: 1 83.39 

(PC 15420) CRPC: 4 CRPC: 1 

PC: 6 PC: 6 
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PCAT-

2-

23891028

3 

BPH: 4 48.42 BPH: 4 145.71 

(BPH 656) CRPC: 3 CRPC: 1 

PC: 9 PC: 8 

PCAT-

4-

13252808

8 

All sam-

ples 

38.09 BPH: 4 144.89 

(PC 9324) CRPC: 1 

PC: 13 

PCAT-

9-

40090155 

All sam-

ples 

24.46 BPH: 1 52.42 

(PC 19403) CRPC: 1 

PC: 7 

Intragenic 

(+) 

PCAT-

1-

14919038

4 

BPH: 8 18.47 BPH: 4 69.71 

(BPH 652) CRPC: 7 CRPC: 2 

PC: 16 PC: 2 

PCAT-

14-

82692663 

BPH: 9 18.79 - 44.93 

(PC 470) CRPC: 8 - 

PC: 15 PC: 5 

PCAT-

16-

35802141 

All sam-

ples 

419.42 All sam-

ples 

901.94 

(PC 17447) 

PCAT-

17-

53105729 

All sam-

ples 

27.81 BPH: 3 116.92 

(CRPC 543) CRPC: 6 

PC: 5 

PCAT-

19-

3062174 

BPH: 6 101.426 BPH: 6 213.14 

(BPH 688) CRPC: 5 CRPC: 4 

PC: 9 PC: 9 

PCAT-

5-

70438929 

BPH: 10 19.44 BPH: 4 128.19 

(BPH 677) CRPC: 9 CRPC: 4 

PC: 15 - 

PCAT-

5-

71043785 

BPH: 10 13.13 BPH: 3 52.65 

(BPH 677) CRPC: 9 CRPC: 3 

PC: 14 - 

PCAT-

X-

13359644

0 

All sam-

ples 

62.71 BPH: 8 305.88 

(BPH 688) CRPC: 4 

PC: 14 

Intragenic 

(-) 

PCAT-

1-

14919038

4 

BPH: 8 18.47 BPH: 4 69.71 

(BPH 652) CRPC: 7 CRPC: 2 

PC: 16 PC: 2 

PCAT-

16-

35802141 

BPH: 1 311.16 BPH: 1 521.09 

(BPH 659) CRPC: 4 CRPC: 4 

PC: 1 PC: 1 

27.81 BPH: 3 
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PCAT-

17-

53105729 

All sam-

ples 

CRPC: 5 116.92 

(CRPC 543) PC: 5 

PCAT-

19-

3062174 

BPH: 8 103.83 BPH: 8 213.14 

(BPH 688) CRPC: 4 CRPC: 3 

PC: 10 PC: 10 

PCAT-

5-

70438929 

BPH: 10 19.44 BPH: 4 128.19 

(BPH 677) CRPC: 9 CRPC: 4 

PC: 15 - 

PCAT-

5-

71043785 

BPH: 10 13.13 BPH: 3 52.65 

(BPH 677) CRPC: 9 CRPC: 3 

PC: 14 - 

 

Table 12. Unannotated OFF transcripts with high expression and low methylation, 
which were overexpressed (TPM > 30.00) in more than five samples or 
whose expression level was exceptionally high (TPM > 100.00). Column 

“Mean TPM” contains the mean TPM computed from values in all samples, 
in which given transcript passed the filtering. Column “Max TPM (Sample)” 
shows the largest expression of a given transcript among the samples, in 
which the transcript passed the filtering, and the identifier of the sample in 

which the expression reached this maximum value. 


