

Herramientas genómicas aplicadas al mejoramiento de soja convencional [Glycine max (L.) Merr.]

Bernardi C.1, Fumero M.V.1,2, Garis S.B.1,2, Lenzi L.1, Vanzetti L.S.1,2,*

¹ Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Marcos Juárez. Ruta 12 s/n, CP 2850 Marcos Juárez, Córdoba, Argentina. ² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CP C1425FQB Buenos Aires, Argentina. * vanzetti.leonardo@inta.gob.ar

Introducción

El fitomejoramiento ha sido exitoso en el desarrollo de variedades mejoradas utilizando herramientas y metodologías convencionales. Sin embargo, hoy en día, la disponibilidad de herramientas y recursos genómicos da lugar a una nueva revolución mediante la aplicación de nuevas tecnologías de secuenciación (NGS) que posibilitan la secuenciación masiva de genomas y transcriptomas, proporcionando una gran variedad de información genómica. La bioinformática se convierte así en una ciencia imprescindible que permite descubrir nuevos genes, alelos, secuencias reguladoras y pone a disposición del fitomejoramiento grandes colecciones de marcadores moleculares. El objetivo de este trabajo es explorar la variabilidad en genes de interés agronómico utilizando las secuencias del genoma completo del genotipo de soja convencional INTA-FICA 5C k/lx.

Materiales y métodos

Se compararon las secuencias de genes del genoma de Williams 82 v2.1 y el genotipo INTA-FICA 5C k/lx recientemente secuenciado por nuestro grupo de trabajo utilizando un MinION 1kMC (ONT). Los SNPs e INDELs fueron detectados y anotados (archivo .vcf). La visualización de los resultados se realizó con jbrowser. Primeramente, se validaron las mutaciones presentes INTA-FICA 5C k/lx para los genes Lox1, Lox2, Lox3 y Kti3 y luego se evaluó la presencia de diversos alelos de los genes E (E1, E2, E3, E4, E6, E9, E10 y E11).

Resultados

Se validó la presencia de los alelos lox-1c (Fig.1. a), lox2-a (Fig. 1. b) y lox3-a (Fig. 1. c) para los genes de lipoxigenasas y kti3 (Fig. 1. d) del gen Kunitz, como se muestra en la Tabla 1. Estas mutaciones fueron la base del desarrollo de características de calidad diferenciada presentes en INTA-FICA 5C k/lx.

Por otro lado, se detectaron variantes alélicas para los genes *E* relacionados a floración y ciclo del cultivo descritos en Tabla 1. En cuanto al gen *E6*, también denominado Juvenil (J), el genotipo INTA-FICA presentaría una variante alélica recesiva no descripta j/e6 (C196-), lo mismo para el gen *E9* INTA-FICA (A69T) y *E11* INTA-FICA (CC1509--). Estas tres variantes alélicas deberán ser confirmadas mediante la utilización de otras tecnologías.

Gen	Name	Refference	Williams 82 v2.1 Position	Alelo	Mutation	Williams 82	INTA-FICA 5C k/lx	Details	Reference
E1	E 1	Glyma.06g207800	6:20207077-20207940	E1 e1-re e1-as	44 region	e1-as	e1-as	Inhibits flowering	Xia et al., 2012
E2	GmGla	Glyma.10g221500	10:45294735-45316121	E2-in E2-dl e2-ns	coding	E2-in	E2-dl	Inhibits flowering	Watanabe et al., 2011
E 3	GmPhA3	Glyma.19g224200	19:47633059-47641958	E3-Ha E3-Mi		Е3-На	Е3-На	Inhibits flowering	Watanabe et al., 2009
E4	GmPhyA2	Glyma.20g090000	20:33236018-33241692	E4 e4-SORE-1		E4	E4	Inhibits flowering	Liu et al., 2008
E 9	GmFT2a	Glyma.16g150700	16:31109999-31114963	E9 FT2a-TO	A69T	E9	?	Promotes flowering	Kong et al., 2010, 2014; Z hao et al., 2016
E10	FT4	Glyma.08g363100	8:47458142-47459829	E10 e10	C126T Exon 4	E10	E10	Inhibits flowering	Zhai et al., 2014; Saman far et al., 2017
E11	LHY1b	Glyma.07G04850	7:4102968-4114174	E11 e11	CC1509	E11 e11?	?	Promotes flowering	Lu et al., 2017; Wang
J-E6	ELF3	Glyma.04G05020	4:4075901-4081260	J j-1 j-2 j-3 j-4 j-5 j-6 j-7 j-8		J-E6		Promotes flowering	Cober, 2011; Lu et al., 2017; Yue et al., 2017
Lox1	Lox1	Glyma.13G34760	13:43769021-43773290	Lox1 lox1-a lox1-b	74pb deletion exon 8	Lox1	lox1-c	Off flavour soy-based foods	Lenis et al. 2010; Wang et al., 2020
Lox2	Lox2	Glyma.13G34750	13:43761727-43766023	Lox2	T1596A + TT2224	Lox2	lox2-a	Off flavour soy-based foods	Lenis et al. 2010; Wang et al., 2020
Lox3	Lox3	Glyma.15G02630	15:2123754-2128104	Lox3	G101-	Lox3	lox3-a	Off flavour soy-based foods	Lenis et al. 2010; Wang et al., 2020
KTI3	KTI3	Glyma.08g341500	8:45733267-45736194	Kti3	G436T + AG441	Kti3	kti3	Trypsin inhibitors	Maranna et al., 2016

Tabla 1: Comparación de las secuencias de los alelos de los genes *Lox 1,2* y 3; *Kti3* y *E1, E2, E3, E4, E9, E10, E11* y *J-E6* de INTA Fica 5C K/Lx y el genoma de Williams 82 v2.1.



Figura 1: Mutaciones en el genoma de INTA-FICA 5C k/lx. **A.** Deleción en *Lox1*, alelo lox1-c. **B.** Deleción en *Lox2*, alelo lox2-a. **C.** Deleción en *Lox3*, alelo lox3-a. **D.** Sustitución de G por T en *Kti3*, alelo kti3.

Conclusiones

El uso de herramientas genómicas permitió la validación de variantes alélicas esperadas en el genoma de INTA-FICA 5C k/lx, así como la detección de variantes alélicas descriptas y novedosas para genes con nula o muy escasa información por otras metodologías.

