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José F. Aldana-Mart́ın2, Antonio J. Nebro1,2, Juan J. Durillo3, and Maŕıa del Mar Roldán
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Abstract. The automatic design of multi-objective metaheuristics is an active research
line aimed at, given a set of problems used as training set, to find the configuration of
a multi-objective optimizer able of solving them efficiently. The expected outcome is that
the auto-configured algorithm can be used of find accurate Pareto front approximations for
other problems. In this paper, we conduct a study on the meta-optimization of the well-
known NSGA-II algorithm, i.e., we intend to use NSGA-II as an automatic configuration
tool to find configurations of NSGA-II. This search can be formulated as a multi-objective
problem where the decision variables are the NSGA-II components and parameters and the
the objectives are quality indicators that have to be minimized. To develop this study, we
rely on the jMetal framework. The analysis we propose is aimed at answering the following
research questions: RQ1 - how complex is to build the meta-optimization package?, and RQ2
- can accurate configurations be found? We conduct an experimentation to give an answer
to these questions.
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1 Introduction

The quality of the Pareto front approximations found by multi-objective evolutionary algorithms
is affected on the values of their control parameters. This means that, given a set of problems to
be optimized and a given algorithm, the user has to fine tune the algorithms parameters to get
accurate results. The approach commonly adopted to carry out this task is to try to adjust the
parameters manually by conducting pilot tests, which is a trial-and-error strategy. Furthermore,
this process requires knowledge of the algorithm, which is not usually the case of the users expert
in the problems. The consequence is that those users are likely to end up selecting a well-known
algorithm, typically NSGA-II [1], with default settings.

In this context, an active research line is automatic algorithm configuration [2], consisting in
taking a set of problems as training set to find a particular parameter configuration of the param-
eters to a produce version of the algorithm that, configured with them, can solve those problems
efficiently. An extension of this idea is automatic algorithm design, where not only parameters but
also algorithmic components can be combined to design a new algorithmic variant. An advantage
of these approaches is that they can be supported by tools that help to find the configurations
automatically, such as irace [3], paramILS [4], GSF [5] and SMAC3 [6]. Focusing on multi-objective
evolutionary algorithms, irace has been applied in several works [7][8][9].

In this paper, we conduct a study about the use of NSGA-II to find configurations of NSGA-II,
i.e., using NSGA-II as meta-optimizer. The basic idea is to consider the auto-design of NSGA-II
as a multi-objective problem, where the decision variables represent parameters and components
and the objectives can be combinations of quality indicators [10].

Our motivation stems, first, from our experiences in automatic design of multi-objective meta-
heuristics, which are based on combining the jMetal optimization framework [11, 12] with irace to
find configurations of NSGA-II [13][14] and particle swarm optimizers [15]. Second, a recent survey
[2] that remarked as future research prospects easy-to-use algorithm tuning and multi-objective
approaches. Although our proposal does not include a toolbox (as suggested the mentioned sur-
vey [2]), we design a package based on jMetal, so we do not need to use external tools such as
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irace, thus simplifying the auto-design process in case the optimization problems are implemented
with that framework.

We define two research questions that we intend to answer in our our study:

– RQ1: how complex is to build the meta-optimization package?. We are interested in a simple
and easy-to-use software solution.

– RQ2: can accurate configurations be found? The search capabilities of the meta-optimizer must
be validated by conducting representative experiments.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the
presented approach for the automated design of a meta-optimizer for NSGA-II. In Section 3, we
present the results of three experiments conducted to validate our proposal. The findings and
implications of these experiments are discussed in Section 4, while Section 5 provides conclusions
about the effectiveness and usefulness of our study.

2 Meta-Optimization Approach

The process of auto-designing evolutionary algorithms requires three elements: the design space,
an algorithmic template, and an auto-design tool. We describe these elements next, including how
we cope with them.

2.1 Design space

The design space is composed of the algorithm parameters and components, their types, allowed
values, and, optionally, constraints. In the case of NSGA-II, we consider a flexible definition of it,
in which a multi-objective evolutionary algorithm adopting a replacement strategy based on dom-
inance ranking and the crowding distance density estimator is considered a NSGA-II variant. We
define the design space detailed in Table 1, which is similar to the ones used in former works [9][14]
(please refer to these references for a detailed explanation of the parameters and components).

Parameter/Component Type Domain
algorithmResult c {externalArchive, population}

populationSizeWithArchive i [10, 200] s.t. algorithmResult == externalArchive
externalArchive c {crowdingDistance, unbounded} s.t. algorithmResult == externalArchive

offspringPopulationSize i [1, 400]
selection c {tournament, random}

selectionTournamentSize i [2, 10] s.t. selection == tournament
createInitialSolutions c {random, latinHypercubeSampling, scatterSearch}

crossover c {SBX, BLX ALPHA, wholeArithmetic}
crossoverProbability r [0.0, 1.0]

crossoverRepairStrategy c {random, round, bounds}
sbxDistributionIndex r [5.0, 400.0] s.t. crossover == SBX

blxAlphaCrossoverAlphaValue r [0.0, 1.0] s.t. crossover == BLX ALPHA
mutation c {uniform, polynomial, linkedPolynomial, nonUniform}

mutationProbabilityFactor r [0.0, 2.0]
mutationRepairStrategy c {random, round, bounds}

polynomialMutationDistributionIndex r [5.0, 400.0] s.t. mutation ∈ {polynomial, linkedPolinomial}
uniformMutationPerturbation r [0.0, 1.0] s.t. mutation == uniform

nonUniformMutationPerturbation r [0.0, 1.0] s.t. mutation == nonUniform

Table 1: Design space of the configurable NSGA-II in jMetal. Types: (c)ategorical, (i)nteger, (r)eal.

An example of parameter is the offspring population size, which is an integer variable taking
values in the range [1, 400] (a value of 1 would lead to a steady-state version of NSGA-II). Examples
of components are the crossover and mutation operators. Each operators can in turn also have
specific parameters, such as the distribution index for SBX crossover.

A design decision is whether NSGA-II uses an external archive (i.e., an auxiliary population) or
not. If the population size is P , the idea is that any evaluated solution is inserted into the archive,
which keeps only non-dominated solutions, and the result of the algorithm would be P solutions
from the archive; in this case, the population size is not fixed and it can take a value between 10
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and 200. The external archive can be bounded (the crowding distance is used as density estimator
to remove solutions when the archive size is greater than P ) or unbounded (in this case, all the
evaluated solutions are inserted and, when the algorithm finishes, P evenly spread solutions are
returned).

2.2 Algorithmic template

Since release 6.0, jMetal includes a jmetal-auto package containing an implementation of NSGA-II,
called AutoNSGAII, which can take any valid combination of the parameters and components of
Table 1, generating different NSGA-II versions.

The input of AutoNSGAII is a string containing all the parameter names and their values.
This string is parsed internally and AutoNSGAII is configured with the parameter values and
the components specified in the string. An example of a subset of this string is the following:
“–archiveResult externalArchive –offpringPopulation 40 –selection tournament ...”

2.3 Meta-optimizer

In our previous works combining jMetal with irace [13][14], the finding of configurations is based on
running irace, which generates combinations of valid configurations according to the design space.
For each configuration, irace runs AutoNSGAII, which returns as a result the value of a quality
indicator; this value is taken by irace as a measure of the quality of the configuration.

As we intend to replace irace by the NSGA-II algorithm implemented in jMetal, which would
act as meta-optimizer, we have to formulate and implement the optimization problem that would
to be solved by the meta-optimizer. This problem has the following parameters:

– List of problems used as training set.

– List of quality indicators, being each indicator an objective to be minimized.

– The population size of AutoNSGAII.

– The stopping condition of AutoNSGAII (in terms of number of evaluations).

– Number of independent runs of AutoNSGAII for each configuration to be evaluated.

To define the problem encoding, the approach we have adopted is simple: every parameter of
Table 1 is represented as a real value in the range [0.0, 1.0], so the solutions are composed of 18
decision variables. When a solution has to be evaluated, the variables are decoded to construct the
parameter string that is used when calling AutoNSGAII. The decoding is done as follows:

– Real parameter: the value is scaled up from [0.0, 1.0] to the range of the parameter (e.g.,.
[5.0, 400.0] in the case of the SBX distribution index).

– Integer parameter: same procedure as for real parameters, but the resulting value is truncated.

– Categorical parameter: the interval [0, 0, 1, 0] is divided into sub-intervals according to the
number of parameter values, and the index of the sub-interval is used to obtain the actual
categorical value.

Once the parameter string is decoded, AutoNSGAII is called to solve all the problems of the
training set as many times as the number of independent runs. For each obtained front, the quality
indicators are computed and the resulting objectives values of evaluating a configuration is the
median of the median of the quality indicators of all the problems of the training set.

We now look at the pros and cons of this approach. Starting by the cons, we are not considering
parameter constraints, so all the elements of design space are included although some of them may
be ignored (e.g., the uniform perturbation is useless if the selected mutation operator is polynomial),
and the discretization of categorical parameters using sub-intervals can lead to different solutions
being equivalent if all variables have the same values except one corresponding to a categorical
parameter whose values are in the same sub-interval. As advantages, the encoding is very simple
and any multi-objective algorithm in jMetal able of solving continuous problems can be used as
meta-optimizer.
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3 Experimentation

We aim to empirically validate our approach with a set of experiments grouped into two different
scenarios. These experiments are described below, detailing their purpose, expected outcomes and
results.

The meta-optimizer is configured with the additive epsilon (EP) and normalized hypervolume
(NHV) quality indicators as the objective functions to be minimized. The first indicator measures
the convergence of a Pareto front approximation while the second one takes into account both
convergence and diversity [10]. We use NHV instead of plain hypervolume as for this latter, the
bigger its value the better, while jMetal minimizes objective functions by default. NHV is defined
as 1.0 minus the hypervolume of the front divided by the hypervolume of the reference front.

For the meta-optimizer, we have configured it with common NSGA-II parameter values. The
population size is 50 and the variation operators are SBX crossover (with probability 0.9 and
a distribution index value of 20.0) and polynomial mutation (with probability 1/n, being n the
number of decision variables of the problem, and a distribution index value of 20.0). We set the
stopping to condition to 3000 function evaluations. The NSGA-II implementation in jMetal can
be executed in parallel both using a synchronous or an asynchronous scheme [16].

Next, we define two scenarios and three experiments.

3.1 Scenario 1: Finding Configurations for Single Problems

The first scenario is aimed at determining whether our meta-optimization approach is able of finding
well-performing configurations of NSGA-II for single problems. For that, we focus on experimenting
with two problems:

– Experiment 1 - problem ZDT4: this problem [17] is a bi-objective multi-frontal problem,
whose default configuration consists of 10 decision variables. The standard NSGA-II has dif-
ficulty in providing Pareto front approximations with a uniform spread of solutions. Previous
studies [13] have shown that using a steady-approach can significantly improve the diversity of
the fronts. Pilot tests also indicate that comparable improvements can be achieved when using
an external bounded archive.

– Experiment 2 - problem DTLZ3: This problem belongs to the DTLZ benchmark [18].
It is formulated with a default configuration consisting of twelve decision variables and three
objectives. DTLZ3 is also a multi-modal problem with a convex Pareto front. The study pre-
sented in [9] showed that both, NSGA-II and the AutoNSGAII, configured with irace were
unable to find accurate approximated fronts in terms of convergence and diversity for this
problem.According to other works [19], NSGA-II is able of finding accurate fronts for problem
DTLZ2 when using an external unbounded archive and retrieving from it a subset of evenly
distributed solutions. DLTZ2 is not multi-modal but shares many similarities with DTLZ3 (i.e.,
convex Pareto front, three objectives, and twelve decision variables). Our aim here is twofold:
1) to determine whether the meta-optimizer is able of finding a configuration to effectively
solve DTLZ3; and, 2) to check if that configuration includes an unbounded archive.

3.2 Scenario 2: Finding Configurations for Sets of Problems

The above scenario must validate the potential of auto-configuration applied to optimize single
problems. The found configurations may be, however, too specific to that particular problem, and
perform poorly for other problems (overfitting). Our second scenario addresses this issue by auto-
configuring the algorithm on a set of problems instead of just one. Additionally, the obtained
configurations are validated using different sets of problems.

– Experiment 3 - WFG benchmark: This experiment aims to replicate the study presented
in [9]. NSGA-II is configured for optimizing the nine problems of the WFG suite [20], which
are training set. The found configurations are later used to solve both the WFG problems and
the seven instances of the DTLZ family problems–the validation set. All the problems in this
experiment are formulated as bi-objective ones.
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Parameter NSGA-II Exp. 1 Exp. 2 Exp. 3
populationSize 100 100 100 100
createInitialSolutions random LHS scatterSearch random
algorithmResult population externalArchive externalArchive externalArchive
externalArchive - CD unboundedArchive CD
populationSizeWithArchive - 106 58 61
offspringPopulationSize 100 60 130 68
crossover SBX SBX SBX BLX ALPHA
crossoverProbability 0.9 0.991 0.942 0.858
crossoverRepairStrategy random round random bounds
sbxDistributionIndexValue 20.0 5.11 70.479 -
blxAlphaCrossoverAlphaValue - - - 0.547
mutation polynomial polynomial uniform linkedPolynomial
mutationProbabilityFactor 1 0.76 0.699 0.161
mutationRepairStrategy random bounds round round
polynomialMutationDistributionIndex 20 32.23 - -
linkedPolynomialMutationDistributionIndex - - - 11.335
uniformMutationPerturbation - - 0.417 -
selection tournament tournament random tournament
selectionTournamentSize 2 9 - 4

Table 2: Best configuration found for the NSGA-II on each experiment. (LHS; latinHypercube-
Sampling, CD; crowdingDistanceArchive)

3.3 Results

We report and analyze the results obtained on the three defined experiments. In all the cases, the
number of independent runs per configuration is set to 3.

Experiment 1 We set the stopping condition of AutoNSGAII to perform a total 15000 func-
tion evaluations. Fig. 1 shows computed fronts by the meta-optimizer at 1000, 2000, and 3000
evaluations. As shown, the final front is composed of only one solution, and the figure suggests
that the meta-optimizer might not have converged in the performed evaluations. The found design
in this experiment (see Table 2) includes a bounded external archive with crowding distance; as
commented before, the use of this kind of archive is known to be beneficial for converging and for
achieving a front of evenly spread solutions.

AutoNSGAII with the obtained configuration is compared with NSGA-II with default settings
next. We set the stopping condition to 25000 function evaluations in both cases and compare the
Pareto front approximations computed by both algorithms. We observe that the front computed
with the found configuration (Fig. 2 right) has a noticeable better convergence and spread than
the approximation computed by NSGA-II with standard the default setting (Fig. 2 left).
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Fig. 1: Problem ZDT4. Evolution of the front generated by the meta-optimizer.

Experiment 2 In this experiment, the stopping criterion for AutoNSGAII has been raised to
20000 evaluations.
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Fig. 2: Problem ZDT4. Pareto front approximation found by the standard NSGA-II (left), and
Pareto front approximation found by the auto-designed NSGA-II (right).
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Fig. 3: Problem DTLZ3. Evolution of the front generated by the meta-optimizer.

Fig. 3 shows the approximation fronts computed after 1000, 2000 and 3000 evaluations. In this
case, the figure suggest that the meta-optimizer has almost converged after performing the 3000
function evaluations. The computed approximation front consists of twelve points. The configu-
ration corresponding to the point with the lowest NHV value (on the right end) is included in
Table 2. As expected, the configuration found by the meta-optimizer uses the unbounded external
archive.

In Fig. 4, we compare the approximation front computed with NSGA-II and the one computed
with the configuration found the meta-optimizer using AutoNSGAII. In both cases, we use 40000
function evaluations as stopping criterion. The graph shows remarkable differences between the
front computed by NSGA-II (poor convergence and coverage of the Pareto front approximation)
and AutoNSGAII.

Experiment 3 In alignment with existing work [9], we set the stopping criterion of AutoNSGAII
to 25000 evaluations for this experiment. The evolution of the fronts over different number of
evaluations is shown in Fig. 5. As in the previous experiment, the point with the minimum NHV
value is taken and its corresponding configuration is used to compare with the results reported
in [9]. The comparison in this case includes NSGA-II, and SMPSO [21] with their default settings
and AutoNSGAII with the mentioned configuration.

The chosen configuration from the meta-optimizer is summarized in Table 2. Interestingly, this
configuration is similar to the one computed in [9]: both share the use use BLX ALPHA crossover
and an external bounded archive).
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Fig. 4: Problem DTLZ3. Pareto front approximation found by the standard NSGA-II (left), and
Pareto front approximation found by the auto-designed NSGA-II (right).

Table 3 showcase the validation results of the auto-designed NSGA-II for the WFG and DTLZ
benchmarks. Tables (a) and (b) contains the Hypervolume indicator values and Tables (c) and
(d) the Epsilon ones. As a general remark, the configurations found by our proposal yield similar
indicator values (each cell includes the median of 25 independent runs) than those presented in
previous work [9]. Additionally, this results are also supported by the Wilcoxon rank sum statistical
test for significance. The results of the Wilcoxon test are included in Table 4. We can observe that
statistical confidence has been found in most of the results.
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Fig. 5: WFG problem family. Evolution of the front generated by the meta-optimizer.

4 Discussion

Once we have conducted the two defined experiments, we revisit the two formulated research
questions in the introduction, and we attempt to answer them based on the obtained results.

4.1 Research Questions

RQ1 - approach complexity: Our meta-optimization package relies only on jMetal code, so it
does not require any external tool. The AutoNSGAII template within jMetal, designed and used
in former studies, combined with irace simplifies the formulation of the auto-design of NSGA-II
as a continuous optimization problem. We hope that researchers familiar with jMetal can benefit
from the use of the meta-optimizer with little effort.
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NSGAII SMPSO AutoNSGAII

WFG1 4.35e− 011.8e−01 1.17e− 018.0e−03 6.34e− 011.8e−05

WFG2 5.61e− 012.3e−03 5.61e− 011.6e−03 5.64e− 019.2e−05

WFG3 4.92e− 018.3e−04 4.92e− 016.1e−04 4.95e− 016.1e−05

WFG4 2.17e− 013.7e−04 2.03e− 012.4e−03 2.18e− 011.5e−03

WFG5 1.95e− 013.5e−04 1.96e− 017.8e−05 1.96e− 019.8e−05

WFG6 2.01e− 011.3e−02 2.09e− 015.0e−04 2.02e− 011.4e−02

WFG7 2.09e− 015.5e−04 2.09e− 012.7e−04 2.11e− 013.5e−05

WFG8 1.47e− 012.7e−03 1.47e− 013.4e−03 1.40e− 013.1e−03

WFG9 2.37e− 011.8e−03 2.35e− 015.8e−04 2.39e− 012.0e−03

DTLZ1 4.88e− 017.9e−03 4.94e− 012.7e−04 0.00e+ 004.9e−01

DTLZ2 2.09e− 014.7e−04 2.10e− 011.6e−04 2.11e− 013.6e−05

DTLZ3 0.00e+ 001.8e−02 2.10e− 011.2e−01 0.00e+ 000.0e+00

DTLZ4 2.09e− 012.1e−01 2.10e− 018.7e−05 2.11e− 017.2e−05

DTLZ5 2.11e− 013.4e−04 2.12e− 012.2e−04 2.12e− 014.5e−05

DTLZ6 1.82e− 013.6e−02 2.12e− 018.1e−05 2.12e− 014.2e−05

DTLZ7 3.34e− 013.0e−04 3.35e− 011.2e−04 3.35e− 019.2e−05

(a) Current study results using as objective the Hy-
pervolume.

NSGAII SMPSO AutoNSGAII

WFG1 4.49e− 017.6e−02 1.16e− 017.7e−03 6.34e− 012.6e−05

WFG2 5.64e− 019.5e−04 5.62e− 011.2e−03 5.65e− 015.1e−05

WFG3 4.41e− 013.8e−04 4.41e− 012.2e−04 4.42e− 011.1e−05

WFG4 2.17e− 017.6e−04 2.03e− 012.4e−03 2.17e− 013.0e−03

WFG5 1.95e− 012.9e−04 1.96e− 017.5e−05 1.96e− 011.0e−04

WFG6 2.03e− 018.9e−03 2.09e− 014.3e−04 2.08e− 011.3e−02

WFG7 2.09e− 013.5e−04 2.09e− 013.2e−04 2.11e− 013.1e−05

WFG8 1.48e− 012.3e−02 1.48e− 011.0e−03 1.39e− 012.3e−03

WFG9 2.37e− 012.9e−03 2.35e− 018.2e−04 2.39e− 011.9e−03

DTLZ1 4.66e− 011.6e−01 4.94e− 011.9e−04 0.00e+ 000.0e+00

DTLZ2 2.09e− 012.7e−04 2.10e− 011.5e−04 2.11e− 014.1e−05

DTLZ3 0.00e+ 000.0e+00 2.10e− 016.3e−02 0.00e+ 000.0e+00

DTLZ4 2.10e− 017.1e−04 2.10e− 011.5e−04 2.11e− 014.2e−05

DTLZ5 2.11e− 013.5e−04 2.12e− 011.3e−04 2.12e− 014.1e−05

DTLZ6 1.89e− 051.4e−03 2.12e− 016.9e−05 2.12e− 015.6e−05

DTLZ7 3.29e− 012.8e−04 3.30e− 019.8e−05 3.30e− 017.3e−05

(b) Results obtained from [9] with irace using as ob-
jective the Hypervolume.

NSGAII SMPSO AutoNSGAII

WFG1 2.94e− 012.7e−01 4.56e− 011.3e−02 6.19e− 035.6e−04

WFG2 1.81e− 011.7e−01 6.70e− 032.8e−03 4.03e− 035.0e−04

WFG3 1.33e− 022.8e−03 7.39e− 038.4e−04 5.40e− 032.2e−04

WFG4 1.21e− 023.6e−03 2.19e− 022.6e−03 6.33e− 031.1e−03

WFG5 3.31e− 022.8e−03 2.78e− 023.9e−04 2.76e− 021.8e−04

WFG6 1.49e− 021.0e−02 6.19e− 035.9e−04 1.00e− 029.0e−03

WFG7 1.20e− 024.4e−03 6.34e− 039.1e−04 5.18e− 032.6e−04

WFG8 2.44e− 011.0e−01 1.75e− 012.1e−02 2.45e− 011.0e−03

WFG9 1.47e− 022.7e−03 1.12e− 021.2e−03 7.19e− 031.6e−03

DTLZ1 1.60e− 025.2e−03 6.30e− 037.0e−04 5.16e− 011.0e+00

DTLZ2 1.23e− 022.8e−03 5.59e− 033.7e−04 5.23e− 032.2e−04

DTLZ3 1.14e+ 001.4e+00 6.20e− 037.0e−01 1.16e+ 018.4e+00

DTLZ4 1.18e− 029.9e−01 5.68e− 033.7e−04 5.38e− 033.0e−04

DTLZ5 1.14e− 022.5e−03 5.25e− 032.5e−04 5.05e− 032.1e−04

DTLZ6 2.77e− 022.4e−02 5.22e− 036.6e−04 5.09e− 031.9e−04

DTLZ7 1.02e− 023.5e−03 4.68e− 034.6e−04 4.50e− 033.5e−04

(c) Current study results using as objective the Ep-
silon.

NSGAII SMPSO AutoNSGAII

WFG1 4.52e− 012.4e−01 4.55e− 019.8e−03 5.99e− 037.3e−04

WFG2 5.41e− 032.4e−03 6.04e− 031.1e−03 3.88e− 035.5e−04

WFG3 3.34e− 015.3e−04 3.34e− 011.9e−04 3.33e− 012.7e−07

WFG4 1.29e− 022.2e−03 2.16e− 023.4e−03 6.72e− 031.2e−03

WFG5 3.31e− 023.7e−03 2.77e− 021.9e−04 2.76e− 021.6e−04

WFG6 1.50e− 025.9e−03 6.37e− 034.9e−04 6.13e− 037.2e−03

WFG7 1.28e− 024.0e−03 6.52e− 034.9e−04 5.20e− 031.9e−04

WFG8 1.68e− 011.0e−01 1.69e− 011.7e−02 2.45e− 011.3e−03

WFG9 1.42e− 022.0e−03 1.10e− 021.9e−03 7.39e− 031.2e−03

DTLZ1 3.53e− 021.5e−01 6.30e− 035.5e−04 3.08e+ 011.7e+01

DTLZ2 1.12e− 024.2e−03 5.53e− 033.2e−04 5.28e− 032.5e−04

DTLZ3 1.00e+ 016.4e+00 5.97e− 033.5e−01 1.05e+ 023.6e+01

DTLZ4 1.18e− 025.4e−03 5.61e− 033.1e−04 5.32e− 031.9e−04

DTLZ5 1.01e− 022.2e−03 5.12e− 033.5e−04 5.03e− 032.7e−04

DTLZ6 3.72e− 015.3e−02 5.15e− 034.5e−04 5.06e− 032.9e−04

DTLZ7 7.78e− 032.6e−03 4.30e− 032.3e−04 4.06e− 032.8e−04

(d) Results obtained from [9] with irace using as ob-
jective the Epsilon.

Table 3: The cells include the median and interquartile range of 25 independent runs. The dark-grey
and light-grey background cells indicate, respectively, the best and second best indicator values.

SMPSO AutoNSGAII

NSGAII ▲ − ▽ ▲ ▽ ▽ ▽ − ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ − ▽ − ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ − ▲ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ −

(a) Current study results using as objective the Hy-
pervolume.

SMPSO AutoNSGAII

NSGAII ▲ ▲ ▽ ▲ ▽ ▽ − − ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ − ▽ − ▽ ▲ ▽ ▲ ▽ − ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ − − ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽

(b) Results obtained from [9] with irace using as ob-
jective the Hypervolume.

SMPSO AutoNSGAII

NSGAII ▲ ▽ ▽ ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▲ ▽ – ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ –

(c) Current study results using as objective the Ep-
silon.

SMPSO AutoNSGAII

NSGAII – – ▽ ▲ ▽ ▽ ▽ – ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ ▽ – ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ – ▽

(d) Results obtained from [9] with irace using as ob-
jective the Epsilon.

Table 4: Wilcoxon rank sum test results. The symbols in each cell correspond to problems WFG1-9
and DTLZ1-7. The symbols indicate: “–” no stadistical significance, “▲” the algorithm in the row
has a better indicator value than the algorithm in the row with confidence and “▽” the algorithm
in the row has a worse indicator value than the algorithm in the row with confidence
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RQ2 - finding of accurate designs: We have adopted a simple encoding for the NSGA-II con-
figurations consisting in codifying each parameters as a floating point value in the range [0.0, 1.0],
and these values are further decoded into a string that used as the input of the AutoNSGAII
template. This configuration has been proved effectively by our empirical experiments. The first
two experiments showed that the meta-optimizer has been able to generate the expected key com-
ponents required by NSGA-II to converge to the Pareto front of the selected problems. For these
experiments we provided visual evidence. Additionally, the generalization capabilities of the auto-
tuner were challenged by requiring it to find an accurate configuration for a training set composed
of nine problems, and validating the found configurations on a set of additional seven problems.
The experiment we have accomplished shows almost identical results to the previously published
work were irace was used as auto-configuration tool.

4.2 Further Remarks

Our empirical evaluation also revealed a few issues that are worth discussing:

– The formulation of searching designs for NSGA-II as a continuous problem opens the oppor-
tunity of using most of the metaheuristics provided by jMetal as meta-optimizers. This enable
the easy development comparative studies based on configuring AutoNSGAII with different
training sets.

– Although we have used two quality indicators, EP and NHV, as objectives for guiding the
search, the inclusion of additional ones (e.g., spread, inverted generational distance, etc.) could
reveal new insights regarding the configurations for solving different problems.

– We used NSGA-II with standard settings as the meta-optimizer. The obtained results in this
paper could be used in order to analyze whether its performance could be improved if using
different parameter settings.

– We have performed only a run of the meta-optimizer in the experiments. A deeper study should
be carried out by performing a number of independent runs and making statistical analysis of
the results.

5 Conclusions and Future Work

In this paper we have presented a study in which the NSGA-II algorithm is used as a meta-
optimizer, i.e., as a tool that, given a set of problems as training set, is aimed at finding config-
urations that include NSGA-II parameters and components. By using a simple encoding scheme
and the features existing in jMetal that were developed in former studies, our proposal is 100%
developed in jMetal, so no external tools are required.

We have defined an experimentation to validate our proposal considering two scenarios and
three experiments to cover both automatic search of NSGA-II designs for single and multi-problem
training sets. The outcomes of these experiments reveal that the meta-optimizer is able of finding
configurations of NSGA-II that successfully achieve the defined goals.

We have indicated a number of open research lines in the discussion section. Additionally, to
reduce the computing time of the meta-optimization, we have set in Experiments 1 and 2 a number
of function evaluations which is lower than the used when validating the configurations; we are
interested in studying to what extent the number of evaluations can be reduced in the search while
the resulting NSGA-II designs are able of solving the problems efficiently.
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