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Some Remarks on the Affinely Connected Areal Space

Takanori Igarashi®

Abstract

An areal space A§™ is defined as an n-dimensional space in which an m-dimensional areal metric

is endowed a priori in the form

5= § Flz, p)dul-duwm  with  p={pl)= (fi;

o (m)

over a region of the subspece Vi, given parametrically by z¢:
If a metric tensor gg; can be constructed algebraically from the fundamental function Flx, p)
and its first and second derivatives with respect to p’s, then the space is called to be of the sub-
metric class. In the present paper, we adopt the normalized metric tensor as the metric tensor in
a space of submetric class.
The aim of the present paper is to characterize the covariant derivative with respect to x in

af

a special case. In §1, we find that the ecmetric tensor L*M- is covariant constant when the space

Ag™ is affinely connected. In §2, we rejuire the necessary and sufficient condition in order that
1 o2F
2 api]‘apr’:l

the metric bitensor ge5, 2= in A% is covariant constant.

§ 1. The connection theory of the areal space has been discussed by many

scholars.*® We use the connection which has been defined by A. Kawaguchi and

K. Tandai¥ by means of the normalized metric tensor g,;.
g:; is defined as follows:

3 5 _— i . 2
(1.1) G5 = <"ﬂ; i1 +P§P3‘> Jup> O =gupep} and g, =F°

A
u ., oF . .
where pi=F 1773}3; satishies the relation

(1.2) PP =090, 9795 =0f
and LiZ=psb+pips is the Legendre’s form of F.

The covariant differential of the contravatiant vector X'(x, p) which is homo-
geneous of degree O in p’s is in the form

(1.3) DX =X dx" + X2 Dpl,
putting
(1.4) X, = X0, = X050, + X0, X=X+ C8X7,

where the notations ;£ and ,(; mean e.g. X, =0X"/ox", X°;=0X"opl.

AR A
%% Latin indices run over 1,2, .-, n; Greek indices over 1,2 ---,m (in §2, especially over 1, 2).
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We need two postulates: (1) Dg,;=0, (2) I'f;;=1"y then the connection
parameters ™%, and C%% satisfy the following conditions
(1.5) Oigie— Gossl " or = Qs b gl 5 9i55 = 02,CL5 + a0

Let us name X7, the covariant derivative of X' with respect to x according
to M. Gama®. By means of (1.4), we have

" 5 % 8 &
<Xbiir,>;§' = X,)L,J XL 7 ﬁp a/L_XL;L; *ich jFa XL 'BF*M =+ X 'F<uy +X /c/z ] >
(X5 = X0 5= X055 0+ X5 00— X0 5

Hence, the commutation of operators |k and ‘5 for X* is that

(1.6) (X 5= (X5 = = XL s i+ X s
= (5§X/L_ “;pa> k/z,‘/ .
Applying (1.6) to the metric tensor ¢,; we have

(gmn);?—(gm;ﬁ)m = (_&;glk"ai‘gu Gir; zPa> s/L ? .

This relation give us
(1.7) (9ors 500 = (03922 + 0294 +9¢&;7P§)F*§n;f; >
because of ¢,,,,=0 from (1.4) and the postulate (1).
The space in which the connection parameter 7'*%, is independent of p’s is

called an affinely connected one. In such a space, I'*%. =0 holds good. Thus,
from (1.7), we have

Theorem 1.1. When the areal space is affinely connected, then the partial
derivatives of the metric tensor g;; with vespect to p’s are covariant constant.

In his paper'V, A. Kawaguchi has represented the ecmetric tensor L*5i=Lg
—g"g.,L7 in the form

<1 8> ka;; = g* gsk,yrzpr .

In view of ¢*,=0, pf,=0, 75,=0, it follows from (1.9) that

(1. 9) ngib = g”((xgm +0%0x +gsk-§Pi> x;h,;ri]blc

= (QMQUJZP; +L§§pi pr> th ] s

where we use the notation Z?ﬁ—g“ﬁgb,ﬂf" according to E. T. Davies'.
Substituting the relation Ljj= LZ§+L*Z§* into (1.9), we get

L5, = (o515 + Ly p) I s = (505 +prss P 00
(PzP»a *éh Jo
finally

(1.10) e = Bl b
From this fact, we can conclude

Theorem 1.2. When the areal space is affinely connected, then the ecmetric
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tensor L*} is covariant constant.

§2. Let us consider an areal space A based on the area of 2-dimensional
surface x’==x(u', ).

The metric bitensor® g,;,, is expressed in the form

(2.1) Giger = AP LERLLAE + ALER p3 o+ pript %) 271)

In view of (1.2), on differentiating ¢, p}=g..pF with respect to pf, and con-
tracting g™, we have

(2.2) Lt =g~ 9500075 0" SN ot

= (95— 0 i) 9 + L5

making use of (1.8). Substituting (2.2) into (2.1), it follows that

(2.3) Qig,0 = Geal 50— Gulsn +4F2LYB[}<L\%H +4P§]AP%> .

The covariant derivative of g, . with respect to x is given from (2.3) by

(2. 4) Gogeoin = AF* L*g o (L* 53+ 4p%h p7) + AF L*GEL 50,

= 8F* L [k (L7 + 205 £7) »

making use of g¢,;,=0 and pj,=0

Thus, we have

Theorem 2.1. In the areal space AP, it is necessary and sufjicient thai
the ecmetric tensor satisfies L*53,=0 in order that the covariant derivatives of
the metric bitennsor g, ., with respect to x's vanish.

Corollary. In AP, the covariant derivatives of ¢.; . with respect to X's
vanish when and only when B.507%,,.5=0 holds good.

Because we can get from (2.4) that

(2.5) Gagoaein = 8F2BSLT 30 (L 53 + 205 p7)
by means of (1.10).
From (2.5), we can conclude

Theorem 2.2. When the areal space AP is affinely connected, then the
metric bitensor g;;.; 1S covariant constant.
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