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Abstract
Roost for bats, which are responsible for a wide range of vital ecological and economic services, is crucial. Their availability 
affects both the geographic occurrence and the diversity of bat communities. Hence, understanding how bats use roosts and 
variables that influence these patterns could contribute to the development of management plans to ensure their survival. In 
this study, species distribution modeling of two bat species, the greater mouse-tailed bat (Rhinopoma microphyllum) and the 
small mouse-tailed bat (Rhinopoma muscatellum), were carried out using the sdm package in R. To do so, 16 environmental 
variables were used as the predictors to explore their relationships with the occurrence of the two species using 12 modeling 
algorithms. The prediction models for each species were then combined into an ensemble model. The random forest modeling 
algorithm showed better performance than the other individual models in this modeling. Moreover, the prediction perfor-
mance of the ensemble model was more substantial than all the individual models for both species. For the greater mouse-
tailed bat, elevation, annual mean temperature, temperature seasonality, and distance to roads-railways were identified as the 
essential variables for summer roosting habitat selection. Meanwhile, distance to roads-railways, annual mean temperature, 
elevation, and distance to the ridge were significant for the small mouse-tailed bat. Since this study facilitates the manage-
ment of future and suitable habitats by identifying important environmental conditions, it can be used in conservation plans.
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Introduction

Since bats are responsible for a wide range of essential eco-
logical and economic services, such as pollination, seed dis-
persal, pest control, food transmission, and environmental 

health indicators (Kunz et al. 2011; Boyles et al. 2011), it is 
essential to conserve roosting habitat to protect bats (Eve-
lyn et al. 2004). Roosts are critical resources for bats (Kunz 
1982) and play a vital role in their biology and affect their 
geographical distributions and diversity (Findley 1993). 
Understanding how bats use roosts and how variables influ-
ence their distribution patterns could contribute to develop-
ing management plans to ensure their survival (Fenton 1997; 
Lino et al. 2015). It is not easy to understand the relationship 
between bats’ distribution and their habitat (Fenton 1997) 
because bats are elusive, nocturnal mammals that are dif-
ficult to observe and identify (Razgour et al. 2016). They 
can fly high above the canopy, are highly maneuverable, 
and, therefore, can evade nets or roost in inaccessible sites, 
such as trees, scattered in large forest patches, making their 
direct observation problematic. Although the widespread 
use of acoustic monitoring has dramatically increased the 
chances of recording bats, some species cannot be easily 
detected because of low intensity, high frequencies emitted, 
or highly directional echolocation calls. In contrast, others 
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are difficult to differentiate based on their echolocation calls 
(Razgour et al. 2016).

Species distribution models (SDMs) present an essential 
tool to tackle questions on bat distribution, biogeography, 
past and future responses to environmental changes, and 
conservation biology (Razgour et al. 2016). Several statisti-
cal methods are now available and commonly used for spe-
cies distribution modeling (Guisan and Zimmermann 2000; 
Elith et al. 2006), and in a large number of studies, the per-
formance and prediction of the models have been compared 
with different methods (Segurado and Araujo 2004; Elith 
et al. 2006; Heikkinen et al. 2006; Pearson et al. 2006; Dor-
mann et al. 2008; Roura-Pascual et al. 2009). The efficiency 
of the methods to generate spatial predictions of species dis-
tributions has been significantly different. Thus, due to the 
differences between the predictions of species distribution 
models, it has been recommended to simultaneously use sev-
eral models and combine them through a procedure called 
ensemble modeling (Araujo et al. 2005; Araujo and New 
2007). Such a modeling framework is appropriate because 
it improves predictions of a species range (Thuiller 2004; 
Araujo et al. 2005; Marmion et al. 2009a), patterns in spe-
cies richness (Parviainen et al. 2009), and diversity (Mateo 
et al. 2012). It also reduces the prediction uncertainty of 
models by combining their predictions (Araujo et al. 2005), 
and it can contain more vital information than using each of 
the individual models (Araujo and New 2007).

Despite the high richness of small-sized mammalian spe-
cies in Iran (more than 150 species), most research studies 
have focused on the ecology and conservation of large-sized 
species (because of their high population reduction rate), and 
small-sized species have been overlooked. However, the sub-
jects of some studies conducted on rodents and, in rare cases, 
bats have often been focused on taxonomy (IUCN 2012; 
Farhadinia et al. 2015). Among the 50 species of mammals 
with the high conservation priority in Iran, 22% of them 
(11 of the 51 identified bat species) are bats (Farhadinia 
et al. 2015; Yusefi et al. 2019). Nevertheless, only two stud-
ies have been conducted about assessing bats’ distributions. 
Kafaei et al. (2020) used an ensemble model to predict the 
potential distribution of the small mouse-tailed bat in Iran, 
and Kafash et al. (2021) generated the first richness map of 
bats in Iran.

As a result, the present study aimed to determine the 
suitable areas for summer roosting habitat selection of the 
greater mouse-tailed bat (Rhinopoma microphyllum) and 
the small mouse-tailed bat (Rhinopoma muscatellum) in 
Iran and identify the environmental variables that affect the 
habitat selection that can be important for these species in 
other landscapes. In addition, the variables that are common 
between two species in habitat selection were determined 
along with the spatial niche overlap of their habitats. Finally, 
the individual and ensemble species distribution models 

were compared to show which method is more suitable for 
bat studies.

Materials and methods

Study area

This study was carried out based on various sources in the 
distribution range, habitat range, and summer roosting habi-
tat recorded from the greater mouse-tailed bat and the small 
mouse-tailed bat throughout Iran. The study site encom-
passes the Persian Gulf and Oman Sea basins, including nine 
sub-basins. Additionally, two sub-basins adjacent to the Per-
sian Gulf and Oman Sea basins were used. This area covers 
the provinces of Kermanshah, Lorestan, Ilam, Khouzestan, 
Chahar Mahal and Bakhtiari, Kohgiluyeh and Boyer Ahmad, 
Bushehr, Fars, Hormozgan, and parts of Kerman and Sistan 
and Baluchestan provinces (Fig. 1).

Bat data

In this study, summer roosting sites of two species in caves 
were collected based on field observations and from studies 
conducted in Iran, such as Akmali et al. (2011), Benda et al. 
(2012), Fathipour et al. (2016), Shahabi et al. (2017), and 
also from GBIF database (2017a, b). Then field visits were 
conducted to ensure the presence of the two species in the 
caves. Travel corridors and foraging sites were identified 
as the presence points of these species in summer habitats 
according to the species distribution range and based on 
direct observation and evidence in the caves. Finally, these 
points were registered by a GPS device. Generally, 81 occur-
rence points of the greater mouse-tailed bat and 65 occur-
rence points of the small mouse-tailed bat were recorded and 
used in the modeling (Fig. 1).

Environmental data

In this study, we used the information from the natural his-
tory of two species and from the literature reviews to select 
environmental variables from three different groups, includ-
ing topographic, land cover/land use, and bioclimatic vari-
ables (Table 1). In addition, to construct all layers with a 
spatial resolution of 1 km, ArcGIS 10.3 software was used. 
We selected the topographic variables, including elevation, 
slope, aspect, and ridge curvature, that have often been 
used in landscape analyses for bat habitats (Gumbert 2001; 
Bellamy et al. 2013) to show potential microclimate varia-
tions within the landscape (Hammond et al. 2016). These 
variables, including elevation, slope, aspects, distance to the 
ridge, and ridge curvature, were constructed from a digi-
tal elevation model (DEM) dataset over the study area. The 
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spatial analyst tools were used to prepare layers of the slope, 
aspect, and ridge curvature. The aspect values were classified 
into five main categories including no direction or flat (0–1), 
North (0–45, 315–360), East (45–135), South (135–225), 
and West (225–315). Calculation of the distance to ridges 
needed more processing than other variables. Although the 
flow tools were commonly used to identify the low points 
in topography, we used the tools to determine ridge tops by 
multiplying the outputs by − 1 (Hammond et al. 2016). We 

merged flow lines such as rivers and streams and added a 
buffer of 1 m to transform lines to a polygon feature. Then 
we merged it with the wetland layer to prepare a water body 
layer. The road layer (including major and minor roads) and 
railway layer were merged to make a layer. Forests, range-
lands, and farmlands were considered as the bats’ foraging 
resources and travel corridors extracted from a layer pre-
pared by Iran’s Forests, Range, and Watershed Management 
Organization. In this layer, land cover and land use types are 

Fig. 1   A Study area showing elevation and observation data of the greater mouse-tailed bat and the small mouse-tailed bat. B Location of the 
study area in Iran

Table 1   Environmental variables used in research

Category Variable Data source

Bioclimatic Annual mean temperature Hijmans et al. 2005
Isothermality Hijmans et al. 2005
Temperature seasonality Hijmans et al. 2005
Mean temperature of driest quarter Hijmans et al. 2005
Annual precipitation Hijmans et al. 2005
Precipitation seasonality Hijmans et al. 2005
Precipitation of driest quarter Hijmans et al. 2005

Topography Elevation DEM
Slope DEM
Aspect DEM
Ridge curvature DEM

Land cover/land use Distance-to-roads and railways Forests, Rangelands, and Watershed Management Organization
Distance-to-Ridge Forests, Rangelands, and Watershed Management Organization
Distance-to-water Forests, Rangelands, and Watershed Management Organizat

ion
Distance-to-agriculture Forests, Rangelands, and Watershed Management Organization
Distance-to-range Forests, Rangelands, and Watershed Management Organization
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classified into 12 categories (e.g., forests, range, agriculture, 
wetlands, drylands). We selected distance to features that 
seemed to be essential for bats as potential travel corridors, 
foraging resources, or for higher solar exposure (i.e., dis-
tance to ridge top; Duchamp et al. 2007) (Hammond et al. 
2016). The Euclidean Distance tool was used in ArcGIS 
10.3 software to generate the distance to the features’ layer. 
The 19 bioclimatic variables with the resolution of 30 s (~ 1 
km2) were extracted from the WorldClim dataset (Hijmans 
et al. 2005) and prepared for the study area. The pairwise 
correlation among the environmental layers was examined 
using ENMTools 1.4.4 (Warren et al. 2010), and all correla-
tion coefficients were under 0.7 (Pearson ≤ 0.70), suggesting 
that the variables have no collinearity issue (Table 1, Fig. 2).

Model selection

Species distribution modeling was performed using the 
presence records of species as the response variable 
(dependent variable) and 16 environmental variables as 
the predictor variables (independent variables) on the 
sdm R package (Naimi and Araujo 2016). In this study, 

12 potential algorithms were tested, including maximum 
entropy (Maxent) (Phillips et al. 2006), generalized linear 
models (GLMs) (McCullagh and Nelder 1983), flexible 
discriminant analysis (FDA) (Hastie et al. 1994), boosted 
regression tree (BRT) (Friedman 2001), classification 
and regression tree (Cart) (Breiman et al. 1984), Glmnet 
(Friedman et al. 2010), multivariate adaptive regression 
splines (MARS) (Friedman 1991), maximum likelihood 
(Maxlike) (Royle et al. 2012), mixture discriminant analy-
sis (MDA) (Hastie et al. 1994), recursive partitioning and 
regression trees (rpart) (Breiman et al. 1984), support 
vector machines (SVM) (Cortes and Vapnik 1995), and 
random forest (RF) (Breiman 2001) (Table 2).

In order to evaluate the efficiency of individual mod-
els and compare them with each other, the area under the 
curve (AUC) and correlation (Cor) statistics were used 
(Elith et al. 2006). On the other hand, for comparing the 
performance of the ensemble model with individual mod-
els, the AUC was used as the index of the model’s perfor-
mance, as well as the amount of uncertainty of the model 
that was obtained by the normalized Shannon entropy on 
sdm R package (Naimi and Araujo 2016).

Ensemble 
SDM

Individual 
SDMs

A Set of Environmental Variables

Pairwise 
Correlation

(Pearson ≤0.70)

Variable 
Selection

Species’ Occurrence Data

Data and Variables Collection and Preparation Modeling

Test Predictive 
Performance

Comparing Models Performance

Spatial Niche Overlap

Model 
Evaluation

(AUC, Cor)

30% Testing 
70% Training

Randomly Drawn 
Occurrences

12 Predicted Maps Predicted Map

Fig. 2   Flow diagram showing the procedure of modeling
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Table 2   The modeling algorithms in SDM package used in this research, brief description, and their required species data type

Modeling methods Species 
data 
type*

Brief description Key references

Maximum entropy (Maxent) P/B Maxent is a machine learning approach that 
estimates species distributions by finding the 
distribution of maximum entropy (i.e., closest 
to uniform) subject to the constraint that the 
expected value of each environmental variable 
(or its transform and/or interactions) under this 
estimated distribution matches its empirical 
average

Phillips et al. 2006

Boosted regression tree (BRT) P/A BRT, also called stochastic gradient boosting, is 
a machine learning approach that combines two 
algorithms: the boosting algorithm iteratively 
calls the regression-tree algorithm to construct a 
combination or “ensemble” of trees

Friedman 2001

Random forest (RF) P/A RF belongs to the learning machine methods. It 
generates hundreds of random trees. A selective 
algorithm limits the number of implemented 
parameters in each tree. A training set for each 
tree is chosen as many times as there are obser-
vations among the whole set of observations. 
For each node of the tree, the decision is taken 
according to randomly selected environmental 
parameters. The trees thus constructed are not 
pruned and are as large as possible. After the 
trees have been built, data are entered into them, 
and all trees will classify each grid square. At 
the end of the run, the classification given by 
each tree is considered as a “vote,” and the 
classification of a grid square corresponds to the 
majority vote among all trees

Breiman 2001

Classification and regression tree (CART) P/A CART is a non-parametric technique that pro-
duces either classification or regression trees, 
depending on whether the dependent variable is 
categorical or numeric, respectively. It allows the 
rules to be induced directly from the observa-
tions

Breiman et al. 1984

Flexible discriminant analysis (FDA) P/A A classification model based on a mixture of 
linear regression models uses optimal scoring to 
transport the response variable so that the data 
are in a better form for linear separation and 
multiple adaptive regression splines to generate 
the discriminant surface

Hastie et al. 1994

Multivariate adaptive regression splines (MARS) P/A MARS is a non-parametric regression technique 
that combines classical linear regression, 
mathematical construction of splines, and binary 
recursive partitioning to produce a local model 
in which relationships between response and 
predictors are linear or non-linear

Friedman 1991

Generalized linear models (GLMs) P/A GLMs is a flexible generalization of ordinary 
least square regression which generalizes linear 
regression by allowing the linear model to 
be related to the response variable via a link 
function (let handling distributions such as the 
Gaussian, Poisson, binomial, or gamma) and by 
allowing the magnitude of the variance of each 
measurement to be a function of its predicted 
value. This parametric approach is the most 
common method in predictive habitat distribu-
tion modeling

McCullagh and Nelder 1983

487Mammal Research (2022) 67:483–497



1 3

Spatial niche overlapping

One of the most used techniques to estimate spatial niche 
is the ecological niche models (ENMs), which allow 

identifying areas with the appropriate environmental condi-
tions for the presence of a species (Chefaoui et al. 2005). In 
this study, we used the ENMTools 1.4.4 to calculate the spa-
tial niche overlapping between the greater mouse-tailed bat 

Table 2   (continued)

Modeling methods Species 
data 
type*

Brief description Key references

Maximum likelihood (Maxlike) PO Maxlike is a likelihood-based approach that 
estimates the probability of occurrence using 
presence-only data and spatially referenced 
covariates

Royle et al. 2012

Mixture discriminant analysis (MDA) P/A MDA is an extension of linear discriminant 
analysis (LDA). It assumes that the distribution 
of a class of each environmental variable follows 
a Gaussian distribution, allowing the classifier 
to handle different prototype classes such as a 
mixture of Gaussians. The environmental param-
eters form primal classes, which are divided 
into sub-classes. The classification results from 
these sub-classes, a mixture density, describe 
the distribution density of the primal classes of 
environmental variables (Marmion et al., 2009b)

Hastie et al. 1994

Recursive partitioning and regression trees (Rpart) P/A Rpart is a powerful machine learning used for 
building classification and regression trees. The 
rpart algorithm works by recursively splitting 
the dataset, which means that the subsets arising 
from a split are further split until a predeter-
mined termination criterion is reached. At each 
step, the split is made based on the independ-
ent variable that results in the largest possible 
reduction in the heterogeneity of the dependent 
(predicted) variable

Breiman et al. 1984

Support vector machines (SVM) PO SVM is one of the popular and successful super-
vised learning methods widely used for classi-
fication and regression problems. SVM fits data 
by maximizing the margin around the separator. 
This leads to good generalization performance 
regarding new unseen data, i.e., training data are 
classified with the given labels with a separator 
that is the farthest as possible to both classes of 
points. This generalizes well to new data. The 
maximum margin of the separator of classes 
leads to the strong upper bound of the generali-
zation error. SVM minimizes this upper bound 
(Byun and Lee, 2002)

Cortes and Vapnik 1995

Glmnet P/A Glmnet is used for estimating generalized linear 
models with convex penalties. The models 
include linear regression, two-class logis-
tic regression, and multi-nomial regression 
problems, while the penalties include ℓ1 (the 
lasso), ℓ2 (ridge regression), and mixtures of 
the two (the elastic net). The Glmnet algorithms 
use cyclical coordinate descent, which succes-
sively optimizes the objective function over 
each parameter with others fixed, and cycles 
repeatedly until convergence. The methods can 
handle large problems and also deal efficiently 
with sparse features

Friedman et al. 2010

* Species data type: presence (P), absence or pseudo-absence (A), background (B), presence only (PO)
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and the small mouse-tailed bat. ENMTools implements two 
quantitative tests of niche similarity introduced by Warren 
et al. (2008), including Schoener’s (1968) D and a measure 
derived from Hellinger distance called I (Warren et al. 2008, 
2010). ENMTools’ method is dependent on overly simplistic 
binary predictions. In this method, both assume probabil-
ity distributions defined over geographic space. These tests 
ask whether the ENMs generated from two populations are 
identical or, at the other extreme, only more similar than 
expected by chance (Warren et al. 2010). Schoener’s D is 
defined as (Schoener 1968):

where PX,i and PY,i are the normalized suitability scores for 
species X and Y in grid cell i. I is defined as:

It is noticeable that I is 1—“Hellinger’s distance” from 
probability theory; similarly, D is 1—“total variation dis-
tance.” Both similarity measures range from 0, when spe-
cies predicted environmental tolerances do not overlap, to 
1, when all grid cells are estimated to be equally suitable for 
both species (Warren et al. 2010).

Results

Species distribution modeling

Individual modeling

Among the 12 algorithms implemented for the greater 
mouse-tailed bat species distribution modeling, the ran-
dom forest model with an AUC of 0.93 showed the best 
performance, whereas the Glmnet model with an AUC of 
0.76 compared to other models had a weaker performance. 
For the small mouse-tailed bats, the random forest model 
with an AUC of 0.93 showed the best performance. But the 
Cart model with an AUC of 0.79 had a weaker performance. 
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Assessments of modeling success using AUC and correla-
tion indicate that methods can be analyzed in three groups 
(Elith et al. 2006). The first and highest performing group, 
such as the random forest model, performed relatively well 
according to each of the evaluation measures. The second 
group of methods showed intermediate performance for 
AUC and correlation. In the third group, all performed rela-
tively poorly. Moreover, this group deviated from the gener-
ally linear relationship between AUC and correlation results, 
i.e., assessment of their predictive success depends on which 
measure is used (Table 3, Fig. 3).

Ensemble modeling

The area under the curve was obtained for ensemble mod-
eling of the greater mouse-tailed bat 0.923 and the small 
mouse-tailed bat 0.914 (Fig. 4).

Variables’ importance

The importance of predictor variables showed that elevation, 
annual mean temperature, temperature seasonality, and dis-
tance to roads and railways were most important to summer 
roosting habitat selection of the greater mouse-tailed bat. At 
the same time, the aspect was the least important (Fig. 5). 
Distance to roads and railways, elevation, annual mean tem-
perature, and distance to the ridge were most important to 
summer roosting habitat selection of the small mouse-tailed 
bats, whereas the aspect was not significant (Fig. 6).

Model performance evaluation

Performance comparison of the individual and ensemble 
models based on AUC and the model uncertainty showed 
that the ensemble model had a stronger prediction than indi-
vidual models due to high AUC and low uncertainty.

Spatial niche overlap

Spatial niche overlap of the greater mouse-tailed bat and the 
small mouse-tailed bat, based on two criteria: Schoener’s D 
(Schoener 1968) and the Hellinger distance I were equal to 
62% and 64%, respectively.

Table 3   Evaluation of the 
twelve models tested in sdm 
using the area under the curve 
(AUC) and correlation (Cor) for 
the greater mouse-tailed bat and 
the small mouse-tailed bat

Brt Cart Glmnet Mars Maxlike Mda Maxent Glms Fda Rpart Svm Rf

Greater mouse-tailed bat
AUC​ 0.77 0.81 0.76 0.86 0.82 0.83 0.88 0.86 0.82 0.81 0.85 0.93
Cor 0.18 0.33 0.2 0.37 0.28 0.32 0.41 0.34 0.29 0.37 0.4 0.65
Small mouse-tailed bat
AUC​ 0.85 0.79 0.87 0.9 0.87 0.85 0.9 0.9 0.86 0.87 0.87 0.93
Cor 0.43 0.45 0.3 0.54 0.44 0.4 0.51 0.49 0.42 0.44 0.51 0.71
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Fig. 3   Mean AUC vs. mean 
correlation (Cor) for evaluation 
models of A the greater mouse-
tailed bat habitat modeling and 
B the small mouse-tailed bat 
habitat modeling

Fig. 4   The area under the curve 
(AUC) for ensemble modeling 
of A the greater mouse-tailed 
bat roosting habitat and B the 
small mouse-tailed bat roosting 
habitat

Fig. 5   Significant variables 
for the greater mouse-tailed 
bats’ summer roosting habitat 
selection
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Discussion

Summer roosting habitat modeling of the greater 
mouse‑tailed bat

In the random forest, as the strongest model among individ-
ual models, annual precipitation was recognized as the most 
important predictor variable compared to other variables in 
the summer roosting habitat modeling for the greater mouse-
tailed bats. According to the sources, this variable can have 
both negative and positive effects on this choice for several 
reasons, which can be attributed to the following.

The activity of bats with increasing precipitation 
decreases (Geluso and Geluso 2012). Also, increasing 
precipitation can prevent insects from flying; therefore, it 
reduces bats’ access to insects (Anthony et al. 1981), which 
predicts these changes can reduce colony structure, produc-
tivity, and adolescent survival (Richter and Cumming 2008). 
However, precipitation causes a growth in the abundance of 
some insects such as order Diptera or Lepidoptera (Williams 
1951; Sillett et al. 2000; Landesman et al. 2007).

Since this study area is located in arid and semi-arid 
regions of Iran where the long-term average precipitation 
is approximately 360 mm (Iran Water Statistical Yearbook 
2018), it can be concluded that precipitation more and less 
than this amount leads to habitat suitability reduction by 
reducing preys or access to them. However, it should be 
remembered that precipitation in this amount also increases 
the frequency of some insects, which positively affects the 
foraging activity of this species. Overall, the higher number 
of insects resulting from precipitation has a positive effect 
on the foraging base.

Comparing the ensemble model with individual mod-
els based on two indicators, AUC as a model performance 
index and model uncertainty, the ensemble model showed 
a stronger performance than individual models. Therefore, 

it is recommended to use an ensemble model to reduce the 
uncertainty of every single model. The elevation is the most 
important variable for species distribution modeling of the 
greater mouse-tailed bats. Then, the annual mean tempera-
ture, temperature seasonality, distance to roads and railways, 
and slope were important in summer roosting habitat selec-
tion (Fig. 7).

The elevation variable played a key role compared to 
other variables for this species. The elevation influences bat 
species distributions (Jaberg and Guisan 2001) and roost 
locations (e.g., Neubaum et al. 2006). Cryan et al. (2000) 
suggest that variation in temperature and insect availabil-
ity at different elevation gradients may impact torpor and 
energy restrictions. Elevation influences the temperature 
regimes bat experiences while roosting and, thus, the amount 
of energy a bat expends for thermoregulation. The eleva-
tion range of the study area was estimated to be – 10 to 
4208 m. According to the review of sources, the elevation 
range in which this species is scattered is between 0 and 
1200 m (Monadjem et al. 2017), but the results of this study 
showed a suitable habitat roosting of this species is located 
in the elevation range of 2–3795 m. Therefore, these results 
provide a new view on the range of elevation distribution of 
this species, suggesting that a research study be conducted 
to modify this suggested range in the future. After elevation, 
annual mean temperature and temperature seasonality played 
roles in this selection, respectively. Studies have illustrated 
a positive relationship between bat activity and temperature 
(e.g., Wolbert et al. 2014). The activity of bats is strongly 
related to the temperature outside the roosts and is associ-
ated with the airflow at the entrance of roosts. Changes in 
airflow due to temperature differences between outside and 
inside the roost can be an efficacious sign of air temperature 
for bats (Meyer et al. 2016). Moreover, some studies, such 
as the study of Frick et al. (2012), showed that, for instance, 
the Brazilian free-tailed bat, when the surface temperature 

Fig. 6   Significant variables for 
the small mouse-tailed bats’ 
summer roosting habitat selec-
tion
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is high, comes out of the roost later in both dry and wet 
years. The inside temperature of the roosting caves is also 
essential because it is affected by the outside temperature. 
The greater mouse-tailed bats select hot and dry caves with a 
mean temperature of 28–32 °C as roosts (Levin et al. 2013).

Furthermore, temperature affects the abundance of 
insects as bats’ diet (Meyer et al. 2016). Most insects enter 
diapause to pass the winter and become active again in 
spring when the weather warms up. The cues that insects 
use to break diapause are complex and differ across spe-
cies but include temperature and photoperiod (Gullan and 
Cranston 2010). Insect numbers build as spring progresses 
as the triggers to break diapause are reached in various 
species, and as insects that overwintered in egg or imma-
ture steps resume development and reach the adult, flying 
stages (Meyer et al. 2016). Although bat activity may peak 

before insects become abundant, bat activity coincides 
with insect activity when bats are at their summer colo-
nies (Anthony et al. 1981). Temperature also affects the 
growth and development of vegetation (Hatfield and Prue-
ger 2015), and vegetation influences insects’ abundance.

The distance to roads and railways was also crucial for 
habitat selection. Transport infrastructures are likely to 
induce significant negative impacts on bats by impacting 
frequent road kills (Gaisler et al. 2009; Lesiński 2007; 
Lesiński et al. 2010; Medinas et al. 2013; Russell et al. 
2009; Secco et al. 2017), reducing foraging activity near 
roads with street lighting (Hale et al. 2015; Stone et al. 
2009, 2012), or intense traffic noise (Luo et  al. 2015; 
Schaub et al. 2008; Siemers and Schaub 2011). In addi-
tion, some studies show that with approaching the major 
roads, bat activities and their species richness decrease 

Fig. 7   Summer roosting habitat 
selection ensemble modeling of 
the greater mouse-tailed bat
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(Zurcher et al. 2010; Berthinussen and Altringham 2012; 
Kitzes and Merenlender 2014).

Even though the distance to agricultural lands and range-
lands, known as habitats, foraging resources, and potential 
travel corridors (Hammond et al. 2016), were less important 
in this selection, distance to agricultural lands was more 
important than distance to rangelands. According to the 
classification of agricultural lands into rainfed and irrigated 
farming, rainfed agricultural lands were more significant 
than irrigated farming in this habitat selection.

Although the aspect was less important in this study than 
the other variables, it is noticeable that this species prefers 
the north/south aspect more than the east/west aspect, which 
appears to be related to solar exposure or optimal microcli-
mates (Hammond et al. 2016).

Summer roosting habitat modeling of the small 
mouse‑tailed bat

It was concluded that the random forest model appeared as 
a strong model compared to other individual models for the 
small mouse-tailed bat habitat modeling. The distance to 
main and secondary roads and railways in the RF model had 
the most significant impact on the roost selection. The sig-
nificance of this was like what was described for the greater 
mouse-tailed bat.

Since the ensemble model has a stronger prediction than 
other individual models, therefore, it is still recommended 
to use an ensemble model to reduce the uncertainty of every 
single model. In the ensemble modeling, also distance to 
roads and railways was most important for summer roosting 

Fig. 8   Summer roosting habitat 
selection ensemble modeling of 
the small mouse-tailed bat
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habitat selection of this species, which the reason for the 
importance of this variable was discussed earlier (Fig. 8).

Then the variables of elevation and annual mean tempera-
ture were equally important. The reasons why the elevation 
and annual mean temperature were important for the small 
mouse-tailed bat habitat selection are likely similar to those 
observed for the greater mouse-tailed bats.

The study area is located in the elevation range of – 10 to 
4208 m; according to the review of the resources, they are 
present at the elevation range of 700–1100 m (Molur et al. 
2008). In this case, the results displayed that the suitable 
summer roosting sites for the small mouse-tailed bats are 
at an elevation range of – 3 to 3778 m. Hence, these results 
provide a new view on the range of elevation distribution of 
this species, suggesting that a research study be conducted 
to modify this suggested range in the future.

For the small mouse-tailed bats, the distance to the ridge 
was identified as the fourth important variable, contrary to 
the greater mouse-tailed bats, indicating that they probably 
avoid sunlight when selecting summer habitat roosts (e.g., 
Duchamp et al. 2007). Due to the species distribution range, 
the small mouse-tailed bats live in arid and semi-arid areas, 
where summers are hot and long, and winters are short and 
without freezing periods (Molur et al. 2008). Thus, it can be 
concluded that such areas are suitable habitats for summer 
roosting, which is farthest from the sun’s rays. Therefore, 
increasing distance to the ridge increases the suitability of 
roosting habitats for this species.

Among the least important variables, the distance to agri-
cultural lands as foraging resources was more significant 
than rangelands in choosing the summer roosting habitat of 
small mouse-tailed bats. According to the results, this spe-
cies is dependent on irrigated agricultural lands, in contrast 
to the greater mouse-tailed bats, with 54.6%, which com-
pared to rainfed agricultural lands with 45.4% dependence 
showed a higher value, which seems associated with dietary 
niche partitioning. The aspect was the least important vari-
able for the small mouse-tailed bats, similar to the greater 
mouse-tailed bats. In this variable, the north/south aspect 
plays a significant role in this selection rather than the west/
east aspect, which seems to be related to solar exposure or 
optimal microclimates (Hammond et al. 2016).

Spatial niche overlap

According to the resources, Schoener’s D (Schoener 1968) 
index performs better than the I (Rödder and Engler 2011). 
Consequently, a 62% of the spatial niche overlap indicates 
the similarity in the summer roosting habitats and the vari-
ables that play an essential role in these selections by these 
species. The slight difference in the importance of the 
predictor variables confirms these results. However, they 
seem to reduce competitive interactions by dietary niche 

partitioning. This study partly showed differences between 
foraging resources, but it needs more detailed research on 
the dietary niche of these species.

In conclusion, this study facilitates the management of 
future and suitable habitats by identifying important envi-
ronmental conditions; thus, it can be used in conservation 
plans in Iran as one of the first studies in modeling summer 
habitat selection. Since the variables of elevation and dis-
tance to roads and railways have the most significant impact 
on this selection by the greater mouse-tailed bat and the 
small mouse-tailed bat, respectively, these are essential fac-
tors to consider in combination with habitat when design-
ing conservation strategies. It is noticeable that because of 
the similarity in their spatial niche, a conservation program 
for each species can help protect the other species to some 
extent. In addition, comparing individual and ensemble 
models displayed that the latter has a more substantial per-
formance than all individual models suggesting ensemble 
models may also be useful for other bat SDM studies. There-
fore, it is recommended to use these models to reduce the 
uncertainty of every single model.
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