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Abstract

Background: Alzheimer’s disease (AD) is the most common cause of dementia in the elderly and affects approximately 30 million
individuals worldwide. Mild cognitive impairment (MCI) is very frequently a prodromal phase of AD, and existing studies have
suggested that people with MCI tend to progress to AD at a rate of about 10 % to 15 % per year. However, the ability of clinicians
and machine learning systems to predict AD based on MRI biomarkers at an early stage is still a challenging problem that can have
a great impact in improving treatments.
Method: The proposed system, developed by the SiPBA-UGR team for this challenge, is based on feature standardization, ANOVA
feature selection, partial least squares feature dimension reduction and an ensemble of one vs. rest random forest classifiers. With
the aim of improving its performance when discriminating healthy controls (HC) from MCI, a second binary classification level
was introduced that reconsiders the HC and MCI predictions of the first level.
Results: The system was trained and evaluated on an ADNI datasets that consist of T1-weighted MRI morphological measurements
from HC, stable MCI, converter MCI and AD subjects. The proposed system yields a 56.25 % classification score on the test subset
which consists of 160 real subjects.
Comparison with Existing Method(s): The classifier yielded the best performance when compared to: i) One vs. One (OvO), One
vs. Rest (OvR) and error correcting output codes (ECOC) as strategies for reducing the multiclass classification task to multiple
binary classification problems, ii) support vector machines, gradient boosting classifier and random forest as base binary classifiers,
and iii) bagging ensemble learning.
Conclusions: A robust method has been proposed for the international challenge on MCI prediction based on MRI data. The system
yielded the second best performance during the competition with an accuracy rate of 56.25 % when evaluated on the real subjects
of the test set.

Keywords: Magnetic resonance imaging, computer-aided diagnosis, machine learning, Alzheimer’s disease, mild cognitive
impairment, random forests, bagging, partial least squares, ANOVA feature selection, one vs. rest classification

1. Introduction

Alzheimer’s disease (AD) is the most common cause of de-
mentia in the elderly and affects approximately 30 million in-
dividuals worldwide [1]. Mild cognitive impairment (MCI) is
very frequently a prodromal phase of AD, and existing studies
have suggested that people with MCI tend to progress to AD at
a rate of about 10 % to 15 % per year. The ability to predict AD
at an early stage is still a challenging problem that can have a
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great impact in improvement treatments [2]. As the disease pro-
gresses, well defined brain areas are affected and neuropsycho-
logical clinical scores such as the Mini Mental State Examina-
tion (MMSE) and cognitive assessment subscale (ADAS-Cog)
reveal cognitive decline in MCI patients [3]. Several previous
works have attempted to identify discriminant features from
T1-weighted structural magnetic resonance imaging (MRI) [4,
5, 6] or from functional single-photon emission computed to-
mography (SPECT) or positron emission tomography (PET)
[7, 8, 9, 10], as well as robust machine learning and classifica-
tion techniques [11, 12] for computer aided diagnosis (CAD).
In other works, the aim was to develop techniques to predict
whether a patient will convert from MCI to AD based on an
analysis of previously collected MRI and neuropsychological
clinical scores [13, 14].

Several challenges have been organized in the field of neu-
roimaging mainly due to the vast amount of data provided by
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different biomarkers that are available for analysis and predic-
tion. The goal of the Alzheimer’s disease big data DREAM cha-
llenge (https://doi.org/10.7303/syn2290704) [15] was
to apply an open science approach to rapidly identify accura-
te predictive AD biomarkers that can be used by the scienti-
fic, industrial and regulatory communities to improve AD diag-
nosis and treatment. DREAM provided participants with ge-
netics data, demographics, clinical data and MR imaging co-
llected on participants in the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI), as well as from subsets of data from
independent studies that were used to rank participants’ mo-
dels on the leaderboard, and as validation for final predic-
tions [16, 17, 18]. The challenge on Computer-Aided Diagno-
sis of Dementia based on structural MRI data (CADDementia,
https://caddementia.grand-challenge.org) used 354
T1-weighted MRI scans with the diagnoses blinded. The best
performing algorithm yielded an accuracy of 63.0 % and an
area under the receiver-operating-characteristic curve (AUC)
of 78.8 %. In general, the best performances were achieved
using feature extraction based on voxel-based morphometry
or a combination of features that included volume, cortical
thickness, shape and intensity [19]. The Alzheimer’s Disease
Prediction Of Longitudinal Evolution (TADPOLE) Challenge
(https://tadpole.grand-challenge.org/) is an ongoing
challenge organized by the EuroPOND consortium in collabo-
ration with ADNI. The object of the challenge is to predict who
will develop clinical, cognitive, and MRI signs of disease in a
short enough timeframe to carry out a clinical trial. Prediction
models will be tested on existing data (cognitive tests, MRI,
positron emission tomography of amyloid and glucose metabo-
lism, and cerebrospinal fluid biomarkers) that has been collec-
ted in ADNI1, ADNI-GO, and ADNI2 on cognitively normal
people and others with mild cognitive impairment.

The present International challenge for automated predic-
tion of MCI from MRI data, organized by Alessia Sarica, Anto-
nio Cerasa, Aldo Quattrone and Vince Calhoun, was developed
in order to let the participants compare the vast series of ma-
chine learning algorithms and predictive markers on the same
training and test sets. Pre-processed sets of T1-weighted MRI
from stable AD patients, individuals with MCI who converted
to AD, individuals with MCI who did not convert to AD and
healthy controls were provided to participants in the challenges.
MRIs matched for sequence characteristics (i.e MPRAGE) and
analyzed using FreeSurfer v.5.3 were provided by ADNI. The
feature space consists of cortical thickness and subcortical vo-
lumes, hippocampal subfields included, since previous studies
demonstrated the reliability of these morphological measure-
ments for improving automated diagnosis of AD [20, 21, 22].
This paper shows the system developed by the Signal Proces-
sing and Biomedical Applications (SiPBA) research group from
the University of Granada (SiPBA-UGR Team) for the Inter-
national challenge on automated prediction of MCI from MRI
data. The aim is to develop a robust method to improve early
AD detection that would provide opportunities for early inter-
vention, symptomatic treatment, and improved patient function.
Thus, special attention is paid to MCI subjects and their conver-
sion to AD.

Table 1: Training dataset (sociodemographic data and MMSE for each group).
X [Y] denotes the mean X and standard deviation Y for each group.

N=240 Male/Female Age MMSE

HC 30/30 72.34 [5.67] 29.15 [1.11]
MCI 28/32 72.19 [7.42] 28.32 [1.56]
cMCI 35/25 72.96 [7.20] 27.18 [1.87]
AD 29/31 74.75 [7.31] 23.43 [2.11]

Table 2: Real data in testing dataset (sociodemographic data and MMSE for
each group). X [Y] denotes the mean X and standard deviation Y for each group.

N=160 Male/Female Age MMSE

HC 18/22 74.88 [5.48] 29.00 [1.10]
MCI 23/17 72.40 [8.04] 27.65 [1.87]
cMCI 25/15 71.75 [6.23] 27.58 [1.80]
AD 23/17 73.11 [8.05] 22.68 [1.98]

2. Materials and methods

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD. For
up-to-date information, see www.adni-info.org.

2.1. Datasets

This section shows the datasets that were provided
for the International challenge for automated prediction of
MCI from MRI data (https://inclass.kaggle.com/c/
mci-prediction). MRIs were selected from the Alzheimer’s
disease Neuroimaging Initiative (ADNI, http://www.adni-
info.org) and preprocessed by Freesurfer (v5.3) [23, 24]. In total
429 demographical, clinical as well as cortical and subcortical
MRI features were available for each subject.

Two different datasets were provided for training and testing
the proposed methods for automated prediction of MCI from
MRI data. According to their diagnosis, patients were grouped
into four classes: healthy control (HC) subjects, AD patients,
MCI subjects whose diagnosis did not change in the follow-up
(MCI) and converter MCI (cMCI) subjects that progressed from
MCI to AD in the follow-up of the disease. The training dataset
consists of 240 ADNI real subjects (60 HC, 60 MCI, 60 cMCI
and 60 AD). Demographic information is shown in table 1. The
testing dataset consists of 500 subjects. 160 out of them were
real subjects while the 340 remaining subjects were artificially
generated from the real data. Table 2 shows demographic in-
formation of only the 160 real patients excluding 340 dummy
subjects in the testing dataset. No information about the class
labels of the test set was available during the competition. The
test set was half splitted into public and private test sets and
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only the accuracy score on the public dataset was available for
competitors until the challenge ended. Once the challenge finis-
hed, class labels for the subjects on the test set were provided to
the competitors. The accuracy score on the real subjects of the
testing set was used as the figure of merit in the competition.

2.2. Proposed method

Fig. 1 shows a block diagram of the proposed system for
MCI prediction on MRI data. The features provided for the cha-
llenge were firstly standardized to zero mean and unit-variance
being the feature transformation derived from the training set,
and applied to both the training and testing set. Then, a one-
vs.-rest ANOVA feature selection algorithm, specially proposed
for this challenge, was used in order to remove non-informative
features for classification. Features are selected by means of
the training set and selected from the testing dataset for evalua-
tion. In order to further reduce the dimensionality of the feature
space, a partial least square (PLS) model was fitted using the
training set and applied to obtain PLS scores. Among all the
alternative classifiers considered, the final solution adopted for
this challenge was a bagging-trained ensemble of one-vs.-rest
multiclass classifiers using PLS scores as input features. The
binary-reduced classifiers were based on random forest [25].
The random forest classifier [26] uses bagging, or bootstrap ag-
gregating, to form an ensemble of classification and regression
tree (CART)-like classifiers h(x,Tk), k = 1, ..., where the Tk are
bootstrap replica obtained by randomly selecting N observa-
tions out of N with replacement, where N is the dataset size,
and x is an input pattern [26]. For classification, each tree in the
Random Forest casts a unit vote for the most popular class at
input x. The output of the classifier is determined by a majority
vote of the trees. This method is not sensitive to noise or over-
training, as the resampling is not based on weighting [27, 28].
Furthermore, it is computationally more efficient than methods
based on boosting and somewhat better than simple bagging.

Finally, with the aim of improving the performance of the
system when discriminating HC from MCI subjects, a second
classification level was introduced that reconsidered HC and
MCI predictions. Then, all subjects classified as HC and MCI at
the first level undergo a second decision level based on a binary
classifier trained on the training set and consisting of a t-test
cortical and subcortical feature selection, PLS feature extrac-
tion [28, 29, 9, 4], and a random forest classifier. Next sections
provide a full description and analysis of each of the methods
used in the proposed system.

2.3. Feature standardization

When considering a classification task in machine learning,
the preprocessing stage is of crucial importance. In particular
when dealing with support vector machines (SVMs), this stage
can influence dramatically the results of the classification [30].

Feature scaling is a method used to standardize the range of
the features in machine learning. The numerical features availa-
ble for this challenge were standardized to zero-mean and unit-
variance using
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Figure 1: Block diagram of the proposed system for MCI prediction on MRI
data.

x̂ =
x − x̄
σ

(1)

where x, x̄ and σ are the original feature, its mean and its stan-
dard deviation, respectively.

2.4. Cortical and subcortical feature selection

This section shows the proposed feature selection method
that was used for this challenge. First, the statistical frame-
work of a four-class ANOVA test for feature selection is shown.
Then, the proposed One vs. Rest (OvR) two-group ANOVA fea-
ture selection method is presented and discussed.

2.4.1. Four-class ANOVA test for feature selection
In a one-way or one-factor experiment, observations are ob-

tained for K independent groups or classes of samples, where
the number of observations in each class is N. The estimated
total variance of the sample can be decomposed into the varian-
ce within classes σ̂2

w and the variance between classes σ̂2
b. The

statistic

F =
Ŝ 2

b

Ŝ 2
w

(2)

has the F distribution with K − 1 and K(N − 1) degrees of free-
dom, which enables us to test the null hypothesis (equal means)
at some specified significance level using a one-tailed test of the
F distribution.
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Figure 2: Application of the proposed feature selection method to the training data. F and p values of a 4-class ANOVA test are plotted for the first 30 most
discriminant features. Features selected by a 4-class ANOVA F test as well as for the proposed OvR Fwe ANOVA test (α = 0,01) are identified.

Fig. 2 shows the application of a 4-class F test to the trai-
ning data. The F and p values are plotted for the 30 most dis-
criminant features. The results obtained by the 4-class ANOVA
test corroborate that progressive cerebral atrophy is a characte-
ristic feature of neurodegeneration in patients progressing from
a cognitive normal healthy state to MCI and AD [31]. Tradi-
tional studies of regional MRI volumes have shown that AD is
characterized by a progression of atrophy in the medial tempo-
ral lobe [32] being typically the entorhinal cortex the earliest
region of atrophy, closely followed by the hippocampus, amyg-
dala, and parahippocampus [33, 34, 35]. Evenmore, other ROIs
within the limbic lobe (ie.: posterior cingulate) are also affected
during the early stage of the disease.

2.4.2. Proposed One vs. Rest (OvR) two-group ANOVA featu-
re selection method

The proposed feature selection method is based on a multi-
ple ANOVA test between groups where the p-values are selec-
ted corresponding to a Family-wise error (FWE) rate. All the
features selected by means of these ANOVA tests are merged
into a single feature vector. The motivations for it is to enable
the feature selector to identify the most discriminant features of
the four classes: HC, MCI, cMCI and AD. In this way, a one vs.
rest (OvR) two-group ANOVA strategy is adopted where for a
given class i, all the i-class samples are considered as the first
group and the rest of the samples as the second group. A special
consideration is adopted for MCI and cMCI since they are clas-
ses that are widely distributed in between HC and AD classes
in a feature scatter plot being difficult to obtain characteristic
features of these two classes when compared to HC and AD
subjects. Therefore, in the case of the MCI class, HC subjects

are discarded considering MCI and cMCI+AD subjects the two
groups for the ANOVA test. Meanwhile, for the cMCI class,
AD subjects are discarded being cMCI and HC+MCI the two
groups for the ANOVA test.

Fig. 2 also shows the features selected by the standard 4-
class ANOVA test described in Section 2.4.1 as well as by the
proposed OvR Fwe ANOVA test. Note that both methods se-
lect common features and differ in a small number of features.
On the other hand, Fig. 3 shows the block diagram of the 16
features that were selected by the proposed algorithm using an
α = 0.01. It can be concluded that: i) features selected by the
proposed method are clearly different for NC and AD groups,
and ii) there still exists a overlap between MCI and cMCI asso-
ciated with the complexity of the classification task (prediction
of conversion to AD in MCI subjects).

Figs. 4a and 4c show scatter plots of 2 and 3 features selec-
ted by means of the proposed method shown in section 2.4.2.
Is interesting to strees that while HC and AD classes are well
separated, MCI and cMCI are hard to be separated from healthy
controls and AD subjects since they are all together mixed. To
address this issue, partial least squares (PLS) was considered
in order to increase the separability of the classes and further
dimension reduction of the feature space. PLS implements a
supervised transformation that maximizes the covariance bet-
ween the input data (selected features in section 2.4.2) and the
class labels [28, 29, 9, 4].

2.5. Feature extraction via partial least squares

Partial least squares (PLS) [36] is a widely used method for
modeling relations between sets of observed variables by means
of latent variables. The assumption of PLS is that the observed

4



AD HC MCI cMCI

20.0

22.5

25.0

27.5

30.0
MMSE_bl

AD HC MCI cMCI
0

1000

2000

3000

4000

Left-Inf-Lat-Vent

AD HC MCI cMCI

2000

3000

4000

5000

Left-Hippocampus

AD HC MCI cMCI
500

1000

1500

2000

Left-Amygdala

AD HC MCI cMCI
0

1000

2000

3000

4000

Right-Inf-Lat-Vent

AD HC MCI cMCI

2000

3000

4000

5000

Right-Hippocampus

AD HC MCI cMCI

500

1000

1500

2000

2500
Right-Amygdala

AD HC MCI cMCI
200

400

600

800

Right-Accumbens-area

AD HC MCI cMCI

1000

1500

2000

lh_entorhinal_volume

AD HC MCI cMCI

6000

8000

10000

12000

lh_fusiform_volume

AD HC MCI cMCI

6000

8000

10000

12000

14000

lh_inferiortemporal_volume

AD HC MCI cMCI
5000

7500

10000

12500

15000
lh_middletemporal_volume

AD HC MCI cMCI

1000

2000

3000

lh_parahippocampal_volume

AD HC MCI cMCI

1000

2000

rh_entorhinal_volume

AD HC MCI cMCI

5000

7500

10000

12500

rh_inferiortemporal_volume

AD HC MCI cMCI
5000

7500

10000

12500

15000

rh_middletemporal_volume

Figure 3: Group box plots of the 16 features selected by the proposed OvR Fwe ANOVA test.

data is generated by a process which is driven by a small num-
ber of latent (not directly observed) variables. Early works by
Herman Wold and coworkers [37, 38] enabled to develop the
methods for projecting the observed data to its underlying la-
tent structure by means of PLS.

Let’s consider the problem of modeling the relation between
two datasets by means of PLS [36]. Denote by X ⊂ IRN and
Y ⊂ IRM two multidimensional spaces of variables. PLS models
the relations between them by means of score vectors. After
observing n data samples from each block of variables, PLS
decomposes the (n × N) matrix of zero-mean variables X and
the (n × M) matrix of zero-mean variables Y into the form

X = TPT + E Y = UQT + F (3)

where the T, U are (n × p) matrices of the p extracted score
vectors (components, latent vectors), the (N × p) matrix P and
the (M × p) matrix Q represent matrices of loadings and the
(n × N) matrix E and the (n × M) matrix F are the matrices
of residuals. The PLS method obtains weight vectors w, c such
that

[cov(t,u)]2 = [cov(Xw,Yc)]2 = max|r|=|s|=1[cov(Xr,Ys)]2
(4)

where cov(t,u) = tT u/n denotes the sample covariance bet-
ween the score vectors t and u.

PLS has been previously applied to neuroimaging data.
In [39] PLS explained the relation between image pixels and
task or behavior where data from a face encoding and recog-
nition PET rCBF study was analyzed. It was found that PLS
succesfully extracted new information from imaging data that

is not accessible through other currently used univariate and
multivariate image analysis tools. Krishnan et al. [40] have
reviewed two particular PLS methods: Partial Least Squares
Correlation or PLSC and Partial Least Squares Regression or
PLSR, as well as their main variants used in neuroimaging.
PLS has been applied directly to different neuroimage modali-
ties for computed aided diagnosis of Alzheimer’s and Parkin-
son’s disease [28, 29, 9, 4, 41]. In a recent work [42], PLS
methods were proposed to discriminate MCI converters from
MCI non-converters combining multimodal neuroimaging data
from MRI, 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-
florbetapir PET (florbetapir-PET).

A common factor of these techniques is that they are ap-
plied directly to the voxel intensities. However, the proposed
method applies PLS to features selected from cortical thickness
and subcortical volumes computed from MRI using Freesurfer.

The proposed PLS approach for reducing the dimension of
the feature approach was applied to the given cortical and sub-
cortical MRI features as follows. Let Xs be the (n × N) matrix
of zero-mean features selected by the feature selection shown
in section 2.4.2, where n denotes the number of patients and N
the number of features. Let Y be the (n× 1) vector y containing
the class labels for the n subjects. Numerical class labels 0, 1,
2, 3 were defined for HC, MCI, cMCI and AD classes, respecti-
vely. The dataset is splitted into training and testing sets so that
the training set is used to fit the PLS model. Once the model is
fitted to the data, the transformation is applied to the testing set.

Figs. 4b and 4d show scatter plots of the first 2 and 3 score
vectors. It can be shown that the PLS feature space has increa-
sed the separation of the classes.

On the other hand, the residuals, the mean squared error
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Figure 4: Scatter plots of the first 2 and 3 selected features in (a) and (c), and the first 2 and 3 PLS scores in (b) and (d).
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Figure 5: Analysis of the PLS model. (a) Cummulative variance explained as a function of the number of PLS coefficients in the model, (b) residuals and difference
between the observed response and the fitted response, and (c) mean squared error (MSE) as a function of the number of PLS coefficients.
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(MSE) and the variance explained by the PLS model were ob-
tained using the 240-subject training set. Fig. 5a shows the va-
riance explained in the data and the class labels by the PLS mo-
del. Note that, the variance explained increases with the num-
ber of components of the model being around 80 % for 7 coef-
ficients. Fig. 5b shows a plot of the residuals for each of the
observations in training set for a PLS model with 7 coefficients.
Finally, the mean square error (MSE) between the observed res-
ponse and the fitted response was estimated by 10-fold cross-
validation (CV) and plotted as a function of the number of PLS
coefficients in Fig. 5c.

2.6. Description of the multiclass classifier

A classification problem of K classes and n training obser-
vations consists of a set of patterns whose class membership is
known [43]. Let S = (x1, y1), (x2, y2), ..., (xn, yn) be a set of n
training samples where each instance xi belongs to a domain
X ⊂ IRM . Each label is an integer from the set Y = 1, ...,K.
A multiclass classifier is a function f : X → Y that maps an
instance x onto an element of Y .

There exists different strategies for reducing the problem of
multiclass classification to multiple binary classification pro-
blems. Among them the most widely used are: One-vs-Rest
(OvR) [44, 45], One-vs-One (OvO) [46, 47], and error correc-
ting output codes (ECOC) [48] based methods:

One-vs-Rest (OvR): OvR method forms K binary clas-
sifiers. Classifier ith, fi, is trained using all the patterns
of class i as positive instances and the patterns of the ot-
her classes as negative instances. An unknown sample is
classified in the class whose corresponding classifier has
the highest output. This classifier decision function, f , is
defined as:

f (x) = arg max
j∈1,...,K

f j(x) (5)

One-vs-One (OvO): It constructs K(K − 1)/2 classifiers.
Classifier ij, named fi j, is trained using all the patterns
from class i as positive instances, all the patterns from
class j as negative instances, and disregarding the rest.
At prediction time, in its simplest form, the class which
received the most votes is selected. Ovo is usually slower
than OvR, due to its O(K2) complexity. However, OvO
may be advantageous for algorithms which do not sca-
le well with the number of training observations. This is
because each individual learning problem only involves a
small subset of the data whereas, with OvR, the complete
dataset is used K times.

Error correcting output codes (ECOC): Output-code
based strategies are fairly different from OvR and OvO.
It uses a matrix M of +1,−1 values of size K × F, whe-
re F is the number of binary classifiers. The ith column
of the matrix induces a partition of the classes into two
metaclasses. Instance x belonging to class i is a positive
instance for the jth classifier if and only if Mi j = 1. Let f j

denote the sign of the jth classifier, the ECOC decision,
f (x), using the Hamming distance between each row of

the matrix M and the output of the F classifiers is given
by:

f (x) = arg min
r∈1,...,K

F∑
i=1

(
1 − sign(Mri fi(x))

2

)
(6)

The concept of combining classifiers has been proposed as
a new direction for the improvement of the performance of in-
dividual classifiers. Ensembles of multiclass classifiers can be
trained in order to improve the stability and accuracy of machi-
ne learning algorithms used in statistical classification and re-
gression. Numerous methods have been suggested for the crea-
tion of ensembles of classifiers. Bagging [25] and boosting [49]
are some of the most popular methods and belong to a class of
methods using different subsets of training data with a single
learning method.

Bagging: Given an n-sample standard training set S , bag-
ging generates m new training subsets S i, each of si-
ze n′, by sampling from S uniformly and with replace-
ment. The m models are fitted using the above m boots-
trap samples and combined by voting (for classification).
Although it is usually applied to decision tree methods
(random forest classifier), it can be used with any type of
method including multiclass OvR, OvO and ECOC clas-
sifiers.

Boosting: It consists of iteratively learning weak classi-
fiers and adding them to build a final strong classifier. The
weak classifiers are weighted by a function of their accu-
racy. At each step, the data are re-weighted increasing the
weight of the samples that are misclassified while redu-
cing the weight of the correctly classified samples. Thus,
weak learners added to the ensemble focus more on the
samples that previous weak learners misclassified.

Several multiclass classifiers based on OvR, OvO and
ECOC have been evaluated for the challenge during the compe-
tition period. Ensembles of decision trees represent a potential
solution for the binary reduced classifiers due to the small num-
ber of samples in the training dataset. Among all the alternati-
ves considered, the final solution adopted was a bagging-trained
ensemble of 50 OvR multiclass classifiers using the first 7 PLS
scores as input features. The binary-reduced classifiers were ba-
sed on random forests and consists of 30 decision trees with a
2-level maximum depth of the threes. All these parameters were
optimized for maximum accuracy by a 10-fold stratified cross-
validation grid search on the training set.

2.7. Two-stage HC-MCI correction

One of the weaknesses of the multiclass classifier descri-
bed in section 2.6 was its limited performance on MCI subjects.
With the aim of improving its performance when discriminating
HC from MCI, a second classification level was introduced that
reconsiders the HC and MCI predictions of the first level. Then,
all subjects classified as HC and MCI at the first level undergo
a second decision level based on a binary classifier trained on
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the training set and consisting of a t-test cortical and subcorti-
cal feature selection (α = 0,005), PLS feature extraction with 7
scores, and a random forest classifier consisting of 20 decision
trees with a 2-level maximum depth of the threes. All these pa-
rameters were optimized for maximum accuracy by a 10-fold
stratified cross-validation grid search on the training set. With
these and other innovations, the proposed system yielded the
best accuracy score (42.4 %) on the public test dataset which
consists of 250 subjects and includes dummy subjects.

2.8. Evaluation methods

The method was evaluated by means of the provided train
and test datasets as well as by means of stratified 10-fold cross-
validation. Different performance metrics were used. Precision
is the ratio tp/(tp+ f p) where tp is the number of true positives
and f p the number of false positives. It is intuitively the ability
of the classifier not to label as positive a sample that is negative.
Recall is the ratio tp/(tp + f n) where tp is the number of true
positives and f n the number of false negatives. It is intuitively
the ability of the classifier to find all the positive samples. On
the other hand, the F1 score defined by:

F1 =
2 ∗ precision ∗ recall

precision + recall
, (7)

also known as balanced F-score or F-measure, can be interpre-
ted as a weighted average of the precision and recall, where an
F1 score reaches its best value at 1 (perfect precision and recall)
and worst score at 0 (precision or recall null). The relative con-
tribution of precision and recall to the F1 score are equal. The
reported averages for multi-class classification are prevalence-
weighted macro-averages across the classes.

3. Results

The whole training set described in table 1 (training data
and class labels) as well as the testing set (only testing data)
were available during the competition. In order to design the
proposed system and adopt the best solution for MCI predic-
tion, the available training set was used for training and testing
under a stratified 10-fold cross-validation strategy. It allowed
to select and optimize feature selection and feature extraction
methods as well as the architecture of the multiclass classifier.

This section summarizes the evaluation of the proposed
method on the training dataset during the competition and the
final evaluation of the proposed method once the class labels
of the testing set were known and the real and dummy (artifi-
cially generated from real data) subjects were identified after
the competition.

3.1. Evaluation on the train dataset

Fig. 6 shows the confusion matrices of the proposed sys-
tem on the training set evaluated by 10-fold cross-validation. It
shows the effect of including the final HC vs. MCI final correc-
tion step. The proposed system yielded an accuracy of 57.92 %
and 54.17 % when excluding and including the final HC vs.
MCI final correction step, respectively.
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Figure 6: Confusion matrices of the proposed system on the training set: (a)
without performing the HC vs. MCI final correction step, and (b) including the
HC vs. MCI final correction step.

3.2. Final evaluation on the test set

Fig. 7 shows the confusion matrices of the proposed system
on the whole test set including dummy subjects, and the real test
set excluding dummy subjects. The proposed system yielded a
classification accuracy of 37.40 % on the whole test set of 500
subjects including the dummy data and of 56.25 % on the real
test set of 160 real subjects which excluded the 340 dummy
subjects.

Tables 3 and 4 shows the detailed classification reports
when the model is trained on the full development training set
and the performance scores are computed on the whole evalua-
tion set including and excluding dummy subjects, respectively.

3.3. Comparison to other methods

Finally, the proposed method was compared to other exis-
ting methods that were evaluated during the competition that
includes: i) OvO, OvR, ECOC as strategies for reducing the
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Figure 7: Confusion matrices of the proposed system on (a) the whole test set
including dummy subjects, and (b) the real test set excluding dummy subjects.

problem of multiclass classification to multiple binary classifi-
cation problems, ii) support vector machines, gradient boosting
classifier [50] and random forest as base binary classifiers, and
iii) bagging ensemble learning. The results of this analysis are
shown in table 5. It can be concluded that the proposed method,
together with a decision tree gradient boosting OvR classifier,
yielded the best performance metrics (precision, recall and f1-
score). The reason for selecting an ensemble classifier trained
by bagging as final solution was motivated by the reduction in
variance and its help to avoid overfitting.

4. Discussion

This paper showed the system developed by the Sig-
nal Processing and Biomedical Applications (SiPBA) research
group from the University of Granada (SiPBA-UGR Team)
for the International challenge on automated prediction of
MCI from MRI data (https://inclass.kaggle.com/c/

Table 3: Detailed classification report. The model is trained on the full develop-
ment training set. The scores are computed on the whole evaluation set (inclu-
ding dummy subjects).

Class precision recall F1-score support

HC 0.42 0.29 0.34 117
MCI 0.23 0.13 0.17 129
cMCI 0.34 0.51 0.41 124
AD 0.45 0.56 0.50 130

avg / total 0.36 0.37 0.36 500

Table 4: Detailed classification report. The model is trained on the full deve-
lopment training set. The scores are computed on the evaluation set (excluding
dummy subjects).

Class precision recall F1-score support

HC 0.60 0.62 0.61 40
MCI 0.28 0.17 0.22 40
cMCI 0.53 0.53 0.53 40
AD 0.70 0.93 0.80 40

avg / total 0.52 0.56 0.54 160

mci-prediction). A 10-fold cross-validation framework was
used in order to adopt the most promising algorithms for input
data standardization, feature selection, feature extraction and
multi-class classification by means of binary reduction techni-
ques. The small number of samples in the training dataset, as
well as the high number of features available for each patient,
influenced the selection of the most appropriate techniques for
this problem. The proposed system is based on a previous zero-
mean and unity-variance feature standardization, a feature se-
lection algorithm specially developed for this challenge that
implements several OvR ANOVA tests (FWE-corrected), fea-
ture reduction by means of PLS, and an ensemble of OvR RF
classifiers. Finally, with the aim of improving the performance
of the classifier when discriminating HC from MCI subjects, a
second-level binary classifier consisting of a t-test cortical and
subcortical feature selection, PLS feature extraction, and a RF
classifier was introduced that reconsiders the HC and MCI pre-
dictions of the first level.

Due to the wide range of variability of the features provi-
ded, it was needed to standardize the features to zero mean and
unit-variance in order to solve convergence problems that typi-
cally appear when training predictors by means of conventional
machine learning algorithms. This improved the convergence
of the training process.

A novel multiclass feature selection method was developed
in order to identify the most discriminant features of the four
classes. It was based on a OvR two-group ANOVA strategy
where the p-values are selected corresponding to a FWE ra-
te. The results corroborated that progressive cerebral atrophy
is a characteristic feature of neurodegeneration in patients pro-
gressing from a cognitive normal state to MCI and AD [31]
as shown in Fig. 2. Traditional studies of regional MRI vo-
lumes have shown that AD is characterized by a progression
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Table 5: Comparison of the proposed method to other alternative classifiers tested during the competition. Performance metrics were obtained by i) a 10-fold CV
using the training set available during the competition and, ii) training the system with the whole training set and evaluating it on the testing set (excluding dummy
subjects).

Classifier
Performance metrics

(training set, 10-fold CV)
Performance metrics

(testing set)
Ensemble
learning

Multiclass Binary classifier precision recall f1-score precision recall F1-score

- OvO Linear SVM 0.48 0.49 0.48 0.48 0.51 0.49
- OvO Gradient boosting 0.50 0.51 0.50 0.49 0.53 0.50
- OvO Random forest 0.48 0.50 0.49 0.47 0.49 0.48
- OvR Linear SVM 0.48 0.50 0.48 0.51 0.55 0.52
- OvR Gradient boosting 0.48 0.49 0.48 0.52 0.56 0.54
- OvR Random forest 0.47 0.50 0.48 0.49 0.52 0.50

ECOC Linear SVM 0.47 0.50 0.47 0.49 0.54 0.50
- ECOC Gradient boosting 0.49 0.51 0.50 0.51 0.54 0.52
- ECOC Random forest 0.50 0.53 0.51 0.50 0.53 0.51
Bagging OvR Gradient boosting 0.48 0.50 0.49 0.51 0.54 0.52
Bagging OvR Random forest 0.51 0.54 0.52 0.52 0.56 0.54

of atrophy in the medial temporal lobe [32] being typically
the entorhinal cortex the earliest region of atrophy, closely fo-
llowed by the hippocampus, amygdala, and parahippocampus
[33, 34, 35]. Evenmore, other ROIs within the limbic lobe (ie.:
posterior cingulate) were also affected during the early stage of
the disease.

An analysis of the features selected by the proposed feature
selection method revealed that, while HC and AD classes are
well separated, MCI and cMCI are hard to be separated from
healthy controls and AD subjects since they are all together mi-
xed. To address this issue, PLS was considered as a supervised
feature reduction technique in order to increase the separability
of the classes and further reduce the dimension of the feature
space. PLS implements a supervised transformation that ma-
ximizes the covariance between the input data (selected featu-
res in section 2.4.2) and the class labels [28, 29, 9, 4]. It was
found that PLS effectively increased the ability to discriminate
the classes in the feature space as shown in Figs. 4 and 5.

For the development of the system, the 240-patient training
dataset was used for training and validation by means of 10-
fold stratified cross-validation. This allowed to fit the whole
system as well as to optimize its parameters. However, the 340
dummy subjects included in the 500-sample testing set distorted
the competition since statistically significant differences were
found between the training set and the artificially-generated da-
ta from real data. Concretely, there was a total of 222 features
out of the 427 total numeric features that reported significant
differences (p < 0.05 Bonferroni-corrected) between real and
artificially-generated data. This fact made that the system trai-
ned under the given conditions was evaluated under a different
scenario where a clear mismatch between training and testing
conditions existed. These are the reasons for the low and highly
variable classification scores obtained with the testing set. As
an example, the proposed system obtained just a 0.37 classifi-
cation score when the model was trained on the full develop-
ment training set and evaluated on the whole testing set (inclu-

ding dummy subjects). Meanwhile, the final evaluation of the
system proposed by the SiPBA-UGR Team on the real-subject
subset of the testing sets reported a 0.56 classification score as
shown in tables 3 and 4. The experiments conducted on the real
test set showed that most of the subjects with stable MCI were
classified as HC, which is not surprising in a clinical context. In
contrast, most of the converter MCIs were classified as either
cMCI or AD, which is also good in a clinical context, as the
problem of discriminating stable and converter MCI is the most
clinically relevant challenge.
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[28] J. Ramı́rez, J. Górriz, F. Segovia, R. Chaves, D. Salas-Gonzalez,
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