
Ant-colony optimization for automating test models generation in
model transformation testing

Meysam Karimia, Shekoufeh Kolahdouz-Rahimia,∗, Javier Troyab

aMDSE Research Group, Department of Software Engineering, University of Isfahan, Iran
bITIS Software, Universidad de Málaga, Spain

Abstract

In model transformation (MT) testing, test data generation is of key importance. A major drawback is that test suites are
not available out of the box, and existing approaches to generate them require to provide not only the metamodel to which the
models must conform, but some other domain-specific artifacts. However, a MT developer aiming to perform an incremental
implementation of a MT may need to count on a quality test suite from the very beginning, even before all MT requirements are
clear, only having the metamodels as input. We propose a black-box approach for the generation of test models where only the
input metamodel of the MT is available. We propose an Ant-Colony Optimization algorithm for the search of test models satisfying
the objectives of maximizing internal diversity and maximizing external diversity. We provide a tool prototype that implements
this approach and generates the models in the well-established XMI interchange format. A comparison study with state-of-the-art
frameworks shows that models are generated in reasonable times with low memory consumption. We empirically demonstrate the
adequacy of our approach to generate effective test models, obtaining an overall mutation score above 80% from an evaluation with
more than 5000 MT mutants.

Keywords: Model-Driven Engineering, Model Transformation Testing, Automated Model Generation, Ant Colony Optimization

1. Introduction

Model transformations (MTs) play a key role in Model-
Driven Engineering (MDE). The correctness of software built
using MDE techniques greatly relies on the correctness of
model transformations, so it is of prime importance to test them.
The core of model transformation testing is typically divided in
three phases [72, 85], namely test data generation, test suite as-
sessment and oracle function. The first phase is the main focus
of this research.

Novel model transformation developers, as well as students
in academia, implementing a MT from scratch may require a
set of input models from the beginning if they want to incre-
mentally implement and test the model transformation. Various
methods have been proposed for model generation [41, 46, 78],
but the main problem is that the tester needs to be a domain
expert, since many artifacts other than the source metamodel
are typically required by these approaches. For instance, many
approaches require a set of model fragments [14, 38, 78] or
pre-conditions [46] as input. There are other works that re-
quire a set of models in order to improve this initial set [37, 70].
Furthermore, using specific notations or formalisms is a limita-
tion for the usability of the test models generated by some ap-
proaches [39, 41, 70], and there is a lack of tools to transform

∗Corresponding author
Email addresses: meysam.karimi@eng.ui.ac.ir (Meysam Karimi),

sh.rahimi@eng.ui.ac.ir and

shekoufeh.rahimi@roehampton.ac.uk (Shekoufeh Kolahdouz-Rahimi),
jtroya@uma.es (Javier Troya)

these models into common formats such as XMI (XML Meta-
data Interchange), which is the required input format for some
well-known MT languages integrated in the Eclise ecosystem
such as ATLAS Transformation Language (ATL) [55].

For any given metamodel, there can be infinite possibilities
for defining models conforming to it, so the development of
appropriate test models is challenging, even for domain ex-
perts [10, 11]. For this reason, and in order to obtain a rea-
sonable number of generated models, there are approaches that
rely on search-based algorithms for the generation of models,
where the search is guided towards optimizing specific objec-
tives [9, 70, 79, 85, 92]. An obstacle present in these approaches
that hinders their usability, other than the format of the gen-
erated models in many cases, is that the tester cannot simply
hit a button and obtain a set of models conforming to a given
metamodel, but a strong domain knowledge is necessary. Fur-
thermore, there is neither a clear search-based algorithm in this
context that outperforms the others, nor any study comparing
search-based algorithms for our purposes. Furthermore, there
are still many search-based algorithms to be explored for model
generation in the context of model transformation testing.

This paper considers all these aspects and proposes a three-
fold contribution. First, we explore the use of an Ant-Colony
Optimization (ACO) algorithm for model generation in the con-
text of MT testing that, to the best of our knowledge, has not
been applied in this context before. Second, we implement
our approach as an easy-to-use prototype tool that can gener-
ate a set of models in XMI format by simply providing an input
Ecore metamodel, which can be useful for novel MDE practi-

Preprint submitted to JSS March 10, 2023

The published version can be accessed through its DOI:
https://doi.org/10.1016/j.jss.2023.111882

https://doi.org/10.1016/j.jss.2023.111882

tioners. Third, we compare our approach with state-of-the-art
approaches in terms of performance and usability of the ob-
tained models for the purpose of model transformation testing.

Our approach for MT testing is black-box, since we do not
need the MT in order to generate test models [85]. The only
input is the source metamodel, as an Ecore file, which can have
a set of well-formed OCL constraints defined on it, and some
easy-to-set parameters with default values. The model set to be
generated should have a limited number of models of manage-
able size, so that they can be handled by the tester. We establish
two objectives for the search, namely (i) maximizing internal
diversity, also known as metamodel coverage, and (ii) maxi-
mizing external diversity, also known as dissimilarity among
the generated models.

In order to target this multi-objective optimization problem,
we make use of an Ant-Colony Optimization (ACO) algorithm
[29]. The main difference of ACO with respect to other search-
based approaches is that it is a constructive approach where
each ant gradually constructs a solution based on swarm intel-
ligence and heuristic information that lies in its nature. This
is unlike other known algorithms such as Genetic Algorithms,
which create the next solution based on update operations such
as crossover and mutation. Meta-heuristic algorithms usually
use an encoding to represent a solution in the search space,
typically in the form of binary vectors. The problem is that
if formats like XMI are to be used for the models, a customized
implementation of update operators is required [82]. On the
contrary, due to the nature of ACO, it can naturally work with
formats like XMI.

Our approach is implemented by a prototype tool that takes
a metamodel as input and initiates several ants, where each ant
creates a model set. The best model set is used as output and
returned as a set of models in XMI format conforming to the
given metamodel, optimizing the objectives mentioned before
and satisfying the optional well-formed OCL constraints ex-
pressed on the metamodel. Based on this prototype, we per-
form a thorough evaluation with the purpose of answering the
following research questions:

• RQ1 - Domain-independence. Can our approach work
with metamodels and OCL constraints from different do-
mains?

• RQ2 - Performance. How does our prototype perform
when generating models?

• RQ3 - Usefulness. Are our generated model sets able to
detect faults in model transformations?

RQ2 and RQ3 are replied not only for our approach, but we
have performed a comparison study with state-of-the-art tools.
In particular, we have analyzed Viatra Solver [73] and a Ran-
dom Generator [45]. On average, our prototype tool is able
to generate models 50 times faster than Viatra Solver and it is
the one consuming the least amount of memory in the model
generation process. Besides, the average mutation score of our
approach is 80.49%, outperforming the other two approaches.

The remainder of this paper is structured as follows. Sec-
tion 2 offers an insight into the paradigms used in this approach,

namely Model-Driven Engineering and Search-Based Software
Engineering. Then, Section 3 describes our approach for the
generation of model sets, which is thoroughly evaluated in Sec-
tion 4 in the context of model transformation testing. Section 5
introduces some related works of black-box test case genera-
tion, and finally Section 6 concludes the paper with an insight
into future lines of research.

2. Preliminaries

This section introduces some concepts of the two paradigms
united in this approach, namely Model-Driven Engineering
(MDE) and Search-Based Software Engineering (SBSE). It also
presents a running example within the context of MDE.

2.1. Model-Driven Engineering

Model-Driven Engineering (MDE) is a well-known method-
ology, which considers models as first-class artifacts for soft-
ware engineering development. It is meant to increase produc-
tivity by maximizing automation and interoperability, simplify-
ing the design process and promoting communication between
stakeholders. The use of MDE principles and techniques is
growing, being well established, for instance, in the develop-
ment of embedded and production systems [13, 80].

2.1.1. Model transformations and (meta)models
Model transformation is a key concept in MDE for the au-

tomatic mapping of model(s) to other model(s) or code. Var-
ious types of model transformations have been defined [23].
In this paper, we consider model-to-model (M2M) transforma-
tions, which transform one or more source model(s) to one or
more target model(s)1. A model is an abstraction of a system
used to replace the system under study for a particular pur-
pose [59, 61]. This abstraction process allows to better man-
age, understand, study, and analyze models in contrast to the
full system under study. In MDE, it is common that a model
must conform to its metamodel. A metamodel defines the struc-
ture for a family of models [64]. Technically, metamodels are
just a special type of models. Thus, they have to conform again
to another model—the so-called meta-metamodel. In this way,
metamodels are written in the language defined by their meta-
metamodel. A metamodel specifies the concepts of a language,
the relationships between these concepts, the structural rules
that restrict the possible elements in the valid models and those
combinations between elements [13].

M2M transformations are specified in terms of their source
and target metamodels. When executed, they take as input mod-
els conforming to the source metamodels and generate models
conforming to the target metamodel. In order to be able to test
M2M transformations, it is helpful to count on a set of input
models [38, 14], also referred to as test models, whose auto-
matic generation is precisely the scope of this paper.

1Source/target models are also referred to as input/output models

2

Figure 1: Families metamodel [19]

2.1.2. Running example
The simple and well-known Families2Persons model trans-

formation is used as a running example. Figure 1 presents the
source metamodel of the transformation. There are two meta-
classes, namely Family and Member, and four bidirectional as-
sociations between these two classes. An instance of a Member
metaclass that specifies the members of her/his biological fam-
ily can be a familyFather, a familyMother, a familyDaughter or
a familySon of the biological Family. In turn, every instance
of a Family must contain a biological father and a biological
mother, and any number of biological daughters and sons [19].

For exemplary purposes, Figure 3 displays four different
models conforming to the Families metamodel.

2.1.3. Equivalence Partitioning
As mentioned before (cf. Section 2.1.1), we need to count on

a set of input models, also referred to as test suite, in order to be
able to test model transformations. This means that we need a
set of models that conform to the input metamodel of the model
transformation.

Assigning different values to each attribute in the metaclasses
of a metamodel can create different valid models that conform
to the metamodel. For example, if a metaclass has only two
attributes of type number and string, all the different combina-
tions of the possible values of these two properties give rise to
different instances of the metaclass. If a metamodel becomes
complex, the number of distinct valid models becomes very
large or even infinite. This means that we need to somehow
select a subset of all possible models that conform to a meta-
model. A well-known technique for selecting such a subset is
known as equivalence partitioning [41]. This technique divides
a metamodel into so-called equivalent classes. The idea of par-
titioning is that testing a member in an equivalence class is as
good as testing the whole class.

Partitions can group models that are structurally different.
Figure 3 presents 4 different models with 5 objects each (apart
from the root object) conforming to the Families metamodel
showing in Figure 1. Let us focus on the classes and the asso-
ciations among them, so that each model belongs to a different
partition of the Familiy metamodel—see the different number
of daughters and sons in each model. Table 1 displays exam-
ples of 5 different sets of 4 models, where the 4 models in each
set (shown in the rows) are categorized according to the parti-
tion they belong to (out of those in Figure 3).

If we focus for instance on row 4, three of the four models
belong to the first partition, so they all have three members of
type familySon, while the other model contains two members of
type familyDaughter and one member of type familySon (parti-
tion 3). Considering structural equivalence partitioning, these 4
models can be reduced to just 2 models, one belonging to parti-
tion 1 and the other to partition 3. Having a look at all rows, we
can see that the sets displayed in rows 3 and 5, highlighted in
the table, each cover three partitions, while the other rows only
cover one or two partitions, i.e., the models are less diverse.
For this reason, in this simple example, the sets of models rep-
resented in rows 3 and 5 are better choices for conforming a test
suite used to test the Families2Persons model transformation.

2.2. Search-Based Software Engineering

Many problems in the field of software engineering can be
expressed as optimization problems [47]. Search-Based Soft-
ware Engineering (SBSE) was introduced by Harman and Jones
[47] and is applied to optimization problems using search-based
techniques. A search problem contains candidate solutions,
which are searched to find (near) optimal solutions. The search
is guided with a fitness function or objective function to rank
the candidate solutions [51]. SBSE is formed by two ingredi-
ents: a way to represent candidate solutions in a search space
and a definition of the fitness function.

In recent years, several works have proposed to combine
MDE and SBSE. For instance, the problem of finding the
best orchestration for a certain set of transformation rules
was considered as an optimization problem by Fleck et al.
[12, 33, 34, 35]. They propose the MOMoT (Marriage Op-
timization and Model Transformation) framework [36], which
provides several algorithms for locally and globally searching
transformation rules guided by single and multi-objective for-
mulas. MDEOptimiser [16] is another tool for specifying and
solving optimisation problems using MDE. In this tool, the user
can specify optimization problems by using a Domain-Specific
Language (DSL) and the tool can run evolutionary optimization
algorithms that use models as an encoding for population mem-
bers and model transformations as search operators. Viatra-
DSE [49] is an alternative tool that uses optimization algorithms
to rope transformation rules to find the most appropriate deriva-
tion chain to be applied in a prototype model. Crepe [94] was
extended in [30] to support multiple objectives. It uses a Ge-
netic Algorithm (GA) to apply mutation and crossover opera-
tions over an encoded version of models.

The proposed approach in this paper for uniting MDE and
SBSE has a different goal. Our aim is to generate a set of
models from scratch and use it for model transformation testing
purposes. In the following, we present some SBSE concepts
that are important for understanding and implementing our ap-
proach.

2.2.1. Multi-objective optimization problems
Multi-objective optimization problems are also known as

Pareto-optimization problems and refer to problems with more
than one objective function [25]. These objective functions are

3

Figure 2: Optimal route between nest and food source by ant colony [53]

usually in contrast with each other. Minimizing cost while max-
imizing performance is an easy example of a multi-objective
optimization problem. In such problems, there is typically no
single result solution and there are a number of Pareto-optimal
solutions. A solution is called a non-dominated solution if there
is a fitness value in one of its objectives that cannot be im-
proved by other solutions [25]. All non-dominated solutions
are equally good and known as Pareto-optimal solutions [25].

There are algorithms that create random populations for the
first iteration and then these are updated by applying different
crossover and mutation operations. Examples are Getenic Al-
gorithms (GA) and Particle Swarm Optimizations (PSO). Ant
Colony Optimization (ACO) is a strong multi-agent algorithm
that follows a constructive approach to generate the solutions.
In this paper, an ACO-based solution is developed for generat-
ing a valid set of models based on the defined objectives. To
the best of our knowledge, this is the first work using ACO for
model generation. We explain its main concepts next.

2.2.2. Ant Colony Optimization
ACO a well-known swarm intelligence algorithm inspired by

the foraging behavior of real ants [29]. In this algorithm, ants
communicate indirectly with each other through stigmergy. An
individual ant modifies the environment with a chemical trail
called a pheromone. The other ants will respond to the new
modification by choosing the paths marked by a strong amount
of pheromone. This helps the ants choose the best path. After
an ant finds a food source and returns to the nest, it emphasizes
on the correct path by depositing pheromone again. However, if
an ant does not find any food, it will not deposit pheromone on
the previously passed path. Figure 2 shows an experiment with
a real colony of Argentinian ants done by Goss et al. [44]. They
will choose a shorter route, gradually. When ants face an obsta-
cle, there is an equal chance for them to choose a path (either
left or right). As the left path is shorter than the right one, the
ants eventually deposit a higher level of pheromone. Finally,
more ants will take the left path as more levels of pheromone
will be on the shorter path. There is a concept called evapora-
tion that causes the pheromones to evaporate gradually, in order
to omit the inappropriate paths. This is vital as the ants may not
have chosen appropriate paths especially in the early stages.

Most concepts in ACO are very similar to other population-
based meta-heuristic algorithms like GA. The most important
aspect is the way in which each artificial ant selects a path.
An ant considers two aspects to move from state i to j: the
pheromone trail (τ), indicating how proficient it has been in the

past to make that particular move, and the heuristic information
(η), which indicates related knowledge of the problem that can
help select a better state from the current state. For example,
in the TSP problem, the heuristic information is to select a path
with minimum cost for the next step. These two factors form
a probability (Pi j) as can be seen in Equation 1, where each
ant will consider to select the next state—S indicates possible
available candidate states, α and β are parameters to control the
influence of (τ) and (η), respectively.

Pi j =
(τi j)α + (ηi j)β∑
(τi j)α + (ηi j)β

, i ∈ [1, n], j ∈ S (1)

The degree of suitability of a solution is determined by the
amount of pheromone deposited by the colony according to
defined fitness functions. Pheromone trail (τ) in the solution
will be updated by each ant as shown in Equation 2. Each ant
deposits a positive value (4) according to the solution fitness
values. To avoid convergence to a local optimal solution, the
pheromone trail evaporates over time. This is shown in Equa-
tion 3, where ρ indicates the evaporation rate defined in the ini-
tial phase.

τi j = τi j + 4(2) τi j = (1 − ρ)τi j(3)

ACO for multi-objective problems. Several works have pro-
posed the use of ACO for multi-objective problems [60, 90].
The methods mainly differ from each other in two aspects,
namely Pheromone trails and Solutions to reward.
Pheromone trails. In single-objective problems, the
pheromone amount is calculated based on the single defined ob-
jective. However, when there are multiple objectives, two dif-
ferent strategies are considered. The first strategy is to consider
a single pheromone structure, where the amount of pheromones
deposited by ants are defined according to the accumulation
of different objectives [8]. The second strategy is to consider
several pheromone structures. In this case, different colonies
of ants are associated with different objectives and pheromone
structure [28, 27].
Solutions to reward. For updating pheromone trails, each ant
has to decide about its built-in pheromone mechanisms. The
first possibility is to reward the solutions that have the best fit-
ness values for each criterion in the current iteration [27]. The
second possibility is to reward any non-dominant solution in
the current iteration and reward all the solutions of the Pareto
set [8].

In this paper, we apply a single pheromone structure for
pheromone trails and each ant rewards any non-dominant so-
lution in each iteration.

2.2.3. Model generation using metaheuristic algorithms
When applying well-known metaheuristic algorithms, typi-

cally an initial population is formed from a set of random mod-
els that conform to the metamodel. Then, the set of models
is improved according to the defined fitness functions by up-
date operations such as crossover and mutation that are usually
implemented with model transformations [16]. Writing these

4

Figure 3: Sample models conforming the Family metamodel

model transformations requires mastery of a specific MT lan-
guage, which is generally the ability of a modeler rather than
a tester. This is typically done manually or via meta-learning
tools [15, 82, 1, 65, 52], which leads to dependence on a partic-
ular technology. Furthermore, the models created as a result of
the mentioned update operations may no longer conform to the
metamodel [67, 66], so they become invalid models. An invalid
model can not be considered as a candidate solution anymore
and there is usually a need for a repair operation [16] to gener-
ate a valid model, something that is rather costly.

3. Approach

In this section we explain our ACO-based solution for the
problem of model generation, aiming to overcome some of the
limitations of related approaches (cf. Section 2.2.3). To the
best of our knowledge, this is the first approach that applies an
ant-colony optimization algorithm for the generation of models.
Our approach is technology-independent and aims to minimize
human intervention. The idea is that the generated set of mod-
els is tailored to model transformation testing purposes. In the
following, we first describe in detail the steps followed in our
ACO-based solution. Then, we explain how OCL constraints
defined on the metamodel are considered in the model genera-
tion process. Finally, we provide some details of our prototype
implementation.

3.1. Test model generation applying ACO

We apply Ant-Colony Optimization (ACO) as a constructive
algorithm that creates valid models at any moment in a reason-
able execution time and satisfying the desired objectives, pre-
venting the loss of good solutions [62]. The objectives in our
approach are (i) maximizing internal diversity and (ii) maximiz-
ing external diversity [74]. As detailed later in Section 3.1.3, in-
ternal diversity refers to the percentage of the metamodel cov-
ered by each generated model, while external diversity indi-
cates the degree of structural difference between models within
a model set. A pseudocode of the models generation process

CurrentIteration
= MaxIt

YesNo

Initialize
parameters

Set of
models

Construct a
test suite

Calculate
fitness values

Update
pheromone

trails

Evaporate
pheromone

trails

Figure 4: Steps of our ACO-based approach

is presented in Algorithm 1, and the different steps of our ap-
proach are displayed in Figure 4. In the following we explain
each of these steps.

Algorithm 1 Model generation using ACO
1: let nElites = nModels // Number of elites to go to the next iteration
2: for iteration = 1, 2, . . . ,MaxIt do
3: for ant = 1, 2, . . . ,NAnt do
4: Construct a model using pheromone trails
5: Add model to CurrentPop
6: end for
7: NewPop = Merge(EliteModels,CurrentPop)
8: S ort(NewPop) by fitness function
9: Update pheromone trails

10: Evaporation
11: let EliteModels = pick top nElites from NewPop
12: end for

3.1.1. Step 1: Initialize Parameters
In order to construct the initial set of models, the user needs

to identify three inputs, namely (i) the metamodel with op-
tional well-defined OCL constraints to which generated mod-
els must conform, (ii) the number of models to generate and
(iii) the number of elements to be contained in the models, i.e.,
the number of EObjects that each generated model must have.

5

The second and third inputs are important for narrowing down
the search and achieving acceptable execution times (cf. Sec-
tion 4.6). There are other parameters related to the ACO con-
figuration, such as nAnts—number of ants in the algorithm—,
MaxIt—maximum number of iterations (cf. Figure 4)—, and α,
β and ρ values (cf. Section 2.2.2). Our ACO-based framework
offers some default values for these parameters, so that users do
not need to have any knowledge about ACO. In any case, these
parameters can also be customized by the user.

For exemplary purposes, we suppose for the running example
that the tester wants to create a set of models containing 10
models of the Family metamodel, where each model must have
5 elements apart from the root element (cf. Section 2.1.3 and
Figure 3).

3.1.2. Step 2: Construct a test suite
At the very first iteration of our algorithm, there are no

pheromone trails deposited (cf. Section 3.1.3) to guide an in-
dividual ant in constructing a suitable model. Each individual
ant searches the solution space based on heuristic information
and generates a semi-random model according to the number
of elements specified. Let us recall that ACO is a construc-
tive algorithm that considers heuristic information to make a
solution (cf. Section 2.2.2). The main heuristic information to
construct a solution in our case is internal diversity when no
other solution exists to calculate the external diversity—which
is the case in the first iteration (cf. Section 3.1.3). This is, we
prioritize internal diversity in the first iteration so that the initial
set of models covers the metamodel as much as possible. For
instance, if we have a look at Figure 3, in which we consider
four ants (each ant creates one model), we can see that Model2
and Model3 offer the highest internal diversity, since they both
consider all EObjects—both EClasses and EReferences—of the
metamodel (cf. Figure 1).

From the second iteration onwards, each ant tries to construct
a new model, given the experience in the ACO algorithm shared
between the ants by trail pheromone as well as the heuristic
information.

3.1.3. Step 3: Calculate fitness values and deposit pheromone
trails

After models are created by the ants in the current iteration
(CurrentPop in Algorithm 1), a new population including cur-
rent models and best models transferred from the last iteration
(EliteModels) are merged in a new collection (NewPop). Re-
call that EliteModels collection is null in the first iteration and
only models generated by the ants in that round are considered.
In this step, each model in the NewPop is evaluated according
to the fitness function containing our two objectives, so that the
models with better fitness values deposit more pheromones on
the obtained model elements. The two objectives we consider
are (i) maximizing metamodel coverage of each model (internal
diversity) and (ii) maximizing dissimilarity among the different
models (external diversity). For model transformation testing,
diverse models need to be synthesized, where every two mod-
els must be structurally different in order to achieve high cov-
erage or a diverse solution space [89]. On the one hand, max-

imizing metamodel coverage is a key objective for generating
test models, since a larger part of the model transformation will
likely be exercised, therefore having more chances to detect er-
rors [74]. On the other hand, by maximizing the dissimilarity
among the generated models, the overlap between the models is
minimized, assuring different models exercise different parts of
the model transformation under test [74]. In the following we
explain the implementation of these two objectives.

Internal diversity. As defined by Varró et al. [89], the diversity
of a model Mi is defined as the number of (direct) types used
from its MM: Mi is more diverse than M j if more types of MM
are used in Mi than in M j. There are various methods for mea-
suring diversity. For instance, Semeráth et al. [74, 76] focus on
graph models and propose an internal diversity metric based on
neighborhood and predicate shapes. In our case, we aim at con-
structing Ecore models and we try to avoid conversion between
representations to optimize the performance of our approach.
For this reason, we use the definition by Fleurey et al. [37],
in which internal diversity is referred to as metamodel cover-
age and it is obtained by considering class coverage, attribute
coverage and association coverage. As explained in a recently
published survey on model transformation testing and debug-
ging [85], this and similar approaches have been followed by
other authors [91, 32, 20].

In order to compute metamodel coverage, our algorithm it-
erates over all model elements of the metamodel. Only if all
model elements are covered, we can say the metamodel is com-
pletely covered. In our approach, the ratio of the number of
covered EClasses and the ratio of the number of EReferences
are calculated and divided by 2, so that the result is in the range.
For example, Model2 in Figure 3 has a metamodel coverage of
1 as it covers all the elements in the metamodel, including 2
EClasses named Family and Member (2/2 = 1) and 8 different
EReferences between the Family and Member EClasses (8/8 =

1); but Model4 has an internal diversity of (1 + 0.75)/2 = 0.875
as the EReferences namely son and familySon are not covered.

External diversity. External diversity (also known as dissimi-
larity) among models can be achieved by considering all possi-
ble 2-tuple combinations of models in a model set. If there is
an instance of a type or coverage criterion that has a different
structure in another model, then dissimilarity between them is
increased. As explained by Semeráth and Varró [76], external
diversity captures the distance between pairs of models. They
explain that this diversity distance between two models is pro-
portional to the number of different neighborhoods covered in
one model but not the other. The concept of neighborhood is
taken from graph models [76], where the neighborhood of an
object describes all unary (class) and binary (reference) rela-
tions of the objects within a given range. Informally, neigh-
borhoods can be interpreted as richer types, where the original
classes are split into multiple subclasses based on the difference
in the incoming and outgoing references Formally, external di-
versity is measured as dext

i (M j,Mk) = |S i(M j) ⊕ S i(Mk)|, where
⊕ denotes the symmetric difference of two sets [76].

In our approach, each model is compared with the other
models in pairs after each ant has built its own model, from

6

Table 1: 5 feasible test suites with 5 members created by 5 different runs

Equivalence Classes
#Run Model1 Model2 Model3 Model4

1 2 2 0 0
2 0 3 1 0
3 2 1 1 0
4 3 0 1 0
5 1 2 0 1

which we obtain the external diversity. For instance, Model1
and Model2 shown in Figure 3 differ in two elements. Specif-
ically, the EReferences between the Family object and the last
Member object are son and familySon in Model1, while these
EReferences are daughter and familiyDaughter in Model2. This
means that dext

1 (Model1,Model2) = 2.
Finally, models are ranked according to metamodel coverage

and then sorted according to dissimilarity, so that internal di-
versity takes precedence over external diversity. Then the top
K models (so-called elites) that need to go to the next iteration
are stored in a shared memory between iterations. In the next
iteration, the elite models that have reached this stage from the
previous iteration and the other newly created models form the
new population (by new ants) are rearranged according to diver-
sity metrics and form the elite population of the next iteration.
In the final iteration, this elite population will be the output of
the algorithm and will include the N models that should appear
in the output (cf. Algorithm 1).

3.1.4. Update and evaporate pheromone trails
Right before running the next iteration of the algorithm,

two main phases of the ACO algorithm are executed. First,
the previous pheromone trails are updated on the model ele-
ments, which were initially empty. For the running example, in
Run #5 in Table 1 (where we consider that Model1 to Model4
represent different equivalence partitions as explained in Sec-
tion 2.1.3), the ant in Model1 and the ant in Model4 deposit
more pheromones onto their model elements in comparison to
the two ants in Model2, as they have higher external dissimilar-
ity between their constituent models. The reason is that there
are two models of type Model2 in that run, which causes a
smaller external diversity in this type of model. Let us recall
that models violating any constraint on the metamodel will not
deposit any pheromones at all (cf. Section 2.1.3).

After updating the pheromone trails, evaporation takes place,
in which the pheromones poured on the model elements are
evaporated at a constant rate. This causes disappearance of the
pheromone on the models that satisfy the objectives to a lower
extent over time. Therefore, models with better objective values
will likely have more pheromones onto their model elements,
and these are passed to the next iterations, leading to the con-
vergence of the algorithm in the final rounds.

3.2. OCL constraint rules check

For a model to be considered valid, it needs to conform to its
metamodel and satisfy the static constraints defined on it [26].

These constraints must be represented with the Object Con-
straint Language (OCL) [93] in our approach, as it is a common
practice in many MDE-related works [85]. OCL is a declara-
tive language, and it is used for defining rules on Meta-Object
Facility (MOF) metamodels, including UML. In our implemen-
tation, in addition to the input parameters (cf. Section 3.1.1),
the user can upload a file with OCL constraints that follow the
Eclipse OCL2 rules.

Differently from SAT solvers, which check the validity of
the models regarding static constraints after the complete mod-
els are generated, our algorithm integrates incremental checks
of the constraints. As it builds a model and immediately after a
model element is included, only those OCL constraints related
to that particular element are extracted and checked against the
model that has been constructed so far. If the addition of this el-
ement maintains the model’s validity, the model element can be
accepted and the construction of the model with the next meta-
element candidate can be continued. Otherwise, the model ele-
ment is discarded and a new model element will be generated.
With this solution, we do not need to wait for the complete
model to be generated in order to check the constraints, which
can help save time when the generated models are frequently
discarded due to the unsatisfiability of the constraints. Besides,
it fits with the constructive nature of the ACO algorithm.

Like with SAT solvers, the main problem of this solution is
when there are constraints that are complex to be satisfied. In
this case, our algorithm may get stuck in a potentially infinite
loop, since no added element at a certain point can make a spe-
cific constraint be satisfied. To tackle this issue, we define a
customizable value in which the user controls the number of at-
tempts to generate a new model element. The default value for
this number is considered 10 in our prototype implementation.
When an ant is unable to generate an element within a given ef-
fort range, this ant tries again to construct another model from
scratch. If the number of attempts for including an element that
satisfies a constraint is increased, then the possibility for gen-
erating valid models in complex scenarios also increases (al-
though the algorithm could take longer). The trade-off between
performance and finding valid models in our algorithm is flexi-
ble due to the inputs described above.

3.3. Prototype implementation

A prototype of the approach has been implemented in Eclipse
using Java 11. It is essential for the user to provide the ex-
plained inputs in Section 3.1.1. EMF Ecore is used to define
the input metamodel and Eclipse OCL is applied for specifying
the constraints on the metamodel. The models generated by our
tool are represented in the well-established XMI file format, so
that they can be used as input for any model transformation lan-
guage that accept XMI models as input. Our prototype tool is
available from our project’s website [57].

2https://projects.eclipse.org/projects/modeling.mdt.ocl

7

https://projects.eclipse.org/projects/modeling.mdt.ocl

4. Evaluation

In this section we present an evaluation of our approach and
framework based on six case studies. In particular, we are in-
terested in answering the following research questions (RQs):

• RQ1 - Domain-independence. Can our approach work
with metamodels and OCL constraints from different do-
mains? We want to evaluate whether our approach is ap-
plicable to metamodels and OCL constraints of different
nature, size and complexity.

• RQ2 - Performance. How does our prototype perform
when generating models? We want to evaluate the perfor-
mance of our approach with metamodels of different sizes
and compare it with the performance of state-of-the-art ap-
proaches.

• RQ3 - Usefulness. Are our generated model sets able to
detect faults in model transformations? We apply mu-
tation analysis in order to determine whether the mod-
els generated by our approach are able to detect faults in
model transformations when using them as input, and we
compare the results with state-of-the-art approaches.

In order to answer RQ3, we use five model transformations
that target different problem areas and differ in their level of
complexity regarding number and types of features used (size
of input/output metamodels, number of rules, use of imperative
rules, filters, helpers...). In order to answer RQ1 and RQ2, we
generate models conforming to the five input metamodels of
the model transformations mentioned and, for answering RQ2,
we use one additional large metamodel. Also, to appropriately
answer RQ1 and RQ2, we have defined sets of OCL constraints
for the five metamodels that must be satisfied by the generated
models. Finally, for answering RQ2 and RQ3, we do not only
analyze the results given by our approach and tool, but we also
compare it with state-of-the-art approaches.

The rest of this section is structured as follows. First, we
describe, apart from the running example presented in Sec-
tion 2.1.2, the other five case studies used in the evaluation.
Second, we describe the approach and tool we have used in
order to obtain mutants for model transformations, which are
needed for answering RQ3. Third, we explain the state-of-the-
art approaches with which we compare our approach in RQ2
and RQ3, namely Viatra solver and Random Generator. Fourth,
we describe the execution environment. Fifth, we detail the
evaluation process, which includes explanations on the size of
the models obtained, the OCL constraints defined, the types of
model transformation mutants used in the experiments, the way
the different tools have been configured and the number of runs
and statistical tests performed. Sixth, we present the results and
the answer to the three RQs. Finally, we discuss some aspects
of our approach and present the threats to the validity of this
evaluation.

4.1. Case studies
Let us recall that our ACO-based solution is independent

from the model transformation language, since it only depends

on the metamodel to which generated models must conform.
However, we do need to select actual model transformations in
order to evaluate the usefulness of our approach (RQ3). We
have chosen transformations written in ATL [55], since it is
currently one of the most commonly-used model transforma-
tion languages and has become a de-facto standard in MDE
for implementing model transformations [85]. Specifically, we
have selected five ATL model transformations, as shown in
Table 2. CPL2SPL, Families2Persons and Grafcet2PetriNet
are available on the open-source ATL Zoo respository [5],
while SOOML2SOOPL and Families2Persons Extended have
been taken from previous research works [69, 87]. They all
differ in the application domain and have been used as case
studies in several papers related to model transformation test-
ing [2, 18, 22, 69, 86, 87].

Table 2 summarizes some information of the model trans-
formations (ignore Mutants column for now). We can see the
number of classes, relationships and attributes of their input
and output metamodels, as well as the number of lines of code
and rules of each model transformation. The sizes of the input
metamodels vary from 2 classes and 4 relationships in the Fam-
ilies2Persons case study to 33 classes and 17 relationships in
the CPL2SPL case study. The different case studies are briefly
described in the following.

• CPL2SPL. This transformation, described in [56], is a rel-
atively complex example available in the ATL Zoo [5]. It
handles several aspects of two telephony DSLs, SPL and
CPL, and was created by the inventors of ATL.

• Families2Persons Extended. This is an extended ver-
sion of the original Families2Persons model transforma-
tion that can be found in the ATL Zoo and that has been
discussed in a number of related works on verification and
testing [40]. It was first proposed by Oakes et al. [69] and
used for evaluating other approaches [87].

• Grafcet2PetriNet. This transformation establishes a
bridge between grafcet, a mainly French-based represen-
tation support for discrete systems models, and petri net
models. This transformation is available on the ATL Zoo
respository [5].

• SOOML2SOOPL. This model transformation takes as in-
put a model representing an Object-Oriented Modeling
Language and transforms it into a model representing
an Object-Oriented Programming Language. This ATL
model transformation has been created by the Business In-
formatics Group of the Institute of Software Technology
and Interactive Systems at the Vienna University of Tech-
nology (TU Wien) as part of a Master Course and has been
used to evaluate previous works on model transformation
testing [87].

Apart from these model transformations, we are using an-
other metamodel for answering RQ2. In particular, it is a
large metamodel related to the Maude language [21]. The

8

Table 2: Model transformations used as case studies

Transf.
Name

Classes MM
Inp. - Outp.

Rel. MM
Inp. - Outp.

Attr. MM
Inp. - Outp. # LoC # Rules # Mutants

syntatic - semantic - typing
CPL2SPL 33 - 77 17 - 70 42 - 19 503 19 1620 - 332 - 95

Families2Persons 2 - 3 4 - 2 2 - 1 49 2 34 - 55 - 15
Families2Persons Extended 11 - 12 21 - 9 3 - 2 110 9 618 - 163 - 36

Grafcet2PetriNet 9 - 9 13 - 14 6 - 3 89 5 381 - 112 - 49
SOOML2SOOPL 15 - 10 27 - 18 5 - 5 269 10 1092 - 279 - 140

Total 5021

Maude metamodel3 consists of 45 metaclasses and covers part
of the Maude language, where it is restricted to the (big set
of) elements used in the formalization of models and metamod-
els [88].

4.2. Model transformation mutants
In mutation analysis, a mutant is a variation of the original

system under test (SUT) where an artificial bug is inserted. If
the executions of a SUT and its mutant for a specific input yield
different outputs, then we say that the mutant has been killed.
This means that this input has been used to detect that the mu-
tant was not the original SUT. If there is no input able to kill a
mutant, then we say that the mutant remains alive. The muta-
tion score determines the percentage of mutants that are killed
by the available inputs. In the context of model transformations,
it is ideal to count on a set of input models able to kill as many
model transformation mutants as possible.

In order to perform mutation analysis, we need model trans-
formation mutants where artificial bugs are seeded. For obtain-
ing mutants, we have used different types of mutation operators,
namely syntactic operators [84], semantic operators [3] and
typing operators [22]. Syntactic operators use create-update-
delete (CUD) actions with the 18 different operators proposed
by Troya et al. [84]. The aim of semantic operators is the same
as the ones presented by Mottu et al. [67], i.e., they try to mimic
common semantic faults that programmers introduce in model
transformations. Finally, typing operators inject typing errors
(e.g., changing the return type of a helper) or faults causing run-
time errors (e.g., deleting a parameter in a called rule) based on
the most frequent typing errors found in the ATL zoo [22].

Guerra et al. propose a Java framework [45] that facili-
tates the mutation analysis of ATL model transformations. This
framework provides the automatic generation of ATL model
transformation mutants and includes all mentioned mutation
operators. This approach does not only generate a set of mu-
tants for a given ATL model transformation, but it also allows
to apply mutation analysis given a set of input models. This
means that, having the set of models generated by our approach,
we can check which mutants they are able to kill. According
to Guerra et al. [45], a mutated transformation can be killed
in three ways: (i) the mutant crashes when executed on a test
model, (ii) the output model does not conform to the target
metamodel, or (iii) the output model is not the expected one,
which can be checked using a total or a partial oracle.

3This memtamodel can be accessed from http://atenea.lcc.uma.es/

projects/MaudeMM.html

4.3. State-of-the-art approaches for model generation

As mentioned before, we compare the performance (RQ2)
and usefulness in model transformation testing (RQ3) of our
approach by comparing it with two state-of-the-art approaches,
which are explained below.

4.3.1. Viatra Solver
Viatra Solver4 is an open-source tool that automatically syn-

thesizes consistent graph models [73]. It takes a metamodel and
a set of well-formed rules as input, and it uses a SAT solver to
obtain a diverse set of consistent graph models conforming to
the metamodel, satisfying the consistency constraints and struc-
turally different among each other. The model generation starts
from an abstract partial model or a user-specified seed model
piece. Partial models grow with unit decision and diffusion
rules adapted from key SAT solving techniques. Each step dur-
ing model generation modifies and develops a previous minor
model, while regularly ensuring that consistency is not violated.
If the constraint violation can no longer be repaired to have a
valid model in hand, or the partial model has already been in-
spected, the model generation process will be reversed. This
tool enumerates the generated models according to equivalent
classes based on neighborhood shapes. Viatra Solver supports
Alloy (with back-end SAT solvers like Sat4j and Minisat), Z3
SMT solver, and features a new graph solver. The framework
uses the background solvers automatically, so no additional
skill is required by the language developers. The generated set
of models can be more diverse than those of other approaches
using logic solvers in the backend, thus it is more appropriate
to be applied, e.g., for mutation testing scenarios [73]. This is
the main reason why we select this tool for comparing it with
ours.

4.3.2. Random Generator
The tool by Guerra et al. [45] explained in Section 4.2 also al-

lows the creation of a set of random models given a metamodel,
where the user can specify the number of models to create and
the relative size of the models (size ± ratio). In the evaluation
results, the model generation by this approach is referred to as
“Random Generator”, where the ratio is set as 0.0001 to have
an almost fixed size in the comparisons.

4https://github.com/Viatra/Viatra-Generator/wiki/

9

http://atenea.lcc.uma.es/projects/MaudeMM.html
http://atenea.lcc.uma.es/projects/MaudeMM.html
https://github.com/Viatra/Viatra-Generator/wiki/

4.4. Execution environment
The machine in which the experiments have been carried out

is a PC running the 64-bit OS Microsoft Windows 10 with an
AMD Ryzen 4800H 2.90 GHz processor and with 16GB of
RAM. For this, we have used Eclipse Modeling Tools (IDE
2020-06 (4.16.0)), and we had to install the ATL plugin (ver-
sion 4.2.0).

4.5. Evaluation Process
This section explains the different models that have been

generated with the different approaches in order to answer the
RQs. It also describes the OCL constraints defined on the MMs,
which help reply RQ1, and summarizes the model transfor-
mation mutants that have been obtained for answering RQ3.
Finally, it describes the configuration of the three tools under
comparison as well as the number of runs executed and statisti-
cal tests performed.

4.5.1. Generated models
In order to properly evaluate our approach and the state-of-

the-art approaches regarding model generation, we need to de-
fine the models that are to be generated in this evaluation. In
this sense, we drive the model generation according to two at-
tributes, namely model size and number of models. The former
refers to the number of elements in each generated model, while
the latter means the number of models obtained in each run.

In our evaluation, the values of these two attributes are shown
in columns # Models and # Elements in Table 3. For all five
metamodels, we follow the same two patterns:

• First, we define a fixed number of models, 50, and we vary
the number of model elements to generate in each model,
< 10, 20, 40, 80, 160, 320 >.

• Second, we vary the number of models to generate in each
run (from 100 to 500 with an increase of 50 models),
where all have a fixed size of 10 model elements.

Regarding the Maude metamodel, it is used especially to
check the limitations of the different tools. To this aim, the
model size is fixed in 1,000 model elements, and the number
of models to generate in each run scales up to 1 million (cf.
Section 4.6).

4.5.2. OCL constraints
In order to ensure that the approaches are able to work with

contraints imposed on the metamodels, we have defined a set
of OCL constraints for them. We use some well-known OCL
operations in these constraints, such as size(), oclIsUndefined(),
allInstances() or notEmpty().

Listing 1: Examples of OCL constraints the for Families metamodel

c o n t e x t Family inv L a s t N a m e W i t h S p e c i f i c S i z e :
s e l f . l a s tName . s i z e () > 10 and s e l f . l a s tName . s i z e () < 14

c o n t e x t Member inv F i r s t N a m e A t L e a s t F i v e C h a r a c t e r s :
s e l f . f i r s t N a m e . s i z e () > 4

c o n t e x t Member inv MoreThanThreeMembers :
s e l f . a l l I n s t a n c e s ()−> s i z e () > 3

c o n t e x t Family inv MustHaveAtLeastOneSon :
s e l f . sons−> s i z e () > 0

c o n t e x t Family inv MustHaveAtLeastTwoDaughters :
s e l f . d a u g h t e r s −> s i z e () > 1

c o n t e x t Family inv SameNumberOfSonsAndDaughters :
s e l f . d a u g h t e r s −> s i z e () = s e l f . sons−> s i z e ()

As an example, the OCL constraints for the Families meta-
model (cf. Figure 1) can be found in Listing 1. The first
one, called LastNameWithSpecificSize, states that the last name
of every family must have more than 10 and less than 14
characters. The second constraint forces all members’ first
names to have, at least, five characters. The constraint called
MoreThanThreeMembers forces models to have, at least, four
objects of type Member. The next two constraints determine
the minimum number of sons and daughters that each family
must have, 1 and 2, respectively.

The constraints for the other metamodels can be consulted on
our project’s website [57]. It can happen that some constraints
contradict others. For this reason, when considering the con-
straints in the model generation process, we may consider dif-
ferent sets of constraints in different runs. This is exemplified
in columns Constraints of Table 4. In the Grafcet metamodel,
constraints 4 and 5 contradict constraint 6. This is the reason
why constraints 4 and 5 are used in one run and constraint 6 is
used in a different one.

It is important to highlight that the Random Generator (cf.
Section 4.3.2) does not support constraints defined on the meta-
model. Regarding Viatra Solver (cf. Section 4.3.1), it does not
accept constraints written in OCL, but in VQL (Viatra Query
Language)5. VQL reuses the concepts of graph patterns, mak-
ing it an easy way to specify graph model queries. A major
limitation is that OCL constraints cannot be applied directly for
generating models in Viatra Solver, since no OCL-VQL con-
verter is currently embedded in the tool. In fact, VQL does
not currently6 support some OCL operators [7] and, therefore,
some OCL rules cannot be converted to their equivalent VQL
constraints. As an example, the LastNameWithSpecificSize con-
straint explained before is not applicable in Viatra Solver, as
VQL does not support queries which include the String data
type.

As a result, a modified version of some of the OCL con-
straints are used for evaluating Viatra Solver. The VQL con-
straints shown in Listing 2 for the Families metamodel of our
running example are equivalent to the two last OCL constran-
ints shown before. For evaluating the performance, we can only
consider a subset of the OCL constraints defined on the meta-
models when evaluating Viatra Solver (see columns OCL Con-
straints and VQL Constraints in Table 4). The complete set of
VQL constraints for the different case studies can be checked
on our project’s website [57].

Listing 2: Examples of VQL contraints for the Families metamodel

5https://www.eclipse.org/viatra/documentation/

query-language.html
6As of February 2023

10

https://www.eclipse.org/viatra/documentation/query-language.html
https://www.eclipse.org/viatra/documentation/query-language.html

p a t t e r n HaveAtLeastOneSon (f a m i l y : Family , mem : Member) {
Family . sons (f ami ly , mem1) ;

}

p a t t e r n HaveAtLeas tTwoDaughters (f a m i l y : Family , mem: Member) {
Family . d a u g h t e r s (f ami ly , mem1) ;
Fami ly . d a u g h t e r s (f ami ly , mem2) ;
mem1 != mem2 ;

}

@ C o n s t r a i n t (message =” r u l e 1 ” , s e v e r i t y =” e r r o r ” , key ={F })
p a t t e r n i n v a l i d F a m i l y (f a m i l y : Fami ly) {

neg f i n d HaveAtLeastOneSon (f ami ly ,) ;
}

@ C o n s t r a i n t (message =” r u l e 2 ” , s e v e r i t y =” e r r o r ” , key ={F })
p a t t e r n i n v a l i d F a m i l y 2 (f a m i l y : Fami ly) {

neg f i n d HaveAtLeas tTwoDaughters (f ami ly ,) ;
}

4.5.3. MT mutants obtained
By using Guerra et al’s approach [45] and the tool provided,

we have created 5021 mutants for the five case studies (cf. last
column in Table 2). The table shows the number of mutants
of each model transformation classified by their type (syntac-
tic, semantic and typing; cf. Section 4.2) for each case study.
As explained before, given a set of input models for a model
transformation, this tool performs mutation analysis and prints
a report with the results, where the mutation score for all types
of mutation operators is displayed. Therefore, this tool is used
for performing the mutation analysis and replying RQ3, where
the models that are fed to the tool are those obtained by our tool
and Viatra Solver.

4.5.4. Tools configuration
When not said explicitly otherwise, the fixed parameters for

the experiments in our ACO-based solution are α = 1, β = 1, ρ
= 0.05 (cf. Sections 2.2.2 and 3.1.1). Regarding Viatra Solver,
we choose the default SAT solver at the back-end. As for the
Random Generator, the ratio is set as 0.0001 as explained in
Section 4.3.2.

4.5.5. Number of runs and statistical tests
Search-based algorithms may produce different results per

run [71]. To deal with this random nature, it is important to
evaluate their effectiveness by performing a large number of
runs, which should be at least 30, as suggested by Arcuri and
Briand [4]. Additionally, it is essential to use the statistical tests
that provide support for rejection of the conclusions derived by
analyzing the obtained results [71]. In this paper, we employ
Kruskal-Wallis test [63] in order to detect significant perfor-
mance differences between the algorithms under comparison (α
is set at 0.05). In this validation, each iteration is repeated 30
times for each algorithm and each metamodel. Also, to en-
sure which approach is superior in comparison with the others,
Wilcoxon rank sum test [63] is employed for pair-wise compar-
ison of algorithms.

4.6. Results
4.6.1. RQ1 - Domain-independence

Our first RQ has to do with the compatibility of our ap-
proach to work with different case studies coming from differ-
ent domains. Indeed, this RQ can be answered affirmatively.

As described in Section 4.1, we have evaluated our approach
and implemented prototype in five different model transforma-
tions of different nature, and we have further evaluated it with
one large metamodel. All the generated models, which can be
found on the project’s GitHub repository [57], conform to the
corresponding metamodel and satisfy the given set of OCL con-
straints. Therefore, we can claim that our approach is domain-
independent. The only requirement with the current implemen-
tation is that the metamodel to which models will conform must
be expressed in Ecore and its constraints using Eclipse OCL.

4.6.2. RQ2 - Performance
In order to response to this research question, we have mea-

sured the execution time and memory consumption of our tool
with the different models explained in Section 4.5.1. This is
shown in column ACO of Table 3. We also measure the perfor-
mance of the state-of-the-art approaches for comparison with
our tool, as shown in columns Viatra Solver and Random Gen-
erator in the table. For the models shown in Table 3, no OCL
constraints have been considered.

We can observe in the ACO column of the table that all exe-
cution times are reasonable for all metamodels and models of a
variety of sizes. For instance, in the CPL2SPL case study, the
longest time taken by our approach is 3.5 seconds for the gen-
eration of 500 different models, with 10 elements each, con-
forming to the CPL metamodel (which has 33 classes, 17 re-
lationships and 42 attributes; cf. Table 2). This means that it
takes an average of 7 ms to generate each model. When gen-
erating 50 models of different sizes, the average execution time
when generating the smallest models (with 10 elements) is 30
ms, while the average execution time for generating the largest
models (with 320 elements) is 60 ms. We can see that this dif-
ference is very small. In fact, we observe that all execution
times are quite homogeneous with all the metamodels, despite
these having different nature and complexity. Our hypothesis
for this behavior is explained in Section 4.7.

When comparing our approach with the others in terms of
execution time, we observe that the Random Generator outper-
forms our solution in most cases. However, the difference is not
very big—the major difference is 2.1 seconds in the generation
of 50 models with 320 elements for the Grafcet metamodel. Re-
garding Viatra Solver, it takes much longer for generating the
models than our approach. Besides, in this solution, times vary
more depending on the number of models to generate and the
number of elements they must contain—this is normal, since it
relies on a SAT solver. We can see that no numbers are added
when creating models with 20 elements or more for the Fami-
lies Extended metamodel. The reason is we started the execu-
tion, and after 5 minutes it had not finished, so we stopped it
manually. We observed this same behavior in several different
runs. From the execution times in the table we calculate that,
on average, our solution is more than 50 times faster than Viatra
Solver.

Regarding memory consumption, the numbers are quite rea-
sonable with our approach. For instance, it only needs 22.9
MB for generating 500 models with 10 elements conforming
to the Families Extended metamodel. Similar to the execution

11

Table 3: Performance metrics with different model sizes and number of elements

Metamodel # Models # Elements ACO Viatra Solver Random Generator

Performance indicators
Execution
Time (s)

Memory
Consump. (MB)

Execution
Time (s)

Memory
Consump. (MB)

Execution
Time (s)

Memory
Consump. (MB)

CPL

50

10 1.5 29.9 39.8 359.9 0.8 155.4
20 1.6 36.6 40.3 381.1 0.8 170.0
40 1.8 49.8 54.8 375.0 0.8 232.0
80 2.0 75.6 93.6 459.7 1.0 223.3

160 2.4 124.0 139.6 451.4 1.0 195.6
320 3.0 130.4 385.8 944.5 1.2 193.5

100

10

1.7 43.2 51.00 655.8 0.8 222.2
150 2.8 61.2 82.3 413.0 1.5 170.4
200 2.4 82.8 113.0 400.3 1.6 167.7
250 2.6 109.7 143.0 439.0 2.3 134.1
300 2.9 140.5 200.9 423.1 2.2 194.6
350 3.0 34.2 214.0 420.0 2.9 236.7
400 3.4 74.7 243.3 449.4 2.9 233.0
450 3.3 118.0 248.6 450.0 3.6 202.5
500 3.5 27.0 278.7 517.7 3.6 184.4

Families

50

10 1.5 24.3 18.7 183.5 0.4 191.8
20 1.5 27.1 19.8 110.1 0.5 170.5
40 1.5 34.5 30.1 150.5 0.6 175.7
80 1.7 47.6 52.5 267.2 0.7 222.5

160 2.2 75.6 23.5 406.8 0.8 226.7
320 2.5 126.4 20.0 553.3 1.0 191.5

100

10

1.6 32.1 51.6 139.4 1.0 202.6
150 1.9 51.2 79.8 195.6 1.4 277.8
200 2.2 71.7 67.9 136.7 1.3 191.3
250 2.5 95.7 81.1 215.3 1.6 218.9
300 2.7 125.7 85.6 150.1 2.1 160.7
350 3.0 18.1 115.6 164.9 2.5 233.1
400 3.2 56.0 141.8 186.6 2.6 157.3
450 3.5 99.5 130.7 191.0 3.1 173.9
500 3.5 99.7 181.4 143.3 3.6 188.4

Families Extended

50

10 1.0 26.6 9.4 212.6 0.8 245.4
20 1.1 32.5 - - 1.0 201.5
40 1.3 44.1 - - 0.9 205.8
80 1.6 69.7 - - 0.9 232.5

160 1.8 131.0 - - 0.9 169.8
320 2.1 20.7 - - 0.9 150.5

100

10

1.2 38.9 15.9 264.4 0.8 239.6
150 1.5 56.6 25.8 291.5 1.2 173.8
200 1.7 78.0 30.2 309.1 1.9 194.4
250 2.0 105.2 34.2 313.9 1.8 185.3
300 2.1 135.9 64.8 470.0 2.2 213.4
350 2.4 29.3 59.1 372.2 2.1 186.0
400 2.6 69.0 71.6 347.8 2.8 196.7
450 2.7 114.5 70.0 231.3 2.3 165.4
500 2.9 22.9 85.4 360.1 2.6 229.5

Grafcet

50

10 1.5 25.7 43.2 152.0 0.5 215.6
20 1.5 30.9 30.9 185.5 0.6 207.9
40 1.8 41.7 37.8 262.7 0.7 189.2
80 2.1 65.6 60.9 200.1 0.8 188.3

160 2.5 118.6 147.7 397.8 0.9 175.9
320 3.4 122.8 481.8 649.1 1.3 198.0

100

10

1.7 38.5 60.0 219.7 0.9 248.9
150 2.1 56.0 108.8 171.5 1.2 246.4
200 2.4 79.0 162.2 210.7 1.2 177.7
250 2.6 104.5 216.0 262.6 1.2 174.2
300 2.9 135.1 267.5 230.1 1.3 175.7
350 3.1 29.6 426.0 359.4 1.5 175.4
400 3.4 68.0 464.8.0 337.7 1.9 165.6
450 3.6 113.7 634.6 279.4 2.0 229.8
500 4.2 21.0 637.2 284.1 2.1 148.8

SOOML

50

10 1.1 25.2 16.6 183.8 0.6 247.5
20 1.1 31.1 21.9 214.4 0.7 205.0
40 1.2 41.7 21.7 202.0 0.7 220.3
80 1.4 64.1 26.1 221.2 0.9 128.8

160 1.7 117.1 22.1 242.8 1.1 195.9
320 1.9 116.2 25.9 253.9 0.9 192.2

100

10

1.2 38.3 30.1 190.6 0.9 209.8
150 1.6 55.5 78.2 249.0 1.3 241.6
200 1.7 76.6 54.2 172.6 1.5 170.0
250 2.0 102.6 32.2 216.8 1.7 222.7
300 2.1 132.6 43.8 219.4 2.1 184.2
350 2.2 26.2 49.1 244.0 2.4 187.3
400 2.4 64.7 45.5 271.8 2.5 187.3
450 2.6 108.2 63.0 269.5 2.7 193.9
500 2.7 16.9 78.1 271.5 3.2 229.9

12

Table 4: Performance metrics with different constraints (number of models to generate is set to 50)

ACO Viatra Solver

Metamodel # Elements OCL
Constraints

Execution
Time (s) Memory (MB) VQL

Constraints
Execution
Time (s) Memory (MB)

CPL 30
1-4 1.6 32.5

3, 5 3.2 345.34-8 2.5 106.3
1-8 3.3 61.2

Familes 7 1-6 2.8 1.1 4, 5 11.6 166.3
Families Extended 30 1-6 1.5 68.0 2, 3 17.3 176.3

Grafcet 30 1-3, 6 2.5 81.2 3, 5 43.8 220.01-5 1.9 1026

SOOML 30 1-7 4.0 94.0 2-5 27.3 253.21, 8, 9 2.5 99.5

time values, we can see that the memory consumption is not
very different in the generation of the different models for the
different metamodels. Besides, our tool consumes less mem-
ory than the other two tools in all cases. Viatra Solver is the
tool consuming more memory in most cases, although Random
Generator is the one consuming more memory in some cases.

Let us now consider the inclusion of OCL constraints for ob-
taining the models, which is shown in Table 4. In all cases, 50
models are generated. As we can see in the # Elements col-
umn, 30 model elements are generated in all models except for
models conforming to the Families metamodel, which contain
7 model elements. As explained in Section 4.5.2, we have de-
fined different OCL constraints for the different metamodels.
They are all available on our project’s website [57]. The con-
straints’ IDs that are considered in the generation of the models
with our approach is shown in OCL Constraints column. Since
not all these OCL constraints can be converted into VQL con-
straints, those that could be expressed in VQL were considered
for the Viatra Solver executions and their IDs can be seen in col-
umn VQL Constraints. The Random Generator cannot take into
account constraints expressed on the metamodels in the model
generation process, reason why it is not included in the table.

Even though in the model generation with our approach we
are considering more constraints than in the generation with Vi-
atra Solver (columns OCL Constraints and VQL Constraints),
our approach is faster in all cases except one—in the CPL meta-
model, where 8 OCL constraints are considered versus 2 VQL
constraints, our approach is 0.1 seconds slower. In fact, our
approach can be up to 23 times faster—as in the Grafcet meta-
model, where 5 OCL constraints versus 2 VQL constraints are
considered. Regarding memory consumption, the memory con-
sumed by our ACO approach is quite reasonable in all cases, es-
pecially considering the overload that checking constraints typ-
ically causes

To further measure the scalability of our approach, we per-
formed stress tests to check at which points the different tools
under study would suffer from memory shortage or crash. For
this, we considered the large Maude metamodel (cf. Sec-
tion 4.1). The number of model elements to generate in each
model was set to 1,000.

We did a first experiment with our tool, in which we gener-
ated 10, 000 models. The tool was able to generate 100 models
per second, with a memory consumption of up to 120 MB. We

continued the experiment by increasing 10 times the number of
models in each execution run. Our tool was able to create mod-
els sets with an increasing number of models until we reached
1,000,000 models. At this moment, the program was unable
to continue running due to an out-of-memory error. We per-
formed the same experiment with the other two tools. Viatra
Solver could not generate the set with 100, 000 models and the
Random Generator, like our tool, could not generate the set
with 1,000,000 models; both due to memory overflow.

4.6.3. RQ3 - Usefulness
In order to determine whether our approach is able to de-

tect faults in model transformations, we performed mutation
analysis using Guerra et al.’s framework [45] (cf. Section 4.2).
For each case study and each tool under comparison, we used
this framework for computing the mutation score of 30 different
runs. Each of these runs takes as input one different model gen-
erated by the tool under evaluation. These models used as input
have an average of 10 elements each. In these experiments,
the ACO parameters are set as follow: MaxIt = 1, #Ants=10
α=1, β=0 and ρ=0.05; while Viatra Solver parameters are set
as: number=5 and #node=1.

Table 5 shows the results of the mutation analysis for the
three tools. The framework used for this analysis [45] out-
puts the mutation analysis results classified by mutant type. Let
us take, for instance, the score 93.33% in the mutants of type
Typing of the CPL2SPL case study obtained with our ACO
approach—recall that 95 mutants of type typing were created
for the CPL2SPL model transformation, as we can see in the
last column of Table 2. The score 93.33% means that the 30
models used in the 30 runs of the mutation analysis were able
to kill an average of 88.66 typing mutants (out of the total of 95
mutants).

If we analyze the mutation scores for our approach, we can
see that the results are quite acceptable for all case studies. All
scores are above 70% except for the typing mutants of Fam-
ilies2Persons Extended and the typing and synatic mutants of
SOOML2SOOPL. In any case, all mutation scores are above
65%, and we can see that the overall mutation score is 80.49%,
which is a very good number. By having a look at the mu-
tation scores obtained with the models generated by Viatra
Solver, we can see that results are not that good. We inspected
the models obtained by Viatra Solver that were given as in-
put for the mutation analysis, and observed some anomalies

13

Table 5: Mutation analysis by case study and mutant types (cf. Section 4.2)

Transformation
Name

% ACO
Typing - Semantic - Syntactic

% Viatra Solver
Typing - Semantic - Syntactic

% Random Generator
Typing - Semantic - Syntactic

CPL2SPL 93.33 - 93.33 - 93.33 2.41 - 23.33 - 32.32 66.67 - 66.67 - 66.67
Families2Persons 100.00 - 100.00 - 76.47 86.67 - 94.54 - 76.47 86.67 - 85.45 - 76.47

Families2PersonsExtended 65.74 - 73.39 - 71.59 1.30 - 1.90 - 9.17 0.00 - 0.00 - 0.00
Grafcet2Petrinet 78.98 - 87.80 - 89.44 22.72 - 39.46 - 52.27 52.86 - 49.20 - 55.04

SOOML2SOOPL 67.33 - 73.34 - 68.33 16.38 - 22.58 - 22.92 0.00 - 0.00 - 0.00
Total 80.49% 13.64% 34.58%

in the models. In particular, the root object of some models
did not correspond to the root class of the metamodel, but to
some inner class. For instance, in the Families Extended meta-
model [69], the root class is Country. A Country is composed
of Cities that, in turn, are composed of Neighborhoods. Fi-
nally, Neighborhoods are composed of Schools. We observed
that the root object of some models was not of type Coun-
try, but of type City, Neighborhood or School. If the root ob-
ject of a model is of type, let us say, School, then this model
will not contain any object that is a container of School—in
this example, it will not contain any object of type Neighbor-
hood, City or Country, or any object contained by objects of
these types that are not directly contained by objects of type
School or by their contained objects. Inevitably, this reduces
the object variability in the models and, therefore, the chance
to kill model transformation mutants. Finally, the scores ob-
tained with the models generated with Random Generator are
worse than those obtained with our tool. While the muta-
tion scores in the Families2Persons model transformation were
quite good, with all above 75%, no mutant was killed in Fam-
ilies2Persons Extended and SOOML2SOOPL model transfor-
mations. The overall mutation score was 34.58%, much smaller
than our 80,49% mutation score.

Regarding the statistical tests used in our evaluation (cf. Sec-
tion 4.5.5), the values of chi-squad per mutant type are semantic
= 126.56, syntactic = 124.13 and typing = 106.62, all with p-
value < 2e − 16 and df = 2. These results entail that we would
obtain meaningful results with our ACO algorithm in compari-
son with Viatra Solver and Random Generator solutions. This
is computed by comparing the mean of the mutation scores be-
tween the five metamodels shown in Table 5. To ensure which
algorithm is superior in comparison with the others, Wilcoxon
rank sum test [63] is employed for performing pair-wise com-
parison between algorithms (Tables 6–8). As a summary, Ta-
ble 9 shows a meaningful difference between ACO and Viatra
Solver and between ACO and Random Generator. There is no
significant difference between Viatra Solver and Random Gen-
erator.

4.7. Discussion
After performing the evaluation of our approach and the

comparison with state-of-the-art approaches, there are some as-
pects that we would like to clarify.

First, it is important to recall and highlight the aim of our
contribution. Our goal was to develop an approach and easy-to-
use framework for the generation of test models given a meta-
model. The models generated should be optimized for model

Table 6: Wilcoxon test - Semantic

ACO RANDOM
RANDOM 2.0e-16 -

Viatra 2.0e-16 0.37

Table 7: Wilcoxon test - Syntatic

ACO RANDOM
RANDOM 2.0e-16 -

Viatra 2.0e-16 0.35

Table 8: Wilcoxon test - Typing

ACO RANDOM
RANDOM 5.5e-15 -

Viatra 2.0e-16 0.44

Table 9: Wilcoxon test - Overall

ACO RANDOM
RANDOM 2.0e-16 -

Viatra 2.0e-16 0.99

transformation testing. In the process of evaluating our tool
and developed framework, a comparison with similar state-of-
the-art frameworks could put the contribution of our work into
context. With this in mind, we shall clarify that it was not easy
to find tool prototypes or frameworks with a similar purpose as
ours, i.e., we observed a lack of tools for the automatic gen-
eration of models given minimal user inputs that used stan-
dardized formats such as XMI. We selected the two tools that
provided the closest functionality: Viatra Solver and Random
Generator (cf. Sections 4.3.1 and 4.3.2). We had other candi-
date tools used by MDE practitioners, such as USE [39], but
we discarded it due to the incompatibility of its inputs and
outputs with EMF—for instance, USE does not accept Ecore
metamodels—and to the lack of works proposing the genera-
tion of large model sets with USE.

Second, regarding the results obtained for RQ3, it is impor-
tant to recall that our approach was tailored to model transfor-
mation testing, i.e., one of our goals was to maximize the mu-
tation score when using the models generated by our approach.
The tools with which we compare our approach were not con-
ceived with this primary goal, so it is not surprising that our tool
obtained better results (cf. Table 5). Besides, in the case of Vi-
atra Solver, we observed some anomalies in the models, as we
explained in Section 4.6.3. In any case, as we say, Viatra Solver
was created with a different goal in mind, and it is primary con-
ceived for its use with graph models. In the case of Random
Generator, it is part of a much complex framework [45] from
which we have used its model generation functionality—recall
we use another functionality of this tool for obtaining and exe-
cuting all model transformation mutants in the mutation analy-
sis. Having said this, we do not aim to replace these two tools
with ours, but to complement them.

Third, we wanted to explore an algorithm, ant-colony opti-
mization, that was—to the best of our knowledge—unexplored
in the context of model generation. We are very satisfied with

14

the results obtained, both regarding performance (cf. Sec-
tion 4.6.2—RQ2) and mutation score (cf. Section 4.6.3—RQ3).
We firmly believe that the framework we have developed [57]
can be used by MDE practitioners who are accustomed to work
with the EMF ecosystem.

Regarding the results for performance (cf. Table 3), we ob-
served that all execution times are quite homogeneous with our
tool. Our explanation lies in the fact that ACO relies on a col-
lective wisdom based on Pheromone trails (cf. Section 2.2.2).
When an ant wants to select a solution, it does not search in
the whole search space, but instead it considers the amount of
Pheromone trails. Based on this and the heuristic information
of the problem, a probabilistic value is calculated (cf. Equa-
tion 1), which will lead the ant to take the next step instead of
searching the whole solution space. This way, when a meta-
model gets bigger in size, the probabilistic calculation will not
take much more time and the calculation complexity will re-
main O(1). This makes our ACO-based approach a scalable
solution.

Finally, also in the reply to RQ2, we observed that our tool
only crashed with the Maude metamodel when trying to gener-
ate sets with 1,000,000 models. In practice, we will rarely need
such an amount of models, so our tool presented very accept-
able scalability results.

4.8. Threats to Validity

In the following, we describe the four types of threats that
can affect the validity of current study, according to Wohlin et
al. [95].

4.8.1. Construct validity threats
Threats related to construct validity are concerned with the

relationship between theory and what is observed. A possible
threat could be the way we have assessed the variability in the
models obtained with our approach. This assessment has been
done by performing a mutation analysis—response to RQ3 (cf.
Section 4.6.3). We chose to perform mutation analysis because
it is the most extended technique as test adequacy criteria in
the context of model transformation testing [85] for assessing
generated models. Another possible way of assessing this vari-
ability could have been to compare the obtained models among
them or individually computing the metamodel coverage and
model transformation coverage of each generated model. How-
ever, since the goal of obtaining models that were different
among them and covered the metamodel as much as possible
was to use them in the process of model transformation testing,
we considered that the best way to assess this variability was
through mutation analysis.

4.8.2. Conclusion validity threats
Threats to the conclusion validity are concerned with the is-

sues that affect the ability to draw correct conclusions from the
data obtained from the experiments. In our experiments, the
transitory load of the machine where the performance experi-
ments were executed can influence the performance results. To
mitigate this threat, we have run all experiments 30 times on the

same machine and taken the results returned by the average of
the all runs.

4.8.3. Internal validity threats
These threats are related to those factors that might affect the

results of our evaluation. The experiments to evaluate the use-
fulness of our approach require the generation of several inputs,
such as model transformation mutants and appropriate oracles.
We have used Guerra et al.’s framework [45], which provides
the generation of these inputs out of the box. If we had used
different mutants or different oracles, we could have obtained
different results. However, we think this threat is partly miti-
gated by the high number of mutants used in the experiments:
5021.

4.8.4. External validity threats
These threats have to do with the extent to which it is pos-

sible to generalize the findings of the experiments. The first
threat is that the results of our experiments have been obtained
with six case studies, which externally threatens the general-
izability of our results. To mitigate this threat, we have tried
to select a set of model transformations that differ in their do-
mains and size of metamodels and transformation, as reflected
in Table 2, and that have been used as case studies in several
approaches related to model transformation testing. Another
threat is that we have evaluated our approach with model trans-
formations implemented in ATL due to its importance both in
industria and academia, so it would be interesting to evaluate it
with other transformation languages. However, we do believe
the proposed approach would produce similar results for any
model transformation language as long as they can receive XMI
models and Ecore metamodels as input.

5. Related work

There are several approaches proposing the generation of
models for model transformation testing purposes. Overall,
they can be classified as black-box and white-box approaches.
The former do not consider the model transformation under test
in the model generation process, while the latter do. Since our
approach is black-box, we only mention black-box approaches.

There exist several generators of consistent models (such as
EMFtoCSP [43], USE [58], Formula [54] or Clafer [6]) that
take the high-level specification of the modeling language and
translate it to a logic representation and then derive consis-
tent (graph-) models using back-end logic solvers (like Kod-
Kod [83], Korat [96] or the Z3 SMT-solver [24]). Despite their
conceptual elegance, existing techniques only scale for tree-like
models [31], but they do not scale for complex graph structures.
A detailed comparison of model generator approaches and ex-
pected graph properties is provided in [89], which covers graph
generators developed in other disciplines (like graph databases
or network science). While all these tools are able to gener-
ate consistent models, favorable scalability was only reported
in [81], [75] to synthesize graph models with at least 1,000
nodes—in our evaluation, our tool was able to generate more
than 100,000 models at once with 1,000 elements each.

15

Some approaches build on the USE framework, where mod-
els are not generated in the standard XMI format and input
metamodels in Ecore format are not accepted. For instance,
Gogolla et al. [39] consider metamodel coverage and invari-
ants satisfaction, and propose to use the ASSL language for the
model generation. The models are not generated only from the
metamodel, but according to the ASSL specification. Hilken
et al. [41, 50] focus on testing models and model transforma-
tions and apply the concept of classifying terms for defining
equivalent classes for partitioning the source and target model
spaces of the transformation. The USE tool is applied to gen-
erate object models in a goal-oriented way, where classifying
terms must be manually defined, so models are not generated
from scratch as in our approach. Burgueño et al. [17] continue
this line of work and propose a method to obtain classifying
terms automatically. This work has a similar purpose as ours,
as only the input metamodel with annotated OCL constrainst is
necessary. However, they do not generate a large set of mod-
els, and the generation is not completely automatic, since the
domain expert is expected to decide which of the automatically
identified classifying terms must be used in the generation pro-
cess.

Some other lines of work also propose the generation of mod-
els, but they typically require inputs given by the domain ex-
pert. For instance, Sen et al. [77, 78] consider model frag-
ments apart from the metamodel and a set of pre-conditions ex-
pressed in OCL. Guerra and Soeken [46] drive the generation
of models with a set of OCL expressions obtained from pre-
and post-conditions and from invariants. Another example is
WODEL [42], a DSL and tool for the specification and gener-
ation of model mutants. WODEL generates mutants of models
that conforms to arbitrary meta-models, where seed models are
needed.

Some works have specifically focus on the efficiently gen-
eration of models. For instance, Nassar et al. [68] automate
the generation of valid EMF models. The metamodel is first
translated to a rule-based model transformation system and then
these rules generate the models. The generation process may
be further configured by the user, for instance providing ini-
tial seed models. The scalability of the approach is proved by
generating large models. The objective of this approach is sim-
ilar to ours, but it is addressed from a different perspective and
implementation, and it is not evaluated in the context of model
transformation testing. Therefore, we see this approach as com-
plementary to ours. He et al. [48] present an approach for effi-
cient model generation, in which they generate models of large
size in reasonable times. The major difference with our ap-
proach is that the way a valid model must be generated has to
be specified with a template, for which they provide a DSL, so
domain knowledge is necessary.

None of the aforementioned approaches apply search-based
techniques in the generation of models, like our approach does,
but there are other works that do. Rose and Poulding [70] pro-
pose a search-based process to select a subset out of a set of
random models conforming to a metamodel. This way, they
aim at speeding up the testing process by relying on a smaller
number of input models. The problem is they need to count on

an initial set of models. Random-mutation hill climbing is used
as search method. Shelburg et al.’s work [79] proposes to use a
multi-objective search-based approach to generate input models
from existing ones when the metamodel is modified, so the fo-
cus of this work is different than ours. Wang et al. [92] propose
a search-based approach for generating input models based not
only on the coverage of the metamodel, but also on structural
information. In particular, they propose to use a mono-objective
optimization algorithm to generate input models that maximize
the coverage of the metamodel while minimizing the structural
distance and the number of models. The concept of structural
distance is similar to ours, but the main difference with our ap-
proach is that information on structural information needs to
be given as input. Finally, Alkhazi et al. [2] propose a multi-
objective approach for selecting appropriate test cases for the
purpose of transformation testing. They apply the NSGA-II al-
gorithm, but the approach is not targeted at building models
from scratch.

Finally, it is worth mentioning that there are some other
works related to managing models, but they have slightly differ-
ent focus. For instance, Fleurey et al.’s [37] approach is devoted
to asses the quality of a given set of input models, while the
objective of our approach is precisely to obtain an optimal set
of models. Another example is the work by Aranega et al. [3],
which propose to apply mutation analysis to semi-automatically
improve an initial set of test models.

6. Conclusion

This paper has presented an approach to generate model sets.
It is the first approach for, to the best of our knowledge, gen-
erating models by applying an ant-colony-optimization (ACO)
algorithm satisfying two objectives and needing only as input
the metamodel to which models must conform—together with
an optional set of well-formed OCL constraints. These sets of
models constitute a test model suite that the model transforma-
tion implementer or tester can use from the beginning of the
implementation of a model transformation in order to test it.

Different test suites have been obtained in very reasonable
times for six different case studies, and an overall mutation
score of 80.49% in an evaluation with 5 different model trans-
formations and 5021 mutants positions our approach as a very
good option for its use in model transformation testing. We
have compared our approach and implementation with two
state-of-the-art tools, namely Viatra Solver and Random Gen-
erator, observing that our tool offers the best mutation scores.
Our tool is also the best in terms of memory consumption, and
it is able to generate very large model sets composed of large
models in reasonable times.

As future work, we want to evaluate our tool by applying mu-
tation analysis with model transformations written in languages
different from ATL. Another line of future work is the improve-
ment of the user interface of our framework in order to foster
its usability. In fact, we want to work on creating an integrated
framework with a friendly UI where users can select different
algorithms and different objectives that will guide the genera-
tion of the models sets.

16

Verifiability

For the sake of verifiability, our prototype as well as all ar-
tifacts of the experiments are available on our project’s web-
site [57]. Detailed instructions on how to run our tool and in-
spect the provided files are also available there.

Acknowledgements

This work was partially supported by the Spanish Government
(FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal
de Investigación) under projects SoCUS [TED2021-130523B-
I00] and IPSCA [PID2021-125527NB-I00]. We would like to
thank Jesús Sánchez Cuadrado for his support using the mu-
tation analysis tool [45], and Oszkár Semeráth for his support
with Viatra Solver. Their help has been key for performing the
comparison study. Finally, we thank Prof. Antonio Vallecillo
for his feedback on this manuscript.

References

[1] Alhwikem, F.H.M., Paige, R.F., Rose, L.M., Alexander, R.D., 2016. A
systematic approach for designing mutation operators for mde languages,
in: MoDeVVa@MoDELS 2016, pp. 54–59.

[2] Alkhazi, B., Abid, C., Kessentini, M., Leroy, D., Wimmer, M., 2020.
Multi-criteria test cases selection for model transformations. ASE 27,
91–118.

[3] Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B., Dekeyser,
J.L., 2015. Towards an automation of the mutation analysis dedicated to
model transformation. STVR 25, 653–683.

[4] Arcuri, A., Briand, L., 2011. A practical guide for using statistical tests to
assess randomized algorithms in software engineering, in: Proc. of ICSE,
pp. 1–10.

[5] ATL, 2006. ATL Zoo. http://www.eclipse.org/atl/

atlTransformations.
[6] Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A., 2016.

Clafer: unifying class and feature modeling. SoSyM 15, 811–845.
[7] Balaban, M., Bennett, P., Doan, K.H., Georg, G., Gogolla, M., Khitron,

I., Kifer, M., 2016. A comparison of textual modeling languages: Ocl,
alloy, foml., in: OCL@ MoDELS, pp. 57–72.

[8] Barán, B., Schaerer, M., 2003. A multiobjective ant colony system for
vehicle routing problem with time windows., in: Applied informatics, pp.
97–102.

[9] Batot, E., Sahraoui, H., 2016. A generic framework for model-set selec-
tion for the unification of testing and learning MDE tasks, in: Proc. of
MoDELS, pp. 374–384.

[10] Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R.,
Ghosh, S., Fleurey, F., Le Traon, Y., 2006. Model transformation test-
ing challenges, in: ECMDA Workshops.

[11] Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.,
2010. Barriers to systematic model transformation testing. CACM 53,
139–143.

[12] Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M., 2019. A local
and global tour on momot. SoSyM 18, 1017–1046.

[13] Brambilla, M., Cabot, J., Wimmer, M., 2017. Model-Driven Software
Engineering in Practice (2nd edition).

[14] Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L., 2006.
Metamodel-based test generation for model transformations: an algo-
rithm and a tool, in: Proc. of ISSRE, pp. 85–94.

[15] Burdusel, A., Zschaler, S., John, S., 2019. Automatic generation of
atomic consistency preserving search operators for search-based model
engineering, in: Proc. of MODELS, IEEE. pp. 106–116.

[16] Burdusel, A., Zschaler, S., Strüber, D., 2018. Mdeoptimiser: A search
based model engineering tool, in: Proc. of MoDELS, pp. 12–16.

[17] Burgueño, L., Cabot, J., Clarisó, R., Gogolla, M., 2019. A systematic
approach to generate diverse instantiations for conceptual schemas, in:
Proc. of ER, Springer. pp. 513–521.

[18] Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A., 2015. Static Fault
Localization in Model Transformations. IESEDJ 41, 490–506.

[19] Burnstein, I., 2006. Practical software testing: a process-oriented ap-
proach. Springer Science & Business Media.

[20] Calegari, D., Delgado, A., 2013. Rule chains coverage for testing qvt-
relations transformations., in: Proc. of AMT@MoDELS.

[21] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer,
J., Talcott, C., 2007. All about Maude - a High-Performance Logical
Framework: How to Specify, Program and Verify Systems in Rewriting
Logic. Springer, Berlin, Heidelberg.

[22] Cuadrado, J.S., Guerra, E., de Lara, J., 2017. Static analysis of model
transformations. IEEE TSE 43, 868–897.

[23] Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transfor-
mation approaches. IBM systems journal 45, 621–645.

[24] De Moura, L., Bjørner, N., 2008. Z3: An efficient smt solver, in: Proc. of
TACAS, pp. 337–340.

[25] Deb, K., 2014. Multi-objective optimization, in: Search methodologies.
Springer, pp. 403–449.

[26] Derasari, R., 2021. Adding Formal Specifications To A Legacy Code
Generator. Ph.D. thesis. Eindhoven University of Technology.

[27] Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., 2004.
Pareto ant colony optimization: A metaheuristic approach to multiobjec-
tive portfolio selection. Annals of operations research 131, 79–99.

[28] Doerner, K., Hartl, R., Reimann, M., 2003. Are COMPETants more com-
petent for problem solving?–the case of a multiple objective transporta-
tion problem. CEJOR 11, 115–141.

[29] Dorigo, M., 1992. Optimization, Learning and Natural Algorithms. Ph.D.
thesis. Politecnico di Milano. Italy.

[30] Efstathiou, D., Williams, J.R., Zschaler, S., 2014. Crepe complete: Multi-
objective optimization for your models., in: CMSEBA@ MoDELS, pp.
25–34.

[31] Elkarablieh, B., Zayour, Y., Khurshid, S., 2007. Efficiently generat-
ing structurally complex inputs with thousands of objects, in: Proc. of
ECOOP, pp. 248–272.

[32] Finot, O., Mottu, J.M., Sunyé, G., Degueule, T., 2013. Using meta-model
coverage to qualify test oracles, in: Proc. of AMT, pp. 1613–0073.

[33] Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B., 2017.
Model transformation modularization as a many-objective optimization
problem. IEEE TSE 43, 1009–1032.

[34] Fleck, M., Troya, J., Wimmer, M., 2015. Marrying search-based op-
timization and model transformation technology. Proc. of NasBASE ,
1–16.

[35] Fleck, M., Troya, J., Wimmer, M., 2016a. Search-based model transfor-
mations. J Soft-Evol Proc 28, 1081–1117.

[36] Fleck, M., Troya, J., Wimmer, M., 2016b. Search-based model transfor-
mations with MOMoT, in: Proc. of ICMT, pp. 79–87.

[37] Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y., 2009. Qualifying input
test data for model transformations. SoSyM 8, 185–203.

[38] Fleurey, F., Steel, J., Baudry, B., 2004. Validation in model-driven en-
gineering: testing model transformations, in: Proc. of MODEVVA, pp.
29–40.

[39] Gogolla, M., Bohling, J., Richters, M., 2005. Validating uml and ocl
models in use by automatic snapshot generation. SoSyM 4, 386–398.

[40] Gogolla, M., Vallecillo, A., 2011. Tractable model transformation testing,
in: Proc. of ECMFA, pp. 221–235.

[41] Gogolla, M., Vallecillo, A., Burgueño, L., Hilken, F., 2015. Employing
classifying terms for testing model transformations, in: Proc. of MoD-
ELS, pp. 312–321.

[42] Gómez-Abajo, P., Guerra, E., de Lara, J., 2017. A domain-specific lan-
guage for model mutation and its application to the automated generation
of exercises. CLSS 49, 152–173.

[43] González, C.A., Büttner, F., Clarisó, R., Cabot, J., 2012. Emftocsp: A tool
for the lightweight verification of emf models, in: Proc. of FormSERA,
pp. 44–50.

[44] Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M., 1989. Self-organized
shortcuts in the argentine ant. Naturwissenschaften 76, 579–581.

[45] Guerra, E., Cuadrado, J.S., de Lara, J., 2019. Towards Effective Mutation
Testing for ATL, in: Proc. of MoDELS, pp. 78–88.

[46] Guerra, E., Soeken, M., 2015. Specification-driven model transformation
testing. Software & Systems Modeling 14, 623–644.

[47] Harman, M., Jones, B.F., 2001. Search-based software engineering. In-

17

http://www.eclipse.org/atl/atlTransformations
http://www.eclipse.org/atl/atlTransformations

formation and software Technology 43, 833–839.
[48] He, X., Zhang, T., Pan, M., Ma, Z., Hu, C.J., 2019. Template-based model

generation. Software & Systems Modeling 18, 2051–2092.
[49] Hegedüs, Á., Horváth, Á., Varró, D., 2015. A model-driven framework

for guided design space exploration. ASE 22, 399–436.
[50] Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A., 2018. Testing mod-

els and model transformations using classifying terms. SoSyM 17, 885–
912.

[51] Holland, J.H., et al., 1992. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press.

[52] Hong, L., Drake, J.H., Woodward, J.R., Özcan, E., 2018. A hyper-
heuristic approach to automated generation of mutation operators for evo-
lutionary programming. Applied Soft Computing 62, 162–175.

[53] HoseinDoost, S., Karimi, M., Rahimi, S.K., Zamani, B., 2018. Solving
the quality-based software-selection and hardware-mapping problem with
aco., in: Proc. of TTC@STAF, pp. 19–30.

[54] Jackson, E.K., Levendovszky, T., Balasubramanian, D., 2015. Automati-
cally reasoning about metamodeling. SoSyM 14, 271–285.

[55] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 2008. Atl: A model trans-
formation tool. Science of computer programming 72, 31–39.

[56] Jouault, F., Bézivin, J., Consel, C., Kurtev, I., Latry, F., . Building DSLs
with AMMA/ATL, a Case Study on SPL and CPL Telephony Languages,
in: Proc. of ECOOP-DSPD.

[57] Karimi, M., Kolahdouz-Rahimi, S., Troya, J., 2023. Model Generation for
model transformation testing applying ACO. https://github.com/

MeysamKarimi/MG-ACO.
[58] Kuhlmann, M., Hamann, L., Gogolla, M., 2011. Extensive validation of

ocl models by integrating sat solving into use, in: Proc. of TOOLS, pp.
290–306.

[59] Kühne, T., 2006. Matters of (meta-) modeling. SoSyM 5, 369–385.
[60] López-Ibáñez, M., Stützle, T., 2012. An experimental analysis of design

choices of multi-objective ant colony optimization algorithms. Swarm
Intelligence 6, 207–232.

[61] Ludewig, J., 2003. Models in software engineering – an introduction.
SoSyM 2, 5–14.

[62] Maniezzo, V., Carbonaro, A., 1999. Ant colony optimization: An
overview, in: Essays and Surveys in Metaheuristics, Kluwer Academic
Publishers. pp. 21–44.

[63] McKight, P.E., Najab, J., 2010. Kruskal-wallis test. The corsini encyclo-
pedia of psychology , 1–1.

[64] Mellor, S.J., Scott, K., Uhl, A., Weise, D., Soley, R.M., 2004. MDA
distilled: principles of model-driven architecture. O’Reilly.

[65] Mengerink, J., Serebrenik, A., Schiffelers, R.R., Van Den Brand, M.,
2016. A complete operator library for dsl evolution specification, in: Proc.
of ICSME, pp. 144–154.

[66] Mitchel, G., O’Donoghue, D., Barnes, D., McCarville, M., 2003.
Generepair–a repair operator for genetic algorithms. Proceedings of the
Gecco. late breaking Papers , 235–239.

[67] Mottu, J.M., Baudry, B., Le Traon, Y., 2006. Mutation analysis testing
for model transformations, in: Proc. of ECMDA-FA, pp. 376–390.

[68] Nassar, N., Kosiol, J., Kehrer, T., Taentzer, G., 2020. Generating large
emf models efficiently, in: Proc. of FASE, Cham. pp. 224–244.

[69] Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M., 2018. Full Contract Veri-
fication for ATL using Symbolic Execution. SoSyM 17(3), 815–849.

[70] Rose, L.M., Poulding, S., 2013. Efficient probabilistic testing of model
transformations using search, in: Proc. of CMSBSE, pp. 16–21.

[71] Saidani, I., Ouni, A., Chouchen, M., Mkaouer, M.W., 2020. Predicting
continuous integration build failures using evolutionary search. IST 128,
106392.

[72] Selim, G.M., Cordy, J.R., Dingel, J., 2012. Model transformation testing:
The state of the art, in: Proc. of AMT, pp. 21–26.

[73] Semeráth, O., Babikian, A.A., Pilarski, S., Varró, D., 2019. Viatra solver:
a framework for the automated generation of consistent domain-specific
models, in: Proc. of ICSE Companion, pp. 43–46.

[74] Semeráth, O., Farkas, R., Bergmann, G., Varró, D., 2020. Diversity of
graph models and graph generators in mutation testing. STTT 22, 57–78.

[75] Semeráth, O., Nagy, A.S., Varró, D., 2018. A graph solver for the au-
tomated generation of consistent domain-specific models, in: Proc. of
ICSE, pp. 969–980.

[76] Semeráth, O., Varró, D., 2018. Iterative generation of diverse models for

testing specifications of dsl tools., in: Proc. of FASE, pp. 227–245.
[77] Sen, S., Baudry, B., Mottu, J.M., 2008. On combining multi-formalism

knowledge to select models for model transformation testing, in: Proc. of
ICST, pp. 328–337.

[78] Sen, S., Baudry, B., Mottu, J.M., 2009. Automatic model generation
strategies for model transformation testing, in: Proc. of ICMT, pp. 148–
164.

[79] Shelburg, J., Kessentini, M., Tauritz, D.R., 2013. Regression testing for
model transformations: A multi-objective approach, in: Proc. of SSBSE,
pp. 209–223.

[80] da Silva, A.R., 2015. Model-driven engineering: A survey supported by
the unified conceptual model. CLSS 43, 139–155.

[81] Soltana, G., Sabetzadeh, M., Briand, L.C., 2017. Synthetic data genera-
tion for statistical testing, in: Proc. of ASE, pp. 872–882.

[82] Strüber, D., 2017. Generating efficient mutation operators for search-
based model-driven engineering, in: Proc. of ICMT, pp. 121–137.

[83] Torlak, E., Jackson, D., 2007. Kodkod: A relational model finder, in:
Proc. of TACAS, pp. 632–647.

[84] Troya, J., Bergmayr, A., Burgueno, L., Wimmer, M., 2015. Towards
systematic mutations for and with atl model transformations, in: Proc. of
Mutation Workshop @ ICST, pp. 1–10.

[85] Troya, J., Segura, S., Burgueño, L., Wimmer, M., 2022. Model transfor-
mation testing and debugging: A survey. ACM CSUR 55, 1–39.

[86] Troya, J., Segura, S., Parejo, J., Ruiz-Cortés, A., 2018a. Spectrum-based
fault localization in model transformations. TOSEM 27, 13:1–13:50.

[87] Troya, J., Segura, S., Ruiz-Cortés, A., 2018b. Automated inference of
likely metamorphic relations for model transformations. JSS 136, 188–
208.

[88] Troya, J., Vallecillo, A., 2011. A rewriting logic semantics for atl. JOT
10, 5:1–29.

[89] Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á., 2018. Towards the
automated generation of consistent, diverse, scalable and realistic graph
models, in: Graph Transformation, Specifications, and Nets. Springer, pp.
285–312.

[90] Veen, B.v., Emmerich, M., Yang, Z., Bäck, T., Kok, J., 2013. Ant colony
algorithms for the dynamic vehicle routing problem with time windows,
in: Proc. of IWINAC, pp. 1–10.

[91] Wang, J., Kim, S.K., Carrington, D., 2006. Verifying metamodel coverage
of model transformations, in: Proc. of ASWEC, pp. 10–pp.

[92] Wang, W., Kessentini, M., Jiang, W., 2013. Test cases generation for
model transformations from structural information, in: Proc. of MoDELS
Workshops, pp. 42–51.

[93] Warmer, J.B., Kleppe, A.G., 2003. The object constraint language: get-
ting your models ready for MDA. Addison-Wesley Professional.

[94] Williams, J.R., 2013. A novel representation for search-based model-
driven engineering. Ph.D. thesis. University of York.

[95] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., 2012.
Experimentation in Software Engineering. Springer.

[96] Zhong, H., Zhang, L., Khurshid, S., 2016. Combinatorial generation of
structurally complex test inputs for commercial software applications, in:
Proc. of FSE, pp. 981–986.

Meysam Karimi is PhD student at University of Isfahan. He
is also a tech lead with more than 12 years of experience in the
software industry. His interests are Algorithms and MDE.
Shekoufeh Kolahdouz-Rahimi is a lecturer at University of
Isfahan. She completed her PhD in Computer Science at Kings
College London in 2013. She has published over 70 papers
in international journals and conferences. Her current research
interests include MDE and domain-specific languages.
Javier Troya is Associate Professor at the Universidad de
Málaga, Spain. Before, he was Assistant Professor at the Uni-
versidad de Sevilla, Spain (2016-2020), and a post-doctoral re-
searcher in the TU Wien, Austria (2013-2015). He obtained his
International PhD with honors at the Unviersidad de Málaga,
Spain (2013). His current research interests include MDE, Soft-
ware Testing and Digital Twins.

18

https://github.com/MeysamKarimi/MG-ACO
https://github.com/MeysamKarimi/MG-ACO

	Introduction
	Preliminaries
	Model-Driven Engineering
	Model transformations and (meta)models
	Running example
	Equivalence Partitioning

	Search-Based Software Engineering
	Multi-objective optimization problems
	Ant Colony Optimization
	Model generation using metaheuristic algorithms

	Approach
	Test model generation applying ACO
	Step 1: Initialize Parameters
	Step 2: Construct a test suite
	Step 3: Calculate fitness values and deposit pheromone trails
	Update and evaporate pheromone trails

	OCL constraint rules check
	Prototype implementation

	Evaluation
	Case studies
	Model transformation mutants
	State-of-the-art approaches for model generation
	Viatra Solver
	Random Generator

	Execution environment
	Evaluation Process
	Generated models
	OCL constraints
	MT mutants obtained
	Tools configuration
	Number of runs and statistical tests

	Results
	RQ1 - Domain-independence
	RQ2 - Performance
	RQ3 - Usefulness

	Discussion
	Threats to Validity
	Construct validity threats
	Conclusion validity threats
	Internal validity threats
	External validity threats

	Related work
	Conclusion

