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Abstract— Granular reasoning proposed by Murai et al. is
a mechanism for reasoning using granular computing, and the
concept of “focus” has been proposed as a key concept of granular
reasoning. On the other hand, the authors have proposed another
concept of granularity, called “visibility”. In this paper, we try to
capture the concepts of visibility and focus as modalities of modal
logics by introducing Scott-Montague models that illustrate the
visibility and focus by modal operators, respectively.

I. I NTRODUCTION

Granular computingbased on rough set theory (Pawlak
[14], [15]) has been widely studied as a new paradigm of
computing (for example, see [7], [17]). In particular, Murai
et al. has proposedgranular reasoningas a mechanism for
reasoning using granular computing [8], and developed a
framework of granular reasoning, called a zooming reasoning
system [9], [10], [11]. The key concept of the zooming
reasoning system is focus, which represents sentences we use
in some step of reasoning. The focus provides a three-valued
truth valuation that assigns the truth value “true” or “false”
to atomic sentences that appear in the focus, and assigns the
truth value “unknown” to other atomic sentences.

On the other hand, the authors have proposed another con-
cept of granularity, called visibility [5]. Visibility separates all
sentences into “visible” sentences, that is, sentences we con-
sider, and “invisible” sentences which are out of consideration.
The authors also have constructed four-valued truth valuations
based on visibility and focus, which illustrate the concepts of
“clearly visible”, “obscurely visible” and “invisible” [6].

In this paper, we try to capture the concepts of visibility and
focus as modalities. In particular, we produce Scott–Montague
models that illustrate some properties of visibility and focus,
and represent the concept “A sentencep is visible” and ”p is
clearly visible” as modal sentences Vp and Cp, respectively.

II. BACKGROUNDS

A. Scott – Montague Models for Modal Logics

Let P be a set of (at most countably infinite) atomic sen-
tences. We construct a languageLML(P) for modal logic from
P using logical operators⊤ (the truth constant),⊥ (the falsity
constant),¬ (negation),∧ (conjunction),∨ (disjunction),→

(material implication),↔ (equivalence) and two modal oper-
ators2 (necessity) and3 (possibility) by the following rules:
(1) p ∈ P ⇒ p ∈ LML(P)，(2) p ∈ LML(P) ⇒ ¬p ∈ LML(P)，
(3) p, q ∈ LML(P) ⇒ p∧q, p∨q, p → q, p ↔ q ∈ LML(P)，(4)
p ∈ LML(P) ⇒ 2p,3p ∈ LML(P). A sentence is callednon-
modal if the sentence does not contain any modal operators.
We denoteL(P) to mean the set of all non-modal sentences.

Scott-Montague models (or minimal models; see Chellas [1]
for details) are a generalization of well-known Kripke models,
and provide possible worlds semantics for modal logics. A
Scott-Montague modelM is a triple

〈W,N, v〉,

where W is a non-empty set of possible worlds,N is a
function from W to 22W

, and v is a valuation that assigns
either the truth valuet (true) or f (false) to each atomic
sentencep ∈ P at each worldw ∈ W .

We denote|=M
w p to mean that the sentencep is true at

the possible worldw in the modelM. |=M
w is obtained by

extending the valuationv by the usual way. For any sentence
p ∈ LML(P), we define thetruth setof p in M as ∥p∥M ={
w ∈ W | |=M

w p
}

. The truth condition of modal sentences is
given by

|=M
w 2p

def⇐⇒ ∥p∥M ∈ N(w). (1)

Various conditions ofN are considered such that

(m) X ∩ Y ∈ N(w) ⇒ X ∈ N(w) andY ∈ N(w),
(c) X, Y ∈ N(w) ⇒ X ∩ Y ∈ N(w),
(n) W ∈ N(w),
(d) X ∈ N(w) ⇒ Xc ̸∈ N(w),
(t) X ∈ N(w) ⇒ w ∈ X,
(4) X ∈ N(w) ⇒ {x ∈ W | X ∈ N(x)} ∈ N(w),
(5) X ̸∈ N(w) ⇒ {x ∈ W | X ̸∈ N(x)} ∈ N(w).

The smallest classical modal logicE is proved to be both
sound and complete with respect to the class of all Scott -
Montague models, whereE contains the schemaDf3. 3p ↔
¬2¬p and the rule of inference

RE: from p ↔ q infer 2p ↔ 2q

with the rules and axiom schemata of propositional logic. Each
condition ofN corresponds to axiom schema such that
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M . 2(p ∧ q) → (2p ∧ 2q),
C. (2p ∧ 2q) → 2(p ∧ q),
N. 2⊤,
D. 2p → 3p,
T. 2p → p,
4. 2p → 22p,
5. 3p → 23p.

B. Visibility and Focus: Two Concepts of Granular Reasoning

1) Granularized possible worlds based on visibility:Let
Γ be a set of non-modal sentences considered in the current
step of reasoning. UsingΓ, we define thevisibility relative
to Γ. Moreover, we redefine the the concept of the focus,
and proposed thefocus relative toΓ. The definitions of the
visibility Vs(Γ) and focusFc(Γ) relative toΓ are as follows:

Vs(Γ) def= P ∩ Sub(Γ) = PΓ, (2)

Fc(Γ) def= {p ∈ P | eitherΓ ⊢ p or Γ ⊢ ¬p} , (3)

where Sub(Γ) is the union of the sets of subsentences of each
sentence inΓ. Using a (given) valuationv, we construct the
agreement relationRVs(Γ) based on the visibilityVs(Γ) as
follows:

xRVs(Γ)y
def⇐⇒ v(p, x) = v(p, y), ∀p ∈ Vs(Γ). (4)

The agreement relationRVs(Γ) induce the set of granularized

possible worldsW̃
def= W/RVs(Γ). We also construct a

truth valuationṽVs(Γ) for granularized possible worlds̃x
def=

[x]RVs(Γ) ∈ W̃ . The valuationṽVs(Γ) becomes the following
three-valued one:

ṽVs(Γ) : P × W̃ −→ 2{t,f} \ {{t, f}}. (5)

The three-valued valuatioñvVs(Γ) is defined by:

ṽVs(Γ)(p, w̃) def=





{t}, if v(p, x) = t, ∀x ∈ w̃,
{f}, if v(p, x) = f , ∀x ∈ w̃,
∅, otherwise.

(6)

Hereafter, we use the following notations:T def= {t} and

F def= {f}, respectively. Using̃vVs(Γ), we define the visibility
of atomic sentences.

Definition 1: An atomic sentencep is visible at w̃ if and
only if either ṽVs(Γ)(p, w̃) = T or ṽVs(Γ)(p, w̃) = F. On the
other hand,p is invisible at w̃ if and only if ṽVs(Γ)(p, w̃) = ∅.

The three-valued valuatioñvVs(Γ) is extended to any non-
modal sentences by truth assignments of connectives¬ (nega-
tion), ∧ (conjunction),∨ (disjunction) and→ (implication)
illustrated in Table I. We denote the extended three-valued
truth valuation by the same notatioñvVs(Γ). Similar to the
case of atomic sentences, for any non-modal sentencep, we
call p is visible at w̃ if and only if either ṽVs(Γ)(p, w̃) = T
or ṽVs(Γ)(p, w̃) = F. On the other hand,p is invisible at w̃
if and only if ṽVs(Γ)(p, w̃) = ∅. Hence, if bothp and q are
visible, it is clear that¬p, p ∧ q, p ∨ q and p → q are also
visible.

TABLE I

TRUTH ASSIGNMENTS OF THE THREE-VALUED VALUATION

Negation¬p
p ¬p
∅ ∅
F T
T F

Conjunctionp ∧ q
HHHp

q ∅ F T
∅ ∅ ∅ ∅
F ∅ F F
T ∅ F T

Disjunctionp ∨ q
HHHp

q ∅ F T
∅ ∅ ∅ ∅
F ∅ F T
T ∅ T T

Implication p → q
HHHp

q ∅ F T
∅ ∅ ∅ ∅
F ∅ T T
T ∅ F T

2) Equivalence classes of granularized possible worlds
based on focus:Using the focusFc(Γ) relative toΓ, we con-
struct an agreement relationRFc(Γ) on theset of granularized
possible worldsW̃ . If Fc(Γ) ̸= ∅, we define the agreement
relationRFc(Γ) as follows:

x̃RFc(Γ)ỹ
def⇐⇒ ṽVs(Γ)(p, x̃) = ṽVs(Γ)(p, ỹ), ∀p ∈ Fc(Γ). (7)

The agreement relationRFc(Γ) onW̃ induce the quotient set of

granularized possible worldŝW
def= W̃/RFc(Γ). We treat each

equivalence clasŝw
def= [w̃]RFc(Γ) as a unit of consideration

as if eachŵ were a “possible world”. On the other hand, if
Fc(Γ) = ∅, we can not construct the agreement relation. In

this case, we definêW
def= {W̃}.

We consider a valuation function̂vFc(Γ) for equivalence
classes of granularized possible worlds as the following four-
valued one:

v̂Fc(Γ) : P × Ŵ −→ 2{T,F}. (8)

The valuation̂vFc(Γ) is defined by:

v̂Fc(Γ)(p, ŵ) def=





{T}, ṽVs(Γ)(p, x̃) = T, ∀x̃ ∈ ŵ,
{F}, ṽVs(Γ)(p, x̃) = F, ∀x̃ ∈ ŵ,

{T,F}, ∃x̃, ỹ ∈ ŵ s.t. ṽVs(Γ)(p, x̃) = T,
andṽVs(Γ)(p, ỹ) = F,

∅, otherwise.
(9)

Definition 2: An atomic sentencep is clearly visible (or
in focus) at ŵ if and only if either v̂Fc(Γ)(p, ŵ) = {T} or
v̂Fc(Γ)(p, ŵ) = {F}. On the other hand,p is obscurely visible
at ŵ if and only if v̂Fc(Γ)(p, ŵ) = {T,F}. Moreover,p is
invisible at ŵ if and only if v̂Fc(Γ)(p, ŵ) = ∅.
From this definition, it is clear that, for allp ∈ Fc(Γ), p is
clearly visible at allŵ ∈ Ŵ .

Similar to the case of the three-valued valuationṽVs(Γ),
The four-valued valuation̂vFc(Γ) is extended to any non-
modal sentences by truth assignments illustrated in Table II.
We denote the extended four-valued truth valuation by the
same notation̂vFc(Γ). Similar to the three-valued case, for any
clearly visible sentencesp and q, it is clear that¬p, p ∧ q,
p∨ q andp → q are also clearly visible. Thus, there is at least
one equivalence clasŝw ∈ Ŵ such that̂vFc(Γ)(p, ŵ) = {T}
for all p ∈ Γ.
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TABLE II

TRUTH TABLES OF THE FOUR-VALUED VALUATION

Negation¬p
p ¬p
∅ ∅

{F} {T}
{T} {F}

{T,F} {T,F}

Disjunctionp ∨ q
HHHp

q ∅ {F} {T} {T,F}
∅ ∅ ∅ ∅ ∅

{F} ∅ {F} {T} {T,F}
{T} ∅ {T} {T} {T}

{T,F} ∅ {T,F} {T} {T,F}

Conjunctionp ∧ q
HHHp

q ∅ {F} {T} {T,F}
∅ ∅ ∅ ∅ ∅

{F} ∅ {F} {F} {F}
{T} ∅ {F} {T} {T,F}

{T,F} ∅ {F} {T,F} {T,F}

Implication p → q
HHHp

q ∅ {F} {T} {T,F}
∅ ∅ ∅ ∅ ∅

{F} ∅ {T} {T} {T}
{T} ∅ {F} {T} {T,F}

{T,F} ∅ {T,F} {T} {T,F}

Note that, however, not all two-valued tautologies are satis-
fied by ṽFc(Γ). For example, for any invisible sentencep and
obscurely visible sentenceq, exclusive middle is not satisfied:
ṽFc(Γ)(p∨¬p, ŵ) = ∅ and ṽFc(Γ)(q∨¬q, ŵ) = {T,F} for all
ŵ ∈ Ŵ .

Example 1:Let P = {p, q, r} be a set of atomic sentences,
andW be a non-empty set that has the following eight possible
worlds:

w1 = {p, q, r}, w2 = {p, q}, w3 = {p, r}, w4 = {p},
w5 = {q, r}, w6 = {q}, w7 = {r}, w8 = ∅.

We define the truth value of each atomic sentencep ∈ P at
each worldw ∈ W by v(p, w) = t ⇐⇒ p ∈ w. By this truth
assignment, for example, all atomic sentences are true atw1.
On the other hand, all atomic sentences are false atw8.

Suppose we have the following set of non-modal sentences
considered in the current step of reasoning:Γ = {q, p → q}.
Hence, we have the visibilityVs(Γ) and focusFc(Γ) relative
to Γ as follows, respectively:Vs(Γ) = {p, q}, Fc(Γ) = {q}.

Constructing the agreement relationRVs(Γ) by equation (4),
we have the following four granularized possible worlds:

w̃1 = {w1, w2}, w̃3 = {w3, w4},
w̃5 = {w5, w6}, w̃7 = {w7, w8}.

Each atomic sentence has the following three-valued truth
value:

ṽFc(Γ)(p, w̃1) = T, ṽFc(Γ)(q, w̃1) = T, ṽFc(Γ)(r, w̃1) = ∅,
ṽFc(Γ)(p, w̃3) = T, ṽFc(Γ)(q, w̃3) = F, ṽFc(Γ)(r, w̃3) = ∅,
ṽFc(Γ)(p, w̃5) = F, ṽFc(Γ)(q, w̃5) = T, ṽFc(Γ)(r, w̃5) = ∅,
ṽFc(Γ)(p, w̃7) = F, ṽFc(Γ)(q, w̃7) = F, ṽFc(Γ)(r, w̃7) = ∅.

These truth values indicate thatp andq are visible, whiler is
invisible.

Next, we construct the agreement relationRFc(Γ) on W̃ ,
and get the following two equivalence classes:

ŵ1 = {w̃1, w̃5} = {{w1, w2}, {w5, w6}},
ŵ3 = {w̃3, w̃7} = {{w3, w4}, {w7, w8}}.

By (9), each atomic sentence has the following four-valued
truth value:

v̂Fc(Γ)(p, ŵ1) = {T,F}, v̂Fc(Γ)(q, ŵ1) = {T},
v̂Fc(Γ)(r, ŵ1) = ∅.
v̂Fc(Γ)(p, ŵ3) = {T,F}, v̂Fc(Γ)(q, ŵ3) = {F},
v̂Fc(Γ)(r, ŵ3) = ∅.

This means thatq is clearly visible,butp is obscurely visible.
Similar to the three-valued case,r is invisible. Four-valued
truth values of any non-modal sentences are calculated based
on Table II. For example, the truth value ofp → q is:
v̂Fc(Γ)(p → q, ŵ1) = {T} and v̂Fc(Γ)(p → q, ŵ3) = {T,F}.
Thus, all non-modal sentences inΓ is true, that is, clearly
visible, atŵ1.

III. G RANULAR REASONING AND SCOTT – MONTAGUE

MODELS

A. Visibility as Modality

In this subsection, we try to capture the concept of visibility
by modality based on Scott – Montague models. Suppose we
have a set of granularized possible worldsW̃ based on the
visibility Vs(Γ) relative toΓ, and a non-modal sentencep is
visible at w̃ ∈ W̃ . Instead of the modal operator2, we use
a modal operator V, and we read Vp as “p is visible”. We
intend to illustrate the visibility by some Scott – Montague
modelM as follows: for each possible worldx ∈ w̃,

|=M
x Vp, if p is visible atw̃.

For illustrating the concept of visibility as modality, we use
the following simple functionNVs(Γ).

Definition 3: Let W̃ = {w̃1, · · · , w̃n} be the set of gran-
ularized possible worlds based on the visibilityVs(Γ). A
function NVs(Γ) : W → 22W

is defined by

NVs(Γ)(x) def=
{ ⋃

A A ⊆ W̃
}

, ∀x ∈ W, (10)

where
⋃

A means the union of all granularized possible worlds

in A. If A = ∅, we define
⋃

A
def= ∅.

This definition means that, for anyx ∈ W , each element
X ∈ NVs(Γ)(x) is constructed by union of some granular-
ized possible worlds. Each̃w ∈ W̃ is an equivalence class
[w]RVs(Γ) ⊆ W , thus the functionNVs(Γ) is well-defined.
NVs(Γ) satisfies the following conditions.

Lemma 1:The constructed functionNVs(Γ) by (10) satisfies
the condition (c), (n), (4) and (5). Moreover,NVs(Γ) satisfies
the following properties:

(v!) X ∈ NVs(Γ) ⇔ Xc ∈ NVs(Γ).
Next, usingNVs(Γ), we construct a Scott - Montague model

M = 〈W,NVs(Γ), v〉. Lemma 1 indicates that the modelM
validates schemataC, N, 4 and5. Moreover, the condition (v!)
corresponds the following schema:

V!. Vp ↔ V¬p.
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The truth condition of modal sentences, (1), captures part
of the concept of visibility. The following lemma captures the
property that if bothp andq are visible, then¬p, p∧ q, p∨ q
andp → q are also visible.

Lemma 2: 1) If p ∈ Vs(Γ), then|=M
w Vp for all w ∈ W .

2) For anyp ∈ L(P) and all w ∈ W , if |=M
w Vp, then

|=M
w V¬p.

3) For anyp, q ∈ L(P) and all w ∈ W , if both |=M
w Vp

and |=M
w Vq, then |=M

w V(p ∧ q), |=M
w V(p ∨ q), and

|=M
w V(p → q), respectively.

Combining these lemmas, we have the following result.
Theorem 1:Let Γ be a non-empty set of non-modal sen-

tences,W̃ be the set of granularized possible worlds based on
the visibility Vs(Γ), and M = 〈W,NVs(Γ), v〉 be a Scott-
Montague model that has a functionNVs(Γ) by Definition
3. For any non-modal sentencep ∈ L(P), if p is visible at
w̃ ∈ W̃ , then |=M

x Vp for all x ∈ w̃.
However, the converse of Theorem 1 is not satisfied. This

is because, in our formulation, any “invisible” tautologyp
becomes|=M

w Vp. For example, suppose that an atomic sen-
tence r is invisible by ṽVs(Γ). A tautology r ∨ ¬r is also
invisible by the definition of visibility. However, the truth set
∥r ∨ ¬r∥M = W is an element ofNVs(Γ)(w) for all w ∈ W ,
therefore |=M

w V(r ∨ ¬r). Unfortunately, we can not avoid
this difficulty. This is because it causes that the schemaN
is satisfied usingNVs(Γ). Therefore we need to restrict our
formulation to satisfiable sentences.

Example 2:We use the same setting of Example 1. Using
W̃ = {w̃1, w̃3, w̃5, w̃7}, we construct a Scott - Montague
model M = 〈W,NVs(Γ), v〉 by Definition 3, whereW and
v are the same ones defined in Example 1.

We haveVs(Γ) = {p, q}, thus atomic sentencesp andq are
visible but r is invisible. For these atomic sentences, we have
the following truth sets, respectively:

∥p∥M = {w1, w2, w3, w4},
∥q∥M = {w1, w2, w5, w6},
∥r∥M = {w1, w3, w5, w7}.

Here, it holds that∥p∥M = {w1, w2} ∪ {w3, w4} = w̃1 ∪ w̃3

and ∥q∥M = {w1, w2} ∪ {w5, w6} = w̃1 ∪ w̃5. Therefore,
for example,|=M

x Vp and |=M
x Vq for all x ∈ w̃1 by the

truth condition (1), respectively. On the other hand, we can
not construct∥r∥M by union of w̃i, we have̸|=M

w Vr for all
w ∈ W .

B. Focus as Modality

Similar to the case of visibility, we try to capture the concept
of focus by modality based on Scott - Montague models. The
focus Fc(Γ) relative toΓ divides all “visible ”sentences into
“clearly visible” ones and “obscurely visible” ones. For any
clearly visible sentencep, using a modal operator C, we denote
Cp to mean that “p is clearly visible”. We intend to illustrate
the focus by some Scott - Montague modelM as follows: Let
Ŵ be the quotient set of granularized possible worlds based
on the focusFc(Γ), and ŵ ∈ Ŵ be an equivalence class of

granularized possible worlds. For each possible worldy ∈ x̃
such thatx̃ ∈ ŵ,

|=M
y Cp, if p is clearly visible atŵ.

To construct a functionNFc(Γ) that illustrates the concept
of focus as modality, we take the following two steps:

1) Constructing a functionN bw
Fc(Γ) for eachŵ ∈ Ŵ .

2) Combining allN bw
Fc(Γ).

First, we define the functionN bw
Fc(Γ).

Definition 4: For eachŵ ∈ Ŵ , a functionN bw
Fc(Γ) :

⋃
ŵ →

22W

is defined by:

N bw
Fc(Γ)(x) def=

{ ⋃
A A ⊆ U(ŵ)

}
, ∀x ∈

⋃
ŵ, (11)

whereU(ŵ) =
(
W̃ \ ŵ

)
∪ (

⋃
ŵ). If A = ∅, then

⋃
A

def= ∅.

Next, combining all functionsN bw
Fc(Γ), we define the func-

tion NFc(Γ).
Definition 5: For allx ∈ W , a functionNFc(Γ) : W → 22W

is defined by:

NFc(Γ)(x) def=





N bw
Fc(Γ)(x),

if Fc(Γ) ̸= ∅,
andx ∈ ∪ŵ

{W, ∅}, otherwise.

(12)

It is easy to check that the functionNFc(Γ) is well-defined
by Definition 5. The key of this construction is the setU(ŵ),
which provides “units” of construction at each possible world
x ∈ ŵ. U(ŵ) does not contain any granularized possible
worlds ỹ in ŵ. This is because we need to capture the property
that an atomic sentencep is visible if and only ifp is true atall
granularized possible worlds in̂w or false atall granularized
possible worlds inŵ. Hence, if somẽy ∈ ŵ are contained in
U(ŵ), some atomic sentenceq ∈ Vs(Γ) \Fc(Γ) may become
“clearly visible”. Thus, anyỹ ∈ ŵ should not be included in
U(ŵ).

The differences betweenNVs(Γ) and NFc(Γ) are the fol-
lowing: (1) NVs(Γ) treats all combinations of unions of gran-
ularized possible worlds as “unit” of consideration, while
NFc(Γ) treats some restricted parts of combinations of unions
of granularized possible worlds. This is because we need to
distinguish “ clearly visible” sentences and “obscurely visible”
sentences by using the fucntionNFc(Γ), and the concept “p is
clearly visible” (or “in focus”) requires thatp is eitherT or
F at all granularized possible worlds in̂w. (2) NFc(Γ) needs
to treat the caseFc(Γ) = ∅. In the case ofNVs(Γ), by the
definition of Vs(Γ) we need not to consider the case that
Vs(Γ) =. However, inNFc(Γ), we have to considerFc(Γ) = ∅,
that is, the case that “nothing is clear”.

NFc(Γ) satisfies the following conditions.
Lemma 3:The constructed functionNFc(Γ) by (12) satisfies

the condition (c), (n) and (v!).
However, in general, the conditions (4) and (5) are not
satisfied.

Next, usingNFc(Γ), we construct a Scott - Montague model
M = 〈W,NFc(Γ), v〉. Lemma 4 indicates that the modelM
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validates schemataC, N and V!. Moreover, all properties
illustrated in Lemma 2 are also valid for the operator C, that
is, if both p and q are clearly visible, then¬p, p ∧ q, p ∨ q
andp → q are also clearly visible.

Lemma 4: 1) If p ∈ Vs(Γ), then|=M
w Cp for all w ∈ W .

2) For anyp ∈ L(P) and all w ∈ W , if |=M
w Cp, then

|=M
w C¬p.

3) For anyp, q ∈ L(P) and all w ∈ W , if both |=M
w Cp

and |=M
w Cq, then |=M

w C(p ∧ q), |=M
w C(p ∨ q), and

|=M
w C(p → q), respectively.

Thus, we have the following result.
Theorem 2:Let Γ be a non-empty set of non-modal sen-

tences,Ŵ be the set of equivalence classes of granularized
possible worlds based onFc(Γ), and M = 〈W,NFc(Γ), v〉
be a Scott-Montague model that has a functionNFc(Γ) by
Definition 5. For any non-modal sentencep, if p is clearly
visible atŵ ∈ Ŵ , then|=M

x Cp for all x ∈ ỹ such that̃y ∈ ŵ.
However, by the same reason of the case of Vp, the converse

of Theorem 2 is not satisfied.
Example 3:We use the same setting of Example 1. Using

ŵ1 = {w̃1, w̃5} = {{w1, w2}, {w5, w6}}, ŵ3 = {w̃3, w̃7} =
{{w3, w4}, {w7, w8}}, we get the setsU(ŵ1) and U(ŵ3) as
follows:

U(ŵ1)
def= {{w1, w2, w5, w6}, {w3, w4}, {w7, w8}},

U(ŵ3)
def= {{w3, w4, w7, w8}, {w1, w2}, {w5, w6}}.

Thus, usingU(ŵ1) and U(ŵ3), we construct functions
N bw1

Fc(Γ) and N bw3
Fc(Γ) by Definition 4, and a Scott - Montague

model M = 〈W,NFc(Γ), v〉 with the function NFc(Γ) by
Definition 5.

We haveVs(Γ) = {p, q} andFc(Γ) = {q}, thusq is clearly
visible but p is obscurely visible. Here, by the modelM,
it holds that∥q∥M = {w1, w2, w5, w6} ∈ NFc(Γ)(x) for all
x ∈ W . Therefore, for example,|=M

w2
Cq and |=M

w2
C¬q. On

the other hand, we can not construct∥p∥M at eitherŵ1 or
ŵ3, therefore we have̸|=M

wi
Cp and ̸|=M

wi
C¬p at anywi ∈ W .

We can also treat complex non-modal sentences. For exam-
ple, in Example 1,p → q is clearly visible atŵ, but obscurely
visible atŵ3. Here,∥p → q∥M = {w1, w2, w3, w4, w5, w6} =
{w1, w2, w5, w6}∪{w3, w4} ∈ NFc(Γ)(wi) for all wi ∈

⋃
ŵ1.

Thus, for example, we have|=M
w6

C(p → q). On the other
hand, we can not construct∥p → q∥M at ŵ3, therefore
̸|=M

wi
C(p → q) at anywi ∈

⋃
ŵ3.

IV. CONCLUSION

In this paper, we tried to capture the concepts of visibility
and focus as modalities. First, we proposed a modal operator
V that means “visible”, and constructed the functionNVs(Γ) to
illustrate some properties of visibility. Moreover, we proposed
a Scott–Montague modelsM such that ifp is visible at w̃,
then |=M

x Vp at all x ∈ w̃. Next, we proposed another
modal operator C that means ”clearly visible”, and constructed
the functionNFc(Γ). Moreover, we proposed another Scott–
Montague modelsM such that ifp is clearly visible atŵ,
then |=M

x Cp at all x ∈
⋃

w̃.

There are many future issues. First, we need to explore con-
nections between V and C by multi modal Scott – Montague
models and axiomatic characterization of visibility and focus.
Combination with other modal logics, in particular, logics
of knowledge and belief (for example, see [3]), and logics
of time (for example, see [16]) are also interest. Moreover,
we need to consider relationship among our framework and
zooming reasoning systems [9], [10], [11] and belief change
(for example, see [2], [4]).
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