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Abstract—We discuss connections between the interrela-
tionship mining, proposed by the authors, and rough sets
on two universes. The interrelationship mining enable us to
extract characteristics based on comparison between values
of different attributes. Rough sets on two universes is an
theoretical extension of the original rough sets by considering
connection between two universes. In this paper, we point
out that interrelationship between different attributes in the
interrelationship mining is representable by a variant of rough
sets on two universes.

Keywords-interrelationship mining; rough set on two uni-
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I. INTRODUCTION

Rough set theory [6], [7] provides a mathematical foun-
dation of set-theoretical approximations of concepts and
rule-extraction-based data mining. From a viewpoint of
approximations, various extensions of rough set theory have
been proposed; variable precision rough set [12], generalized
rough set [9], covering-based rough set (e.g. [10], [13]), and
rough sets on two universes [5], [8].

From a viewpoint of rule-extraction-based data mining,
the authors have proposed a concept of interrelationship
mining [1], [2], [3]. Almost approaches of decision rule
extraction are based on comparison between values of the
same attribute. On the other hand, the interrelationship min-
ing enables us to extract characteristics based on comparison
between values of different attributes in the framework of
rough set theory. The interrelationships between attributes
are defined by binary relations on the set of attribute values.

In this paper, we discuss a connection between the in-
terrelationship mining and rough sets on two universes. In
particular, we point out that interrelationship between differ-
ent attributes in the interrelationship mining is representable
by a variant of rough sets on two universes.

II. ROUGH SET

In this section, we briefly review Pawlak’s rough set
theory. The contents of this section is mainly [1], [4].

Information tables describe connections between objects
and attributes by table-style format. In this paper, similar
to the authors’ previous manuscript [4], we use a general

expression of information tables that was used by Yao et
al. [11] defined by

S = (U,AT, {Va | a ∈ AT},RAT , ρ), (1)

where U is a finite and nonempty set of objects, AT is a
finite and nonempty set of attributes, Va is a nonempty set
of values for a ∈ AT , RAT = {{Ra} | a ∈ AT} is a set of
families {Ra} of binary relations defined on each Va, ρ is an
information function ρ : U × AT → V that assigns a value
ρ(x, a) ∈ Va of the attribute a ∈ AT to each object x ∈ U ,
where V =

∪
a∈AT Va is the set of values of all attributes

in AT .
The family {Ra} of binary relations for each attribute

a ∈ AT can contain various binary relations; similarity,
dissimilarity, ordering relation on Va and usual information
tables are implicitly assumed that the family {Ra} consists
of only the equality relation = on Va [11]. We also assume
that the equality relation = is included into the family {Ra}
for every attribute a ∈ AT .

An information table is called a decision table if the set of
attributes AT is partitioned into two disjoint sets; i.e., a set
C of condition attributes and a set D of decision attributes.
In this paper, without losing generality, we assume that D
is a singleton, i.e., D = {d}, and the attribute d is called
the decision attribute.

Indiscernibility relations based on subsets of attributes
provide classifications of objects in decision tables. For
any set of attributes B ⊆ AT , the indiscernibility relation
IND(B) is the following binary relation on U :

IND(B) = {(x, y) | ρ(x, a) = ρ(y, a), ∀a ∈ B}. (2)

iAny indiscernibility relation IND(B) provides a partition
of U , i.e., the quotient set U/IND(B).

Example 1 ([4]): Table I is an example of a decision table
S. The decision table consists of a set of eight users of
sample products; U = {u1, · · · , u8} as the set of objects,
the set of attributes AT that is divided into the set of
condition attributes C = {Member,Sex,Before,After} that
represents users’ membership, sex, evaluation before/after
using a sample product, respectively, and the set of decision
attribute D = {Purchase} that represents users’ answer to



Table I
DECISION TABLE

U Member Sex Before After Purchase
u1 yes female good v.g. yes
u2 yes female normal good yes
u3 yes male good v.g. yes
u4 no female good good yes
u5 yes male good good maybe
u6 no male normal normal maybe
u7 yes male normal bad no
u8 no female good normal no

the question about purchase. Each attribute a ∈ AT has the
following family of binary relations on the set Va of values:

Member : {=}, Sex : {=},
Before : {=,≻Before,≽Before},After : {=,≻After,≽After},

Purchase : {=,≻Purchase,≽Purchase},

where each relation ≻a is a preference relation that is defined
as follows:

≻Before: v.g. ≻ good ≻ normal ≻ bad ≻ v.b.,
≻After: v.g. ≻ good ≻ normal ≻ bad ≻ v.b.,
≻Purchase: yes ≻ maybe ≻ no.

III. INTERRELATIONSHIP MINING

In this section, we review the concept of interrelationship
mining [1], [2], [3].

Suppose a decision table S by (1) with AT = C ∪ {d}
is given and let a, b ∈ C be two condition attributes with
ranges Va and Vb, respectively, and R ⊆ Va×Vb be a binary
relation from Va to Vb. We call that attributes a and b are
interrelated by R if and only if there exists an object x ∈ U
such that (ρ(x, a), ρ(x, b)) ∈ R holds.

We denote the set of objects that those values of attributes
a and b satisfy the relation R as follows:

R(a, b) = {x ∈ U | (ρ(x, a), ρ(x, b)) ∈ R}, (3)

and we call the set R(a, b) the support set of the interrelation
between a and b by R.

An interrelationship between two attributes by a binary
relation provides a formulation of comparison of attribute
values between different attributes. However, to simplify the
formulation, we allow the interrelationship between the same
attribute.

We can introduce indiscernibility relations in a given
decision table by interrelationships between attributes. Let
S be a decision table, and suppose that condition attributes
a, b ∈ C are interrelated by a binary relation R ⊆ Va × Vb,
i.e., R(a, b) ̸= ∅ holds. The indiscernibility relation on U
based on the interrelationship between a and b by R is
defined by

IND(aRb) =

{
(x, y)

x ∈ U, y ∈ U, and
x ∈ R(a, b) iff y ∈ R(a, b)

}
.

(4)

For any objects x and y, (x, y) ∈ IND(aRb) means
that x is not discernible from y from the viewpoint of
whether the interrelationship between the attributes a and
b by the relation R holds. Any binary relation IND(aRb)
on U defined by (4) is an equivalence relation, and we
can construct equivalence classes from an indiscernibility
relation IND(aRb).

To explicitly treat interrelationships between attributes,
we need to reformulate the information table S by (1) by
using the given binary relations between values of different
attributes. This reformulation is based on revising the set
RAT of families of binary relations for comparing attribute
values and expression of interrelationships by new condition
attributes.

Definition 1 ([3]): Let S be an information table by (1).
The information table Sint for interrelationship mining with
respect to S is defined as follows:

Sint = (U,ATint, V ∪ {0, 1},Rint, ρint), (5)

where U and V =
∪

a∈AT Va are identical to S.
The set Rint of families of binary relations is defined by

Rint = RAT ∪
{

{Rai×bi}
Rai×bi ⊆ Vai × Vbi ,
∃ai, bi ∈ C

}
∪{{=} | For each aRb},

(6)
where each family {Rai×bi} = {R1

ai×bi
, · · · , Rni

ai×bi
} con-

sists of ni (ni ≥ 0) binary relation(s) defined on Vai × Vbi .
The expression aRb is defined below.

The set ATint is defined by

ATint = AT ∪ {aRb | ∃R ∈ {Ra×b}, R(a, b) ̸= ∅}, (7)

and each expression aRb is called an interrelated condition
attribute. AT = C ∪ {d} is identical to S.

The information function ρint is defined by

ρint(x, c) =

 ρ(x, c), if c ∈ AT,
1, c = aRb and x ∈ R(a, b),
0, c = aRb and x ̸∈ R(a, b).

(8)

Each interrelated condition attribute aRb represents
whether each object x ∈ U supports the interrelationship
between the attributes a, b ∈ C by the binary relation
R ⊆ Va × Vb. For every interrelated condition attribute, we
only treat the equality relation for comparing attribute values
of different objects. This is because interrelated condition
attributes are nominal attributes.

Indiscernibility of objects by an interrelationship between
two attributes a and b by a binary relation R in the original
decision table S is representable by an indiscernibility
relation by the singleton {aRb} in Sint, i.e., the following
equation holds [1], [3]:

INDS(aRb) = INDSint({aRb}), (9)

where INDS(aRb) is the indiscernibility relation in S with
respect to the interrelationship between a and b by R defined



by (4), and INDSint({aRb}) is the indiscernibility relation
in Sint constructed from the singleton {aRb} defined by (2).

IV. INTERRELATIONSHIP MINING ON TWO UNIVERSES

In this section, we formulate the interrelationship mining
on two universes.

A. Approximation Space for Interrelationship Mining

Let U and V be two finite and non-empty universes. In
general, a binary relation R ⊆ U × V is considered for
connecting two universes [5], [8], we use a finite set F of
mappings from U to V , i.e.,

F = {a | a : U → V }. (10)

Suppose that, for each mapping a ∈ F , the set Va denotes
the range of the mapping a and Va ⊆ V holds.

We call the triple (U, V, F ) an approximation space for
interrelationship mining. The two universes U and V and
the set of mapping F are able to be regarded as the set of
objects, the set of attribute values, and the set of attributes
in a given information table, respectively.

Let a ∈ F be a mapping. For each element v ∈ Va, the
inverse image of the singleton {v} is a subset of U , i.e.,

a−1({v}) = {x ∈ U | a(x) = v}. (11)

It is easily observed that the set of all non-empty inverse
images of singletons {v} for v ∈ Va provides a partition of
U .

Proposition 1: Let a ∈ F be a mapping from U to Va.
The set Pa of all non-empty inverse images of singletons
{v} for v ∈ Va defined by

Pa = {a−1({v}) | v ∈ Va, a
−1({v}) ̸= ∅} (12)

is a partition of U , i.e., Pa satisfies the following properties:
(1) a−1({vi}) ∩ a−1({vj}) = ∅ if vi ̸= vj holds, and
(2)

∪
a−1({v})∈Pa

a−1({v}) = U.

It is well-known that a partition P on U generates a
unique equivalence relation R on U such that the quotient set
U/R is identical to the partition P . Therefore, each mapping
a ∈ F provides an equivalence relation Ra on U by

Ra = {(x, y) | ∃a−1({v}) ∈ Pa s. t. x, y ∈ a−1({v})}.
(13)

Moreover, it is also well-known that the intersection of
equivalence relations is also an equivalence relation. We then
have an equivalence relation RG =

∩
a∈G Ra for any non-

empty subset G ⊆ F , and we are also able to consider lower
and upper approximations of any subset X ⊆ U with respect
to RG.

Example 2: We construct an approximation space
(U, V, F ) for interrelationship mining from Table I in
Example 1.

Let S = (U,AT, {Va | a ∈ AT},RAT , ρ) be the decision
table in Table I. We treat the set U of objects as a set U

in the approximation space for interrelationship mining. As
the set V in the approximation space, we use the union of
the sets of values, i.e., V =

∪
a∈AT Va.

For each attribute a ∈ AT , we define a mapping a from
U to V by a(x)

def
= ρ(x, a). We used the same symbol a to

denote a mapping a : U → V generated from the attribute
a ∈ AT in the table I. Therefore, the set F of mappings is

F
def
= {a : U → V | a ∈ AT, a(x) = ρ(x, a)}.

Suppose (U, V, F ) be the approximation space we con-
structed from Table I and Member ∈ F be the mapping
Member : U → V . For two elements yes, no ∈ V , the
inverse image of each singleton by Member is

Member−1({yes}) = {u1, u2, u3, u5, u7},
Member−1({no}) = {u4, u6, u8}.

We then have a partition PMember induced by the mapping
Member.

B. Representatio of interrelationships on the approximation
space (U, V, F )

In the previous subsection, we constructed partitions from
mappings from U to V and elements v ∈ V . In this section,
we consider adding some conditions to the elements v ∈ V
by introducing binary relations on V .

Suppose R is a binary relation on V and v ∈ V is an
element of V . We define a set lR(v) as follows and call the
set lR(v) the left-concerned set of R with respect to v.

lR(v)
def
= {w ∈ V | wRv}. (14)

It is easily observed that we can treat various conditions
of elements in V by introducing a binary relation R on V .

Proposition 2: Let a ∈ F be a mapping, R be a binary
relation on V , and v ∈ V be an element of V . The union
of sets a−1({w}) for elements w in the left-concerned set
of R with respect to v satisfies the following equation:∪

w∈lR(v)

a−1({w}) = {x ∈ U | (a(x), v) ∈ R}. (15)

If the binary relation R on V is the equality = on V , the
union of the left-concerned sets of an element v ∈ V defined
by (15) is identical to the inverse image of the singleton
{v} defined by (11), i.e.,∪

w∈l=(v)

a−1({w}) = {x ∈ U | a(x) = v}

= a−1({v}).

Therefore, this property indicates that (11) is a special case
of (15).

Example 3: This example is continuation of Example 2.
Suppose (U, V, F ) be the approximation space we con-
structed from Table I and After ∈ F be the mapping



After : U → V . Suppose a binary relation ≻ on V provides
the following order relationship:

v.g. ≻ good ≻ normal ≻ bad ≻ v.b..

We then have the left-concerned set l≻(normal) for the
value normal ∈ V as follows:

l≻(normal) = {v.g., good}.
Therefore, the union of sets a−1({w}) for elements in the
left-concerned set l≻(normal) is∪

w∈l≻(normal)

After−1({w})

= {x ∈ U | After(x) ≻ normal}
= {u1, u2, u3, u4, u5},

i.e., the set of elements that the value by the mapping After
is v.g. or good.

Note that the value v ∈ V used for the left-concerned set
lR(v) does not need to be in the range of the mapping to
consider the inverse images. Then, we can use elements in
the range of another mapping for the left-concerned set.

Let a and b be mappings from U to V , v ∈ Va ⊆ V
and p ∈ Vb ⊆ V be elements in the range of a and
b, respectively. The intersection of the inverse images of
singletons {v} and {p}, i.e.,

a−1({v}) ∩ b−1({p}) = {x ∈ U | a(x) = v, b(x) = p}
(16)

is the set of objects that satisfy both conditions of mappings
a and b. Therefore, similar to the cases of equations (11)
and (15), we can show that the following property holds.

Proposition 3: Let a and b be mappings from U to V ,
and v ∈ Va and p ∈ Vb be elements in the range of a and b,
respectively. The following equation holds:∪

p∈Vb

∪
v∈lR(p)

(
a−1({v}) ∩ b−1({p})

)
(17)

= {x ∈ U | (a(x), b(x)) ∈ R} . (18)

This property shows that the equation (17) corresponds
to the support set R(a, b) of the interrelationship between a
and b by the binary relation R defined by (3). Support sets
are essential for the interrelationship mining, and therefore,
this property concludes that the interrelationship mining is
also representable from a viewpoint of rough sets on two
universe.

Example 4: This example is continuation of Example 3
and Suppose Before ∈ F be the mapping Before : U → V .
We consider left-concerned set for each element p ∈ VBefore.
We then construct the following set of objects by the two
mappings After and Before and the binary relation ≻:∪

p∈VBefore

∪
v∈l≻(p)

(
After−1({v}) ∩ Before−1({p})

)
= {x ∈ U | After(x) ≻ Before(x)}
= {u1, u2, u3}.

We then have the set {u1, u2, u3}, which corresponds to
the support set of the interrelationship between After and
Before by the binary relation ≻ in Table I.

V. CONCLUSION

In this paper, we discussed that the interrelationship
mining is representable from a viewpoint of rough set on
two universes. The concept of the approximation space
for interrelationship mining is a general framework and it
contains the Pawlak’s approximation space as a special case,
and support sets, essential components of interrelationship
mining, is representable in the approximation space for
interrelationship mining.
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