

実規模RCアーチ構造における内面補強工法の効果に 関する実験的検討

著者	岸 徳光,川瀬 良司,岡田 慎哉,栗橋 祐介,				
	高橋 浩司,杉山 裕				
雑誌名	土木学会年次学術講演会講演概要集				
巻	63				
号	1				
ページ	1025-1026				
発行年	2008-09				
URL	http://hdl.handle.net/10258/1744				

実規模RCアーチ構造における内面補強工法の効果に 関する実験的検討

著者	岸 徳光,川瀬 良司,岡田 慎哉,栗橋 祐介,				
	高橋 浩司,杉山 裕				
雑誌名	土木学会年次学術講演会講演概要集				
巻	63				
号	1				
ページ	1025-1026				
発行年	2008-09				
URL	http://hdl.handle.net/10258/1744				

実規模 RC アーチ構造における内面補強工法の効果に関する実験的検討

室蘭工業大学	フェロー	○岸 徳光	(株)構研エンジニアリング	正会員	川瀬 良司
室蘭工業大学	正会員	岡田 慎哉	室蘭工業大学	正会員	栗橋 祐介
(株) 構研エンジニアリング	正会員	高橋 浩司	(株)構研エンジニアリング	非会員	杉山 裕

1. はじめに

本研究では,敷砂緩衝材を設置した RC 製アーチ構造 に対する内面補強工法の耐衝撃性向上効果を把握するこ とを目的に,実トンネル抗口部内面に AFRP シート貼付 工法(以後,A工法)あるいは AFRP メッシュと PVA 短 繊維混入吹付モルタルを併用した工法(以後,M工法) により補強した場合と,内面補強を施さない場合につい て重錘落下衝撃実験を実施した.補強効果の検討は,重 錘衝撃力,アーチ構造の変位およびアーチ内面の破壊性

図-1 形状寸法および配筋状況

表-1 実験ケース一覧

実験ケース	内面補強	重錘質量	落下高さ	
N	無			
А	AFRP シート			
	AFRP メッシュ併用	10t	10m	
М	PVA 短繊維混入			
	吹付モルタル			

キーワード:RCアーチ構造,内面補強,アラミド繊維補強,AFRPメッシュ PVA 短繊維混入吹付モルタル工法 連絡先:〒050-8585 室蘭市水元町 27-1 室蘭工業大学 建設システム工学科 TEL 0143-46-5230 FAX 0143-46-5227

状に着目して行うこととした.

2. 実験条件

図-1(a),(b)には、実験に用いたトンネル坑口部の形状 寸法および配筋状況を示している。トンネル坑口部の断面 形状は、覆工部材厚 600mm、上半内空半径 4,152mm、側壁 部高さ 1,725mm、道路軸方向の 1 ブロック延長 6,000mm である。覆工主鉄筋には D13~D22、配力筋には D13 が それぞれ 250mm 間隔で配筋され、かぶりは 100mm であ る。また、敷砂緩衝材の厚さは、一般的な厚さの 900mm としている。なお、アーチ構造本体のコンクリートの圧 縮強度は、 f_c =35.8~37.0MPa 程度である。

表-1には、実験ケース一覧を示している.内面補強 については、A工法には二方向AFRPシート(保証耐力 588kN/m、弾性係数:118 GPa、引張強度:2.06GPa、破断 ひずみ:1.75%)を1層用いている.また、M工法は近年 トンネル内面補強に用いられている工法であり、AFRP メッシュ(保証耐力 196kN/m)とPVA 短繊維混入吹付モ ルタル(吹付厚 30mm)を併用した工法により、アーチク ラウン部からスプリングラインまでを補強している.実 験は、質量 10t の鋼製重錘をクレーンを用いて所定の高 さまで吊り上げ、アーチ部中央点に自由落下させること により行っている.

3. 衝撃実験結果

3.1 各種応答波形

図-2には、各実験ケースにおける重錘衝撃力波形、載

図-4 実験後におけるアーチ内面の破壊状況

荷点鉛直変位波形を示している.(a)図の重錘衝撃力波形 より、いずれのケースも最大値を含めて同様の波形性状 を示しており、本研究に用いた補強方法が重錘衝撃力波 形に与える影響は小さいことが分かる.

(b) 図より載荷点直下における鉛直変位波形は,重錘衝 撃力波形に対して 20ms 程度,波形の立ち上がりに遅れ が生じている.また,内面補強を実施することで,載荷 点鉛直変位,残留変位ともに無補強の場合の 60%程度に 抑制されている.これは,アーチ部材の曲げ耐力が向上し たことによるものと考えられる.これより,本研究に用 いた工法により内面補強することで,載荷点部の変位を 抑制する効果が期待できることが明らかとなった.

3.2 変位分布

図-3には、各実験ケースにおけるアーチ内面変位の時 系列分布を t=10~100ms まで 10ms 毎に示している.図 より、載荷点直下のアーチクラウン部およびアーチの円 中心点より 45°の位置周辺は無補強の場合が内面補強し た場合よりも大きく示されている.また、内面補強を施 すことにより、無補強の場合の載荷点直下における局所 的な変形が、アーチクラウン部全体で挙動する傾向に移 行していることが分かる.また、このような性状は補強 工法によらず同様である.

3.3 アーチ内面の破壊性状

図-4には、各実験ケースにおける実験後のアーチ内 面の破壊状況を示している.無補強の場合には、初期ひ び割れを含めたアーチ構造本体のひび割れをスケッチし た.また,A工法の場合にはシート表面から打音検査を 行い,シートの浮きをスケッチし,M工法の場合には吹 付モルタルのひび割れをスケッチしている.

図より,無補強の場合は,実験によって新たに発生した ひび割れは少ないものの,広範囲に分散して生じていた 初期ひび割れの幅が多少広がった.なお,アーチ内縁か ぶりコンクリートの剥落は発生していない.内面補強を 施した両実験ケースについては,A工法の場合にはAFRP シートの浮きが発生しているが破断は確認されていない. M工法では,アーチクラウン部において道路縦断方向に ひび割れが発生している.

4. まとめ

本研究では、敷砂緩衝材を設置した RC 製アーチ構造 に対する内面補強工法の耐衝撃補強効果を把握すること を目的に、実トンネル抗口部内面に AFRP シート接着工 法あるいは AFRP メッシュと PVA 短繊維混入吹付モルタ ルを併用した工法により補強した場合と、内面補強を施 さない場合について重錘落下衝撃実験を実施した.本研 究により得られた事項を整理すると、以下のように示さ れる.

(1)本研究に用いた工法により内面補強することで,載荷点部の変位を40%程度抑制する効果が期待できる.
(2)内面補強を施すことにより,無補強時の載荷点直下における局所的な変形が,アーチクラウン部全体で挙動する傾向に移行する.