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Abstract. We investigate the ill-posedness of the inverse biosensor problem when the biosensor 
signals are corrupted by noise. To solve the problem, we employ feed-forward and convolutional 
neural networks. Computational experiments were performed with different levels of additive and 
multiplicative noises for the batch and flow i njection a nalysis m odes o f t he b iosensor. Obtained 
results show that the largest errors of recovered concentrations are located on the edges of the 
training domain. We have found that the inverse problem is less ill-posed in the flow injection 
analysis mode and concentrations can be reliably recovered for higher levels of noise compared to 
the batch mode. This finding is confirmed by  the application of  the DIRECT global optimization 
method to the considered inverse biosensor problem.

Keywords: biosensor, artificial neural network, mathematical modelling, inverse problem, ill-posed 
problem, noise.

1 Introduction

Biosensors are devices for the detection and analysis of chemical compounds based on 
biochemical processes [3]. One of the most widespread biosensor types are enzyme-
based amperometric biosensors [23], where the analytes in a mixture are enzymatically 
converted into products, which produce an electric current that is measured. In order 
to use this signal to determine the concentrations of the sample analytes, we need to 
establish a dependence between concentrations of analytes and electric current using 
known samples. Unknown samples can then be analyzed by measuring their current signal
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2 I. Dapšys et al.

and, by using the inverse of the dependence, determining their composition, i.e., solving
an inverse biosensor problem. For a single substrate, this can be achieved very easily,
but for multiple substrates, its solution is complicated by the ill-posedness of the prob-
lem [33]: if the signals in question are similar enough to be practically identical or have
small perturbations such as when the biosensor response is under the effect of noise, their
concentrations may be vastly different. This can negatively impact the precision of the
device [5].

One promising method to alleviate the ill-posedness of such problems is to use neural
networks, which have successfully been used to solve various inverse problems such as
determining the initial condition of the heat equation from the temperature profile [27],
finding the boundary condition [9, 19], or the heat source [11]. An example of an inverse
problem – the determination of parameters for the reaction-diffusion equation – is given
in [22]. A review of neural networks for solving linear inverse problems is given in [16].

We have found a large amount of relevant biosensor literature [6, 7, 32]. Of particular
interest are papers that employ neural networks to analyze various chemical mixtures.
Applications of simple feedforward neural networks can be found in [17, 18, 29]. An-
other popular, more sophisticated architecture is the convolutional neural network (CNN),
which is widely used for computer vision applications. Such a network has convolutional
layers, comprised of filters of various sizes, which capture localized patterns in data.
Convolutional networks have been applied for analysis of 1-dimensional spectroscopic
data [24]. Such networks are also used for biosensors, examples are given in [1,10,15]. An
advantage of convolutional neural networks is that such an architecture can remove noise
from input data [25]. Therefore, we have performed experiments with this architecture for
noisy signals in this paper.

Note that not all of these biosensors are based on enzymes. However, our goal is
the development of data analysis methods, and they can be applied to other biosensor
types. We chose amperometric biosensors since they have well established mathematical
models [3].

Almost all of featured biosensor literature involves using physical prototypes. This
approach has the disadvantage that such devices are expensive and time consuming to
produce. Therefore, we think it is feasible to conduct our experiments on a virtual
biosensor model, which allows for a larger output of data without the use of physical
devices. We intend to apply our methods to real data in the future.

Some biosensor papers deal with mathematical modelling. Žilinskas et al. [33] studied
the biosensor problem in detail, formulated as an optimization problem. They found
that it is ill-posed, as there are biosensor signals that are almost identical for different
concentration values, and suggest using global optimization. This approach works best
for a small amount of samples as a large amount would take a long time to compute.
The inverse biosensor problem has a lot of parameters for global optimization, which
also greatly increases the computational cost. However, if we use a large amount of
parameters, we can afford to optimize them to be good enough to achieve our goals,
they do not have to be globally optimal, and this can be achieved much faster by neural
networks. In our paper, we compared the performance of the parallel DIRECT method
for global optimization to that of neural networks. Baronas et al. [5] tested biosensor
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Applying artificial neural networks to solve the inverse problem 3

performance for noisy signals, when the response was analyzed using local optimization
methods, for two analytes. The biosensor had good precision if the noise level is not
too large. But for three analytes, a small noise level can lead to large errors, and local
optimization is still time consuming, when we have a lot of responses to analyze. Litvinas
and Baronas [20] used artificial neural networks to analyze biosensor responses for four
analytes. The authors only used a simple feedforward network architecture, which had
a small relative prediction error, but effects of noise and alternative network architectures
were untested.

Various other biosensor models can be considered such as microfluidic biosensors [17]
and micro-disk biosensors [18]. A biosensor model, which uses fractional power elliptic
operators to model diffusion, is given in [8].

This paper is organized as follows: in Section 2, we describe mathematical models
of biosensors and their electric current signals, which are also given in [3] as well as the
biosensor analysis modes: batch and flow injection analysis. We restate the inverse biosen-
sor problem in terms of this model. We also discuss the biosensor control modes, which
are used to determine which process is the bottleneck in the biosensor. Section 3 describes
the methods used for the solution of the inverse biosensor problem. We use feedforward
and convolutional neural networks. Next, we define two models of noise using a Gaussian
random variable. The setup of computational experiments is presented in Section 4. Here
we discuss the generation of biosensor datasets for neural network training and testing,
the parameters used in the biosensor model, the parameters of employed neural networks.
In Section 5, we present and analyze the results of computational experiments. And in
Section 6 the final conclusions are given.

2 Problem statement

2.1 Biosensor model

The chemical process we are modelling is called enzymatic substrate conversion, where
an enzyme converts m substrates into products described by the chemical equation

Si
E−→ Pi.

Substrate concentrations are denoted by Si, and product concentrations – by Pi, i = 1,m.
Relevant substrate parameters are Vi – the maximal reaction rate for every substrate and
Ki – the Michaelis–Menten constant.

The biosensor is comprised of three elements: the enzyme layer, the outer diffusion
layer, and the electrode. The outer diffusion layer brings the substrate from the bulk
solution into the enzyme layer, where the enzymatic reaction takes place. Reaction prod-
ucts generate a current signal, which is picked up by the electrode. By making a few
assumptions such as having a symmetric electrode and a uniformly distributed enzyme
with a uniform layer thickness d, we may ignore diffusion in other dimensions and use
a 1-dimensional model.
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Figure 1. Schematic layout of a biosensor.

The model equations are based on the law of chemical reaction kinetics and the Fick’s
law of diffusion. Enzymatic layer equations are as follows:

∂Si,e

∂t
= DSi,e

∂2Si,e

∂x2
− (Vi/Ki)Si,e

1 +
∑m

j=1 Sj,e/Kj
,

∂Pi,e

∂t
= DPi,e

∂2Pi,e

∂x2
+

(Vi/Ki)Si,e

1 +
∑m

j=1 Sj,e/Kj
, i = 1,m, x ∈ (0, d), t > 0,

where Si,e and Pi,e are the substrate and product concentrations in the enzyme layer,
respectively. DSi,e

and DPi,e
– their respective coefficients of diffusion, d is the enzyme

layer thickness.
To make computations easier, we scale the substrate and product concentrations by

their respective Michaelis–Menten constants: S̃i = Si/Ki, P̃i = Pi/Ki, i = 1,m. This
is done for all layers. Enzymatic layer equations now look as follows:

∂S̃i,e

∂t
= DSi,e

∂2S̃i,e

∂x2
− (Vi/Ki)S̃i,e

1 +
∑m

j=1 S̃j,e

, (1)

∂P̃i,e

∂t
= DPi,e

∂2P̃i,e

∂x2
+

(Vi/Ki)S̃i,e

1 +
∑m

j=1 S̃j,e

, i = 1,m, x ∈ (0, d), t > 0. (2)

Diffusion layer equations are as follows:

∂S̃i,b

∂t
= DSi,b

∂2S̃i,b

∂x2
, (3)

∂P̃i,b

∂t
= DPi,b

∂2P̃i,b

∂x2
, i = 1,m, x ∈ (d, d+ δ), t > 0, (4)

where S̃i,b, P̃i,b, DSi,b
, and DPi,b

are the substrate and product concentrations and coeffi-
cients of diffusion in the diffusion layer, δ is its thickness. The Nernst outer diffusion layer
model is used, where δ is constant. These equations are well known – their description
can be found in [13,26], as well as in a book by Kulys et al. [3], where the authors provide
examples of investigation of biosensor properties using such models.

Next, we have the initial model conditions. First of all, there are no substrates or
products in any of the layers:

S̃i,e(x, 0) = 0, P̃i,e(x, 0) = 0, x ∈ [0, d], (5)

S̃i,b(x, 0) = 0, P̃i,b(x, 0) = 0, x ∈ [d, d+ δ), i = 1,m. (6)
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Applying artificial neural networks to solve the inverse problem 5

Boundary conditions are given as follows. There are no products on the surface of
the electrode (x = 0) since they react with it and disappear from the biosensor. Also,
substrates cannot flow through the electrode:

P̃i,e(0, t) = 0, DSi,e

∂S̃i,e

∂x

∣∣∣∣
x=0

= 0. (7)

There are no products in the bulk solution:

P̃i,b(d+ δ, t) = 0, i = 1,m. (8)

The substrate and product concentrations must match on the inner boundary between
layers as well as their fluxes:

DSi,e

∂S̃i,e

∂x

∣∣∣∣
x=d

= DSi,b

∂S̃i,b

∂x

∣∣∣∣
x=d

, S̃i,e(d, t) = S̃i,b(d, t), (9)

DPi,e

∂P̃i,e

∂x

∣∣∣∣
x=d

= DPi,b

∂P̃i,b

∂x

∣∣∣∣
x=d

, P̃i,e(d, t) = P̃i,b(d, t), i = 1,m. (10)

Substrate concentrations outside of the biosensor depend on the analysis mode. In
this paper, we compare the performance of two analysis modes: batch mode and flow
injection analysis mode. For the batch mode, substrate concentrations remain constant for
the duration of the experiment:

S̃i,b(d+ δ, t) = S̃i,0. (11)

For the FIA mode, the substrates are in contact with the biosensor for a limited amount of
time tf , called the injection time, after which concentrations are reduced to 0:

S̃i,b(d+ δ, t) =

{
S̃i,0, t 6 tf ,

0, t > tf .
. (12)

The biosensor response is an electric current signal, which depends on the compo-
sition of the sample solution. More precisely, the signal depends on the fluxes of all
products on the surface of the electrode:

I(t) =

m∑
i=1

KiniFDPi,e

∂P̃i,e

∂x

∣∣∣∣
x=0

, (13)

where ni is the number of electrons carrying an electric charge on the electrode for each
product, F = 96485.33 C/mol is the Faraday constant. We assume that we can only
observe and measure the net current of all products – we have no information on separate
currents for each product. See in Fig. 2 the examples of biosensor response – electric
current signals I(t) obtained by (13) for the mixture of three analytes considered in this
work.
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Figure 2. Examples of biosensor response – electrical signals I(t) (13). Left – batch mode, right – flow
injection analysis mode.

We can now formulate the inverse biosensor problem in terms of the model: given the
biosensor signal I(t), determine the initial substrate concentrations c0 = (S̃1,0, . . . , S̃m,0).
We solve the problem in the usual way by creating a model of the inverse dependence from
known samples and their biosensor signals. We do this by changing model parameters to
minimize the error between the known concentrations and the model predictions. This
inverse problem is ill-posed, which, in terms of the model, means that if two signals I1,
I2 satisfy ‖I1 − I2‖∞ < ε, which can occur if the signals are very similar or they have
small perturbations I2 = I1 + ε, then ‖c(1)0 − c

(2)
0 ‖2 may be large.

The process to reduce the ill-posedness of inverse problems is called regularization
[2]. A well-known method for this is called Tikhonov regularization [28], where we add
a penalty term, which performs solution smoothing and decreases the sensitivity of the
problem to errors. Obtained solutions have similar properties to those of the unregularized
problem. This method is widely used for neural networks as well – it is included in many
neural network software packages. Here regularization is used to reduce the effect of
irrelevant data features to network predictions. The penalty term may be the L1 or the L2

norm.

2.2 Biosensor control modes

Biosensor operation can be described in terms of the diffusion modulus, also known as the
Damköhler number, which is the ratio between the reaction rate Vi/Ki and the diffusion
rate DS̃i,e

/d2 in the enzyme layer:

Φ2
i =

Vid
2

KiDSi,e

, i = 1,m.

This parameter is used in [4, 5, 21] to determine the control mode of the biosensor. If
the modulus is larger than 1 for all substrates, the biosensor is under diffusion control.
If the modulus is less than 1, the biosensor is under reaction control. If the control mode
is diffusion control for some substrates and reaction mode for the others, we have mixed
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control. In other words, these modes can tell us which process is the bottleneck in the
biosensor operation.

3 Methods used

In this paper, we investigate artificial neural networks [31] – a machine learning method,
which models the functions of the human brain. A neural network is comprised of a series
of layers, with each layer gradually processing the data by multiplying it by the layer
weights and applying an activation function. Such a method requires training, which uses
a backpropagation method to change the weights of the model, so that the error between
the known and predicted values of the training data is minimized. Neural network training
is influenced by the amount of data: larger datasets require more complex networks with
more weights, which can lead to a smaller training error, but they take more time to train,
and if the network is too complex, its performance on unseen testing data would be poor
– this is called overfitting. To avoid these pitfalls, we need to design the network to be as
simple as possible to maintain sufficient precision or reduce the amount of training data
by, for example, dimensionality reduction.

We used two neural network architectures – feedforward and convolutional networks.
These architectures are simple to implement using off-the-shelf software packages and
consume less computing resources than more sophisticated neural networks. In feedfor-
ward neural networks, each layer is fully connected with the preceding and the following
layer. These networks are the simplest, but they require preprocessing of the data to
reduce dimensionality. Convolutional neural networks (CNN) learn a suitable nonlinear
lower dimensional representation of data by themselves and reuse the same weights for
different parts of data, thus improving generalization, but are more complex than feed-
forward networks. The main components of a CNN are convolutional and pooling layers.
Convolutional layers, as their name implies, perform the convolution operation, which
detects certain patterns in data to get a local representation by applying a sliding filter
on a sample, which is learned during training. Pooling layers downsample their inputs
and combine data from multiple convolution filters to get a more global representation
by applying a sliding window, where the network computes an average or a maximum
value of the elements in that window. Multiple pairs of these layers are arranged in
sequence before a flattening layer followed by a fully connected layer. The inputs to the
convolutional network are normalized full biosensor signals. Both architectures use the
concentration values the signal represents as outputs. The loss function for training is the
mean squared error. To train both types of networks, we used the Adam optimizer with
batch learning. Neural networks were implemented in the Python programming language
using the TensorFlow and Keras [12] libraries on the VILNIUS TECH Vanagas cluster
with an Nvidia Tesla P100 GPU.

The dimensionality reduction method we use for feedforward neural networks is the
principal component analysis (PCA), which transforms the raw data into principal com-
ponents (PCs) – they contain the most informative features of the dataset. This method
has been used in previous papers (see [4, 20]). In our research, we found that performing
data normalization before PCA yielded better results.Let X be an n× p response matrix,
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where n is the amount of biosensor responses, and p is the amount of time samples per
response. Normalization is performed by

Xnorm =
X− Jn,1µ
Jn,1s

,

where Xnorm is the normalized response matrix. µ and s are column-wise mean and
standard deviation of X, respectively (size 1×p). Jn,1 is an n×1 matrix of ones. Division
is performed element-wise.

To simulate the influence of noise, we use two different types: additive and multi-
plicative. The first type corresponds to electrical noise for small substrate concentrations
compared to the Michaelis constant Ki, where there is no dependence on signal [14]:

Ian(ti) = I(ti) + σX. (14)

The second type is for larger concentrations when such dependence exists [14]:

Imn(ti) = I(ti)(1 + σX).

Here X is a normally distributed random variable with mean of 0 and standard deviation
of 1. σ is the noise level. Noise was applied for both training and testing data and only
one type for all biosensor responses at a time, regardless of concentration magnitude. This
was done to simplify the testing process since, in order to find out at which concentration
level the noise types change, we would need physical biosensor data. Still, the approach
used in this paper is informative of the effects of noise on neural network precision.

3.1 Error measurement

The performance of the neural network was measured in terms of relative absolute per-
centage error given by

|ai(I)− S̃i,0|
|S̃i,0|

· 100%, i = 1,m, (15)

where ai(I) is the ith value of the neural network output when its inputs are either the
principal components of response I or the response itself, and S̃i,0 are the true boundary
concentration values. We calculate mean and maximum errors over all concentrations
(i = 1,m), so that each signal I has mean and maximum error values. Then we compute
the mean and maximum error values over all signals to yield mean and maximum error
values for the entire testing dataset.

4 Experimental setup

4.1 Data generation

In this work, we model the mixture of 3 analytes. The scaled value S̃i,0 = Si,0/Ki of ini-
tial concentration ranges from 3.2 to 12.8 for all analytes: i = 1, 2, 3. Such concentration
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Figure 3. Initial concentration error distribution. Left – original mesh Dtr (16), middle – 3 outer layers
removed, right – 6 layers removed.

values are used in [5,21]. Training set concentrations are defined in a cube [3.2, 12.8]3 by
a 3-dimensional uniform discrete mesh Dtr :

Dtr = D ×D ×D, D =

{
3.2

(
1− k

N−1

)
+ 12.8

k

N−1
, k = 0, N−1

}
. (16)

We use N = 22, which gives 10648 points in Dtr .
Each point c0 = (S̃1,0, S̃2,0, S̃3,0) in Dtr is used in initial condition (11) for batch

mode or (12) for FIA mode to numerically solve the mathematical biosensor model (1)–
(12) and generate biosensor response I(t) (13). We solve system (1)–(12) using the
finite volume method. Nonlinear differential equations are linearized using the predictor-
corrector method, and in each time layer, they are solved by factorizing the system of
linear equations by tridiagonal matrix algorithm, also known as the Thomas algorithm.

To create a testing set, we generate 3000 uniformly distributed random points inside
the cube [3.2, 12.8]3:

Dts =
{
c
(j)
0 =

(
S̃
(j)
1,0, S̃

(j)
2,0, S̃

(j)
3,0

)
: S̃

(j)
i,0 = 3.2(1− ξi) + 12.8ξi, j = 1, 3000

}
,

where ξi ∼ U(0, 1) is a uniformly distributed random variable. Then for each point c(j)0

in Dts , we solve problem (1)–(12) numerically as before.
After the first tests of neural networks, we have noticed that the largest errors of

recovered initial concentrations are located close to the boundaries of the training domain
[3.2, 12.8]3. In Fig. 3, we show the distribution of errors on the mesh Dtr (16) for the
training dataset. Here every point is colored according to the largest of all errors (15) for
the 3 concentrations. If we remove 3 outer mesh layers from all sides, we can see that
the maximal errors are decreasing and the largest errors were on the edges of the original
cube.

Following these results, we have decided to create another testing dataset for our
study. We generate 3000 uniformly distributed random points inside the reduced cube
[5.6, 10.4]3:

Drc =
{
c
(j)
0 =

(
S̃
(j)
1,0, S̃

(j)
2,0, S̃

(j)
3,0

)
: S̃

(j)
i,0 = 5.6(1− ξi) + 10.4ξi, j = 1, 3000

}
,
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Table 1. Constant model parameters.

Parameter Value Parameter Value Parameter Value
DSi,e

3 · 10−6 DPi,b
6 · 10−6 ni 2

DPi,e
3 · 10−6 Ki 10−4

DSi,b
6 · 10−6 δ 0.04

where ξi ∼ U(0, 1) is a uniformly distributed random variable. For each point c(j)0 inDrc ,
we solve problem (1)–(12) numerically as before.

In our numerical experiments, we used these parameter values of model (1)–(4): the
enzyme layer thickness d = 0.02, and the maximal enzymatic rates Vi = 5 · 10i−9,
i = 1, 2, 3. Other parameters are given in Table 1. Simulation time in batch mode is
T = 400, timestep τ = 0.25. Response current values I(ti) are sampled every second.
The space interval containsN = 1000 points, 333 of which belong to the enzyme layer. In
flow injection analysis mode, injection time is tf = 3, and simulation time was increased
to T = 1200.

Data generation code was written using the C++ language. The training set has 10468
responses, whereas both testing sets have 3000 responses each, for each of the biosensor
analysis modes. In order to reduce the generation time, each dataset was generated in
parallel using the master-slave paradigm, where each response was computed on the
separate CPU core. On the VILNIUS TECH Vanagas cluster, the training dataset was
generated in 2.5 min. with 20 cores.

4.2 Experiment description

In the first experiment, we investigated the effect of additive noise (14) on the biosensor
precision for the increasing levels of noise – σ using the feed-forward network. At first,
we used 4 principal components (PCs) for as input on input layer and gradually increased
the amount to 80. The neural network architecture and hyperparameters were chosen by
the coordinate search method until the maximal testing error stopped decreasing.

We chose between 1 and 2 hidden layers and the amount of neurons in each one out of
five different values: 18, 28, 32, 36, and 46. During our tests, we found out that a neural
network with a single hidden layer of 32 neurons gave the best results. The hidden layer
uses the tanh activation function, while the output layer with 3 neurons uses a linear
activation function. We trained the network using the Adam optimizer with a batch size
of 64 and a learning rate of 1.25 · 10−4. The amount of training epochs varied depending
on the noise level.

Further tests were conducted in the second experiment by employing 1D convolutional
neural networks (CNN). In this work, we used an architecture consisting of 4 pairs of
convolution – max pooling layers. The architecture and hyperparameters were picked by
using the coordinate search process. We used five different CNN configurations given in
Table 2. Between the fully connected layer with 36 neurons and the output layer of 3
neurons, we used the dropout layer to prevent overfitting – the dropout rate was 0.1. The
activation function used in convolution and fully connected layers was the rectified linear
unit (ReLU). The network was trained using the Adam optimizer with a batch size of 64

https://www.journals.vu.lt/nonlinear-analysis
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Table 2. Convolutional neural network configurations. The layers columns indicate
which convolution-pooling layer pairs had the specified parameters. The FC column is
the amount of neurons in the fully connected layer.

Kernels Layers Kernel size Layers Pool size Layers FC
Network 1

10 1, 2 4 4 2 1, 2, 3, 4 36
12 3, 4 6 3

8 2
10 1

Network 2
10 1 10 1, 2, 3, 4 2 1,2,3,4 18
12 2
14 3
16 4

Network 3
10 1, 2, 3, 4 6 1, 2, 3, 4 2 1, 2, 3, 4 36

Network 4
8 3, 4 4 4 2 2, 3, 4 36

10 1, 2 5 1, 2, 3 3 1

Network 5
8 2, 3, 4 4 4 2 2, 3, 4 36

10 1 5 3 3 1
6 1, 2

and a learning rate of 5 · 10−4. We trained the network 3 times and picked the one which
had the lowest testing error.

Next, for the third experiment, we tested both the feedforward and the convolutional
neural network architectures on signals corrupted by multiplicative noise.

5 Results and discussion

5.1 Effect of additive noise

The relative prediction errors for the first experiment are given in Tables 3 and 4. We de-
note mean errors by Eds,a and maximum errors byEds,m , where the index ds determines
the dataset used: tr – training set, ts – test set, rc – test set inside the reduced cube. We
also give the amount of epochs and principal components (PCs) for each noise level σ
tested.

Results for batch mode show that in the noiseless case, the maximal errors are low and
that they are even lower in the reduced cube. For noisy signals, the errors are larger and
they are slightly lower in the reduced domain. The difference is smaller for the average
errors. However, when the noise level σ is reaching 0.03, while the errors do decrease
in reduced cube, they remain large, so that in the worst case, the biosensor can no longer
make meaningful predictions. The best results were obtained for 80 principal components.

Using the flow injection mode, the results for noiseless signals show that the errors
decrease compared to the batch mode case, whereas the errors for noisy signals are
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Table 3. Prediction errors for batch mode.

σ Epochs PCs Ets,a Ets,m Erc,a Erc,m

0 3200 4 0.078 1.899 0.038 0.214
0 3200 80 0.050 1.093 0.039 0.269
0.01 2000 4 16.89 154.69 7.77 50.15
0.01 3200 80 1.04 9.88 0.92 6.64
0.02 3200 80 1.87 18.50 1.69 12.16
0.03 3200 80 2.66 26.62 2.38 17.52
0.04 3200 80 3.36 35.72 3.09 22.17
0.05 3200 80 4.08 39.75 3.77 26.50
0.10 3000 4 16.88 156.21 7.82 50.35
0.10 1000 80 8.12 107.02 7.20 52.22
0.20 450 80 12.54 163.91 8.77 74.70
0.40 3000 4 16.95 155.54 7.90 49.74
0.40 477 80 15.24 207.84 9.59 77.95

Table 4. Prediction errors for the flow injection mode.

σ Epochs PCs Ets,a Ets,m Erc,a Erc,m

0 2200 4 0.030 0.273 0.021 0.068
0 3200 80 0.039 0.443 0.022 0.108
0.01 2200 4 2.52 35.42 2.43 23.97
0.01 1000 80 2.70 38.95 2.59 26.24
0.02 1200 4 3.49 49.56 3.53 34.92
0.03 1500 4 4.27 62.90 4.41 43.62
0.04 2000 4 4.98 76.12 5.15 52.20
0.05 2000 4 5.61 86.36 5.81 60.08
0.10 2000 4 8.37 139.32 7.38 76.99
0.10 260 80 9.41 148.92 8.66 81.60
0.20 2000 4 13.54 175.08 7.55 75.60
0.40 2000 4 15.03 161.68 7.76 49.77
0.40 150 80 16.64 198.22 10.35 80.29

larger. Inside the reduced cube, maximum errors do decrease, but remain so large that
the biosensor can no longer make meaningful predictions in the worst case. The best
results were obtained for 4 principal components.

5.2 Effect of the convolutional architecture

Biosensor prediction errors for the convolutional architecture are given in Table 5. We
also provide the neural network configuration for each noise level.

If we use a convolutional neural network, we can see that the testing errors are larger
for the batch mode, but smaller for FIA compared to the FNN case. This suggests that
such a network architecture is more suitable for the latter analysis mode.

When looking at the errors inside the reduced cube, we see the similar picture with the
main exception being that the reduction in maximal errors is smaller in the flow injection
case and larger in the batch case than for FNN networks.

However, again, at the noise level σ larger than 0.01, the maximum errors become so
large that in the worst case, the biosensor can no longer make meaningful predictions.
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Table 5. Prediction errors for the convolutional architecture.

σ Config Epochs Ets,a Ets,m Erc,a Erc,m

Batch
0 1 990 0.392 4.420 0.261 1.812
0.01 1 936 2.09 25.75 1.69 13.70
0.05 1 979 5.01 72.97 4.50 38.08

FIA
0 3 340 0.095 0.945 0.111 0.470
0.01 5 277 1.25 17.35 1.16 12.19
0.05 5 393 3.25 52.10 3.07 38.97
0.10 7 200 6.03 101.26 5.48 65.81
0.40 7 200 12.74 182.75 8.24 88.29

5.3 Effect of multiplicative noise

Results for the multiplicative noise experiment are presented in Tables 6–8.
For the batch mode and multiplicative noise, the errors for noisy data are much larger

than for additive noise.
Taking a larger number of principal components (PCs) has not reduced the errors

in this case. These results suggest that the inverse biosensor problem in batch mode with

Table 6. Batch mode prediction errors for the FNN architecture and
multiplicative noise.

σ Epochs PCs Ets,a Ets,m Erc,a Erc,m

0 3200 4 0.078 1.899 0.038 0.214
0 3200 80 0.050 1.093 0.039 0.269
0.01 2200 4 5.34 82.11 5.17 42.39
0.01 1000 80 5.52 78.93 5.12 41.08
0.02 2200 4 9.64 128.39 8.88 71.27
0.02 700 80 9.61 136.20 8.50 67.72
0.03 2200 4 12.03 141.35 9.41 79.48
0.04 2200 4 13.48 155.49 9.51 86.14
0.05 2200 4 14.52 156.96 9.22 83.86

Table 7. FIA mode prediction errors for the FNN architecture and
multiplicative noise.

σ Epochs PCs Ets,a Ets,m Erc,a Erc,m

0 2200 4 0.030 0.273 0.021 0.068
0 3200 80 0.039 0.443 0.022 0.108
0.01 2000 4 0.14 1.25 0.11 0.58
0.01 400 80 0.22 2.23 0.16 0.83
0.02 2000 6 0.23 2.11 0.21 1.17
0.03 2000 4 0.36 3.18 0.31 1.78
0.04 2000 4 0.47 4.09 0.41 2.41
0.05 2000 4 0.58 5.02 0.52 3.02
0.10 2000 4 1.11 9.34 1.03 5.88
0.20 2000 4 2.19 19.75 2.06 11.49
0.40 2000 4 4.15 41.12 4.11 22.91
0.80 2000 4 7.67 75.68 7.98 45.23
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Table 8. Prediction errors for the convolutional architecture and
multiplicative noise.

σ Config Epochs Ets,a Ets,m Erc,a Erc,m

Batch
0 1 990 0.392 4.420 0.261 1.812
0.01 2 459 6.13 82.67 6.01 45.89
0.05 2 131 14.83 180.28 9.80 94.08

FIA
0 3 340 0.095 0.945 0.111 0.470
0.01 4 335 0.26 2.25 0.19 1.40
0.05 3 312 0.64 6.81 0.59 3.99
0.10 5 200 1.25 10.00 1.16 7.26
0.20 5 210 2.39 17.71 2.23 13.61
0.40 5 240 4.19 34.23 3.97 24.33
0.80 4 308 6.01 51.47 5.91 37.86

multiplicative noise is very ill-posed. Mean and maximum errors are large even for the
small noise level σ and inside the reduced domain.

For the flow injection analysis mode and multiplicative noise, the errors for noisy
data are much smaller than for the additive noise. These results suggest that the inverse
biosensor problem in FIA mode with multiplicative noise is significantly less ill-posed.
Mean and maximum errors are relatively small for a significant level of noise σ = 0.2 or
lower.

Results obtained with the convolutional neural network are very similar to the re-
sults obtained with the feed-forward network, even though these architectures are com-
pletely different. This confirms our suggestion the inverse biosensor problem in FIA mode
with multiplicative noise is significantly less ill-posed compared to the other operational
modes. Initial concentrations in this case can be reliably recovered for higher levels of
noise compared to all other cases considered in this study.

5.4 Results for the DIRECT method

In this section, we used the parallel master-worker DIRECT global optimization algorithm
[30] to solve the inverse problem for a single concentration vector c = (4.5714, 10.0571,
3.2) for batch and FIA modes. The goal of this test is to see if biosensor precision in the
FIA mode is better with this algorithm as with considered neural networks. The signals
had no noise applied. To get acceptable results, we had to use a search region smaller than
the original cube: R = [3.4, 6] × [7, 12.6] × [3.2, 6]. Computations were carried out on
the VILNIUS TECH Vanagas cluster. We compared the performance of this algorithm to
that of the convolutional neural network. Results are given in Table 9. Here the prediction
error is calculated as the largest relative error among the three concentrations.

Table 9 shows that the DIRECT algorithm performs better for FIA mode than for
batch mode as expected. Furthermore, for the FIA mode, DIRECT found a solution faster:
it took 50 iterations, while the batch mode took 100, and increasing it to 200 yielded no
benefit. Regarding scalability results (see Table 10), the DIRECT algorithm shows that the
speedup is lower than the corresponding p and the efficiency decreases as p increases. This
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Table 9. Prediction errors for the DIRECT algorithm.

Batch FIA
CNN DIRECT CNN DIRECT

Error 1.83 7.39 0.229 1.53

Table 10. Scalability results for the DIRECT algorithm (all cases had
one master process).

Number of worker processes p Time Speedup Efficiency
1 1109 – –
9 155.17 7.15 0.79

19 90.26 12.29 0.65

is due to the way DIRECT works: it generates a variable amount of tasks every iteration,
which is then distributed among processes. Since we use a small amount of iterations, we
have small amounts of tasks and cannot make full use of available processes. Therefore,
increasing their amount leads to lowering of efficiency.

6 Conclusion

We have investigated the inverse biosensor problem – find initial concentrations of ana-
lytes in a mixture from its biosensor response when the latter is corrupted with noise. We
have used a mathematical model to simulate biosensor signals for two analysis modes:
batch mode and flow injection. The noise was modelled using additive and multiplicative
Gaussian noises. To solve the problem, we employed neural networks of two different
architectures: feed-forward and convolutional networks. Obtained results show that the
largest errors of recovered initial concentrations are located on the edges of the training
domain. We have found that the inverse biosensor problem is significantly less ill-posed
in the flow injection analysis mode with the multiplicative noise. In this case, boundary
concentrations of three analytes can be more accurately recovered for higher levels of
noise compared to the other considered cases. This finding is confirmed by the application
of the DIRECT global optimization method to the considered inverse biosensor problem.

Our paper provides recommendations to improve biosensor performance when neural
networks are used. The prediction domain should be smaller than the training domain.
In future work, we plan to investigate the problem of biosensor signal classification to
introduce a mathematical biosensor model with fractional power diffusion and to test our
methods on real biosensor signals.
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