

Inés Ruiz Salcedo, Laura León Reina, Estefanía Quintero Martos Unidad DRX (drx@uma.es) Servicios Centrales de Apoyo a la Investigación (SCAI) 26/10/2023

INDEX

- 1. Introduction
- 2. Our equipment: SkyScan 2214
- 3. Experiments
 - 3.1. In situ cement hydration study: XRD & CT combination
 - 3.2. Morphometric study in bones
 - **3.3**. Bone Marrow Adipose Tissue
 - **3.4.** Soft tissue: PTA staining process
 - **3.5.** Electrocatalyst: Rietveld, PDF & CT analysis
 - **3.6.** Imaging and analysis of fibers
 - 3.7. In situ and dynamic experiments

ACQUISITION & RECONSTRUCTION

scai

MAGNIFICATION

Smaller **voxel** size → smaller **object** size

VOXEL SIZE & GREY VALUE

VOXEL SIZE & GREY VALUE

CONTRAST

3D segmentation \rightarrow Visualization and quantification

I uma.es

SUMMARY

- ✓ Non-destructive technique
- ✓ Information about internal details (tens of nanometers)
- ✓ Follow the structural evolution of materials in three dimensions in real time or in a time-lapse manner

- No information related to crystalline structure
- Sample size can compromise the resolution
- Contrast

I

SCAI – UNIVERSIDAD DE MÁLAGA

SkyScan 2214 (Bruker)

sca1

- Temperature stages
- Tensile and compression: Deben Stage
- Down to 60 nm pixel size

XRD & CT COMBINATION

Main goal: Better understanding of the hydration process of cements

- \succ Evolution of the crystalline phases during hydration \rightarrow LXRPD (Rietveld method)
- > Porosity and amorphous content development $\rightarrow \mu CT$

In situ cement hydration study:

Glass capillary Φ = 2mm \longrightarrow Thick capillary to avoid self-desiccation

Salcedo, I.R.; Cuesta, A.; Shirani, S.; León-Reina, L.; Aranda, M.A.G. Accuracy in Cement Hydration Investigations: Combined X-ray Microtomography and Powder Diffraction Analyses. *Materials* **2021**, *14*, 6953. <u>https://doi.org/10.3390/ma14226953</u>

Shirani, S.; Cuesta, A.; Morales-Cantero; A.; Santacruz, I.; Diaz, A.; Trtik, P.; Holler, M.; Rack, A.; Lukic, B.; Brun, E.; Salcedo, I. R.; Aranda, M. A. 4D nanoimaging of early age cement hydration. *Nature Communications* **2023**, *14*(1), 2652. https://doi.org/10.1038/s41467-023-38380-1

Shirani, S.; Cuesta, A.; De la Torre, A.G.; Santacruz, I.; Morales-Cantero, A.; Koufany, I.; Redondo-Soto, C.; Salcedo, I. R.; León-Reina, L.; Aranda, M.A.G. Mix and measure - combining *in situ* X-ray powder diffraction and microtomography for accurate hydrating cement studies. Submitted to *Cement and Concrete Research* **2023**

sca1

I uma.es

XRD & CT COMBINATION

I uma.es

XRD & CT COMBINATION

SKYSCAN 2214 (Bruker)

sample holder

D8 ADVANCE (Bruker) Μο Κα₁ radiation

sca1

XRD & CT COMBINATION

Porosity = air + water

HP (Hydrated Particles) = **HDH** (high-density hydrates: mainly portlandite + calcite) + **LDH** (low-density hydrates: mainly C-S-H gel + ettringite) **UCP** (Unhydrous Cement Particles) = all unreacted clinker phases

XRD & CT COMBINATION

Porosity = air + water

HP (Hydrated Particles) = **HDH** (high-density hydrates: mainly portlandite + calcite) + **LDH** (low-density hydrates: mainly C-S-H gel + ettringite) **UCP** (Unhydrous Cement Particles) = all unreacted clinker phases

XRD & CT COMBINATION

Comparison of RQPA and µCT results (vol%):

Hydration age	Components	LXRPD	Global Thresholding	Machine Learning*
1d	HP	78.5	79.9	76.2
	UCP	21.5	20.1	23.8
3d	HP	84.1	84.0	83.2
	UCP	15.9	16.0	16.8
7d	HP	85.5	84.8	84.2
	UCP	14.5	15.2	15.8

*LDH and HDH derived from ML have been summed as a single hydrate phase (HP) for comparison to global thresholding and LXRPD results.

Shirani, S.; Cuesta, A.; De la Torre, A.G.; Santacruz, I.; Morales-Cantero, A.; Koufany, I.; Redondo-Soto, C.; Salcedo, I. R.; León-Reina, L.; Aranda, M.A.G. Mix and measure - combining *in situ* X-ray powder diffraction and microtomography for accurate hydrating cement studies. Submitted to *Cement and Concrete Research* **2023**

XRD & CT COMBINATION

Spatial Resolution:

Voxel size = 1.1µm Spatial resolution ~ 2.8µm

Shirani, S.; Cuesta, A.; De la Torre, A.G.; Santacruz, I.; Morales-Cantero, A.; Koufany, I.; Redondo-Soto, C.; Salcedo, I. R.; León-Reina, L.; Aranda, M.A.G. Mix and measure - combining *in situ* X-ray powder diffraction and microtomography for accurate hydrating cement studies. Submitted to *Cement and Concrete Research* **2023**

MORPHOMETRIC STUDY IN BONES

MORPHOMETRIC STUDY IN BONES

Alzheimer disease \rightarrow lower bone quality

DRX: to study the hydroxyapatite crystal structure and the amorphous content variations.

Micro-CT: to determine possible structural alteration of bone microarchitecture.

MORPHOMETRIC STUDY IN BONES

MORPHOMETRIC STUDY IN BONES

I uma.es

MORPHOMETRIC STUDY IN BONES

BONE MARROW ADIPOSE TISSUE

Scheller, E. L., Troiano, N., VanHoutan, J. N., Bouxsein, M. A., Fretz, J. A., Xi, Y., ... & Horowitz, M. C. (2014). Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. In *Methods in enzymology* (Vol. 537, pp. 123-139). Academic Press.

BONE MARROW ADIPOSE TISSUE

Scheller, E. L., Troiano, N., VanHoutan, J. N., Bouxsein, M. A., Fretz, J. A., Xi, Y., ... & Horowitz, M. C. (2014). Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. In *Methods in enzymology* (Vol. 537, pp. 123-139). Academic Press.

uma.es

SOFT TISSUE

Lesciotto, K. M; Motch Perrine S. M.; Kawasaki, M.; Stecko, T.; Ryan, T.M.; Kawasaki, K.; Richtsmeier, J. T. Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice. *Developmental Dynamics* **2020**, 249(4):573-585. doi: 10.1002/dvdy.136.

SOFT TISSUE

ELECTROCATALYSTS

Iron/Cobalt Phosphonate

 $(H_2 \text{ or } N_2)$

Pyrolytic treatment

Pyrophosphate- or phosphidebased iron/cobalt electrocatalysts

Characterization:

PDF information:

Vílchez-Cózar, Á.; Colodrero, R. M.; Bazaga-García, M.; Marrero-López, D.; El-refaei, S. M.; Russo, P. A.; Pinna, N.; Olivera-Partos, P.; Cabeza, A. Tuning the activity of cobalt 2hydroxyphosphonoacetates-derived electrocatalysts for water splitting and oxygen reduction: insights into the local order by pair distribution function analysis. *Applied Catalysis B: Environmental*, **2023**, 122963. https://doi.org/10.1016/j.apcatb.2023.122963

ELECTROCATALYSTS

Phase Retrieval (PR):

- > Employed to enhance contrast from non-absorption interactions
- Method of processing X-ray projection images
- Useful for low dense materials

Paganin, D.; Mayo, S. C.; Gureyev, T. E.; Miller, P. R.; Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. *J. Microsc.* **2002**, 206, 33-40.

I uma.es

ELECTROCATALYSTS

sca1

IMAGING AND ANALYSIS OF FIBER

Fiber Manufacturing | Bruker

IN-SITU AND DYNAMIC EXPERIMENTS

Tensile and compression stage DEBEN CT5000RT Up to 5 kN

Temperature stages

5mm

Yellow = isola.ed poiosity Blue = fractured poiosity

Rock specimens under increasing compressive load

<u>University-of-Ghent-CT5000-Geomaterials-Application-Story.pdf</u> (deben.co.uk)

I uma.es

