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Medical image classification is currently a challenging task that can be used to aid the diagnosis of
different brain diseases. Thus, exploratory and discriminative analysis techniques aiming to obtain repre-
sentative features from the images play a decisive role in the design of effective Computer Aided Diagnosis
(CAD) systems, which is especially important in the early diagnosis of dementia. In this work, we present
a technique that allows using specific time series analysis techniques with 3D images. This is achieved by
sampling the image using a fractal-based method which preserves the spatial relationship among voxels.
In addition, a method called Empirical functional PCA (EfPCA) is presented, which combines Empirical
Mode Decomposition (EMD) with functional PCA to express an image in the space spanned by a basis
of empirical functions, instead of using components computed by a predefined basis as in Fourier or
Wavelet analysis. The devised technique has been used to classify images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the Parkinson Progression Markers Initiative (PPMI), achieving
accuracies up to 93% and 92% differential diagnosis tasks (AD versus controls and PD versus Controls,
respectively). The results obtained validate the method, proving that the information retrieved by our
methodology is significantly linked to the diseases.

Keywords: List Hilbert curve; EEMD; empirical functional PCA; SVM; PET; Alzheimer’s disease;
Parkinson disease.

1. Introduction

Computer-based medical image analysis methods
are currently attracting considerable research atten-
tion, as they usually determine the performance of
the Computer Aided Diagnosis (CAD) tools. These
techniques are especially important in neuroimag-
ing techniques for the diagnosis of dementia, as
three-dimensional and high-resolution images are
often available. This is the case of neuroimaging

modalities for the diagnosis of neurodegenerative
diseases, which affect 50Million people worldwide.1

Moreover, it is expected that 82Million people will
suffer any type of dementia in 2030 increasing up
to 152Million people in 20502 according to the World
Health Organization. Alzheimer’s disease (AD) and
Parkinson Disease (PD) are the two most common
types of dementia. In the case of AD, it accounts
for 60–70% of the cases.
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Different image modalities are used in the in vivo
diagnosis of these dementias. These include struc-
tural Magnetic Resonance Imaging (MRI) that can
be used to assess the progression of the AD from the
early stages of the disease,2,3 as it provides a visual
way to evaluate the brain artrophy that is a typ-
ical feature of neurodegeneration as a consequence
of dendritic and neuronal losses. Thus, depending
on the stage of the disease, the structure of differ-
ent brain regions are progressively affected: in the
early stages, neurodegeneration starts in the medial
temporal lobe. Then, enthorhinal cortex in the hip-
pocampus and the limbic system are progressively
affected, and eventually, neocortical areas. This way,
the typical study to assess the progression of AD is
focused on the hippocampus, the enthorhinal cor-
tex and the amygdala. However, cerebral atrophy
is a result of neuronal damage but not entirely
specific of AD.2 On the other hand, studies using
functional neuroimaging provide another source of
information to prove the functional integrity of
brain.2 Single Photon Emission Computed Tomog-
raphy (SPECT) or Positron Emission Tomography
using the 18F-fluorodeoxyglucose (FDG) radiotracer
(18F-FDG PET) are being intensively used4–7 for
the diagnosis of AD. Since glucose is the primary
source of energy for the brain, FDG, a glucose-
based radiotracer, can be used to measure metabolic
activity at a specific region, as this consumption
produces an emission that can be detected by a
PET gammacamera. In a similar way, SPECT imag-
ing using123 I-ioflupane (DaTSCAN) radiotracer is
widely used for the diagnosis of PD, as it provides a
way to measure the amount of dopaminergic trans-
porters (DaT) in the striatal region which is linked
to the disease.8,9 Alternatively, there are other meth-
ods such as Electroencephalography (EEG)10–14 or
Magneto-Encephalography (MEG)15 to capture rel-
evant information to evaluate the functional state
of the brain, providing useful information of the dis-
ease progression, especially in the early stages. These
methods can also be used to assess the disease by
reconstructing the brain network, indicating brain
regions that are coupled in the development of spe-
cific tasks16–22 or during resting state.23 The analy-
sis of these images not only can help physicians to
obtain helpful information related to the neurode-
generation that occurs, but also to the early diagnosis
of the disease and the improvement in the accuracy

of the diagnosis.8,24 However, the large amount of
data provided by these images makes it necessary
to develop specific processing techniques. In fact,
feature extraction in medical image processing still
remains a challenge since, as with other real-world
data, the expected number of available samples is
considerably lower than the dimension of the fea-
ture space. Thus, the development of effective tech-
niques to reduce the number of features while pre-
serving the information plays a decisive role, as they
avoid the use of raw data (e.g. VAF technique25)
sidestepping the curse of Dimensionality problem.26

Hitherto, two main alternatives, although comple-
mentary, have been generally employed to reduce
the dimensionality of the feature space. The first
consists in selecting the most discriminative features
which can be addressed by filtering or wrapper tech-
niques.27–30 The second lies in the computation of a
reduced set of new features from the raw data (i.e.
the original feature space), obtaining a new, low-
dimensional feature space.31–35

These techniques have been previously used in
functional 18F-FDG PET imaging36–39 to build
CAD systems. This is, however, a difficult task since
structural and functional changes in the early stages
of AD are similar to those that appear as a conse-
quence of the natural aging process.

There exist different approaches to extract rel-
evant information for predictive diagnosis in differ-
ent image modalities. Thus, in Ref. 40 and similarly
in Ref. 41 for MRI images, Total Variation (TV)
as a regularization and structured sparsity is used
for classifying fMRI images. Moreover, a review of
machine learning-based methods for feature selection
in MRI is presented in Ref. 42, where classification
experiments using images from the ADNI database
are shown to compare the methods exposed. Other
approaches43 improve the Support Vector Machine
(SVM) classifier by introducing spatial and anatom-
ical a priori information in SVM and Ref. 44 presents
a robust framework for feature selection in MRI that
uses different types of priors introduced in Support
Vector Classifiers (SVCs), which is assessed using a
database composed of 137 patients with AD and 162
elderly controls.

Other recent works propose the use of fractals
to compute discriminative features from images or
EEG signals. For instance, in Refs. 45 and 46, the
fractal dimension is used to study the complexity
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and dynamical changes in autistic spectrum disorder
in the brain and Ref. 47 shows the application
to investigate the frontal brain of major depres-
sive disorder. Other EEG-based applications such
as Brain Computer Interfaces (BCI) have also used
fractals to extract features for motor imagery tasks
classification.

In this paper, we propose a method based on
EMD decomposition to extract relevant features.
However, instead of using multidimensional EMD,
we convert the images into a sequence of vox-
els by sampling the 3D images using space-filling
fractal curves which preserve the voxel neighbor-
hood to avoid the loss of spatial information. As
a result, a sequence of voxel intensities is obtained
for each image, and then, temporal and spectral fea-
tures are computed from the components obtained
by Empirical Mode Decomposition (EMD). Space-
filling curves have been employed in Ref. 48 to avoid
using the bidimensional extension of EMD, which is
computationally expensive, although in that work,
pixel neighbohood preservation was not an essen-
tial requirement. Unlike Fourier or Wavelet-based
methods, which use a predefined basis to present the
original signal (e.g. in the case of Fourier analysis,
signals are expresses as a combination of sine/cosine
functions), we use EMD to decompose the orig-
inal signal into a number of components named
Intrinsic Mode Functions (IMF). These IMF com-
ponents are empirical, which allows reconstructing
precisely the original signal. In a previous work,49

we used the specific extension of EMD to bidimen-
sional signals to extract EMD components directly
to PPMI images which requires applying the 2D
EMD method iteratively to some relevant slices of
the image. This method, besides being computation-
ally less efficient, does not use all the spatial infor-
mation contained in the image, since SPECT images
are 3D by nature. Our proposal uses a way to decom-
pose 3D images using 1D EMD without losing spa-
tial information (i.e. exploiting the three-dimensional
neighborhood properties). Hence, it is not necessary
to select only the most relevant slices but features
from all the 3D structure containing the striatum are
processed, contributing to improve the classification
performance.

Thus, in this work we present two main con-
tributions. The first is the use of multidimensional

space-filling curves to sample a multidimensional sig-
nal converting it to a one-dimensional time varying
signal. Specifically, we used Peano–Hilbert curves to
fill the R

d space, since others methods, such as, for
example, the simple rearranging of the array com-
ponents by columns or by rows would not have into
account the underlying neighborhood properties of
the signals being sampled. This is the main motiva-
tion for sampling by means of space-filling curves,
as in medical imaging is well known that relevant
information is not only in the pixel/voxel individ-
ual values but also in the relationships of these with
their vicinity. In fact, second order features such
as texture features are based on this.33,37,38,50–53

Moreover, this is one of the key points in some
Deep Learning applications54 such as Convolutional
Neural Networks,55 where features are hierarchically
extracted by convolving the images with a kernel
learned by backpropagation. The second contribu-
tion is the implementation of functional Principal
Component Analysis (fPCA)56 by means of EMD
components. fPCA is a PCA-based technique specif-
ically developed to extract high variance components
from time-varying signals. However, fPCA is nor-
mally implemented by applying classical PCA on the
signal represented on a basis of smooth functions,
typically obtained by means of Fourier or Wavelet
analysis.57–60 Due to the limitation of using Fourier
analysis or other methods that use a predefined set
of basis functions, we propose a new technique called
EfPCA, empirical functional PCA. It represents the
original signal in a basis composed of empirical com-
ponents, which are the IMF computed by EMD. This
requires some extra algebra to the procedure in order
to find the best representation of the signal. In our
proposal, Basis-Pursuit is used to this end, which
allows finding the best representation of the sig-
nal in an over-complete basis, in terms of minimum
�2 error. The proposed method has been applied
to 18F-FDG PET and DaTSCAN SPECT image
classification, from the ADNI and PPMI databases
respectively, to demonstrate that features extracted
are representative enough and provide discriminative
information to a SVC. In the case of PET images
from the ADNI database, they were split into regions
according to the Automated Anatomical Labeling
(AAL) atlas61 to reduce the computational complex-
ity, as it allows processing each region independently.
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The rest of the paper of the paper is organized
as follows. First, in Sec. 2, the methodology is pre-
sented. This section describes the different stages in
our proposal: we first describe the sampling method
by means of fractal curves and then the implemen-
tation of fPCA using empirical components. The
pursuit-based method to represent the original signal
as a combination of IMFs is also described. After-
wards, in Sec. 3, the described method is applied to
extract representative features from 18F-FDG PET
images of the ADNI database and from DaTSCAN
SPECT images from the PPMI database to show the
applicability of the proposed technique to the diagno-
sis of neurodegenerative disorders. Details regarding
the databases are provided along with an analysis of
the capabilities of the proposed method including,
among others, the classification results when feeding
SVC with the features computed by the proposed
method. Moreover, the discussion of the results is
provided in Sec. 4 and finally, the conclusions of this
work are drawn in Sec. 5.

2. Methodology

The method devised in this work describes the way
for processing multidimensional signals using 1D
signal analysis tools, providing the arena to explore
patterns with non-specific image (i.e. 2D or 3D) tech-
niques. The fractal sampling method used, enable us
to convert any multidimensional signal to 1D sig-
nal, while spatial information is preserved. In this

work, the method has been applied to 3D medical
images, but it can be extended to R

D since the space-
filling curves can be extended to any dimension. The
limit on the dimensionality is imposed by the com-
puting requirements for the generation of the curve.
Thus, when extending to D > 3, parallel techniques
are advisable to compute the curves in a reasonable
time.62 The idea of using space-filling curves to sam-
ple multidimensional signals allows applying typical
1D multivariate techniques such as fPCA56 which
aims to find functional components in time varying
data. Roughly, fPCA can be seen as the application
of classical PCA over a smooth version of the sig-
nal. In practice, this can be addressed by represent-
ing the original signal in a basis of smooth functions
and then applying PCA to the coefficients, which
are coordinates of the original signal in that basis.
In fact, it is frequent to use Fourier or Wavelet-
based components to this end. In this work, we use
EMD instead, as it uses an empirical basis rather
than a predefined set of functions (as in Fourier or
Wavelet analysis). The computation of the corre-
sponding coefficients is accomplished by Basis Pur-
suit (BP), providing a sparse representation of a sig-
nal in the basis composed of a large set of EMD
components. The overall method is shown in Fig. 1,
which is applied independently for each brain region,
obtaining a per-region set of features that are even-
tually classified by an SVM. Finally, the predic-
tions obtained for each brain region are combined by
a majority voting mechanism. The different stages

Fig. 1. Block diagram of the overall method for 18F-FDG PET image classification (ADNI database). In the first part,
fractal sampling is used to transform each 3D region (According to AAL atlas) into 1D signal. In the second part, functional
PCA is implemented by EMD decomposition.
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Fig. 2. Block diagram of the overall method for DaTSCAN image classification (PPMI database). In the first part, fractal
sampling is used to transform the striatal 3D region into 1D signal. In the second part, functional PCA is implemented
by EMD decomposition.

shown in Fig. 1 are described in detail in the follow-
ing subsections.

2.1. Fractal sampling using 3D
homogeneous Peano–Hilbert
curves numbering and spacing

A Peano–Hilbert curve is a continuous fractal space-
filling curve geometrically described by Hilbert63 as
a variant of the Peano’s curve.64 It can be defined as
a continuous function whose domain is the unit inter-
val [0,1] and its range is in a 2D Euclidean space, for-
mally: f : R → R

d. Thus, for any point t on the unit
line segment [0,1], this function assigns the corre-
sponding point (x, y) in the unit square [0, 1].2 How-
ever, the range of the Hilbert curves can be extended
to d-dimensions. The R → R

d mapping provided by
Hilbert curves have the following properties65 (for
simplicity, d = 2):

• Continuity is preserved: values close in the [0, 1]
line have similar values in the [0, 1]2 unit square
(adjacency condition).

• The mapping is quasi-invertible: the construction
of Hilbert curves tends to correspond similar val-
ues of (x, y) coordinates to similar t values. This
is particularly important when there is neighbor-
hood information.

• The curve is uniquely defined by fixing the map-
ping of the initial and final subintervals, as well as
a rotation matrix.

• They can be generated by the iterative application
of affine transformations to a starting mapping,
and can be implemented by recursive algorithms.

Figure 3 shows an example of Hilbert curves in
2D and 3D.

2.2. Empirical functional component
analysis

Functional Component Analysis (fPCA) is a statis-
tical method that aims to find principal components
in functional data (i.e. time series).56 Thus, as in
classical PCA the target is to obtain the eigen-time
series66 (being of the same length of the original time
series) representing the most important directions of
variation of the signal. A usual way of implementing
fPCA consists in approximating each original time
series of dimension d with k basis functions. Thus,
the representation of the original signal in that basis
reduces the dimension from d to k.

Formally, a signal x(t) can be expanded in terms
of a pre-defined basis φ as:

x(t) =
k∑

i=1

φ(t)ci(t) = φc, (1)

where φ(t) is a basis for x. Due to stability rea-
sons, using a Fourier basis is a common choice in
signal processing applications, consisting of sine and
cosine functions of increasing frequency: {sin(ωt),
cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(mωt), cos(mωt)}.
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(a)

(b)

Fig. 3. Example of 2D (a) and 3D (b) Hilbert curves.

This represents an alternative to polynomial func-
tions that are commonly used to describe natural
data. Nevertheless, due to the periodic properties
of the basis functions, the representations obtained
by the Fourier basis are periodic. Consequently, the
resulting representations may not be accurate if the
original signal is not periodic. Other approaches
also use pre-defined functions to represent the orig-
inal signal, such as Wavelet Decomposition which
depends on the mother wavelet function chosen, and
the number of computed levels.

In this work, we use a different approach that
does not use any pre-defined basis to decompose
the original signal but an empirical decomposition
by means of EMD.67 Once the original signals are
expressed as coordinates in the subspace spanned by
the components (φ), PCA is applied in the classi-
cal way on that subspace. The implemented process,
which can be considered as a particular implemen-
tation of the functional PCA, can be described in a
more formal way as follows. Let c be the coordinates

of x in the subspace spanned by the basis φ, we
implement fPCA as follows:

(i) Decompose each data sample x into a set of
basis signals φ.

(ii) Obtain the representation c of x in the subspace
spanned by the basis φ.

(iii) Then apply the standard PCA method to c:

(a) Subtract the mean from each sample y =
c− c̄.

(b) Compute the population covariance matrix
Q of y : Q = yyT/(n − 1), where n is the
number of samples.

(c) Compute for the eigen time-series their cor-
responding eigenvalues of Q by means of
SVD.

(d) Since (Q) is diagonal: Q = USV� ·V is the
eigenvectors matrix and λi = s2

i /(n − 1) is
the eigenvalue that account for the variance
explained by the eigen time-series vi.

(e) Compute the projection of new data on the
space spanned by the k first eigen time-
series (sorted by decreasing eigenvalue).

(f) Compute P = UkSk, where Uk and Sk

represent the k first columns of U , and the
k×k upper-left part of S, respectively (P is
a n×k matrix containing k eigen time-series
of length n).

Since all of these signals form, in general, a
nonorthogonal and nonlinearly independent dictio-
nary, the representation of each signal in the sub-
space spanned by the basis is obtained by means of
Basis Pursuit, explained later in Sec. 2.4.

As in standard PCA, the variance explained
by the principal components determines the most
important variation directions of that data. Hence,
the number of components used in the projection
depends on the threshold for the variance explained
and vice-versa. In this work, we carried out experi-
ments for different values of the variance explained,
in order to compare the performance obtained by
the classical PCA approach with that provided by
the proposed EfPCA.

2.3. Empirical mode decomposition

EMD is a method to decompose any complicated
signal into a sum of finite number of oscillatory
components, named IMFs. By definition, an IMF is
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any function with the same number of extrema and
zero crossings, whose envelopes are symmetric with
respect to zero.67 EMD is a highly adaptive decom-
position method that works in time domain, since
the decomposition is based on the local characteris-
tic time scale of the data. Although there are many
ways to decompose a signal into components (e.g.
Fourier analysis or Wavelet decomposition), EMD
does not make any assumption about the station-
arity or linearity of the data and stays in the time
domain. Moreover, the decomposition performed by
EMD implies completeness; that is, the original sig-
nal can be exactly recovered by summing up the com-
ponents. The basic idea behind EMD decomposition
is to consider a signal x(t) as a superposition of high
di(t) and low rN (t) frequency oscillations. Thus, the
method, called sifting,67 iterates on the low oscilla-
tions component considered as a new signal to be
decomposed:

x(t) =
N−1∑

i=1

di(t) + rN (t), (2)

where di are the IMFs and rN is the residual signal
that represents the overall trend. The sifting process
is repeated until the stopping condition, consisting in
reaching a threshold in the Standard Deviation (SD)
over two consecutive sifting results.

Based on the EMD method, the Ensemble EMD
approach (EEMD),68 is an improved version that
makes EMD more robust to noisy signals. The core
idea of EEMD is to add white noise to the original
signal, composing a number n of trials:

xi(t) = x(t) + wi(t), i = {1, . . . , n}. (3)

Then, EMD decomposition is applied to xi(t),
obtaining a set of n noisy IMFs. Finally, the (ensem-
ble) means of the corresponding noisy IMFs of
the decompositions are computed and used as final
IMFs. The use of EEMD in this work aims to deal
with the intra-class inherent variability in actual
18F-FDG PET image data.

2.3.1. Empirical mode decomposition

When EMD decomposition is applied, it is usual,
particularly when noisy signals are processed,69 to
find IMFs that present a low correlation with the
original signal. On the other hand, to reduce the com-
putational complexity, it is convenient to reduce the

number of IMFs for the construction of the dictio-
nary to be used in BP. Thus, only the most relevant
IMFs regarding their correlation to the original sig-
nal have been selected to reduce the computation
time associated to the calculation of the coefficients
by means of BP. In particular, we compute the corre-
lation between each IMF and the original signal from
which these IMFs were extracted, and preserve only
those IMFs in which correlation is above a thresh-
old. For the sake of clarity, let us define a correlation
threshold λ. Assuming the least relevant components
have relatively poor correlation with the original sig-
nal, (i.e. 10 times lower), we can define the threshold:

λ =
max(ρi)

10
, i = {1, . . . , N}, (4)

where max(ρi) is the maximum Pearson correlation
coefficient ρi observed, computed as

ρi =
Cov{di, x}

σdiσx
, (5)

where σdi and σx are the SDs of the ith IMF and the
original signal, respectively. Consequently, only the
IMFs that fulfill the correlation threshold are kept
to be included in the over-complete dictionary.

2.4. Basis pursuit

After decomposing the original data set into a num-
ber of components (in our case, IMFs), it is neces-
sary to express them as coordinates in the subspace
spanned by the IMFs. In other words, it is neces-
sary to find the best linear combination of IMFs
that effectively reconstruct the original signal. Under
the assumption that similar classes may share simi-
lar IMF components, we define a basis composed by
the IMFs extracted from the training images and use
it to express an image.

However, the basis arranged by the IMFs com-
ponents is non-orthogonal and overcomplete, and
requires specific method to compute the coefficients.
BP70 deals with this problem. Assuming that Ψ
is a dictionary of functions in a Hilbert space,
BP is intended to solve the optimization problem
defined as:

min
x

‖x‖1 s.t. y = Ψx, (6)

where x is a N × 1 solution vector (coefficients), y
is a M × 1 vector (signal), Ψ is a M × N over-
complete basis matrix M < N (see Fig. 4). Thus, BP

1850040-7
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Fig. 4. BP method for sparse representation. In the Fig-
ure, a 18F-FDG PET image (y) is represented as a sparse
linear combination (x) of IMFs extracted from the images
composing the training set (Ψ).

allows obtaining the sparsest solution x in terms of
�1-norm. In other words, it provides the coefficients
for a sparse linear combination of the elements in Ψ
that best reconstructs the signal y.

BP can be extended for dealing with noisy data.
Thus, Chen and Donoho70 proposed to obtain an
approximate decomposition of y:

y = Ψx + r, (7)

where r is a residual term that accounts for the dif-
ference between the original signal and the recon-
structed by means of the sparse representation driven
by x. This way, dealing with a noise level σ > 0 can
be addressed by solving

min
x

‖Ψx− y‖2
2 + λn‖x‖1, (8)

which is known as Denoising BP, with λn =√
2 log#D vectors in the dictionary Ψ.

3. Experimental Results

In the following subsections, the proposed method-
ology is assessed in detail using 18F-FDG PET
images from the Alzheimer’s disease Neuroimaging
Initiative (ADNI) database. Then experiments using
images 123I-Ioflupane (DatSCAN) SPECT images
were also conducted (described in Sec. 3.2) to show
the applicability of the proposal in the diagnosis of
Parkinsonian Syndromes.

3.1. Experimental results using
the ADNI database

3.1.1. Database description

The database used in this work contains multimodal
18F-FDG PET image data from 138 subjects, com-
prising 68 Controls (CN) and 70 AD patients from

Table 1. Demographic data of patients in the ADNI
database used in the experiments.

Diagnosis Age Gender #M/#F MMSE

Control 75.81 ± 4.93 43/25 29.06 ± 1.08
AD 75.33 ± 7.17 46/24 22.84 ± 2.91

the ADNI database.71 This repository was created
to study the advance of the AD, collecting a vast
amount of MRI and PET images as well as blood
biomarkers and cerebrospinal fluid analyses. The
main goal of this database is to provide a way to
the early diagnosis of the AD. Patient’s demograph-
ics are shown in Table 1. 18F-FDG PET data have
been used in this work.

3.1.2. 18F-FDG PET image preprocessing

18F-FDG PET images from the ADNI database
were normalized through a general affine model,
with 12 parameters,72,73 using the SPM8 software.74

After the affine normalization, the resulting image
was registered using a more complex nonrigid spa-
tial transformation model. The nonlinear deforma-
tions to the Montreal Neurological Imaging (MNI)
PET Template were parametrized by a linear com-
bination of the lowest-frequency components of the
three-dimensional cosine transform bases. A small-
deformation approach was used, and regularization
was applied by the bending energy of the displace-
ment field. This process ensures that each image
voxel corresponds to the same anatomical position.
Thus, after image registration, all the PET images
were resized to 79 × 95 × 68 voxels with voxel-size
of 3mm (Sagittal) ×3mm (Coronal) ×3mm (Axial).
Subsequently, PET images are also normalized in
intensity in order to compute comparable levels
among the images. Intensity normalization is per-
formed by means of the mean image, which is used
as a normalization template. Specifically, the normal-
ization value applied to each image is calculated as
the mean of the 1% of the voxels with a higher acti-
vation level in the template. This helps to homoge-
nize the activation levels, using the same scale and
making them comparable. Moreover, we used the
116-regions Automated Anatomical Labelling Atlas
(AAL) to extract the voxels corresponding to these
areas. Voxels outside the atlas-defined areas are con-
sidered as background. On the other hand, only 42
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Table 2. Names and the corresponding indexes of the regions used in the classification experiments carried
out in this work. These regions are associated to the development of AD according to Ref. 75.

Frontal lobe Parietal lobe Occipital lobe Temporal lobe

1 Frontal Sup L 13 Parietal Sup L 21 Occipital Sup L 27 Temporal Sup L
2 Frontal Sup R 14 Parietal Sup R 22 Occipital Sup R 28 Temporal Sup R
3 Frontal Med L 15 Parietal Inf L 23 Occipital Mid L 29 Temporal Pole Sup L
4 Frontal Med R 16 Parietal Inf R 24 Occipital Mid R 30 Temporal Pole Sup R
5 Frontal Sup Medial L 17 Precuneus L 25 Occipital Inf L 31 Temporal Mid L
6 Frontal Sup Medial R 18 Precuneus R 26 Occipital Inf R 32 Temporal Mid R
7 Frontal Mid Orb L 19 Cingulum Pos L 33 Temporal Pole Mid L
8 Frontal Mid Orb R 20 Cingulum Pos R 34 Temporal Pole Mid R
10 Rectus L 35 Temporal Inf L 8301
11 Rectus R 36 Temporal inf R 8302
12 Cingulum Ant L 37 Fusiform L

Cingulum Ant R 38 Fusiform R
39 Hippocampus L
40 Hipocampus R
41 ParaHippocampal-L
42 ParraHippocampal-R

regions out of the 116 included in the AAL atlas,
distributed in the frontal, parietal, occipital and tem-
poral lobes, have been selected here for brain con-
nectivity modeling, as they are considered the most
relevant for AD diagnosis.75 The use of a reduced
number (but relevant) of regions allows to shorten
the computation time. These regions are detailed in
Table 2.

3.1.3. EMD components from fractal sampled
images

As explained in previous sections, we propose the
use of a sampling method based on fractal curves to
transform the original 3D image into a time vary-
ing signal, in which consecutive points corresponds
to neighbor voxels in the 3D space. This allows the
use of 1D signal processing techniques to extract pat-
terns from the 3D image. In our case, EMD is used to
decompose the original image into a number of sig-
nals containing different frequency components. As
an example, Fig. 5 shows the decomposition of the
left hippocampus region (AAL atlas region 36) into 6
IMFs.

Differences between the IMFs for controls and
AD patients can be visually assessed in both cases,
while correlation between signals corroborates it.
In particular, correlation between IMF 4 signals
are 0.63 and 0.58 for Control/AD and MCI/AD,
respectively, and correlation between IMF 6 signals

are 0.73 and 0.69 for Control/AD and MCI/AD
groups, respectively. In addition, activation of differ-
ent brain regions can be reconstructed from the IMFs
to show the activation levels represented by each one.
Figure 6 shows the reconstruction of the regions over
a structural brain image, revealing differences in the
metabolic activity levels among groups.

3.1.4. Classification

In the experiments performed, 6 IMFs are extracted
from each brain region using 20 stages in the EEMD
method and adding 1% of noise. These IMFs are
arranged by columns to compose an over-complete
dictionary. Images are then expressed as a sparse lin-
ear combination of these IMFs and the coefficients
are used to compute the eigenvectors by means of
PCA. Subsequently, the Hilbert transform is used to
compute the analytic version of each IMF and the
coordinates in the complex plane are used as fea-
tures. Such features are then used to train a SVM
for each region. These SVM classifiers act as weak
classifiers that are combined using the majority vot-
ing rule, as shown in Fig. 7.

3.1.5. Computing the score of the ensemble
of classifiers

The output score of a classifier is computed by tak-
ing into account the scores provided for each classi-
fier and for each class independently. For the sake of
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(a) (b)

Fig. 5. Example IMFs computed for the left hippocampal region of (a) Control subject and (b) AD patient.

Fig. 6. Representative slices of the coronal plane for the IMF 2, selected as relevant according to Eq. (4) for the 42 brain
regions indicated in Table 2 over a structural brain image. Control subject is shown in (a), MCI in (b) and AD patient
in (c).
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Fig. 7. Classification is addressed by an ensemble of
SVMs.

clarity, let us define the procedure in a formal way.
Let si be the score provided by the ith binary classi-
fier, and let s0

i and s1
i be the score of the ith classifier

obtained for the 0 and 1 class, respectively. The score
S of the ensemble of n classifiers can be computed
as:

S =
∑

i

s0
i −

∑

j

s1
j for i, j = {1, . . . , n}, i �= j.

(9)

In the case of SVC-based classifiers, sk
i is the dis-

tance to the hyperplane when the sample is classi-
fied as belonging to class k. This way, S is the score
used to construct the ROC curve exposed in the next
section.

3.1.6. Assessment generalization capabilities
of the models

The limited number of available samples, an issue
known as small sample size problem and common
when working with biomedical data, makes it neces-
sary to properly assess the results in order to ensure
that they are database independent; that is, that the
models are not overfitted and they can generalize to
new samples. Thus, the use of a resampling method
is necessary to assess the generated models. In this
work we used resampling by k-fold cross-validation
(k = 10) to estimate the prediction error.

3.1.7. Parameter selection

There are two main parameters to have into account
in the experiments. The first one controls the thresh-
old on the variance explained, which limits the num-
ber of eigenvectors used in the fPCA projections. The
other parameter regards the sparsity; that is, the
maximum number of coefficients that are not zero
in the linear combination computed by BP. In the
experiments, as expected, we noticed an important
dependence of the performance with the variance
explained. Thus, we swept the variance explained

Table 3. Parameter values used for Control/AD and
MCI/AD classification experiments.

Experiment #Regions σ2 explained Sparsity

Control versus AD 42 0.8 80
MCI versus AD 42 0.95 150

to find the best value. On the contrary, the selec-
tion of the sparsity is not as critical as the variance
explained, but helps to fine-tune the performance.
The values used in Control/AD and MCI/AD classi-
fication, see Table 3, were found by experimentation
with the training set (i.e. test samples were never
used for tuning the parameters).

The first classification experiment using the
methodology described above consists in classifying
between Controls and AD patients. In order to deter-
mine the best value of the variance explained, we per-
formed different experiments that are summarized in
Fig. 8. In this figure, Accuracy (a), Sensitivity (b)
and Specificity (c) values for different values of the
variance explained by the functional PCA compo-
nents are shown.

Taking the accuracy as a reference, we deter-
mined that its maximum value is obtained when
using the number of components that explain 80% of
the variance. Thus, the ROC curve shown in Fig. 9
was computed for that value, obtaining an Area
under ROC Curve (AUC) of 0.95. Receiving Operat-
ing Characteristic (ROC) curve shows the trade-off
between sensitivity and specificity, computed using
the score of the ensemble of classifiers as previously
defined in Sec. 3.1.5. The AUC indicates the prob-
ability that a positive sample does not have a more
extreme value than a negative one.

Additionally, classification experiments between
MCI subjects and AD were also carried out, obtain-
ing the results summarized in Figs. 10(a)–(c),
corresponding to accuracy, sensitivity and speci-
ficity, respectively, for different values of the vari-
ance explained threshold chosen in the fPCA step.
Figure 11, on its side, shows the ROC curve
computed using the number of components that
explain 95% of the variance, which is the point where
the accuracy reaches its maximum value. The corre-
sponding AUC is 0.81.

The coefficients computed from the over-
complete basis composed of the IMFs extracted from
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(a) (b)

(c)

Fig. 8. Classification performance obtained in the Control/AD classification experiment (a) Accuracy, (b) Sensitivity
and (c) Specificity are shown for different values of variance explained used in the fPCA stage.

Fig. 9. ROC curve obtained for Control/AD classifi-
cation.

the training set of images can be shown graphically
by reconstructing an image. Thus, the sparse rep-
resentation of Control and AD images in terms of
the available IMFs are shown in Fig. 12. These coef-
ficients represent the contribution of each selected
IMF to the computed features. In other words,
marked areas correspond to voxels used for classifi-
cation whereas the color indicates the weight of each
contribution to the reconstruction of NOR and AD
images.

Statistical significance of the results has been
assessed by hypothesis test, to compare the accu-
racy values provided by the EfPCA method to the
other methods shown in Table 4. This has been
addressed using two-sample t-test for equal means
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(a) (b)

(c)

Fig. 10. Classification performance obtained in the MCI/AD classification experiment (a) Accuracy, (b) Sensitivity and
(c) Specificity are shown for different values of variance explained used in the fPCA stage.

Fig. 11. ROC curve obtained for MCI/AD classifica-
tion.

and unknown variances. Hypothesis testing shows
a statistical significance of 5% in the means differ-
ence for the VAF method in the case of Control ver-
sus AD classification. In those cases where p-value is

above 0.05 it is not possible to ensure the mean dif-
ference. In the case of MCIs versus AD classification
experiments, it is possible to assess the statistical
significance of 5% in the accuracy mean differences
between EfPCA, VAF, PCA and HHT methods.

3.2. Experimental results using
DatSCAN images (PPMI
database)

3.2.1. Database description

Data used in this section were obtained from the
Parkinson’s Progression Markers Initiative (PPMI)
database. For up-to-date information on the study,
visit www.ppmi-info.org/data. The images in this
database were imaged 4 + 0.5 h after the injection
of between 111 and 185 MBq of DaTSCAN. Raw
projection data are acquired into a 128× 128 matrix
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Fig. 12. Sparse representation of Control (a, b) and AD images (c, d). Axial and coronal planes shown differences in
brain regions associated to AD such as the left and right hippocampus and left and right parahippocmpal regions.

Table 4. Classification results for VAF, PCA, EMD and EfPCA meth-
ods. Mean values along with the difference between maximum and min-
imum values during k-fold evaluation are shown.

Method Accuracy Sensitivity Specificity AUC

Control versus AD
VAF 0.85 ± 0.05 0.89 ± 0.13 0.81 ± 0.12 0.91
PCA 0.90 ± 0.09 0.87 ± 0.10 0.92 ± 0.10 0.93
HHT-fs 0.92 ± 0.06 0.93 ± 0.10 0.92 ± 0.11 0.95
EfPCA 0.93 ± 0.05 0.93 ± 0.09 0.92 ± 0.10 0.95

MCI versus AD
VAF 0.65 ± 0.13 0.67 ± 0.17 0.63 ± 0.17 0.58
PCA 0.68 ± 0.09 0.70 ± 0.15 0.65 ± 0.20 0.72
HHT 0.71 ± 0.11 0.66 ± 0.13 0.75 ± 0.11 0.75
EfPCA 0.75 ± 0.09 0.70 ± 0.14 0.81 ± 0.19 0.81
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Table 5. Statistical significance of the comparison
between EfPCA and other methods in Table 4.
Results corresponding to p-values below 0.05 are indi-
cated with ∗.
Experiment Method p-value

Control versus AD VAF 0.001∗
Control versus AD PCA 0.4
Control versus AD HHT 0.7
MCI versus AD VAF 0.001∗
MCI versus ADTH PCA 0.007∗
MCI versus AD HHT 0.008∗

Table 6. Demographic data of patients in the PPMI
database used in the experiments.

Age
Gender

Diagnosis (#M/#F) M F

Control 66/45 59.68 ± 11.48 55.37 ± 10.97
PD 113/45 62.94 ± 8.70 61.20 ± 10.18

stepping each 3◦ for a total of 120 projection into
two 20% symmetric photopeak windows centered
on 159KeV and 122KeV with a total scan duration
of approximately 30–45min.77

A total of N = 269 DaTSCAN images from this
database were used in the preparation of the article.
Specifically, the baseline acquisition from 158 sub-
jects suffering from PD and 111 normal controls was
used. For more details on the demographics of this
dataset, please check Table 6.

3.2.2. DaTSCAN image preprocessing

The DaTSCAN images from the PPMI dataset are
roughly realigned. We will refer to this as nonnormal-
ized (given that it is only a similarity transformation
that preserves shape). We further preprocessed the
images using the SPM12 new normalize procedure
with default parameters, which applied affine and
local deformations to achieve the best warping of the
images and a custom DaTSCAN template defined
in Ref. 78. The resulting images have a final size of
95 × 69 × 79 voxels. On the other hand, the images
have to be normalized in intensity to allow com-
paring the uptake value in areas of specific activity
(related to dopaminergic transporters) and areas of
nonspecific activity (vascular activity) between sub-
jects. The normalization value In is computed using

the Integral Normalization approach,79 which sets
the normalizing value to the average of all values in
a certain volume of the image, in an approximation
of the integral. In PD, this is often set to the average
of the brain without the specific areas: the striatum;
although the influence of these areas is often small,
and it can be approximated by the mean of the whole
image.

3.2.3. Striatum volume selection

Since relevant information for PD diagnosis is within
a specific brain region (i.e. the striatum), the sub-
volume containing it is extracted to avoid processing
noninformative voxels.

To perform this selection, we use the algorithm
described in Ref. 80. The method first averages all
the images in the database to create a mean image
Imean. Then, a threshold Ith is set depending on the
characteristics of the images. Due to the nature of
the DaTSCAN images, the highest intensities as well
as the major differences between affected patients
and controls are located at the striatum. Due to the
DatSCAN imaging properties, ROIs in are located
in the regions with high intensity voxels. Hence, it
is possible to determine the threshold as the central
value of intensity in the whole image, and computed
as

Ith =
1
2
(max(Imean) − min(Imean)) + min(Imean),

(10)

where Imean is the mean of all the images in the train-
ing set. Finally, we define a box-shaped that contains
only brain voxels with an intensity level higher than
the computed threshold Ith This way we select the
ROIs as well as their surrounding areas in each image
for further processing. Figure 13 shows an example

Fig. 13. Example of extracted volume containing
regions of interest related to dopamine activity for an
image from the PPMI database.
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of the extracted volume for an image from the PPMI
database using the method explained above.

3.2.4. IMF selection

Using the same methodology previously described
and applied to 18F-FDG PET images, IMF func-
tions are computed over the striatum region in
DaTSCAN images, once they are sampled using
the path indicated by the fractal curve. Then, the
IMFs are selected using the correlation-based cri-
terion explained in Sec. 2.3.1. The resulting IMFs
calculated for each image are then used to com-
pose an over-complete dictionary in the same way
that explained for the PET images. An example of
selected IMFs is shown in Figs. 14 and 15 for CN
and PD subjects, respectively.

3.2.5. Classification results

The results of the experiments conducted using the
PPMI database are shown in Fig. 16, where the
performance in terms of accuracy, sensitivity and
specificity are shown using different thresholds of the
variance explained to select components. They have
been obtained by k-fold stratified cross-validation
(k = 10), which ensures the same label distribution in
training and testing subsets. The final performance
is obtained by averaging. Moreover, the results are
summarized in Table 8 and ROC curve is provided
in Fig. 17 to allow comparing the performance of

Fig. 14. Example of the four most relevant IMFs in a
Control subject according to the correlation-based crite-
rion. Above figures shown the reconstruction of the indi-
cated IMFs.

Fig. 15. Example of the four most relevant IMFs in a
PD subject, according to the correlation-based criterion.
Above figures shown the reconstruction of the indicated
IMFs.

the EfPCA with respect to other approaches used as
baseline (i.e. VAF and PCA).

The results have been statistically validated using
a t-test hypothesis test, showing a statistical signif-
icance of 5% in the means difference for the VAF,
PCA and HHT methods for the CN versus PD clas-
sification experiments.

4. Discussion

Table 4 summarizes the classification results of 18F-
FDG PET images from the ADNI database obtained
by different methods for comparison. Specifically,
the method has been compared to VAF, PCA and
a recently proposed method based on HHT fea-
tures.76 VAF method25 consists in using the indi-
vidual voxel values as features without any transfor-
mation. This is possible by classifying with SVCs,
as they can handle high dimensional feature vec-
tors.81 PCA method30,82,83 has been implemented to
compress the activation data in order to reduce the
dimensionality of the feature space. This is achieved
by projecting the original data onto the principal
directions (i.e. those that account for the most part
of the variance). Experimental results show the supe-
riority of the proposed method over VAF and PCA,
providing a higher accuracy, sensitivity and speci-
ficity. Specifically, the accuracy value provided by
the EfPCA method is up to 0.93, while VAF and
PCA methods show values up to 0.85 and 0.90,
respectively. This is also exposed, as explained above,
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(a) (b)

(c)

Fig. 16. Classification performance obtained in the Control/PD classification experiment using DaTSCAN images from
the PPMI database. (a) Accuracy, (b) Sensitivity and (c) Specificity are shown for different values of variance explained
used in the fPCA stage.

with the AUCs of the ROC curves. We obtain
AUC values of 0.91, 0.93 and 0.95 for VAF, PCA
and EfPCA methods, respectively. The performance
values obtained demonstrate the capability of the

Table 7. Classification results for PPMI DatSCAN
images from PPMI database using VAF, PCA, HHT and
EfPCA methods. Mean values along with the difference
between maximum and minimum values obtained during
k-fold evaluation are shown.

Method Accuracy Sensitivity Specificity AUC

VAF 0.80 ± 0.05 0.72 ± 0.17 0.85 ± 0.14 0.87
PCA 0.87 ± 0.04 0.96 ± 0.03 0.86 ± 0.04 0.90
HHT-fs 0.90 ± 0.07 0.92 ± 0.04 0.90 ± 0.05 0.91
EfPCA 0.93 ± 0.05 0.97 ± 0.08 0.88 ± 0.05 0.94

Table 8. Statistical significance of the com-
parison between EfPCA and other methods
in Table 7. Results corresponding to p-values
below 0.05 are indicated with *.

Experiment Method p-value

Control versus PD VAF < 10−7*

Control versus PD PCA 2.10−5*
Control versus PD HHT 0.01*

features extracted to represent the image data. Addi-
tionally, the experiments carried out to explore the
effect of the variance explained on the fPCA method
show that part of the variance is related to noise.
In fact, the best value is obtained for σ2

exp = 0.80.
Consequently, 20% of the variance in the data is
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Fig. 17. ROC curve obtained for Control/PD classifica-
tion. The EfPCA method provides an AUC of 0.94.

expected to correspond to noise (or at least, it does
not contain discriminative information); in Fig. 8,
the performance clearly diminishes when projecting
the data onto all the eigenvectors (explaining 100%
of the variance). As mentioned, we also compare
the obtained results with those provided by another
recently proposed method based on HHT features.76

In the case of CN/AD classification, similar values
are provided by the HHT-based method and by the
EfPCA method. Nevertheless, the EfPCA method
outperforms the HHT-based method in MCI/AD
classification, as shown with the accuracy and the
AUC values in Table 4. The main difference with the
proposed method lies in the use of EMD decompo-
sition, which allows representing an image as a lin-
ear combination of the components extracted from
all the training images. It is worth noting that this
method produces an over-complete basis containing
a higher number of vectors than usually used in the
SRC method.84 In the proposed EfPCA method, the
atoms composing the over-complete basis describe
the images in more detail and the resulting linear
combination may contain only part of an image. In
addition, it is worth noting that the whole method
(3D fractal sampling, EEMD computation, dictio-
nary generation, OMP execution and SVM training)
takes about 1h using 24 Xeon E5-2640 cores running
at 2.40GHz.

In order to assess the method using a different
image modality, we carried out classification experi-
ments using 123I-Ioflupane (DaTSCAN) images from
the PPMI database. The results, summarized in
Table 7 and Fig. 16, demonstrate the applicability
of the proposal to the diagnosis of Parkinsonian

syndromes, outperforming the baseline methods used
as reference. Overall, the classification performance
achieves up to 93% of accuracy and an AUC
of 0.94.

5. Conclusions and Future Work

In this paper, we propose a method to process 3D
images using time-series data analysis techniques.
This is addressed by converting the 3D image data
into a time series by sampling the voxels using a frac-
tal curve-based method which preserves the spatial
relationship. Once the 3D images are transformed
into 1D signals, these are then analyzed using func-
tional PCA. Functional PCA is implemented by rep-
resenting the original signals in an over-complete
basis composed of EMD components. Unlike decom-
position based on a predefined set of functions such
as Fourier Analysis or Wavelet Analysis, the empir-
ical nature of the IMFs provides a more flexible
way to represent the original signals. Subsequently,
the projection of the original signals into the eigen-
signals computed by means of fPCA are used as fea-
tures to describe each brain region. These features
feed a one-per-region SVM classifiers which are even-
tually combined as an ensemble to leverage the clas-
sification performance. Different experiments have
been conducted to analyze the performance provided
by the proposed method in two classification tasks
using data from the ADNI database. The first was
the classification between CN and AD images obtain-
ing an accuracy of 0.93 and AUC of 0.95, which
is close to the limit imposed by the ADNI clini-
cal labels and outperforming the results obtained
by VAF and PCA. On the other hand, experiments
performed with MCI/AD subjects provided an accu-
racy of 0.75 and AUC of 0.81. Additionally, exper-
iments using DaTSCAN SPECT images from the
PPMI database show a classification accuracy of 0.93
and AUC of 0.94, showing the applicability of the
proposed approach for the diagnosis of Parkinso-
nian syndromes. The experiments performed vali-
date the method in two different ways: first, they
demonstrated that fractal sampling is an effective
method to convert 3D image data into 1D signals.
And second, the use of EMD-based functional PCA
allows expressing the original signals as a sparse lin-
ear combination of the IMFs, which represents differ-
ent features of each image in the training set. Besides,
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the proposed methodology pave the way to use time
signal analysis or other processing techniques with
3D image data, which can be exploited in other image
modalities such as MRI.
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M. Gómez-Rio and C. G. Puntonet, 18f-FDG PET
imaging analysis for computer aided Alzheimer’s
diagnosis, Inform. Sci. 181 (2011) 903–916.

74. J. Ashburner and T. Group, SPM8. Functional Imag-
ing Laboratory, Institute of Neurology, 12, Queen
Square, London WC1N 3BG, UK (2011).

75. S. Huang, J. Li, L. Sun, J. Liu, T. Wu, K. Chen,
A. Fleisher, E. Reiman and J. Ye, Learning braincon-
nectivity of Alzheimer’s disease from neuroimaging

data, in Advances in Neural Information Processing
Systems eds. Y. Bengio, D. Schuurmans, J. Lafferty,
C. Williams and A. Culotta (Curran Associates, Inc.,
2009), pp. 808–816.

76. A. Ortiz, F. Lozano, A. Peinado, M. Garćıa-Tarifa,
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M. Moreno-Caballero and M. Gómez-Ŕıo,
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