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Abstract

We introduce discrete and p-adic continuous versions of the FitzHugh-
Nagumo system on the one-dimensional p-adic unit ball. We provide
criteria for the existence of Turing patterns. We present extensive simu-
lations of some of these systems. The simulations show that the Turing
patterns are traveling waves in the p-adic unit ball.

1 Introduction

Several models involving parabolic equations have been used in neuroscience for the
propagation of nerve impulses. Among these models, the one of FitzHugh-Nagumo

∗The author was partially supported by the Lokenath Debnath Endowed Professorship.
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plays a central role. Proposed in the 1950s by FitzHugh, this model accurately explains
the propagation of electric impulses along the nerve axon of the giant squid, see [16],
[20] and the references therein. Nowadays FitzHugh-Nagumo system is the simplest
model to describe pulse propagation in a spatial region. The simplest version of this
system is 

∂tu(x, t) = mu− u3 − v + Lu∆u

∂tv(x, t) = c(u− av − b) + Lv∆v,
(1.1)

where the system parameters a, b, c,m,Lu, and Lv, are assumed to be positive, and
the functions u and v depend on time t ≥ 0 and the position x ∈ R on the domain
of interest. The variable u promotes the self-growth of u and, at the same time, the
growth of v and can thus be named an activator, while v plays the role of an inhibitor
that annuls the growth of u.

In this paper, we introduce a p-adic counterpart of system (1.1). In the new model
x runs through the ring of p-adic integers Zp, here p is a fixed prime number, and t
is a real variable. Geometrically, Zp is an infinite rooted tree; analytically, Zp is a
locally compact topological additive group, with a very rich mathematical structure.
The system takes the following form

∂u
∂t

(x, t) = f(u, v)− (Dα
0 − λ)u(x, t)

∂v
∂t
(x, t) = g(u, v)− d (Dα

0 − λ) v(x, t), x ∈ Zp, t ≥ 0,
(1.2)

where Dα
0 − λ is the Vladimirov operator on Zp, and f(u, v) = µu− u3 − v, g(u, v) =

γ(u− δv − β), where µ, β are real numbers, and γ, δ, d are positive real numbers.
This system admits a natural discretization of the form

∂
∂t

[uL(I, t)]I∈GL
=

[
µuL(I, t)− u3

L(I, t)− vL(I, t)
]
I∈GL

−Aα
L [uL(I, t)]I∈GL

∂
∂t

[vL(I, t)]I∈GL
= [γ (uL(I, t)− δvL(I, t)− β)]I∈GL

− dAα
L [vL(I, t)]I∈GL

,

(1.3)
where GL is a finite rooted three with L levels, and matrix Aα

L is a discretization of
operator Dα

0 − λ.
We present instability Turing criteria for systems (1.2) and (1.3), see Theorems 4.1,

5.1. The conditions for the existence of Turing patterns for both systems are essentially
the same, except for one condition which involves a subset Γ of the eigenvalues of
Dα

0 − λ, in the case of system (1.2), and a subset ΓL of the eigenvalues of matrix
Aα

L, in the case of (1.3). We provide extensive numerical simulations of some systems
of type (1.3); in particular, these experiments show that the Turing patterns are
traveling waves inside the unit ball Zp. Our numerical experiments also show that
the eigenvalues of matrix Aα

L approximate the eigenvalues of Dα
0 − λ. We conjecture

that the Turing patterns of (1.3) converge, in some sense, to the Turing patterns of
(1.2). The results of Digernes and his collaborators on the problem of approximation
of spectra of Vladimirov operator Dα by matrices of type Aα

L, [6]-[8] provide strong
support to our conjecture.

Nowadays, the study of Turing patterns on networks is a relevant area. In the 70s,
Othmer and Scriven pointed out that Turing instability can occur in network-organized
systems [18]-[19]. Since then, reaction-diffusion models on networks has been studied
intensively, see, e.g., [2], [3], [5], [11], [14]- [15], [17]-[19], [22], [26]-[27], and the ref-
erences therein. In particular, Turing patterns of discrete FitzHugh-Nagumo systems
have also been studied [4]. In [31]-[32], the last author established the existence of
Turing patterns for specific p-adic systems of reaction-diffusion equations, but these
papers do not consider the problem of the numerical approximation of the Turing
patterns.
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The article is organized as follows. In Section 2, we review some basic aspects of
the p-adic analysis and fix the notation. In Section 3, we present some basic aspects
of the Vladimirov operator, the p-adic heat equation on the unit ball. In Section
4, we introduce our p-adic FitzHugh-Nagumo system, and give a Turing instability
criterion, see Theorem 4.1. In Section 5, we study a discrete version of our p-adic
FitzHugh-Nagumo system, and and give a Turing instability criterion, see Theorem
5.1. Finally, in Section 6, we provide extesnive numerical simulation for some discrete
FitzHugh-Nagumo systems and their Turing patterns.

2 p-Adic Analysis: Essential Ideas

In this section, we collect some basic results on p-adic analysis that we use through
the article. For a detailed exposition the reader may consult [1], [13], [23], [25].

2.1 The field of p-adic numbers

Along this article p will denote a prime number. The field of p-adic numbers Qp is
defined as the completion of the field of rational numbers Q with respect to the p-adic
norm | · |p, which is defined as

|x|p =


0 if x = 0

p−γ if x = pγ a
b
,

where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) :=
+∞, is called the p-adic order of x.

Any p-adic number x ̸= 0 has a unique expansion of the form

x = pord(x)
∞∑
j=0

xjp
j ,

where xj ∈ {0, . . . , p−1} and x0 ̸= 0. By using this expansion, we define the fractional
part of x ∈ Qp, denoted {x}p, as the rational number

{x}p =


0 if x = 0 or ord(x) ≥ 0

pord(x)
∑−ordp(x)−1

j=0 xjp
j if ord(x) < 0.

2.2 Basic topology of Qp

For r ∈ Z, denote by Br(a) = {x ∈ Qp; |x− a|p ≤ pr} the ball of radius pr with center
at a ∈ Qp, and take Br(0) := Br. We also denote by Sr(a) = {x ∈ Qp; |x− a|p = pr}
the sphere of radius pr with center at a ∈ Qp, and take Sr(0) := Sr. We notice that
S1
0 = Z×

p (the group of units of Zp). The balls and spheres are both open and closed
subsets in Qp. In addition, two balls in Qp are either disjoint or one is contained in
the other.
As a topological space (Qp, | · |p) is totally disconnected, i.e., the only connected subsets
of Qp are the empty set and the points. A subset of Qp is compact if and only if it
is closed and bounded in Qp, see e.g., [25, Section 1.3], or [1, Section 1.8]. Since
(Qp,+) is a locally compact topological group, there exists a Haar measure dx, which
is invariant under translations, i.e., d(x + a) = dx. If we normalize this measure by
the condition

∫
Zp

dx = 1, then dx is unique.

Notation 1 We will use Ω
(
p−r|x− a|p

)
to denote the characteristic function of the

ball Br(a). For more general sets, we will use the notation 1A for the characteristic
function of set A.
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2.3 The Bruhat-Schwartz space

A complex-valued function φ defined on Qp is called locally constant if for any x ∈ Qp

there exist an integer l(x) ∈ Z such that

φ(x+ x′) = φ(x) for any x′ ∈ Bl(x). (2.1)

A function φ : Qp → C is called a Bruhat-Schwartz function (or a test function) if
it is locally constant with compact support. Any test function can be represented
as a linear combination, with complex coefficients, of characteristic functions of balls.
The C-vector space of Bruhat-Schwartz functions is denoted by D(Qp). We denote
by DR(Qp) the R-vector space of Bruhat-Schwartz functions. For φ ∈ D(Qp), the
largest number l = l(φ) satisfying (2.1) is called the exponent of local constancy (or
the parameter of constancy) of φ.

We denote by C (Qp), the C-vector space of continuous functions defined on Qp,
and by CR (Qp) its real counterpart.

2.4 Lρ spaces

Given an open subset U of subset of Qp, and ρ ∈ [1,∞), we denote by Lρ (U) :=
Lρ (U, dx) , the C-vector space of all the complex-valued functions φ satisfying

∥φ∥ρ =


∫
U

|φ (x)|ρ dx


1
ρ

< ∞.

The corresponding R-vector space are denoted as Lρ
R (U) = Lρ

R (U, dx), 1 ≤ ρ < ∞.
We denote by D(U) the C-vector space of test functions with supports contained in
U , then D(U) is dense in Lρ (U), for 1 ≤ ρ < ∞, see e.g., [1, Section 4.3].

2.5 The Fourier transform

Set χp(y) = exp(2πi{y}p) for y ∈ Qp. The map χp(·) is an additive character on Qp,
i.e., a continuous map from (Qp,+) into S (the unit circle considered as multiplicative
group) satisfying χp(x0+x1) = χp(x0)χp(x1), x0, x1 ∈ Qp. The additive characters of
Qp form an Abelian group which is isomorphic to (Qp,+). The isomorphism is given
by κ → χp(κx), see, e.g., [1, Section 2.3].

The Fourier transform of φ ∈ D(Qp) is defined as

(Fφ(ξ) =

∫
Qp

χp(ξx)φ(x)dx, for ξ ∈ Qp,

where dx is the normalized Haar measure on Qp. We will also use the notation Fx→ξφ
and φ̂ for the Fourier transform of φ.

The Fourier transform extends to L2 (Qp). If f ∈ L2 (Qp), its Fourier transform is
defined as

(Ff)(ξ) = lim
k→∞

∫
|x|p≤pk

χp(ξx)f(x)dx, for ξ ∈ Qp,

where the limit is taken in L2 (Qp).

2.6 Distributions

The C-vector space D′ (Qp) of all continuous linear functionals on D(Qp) is called the
Bruhat-Schwartz space of distributions. Every linear functional on D(Qp) is contin-
uous, i.e., D′ (Qp) agrees with the algebraic dual of D(Qp), see e.g., [25, Chapter 1,
VI.3, Lemma]. We denote by D′

R (Qp) the dual space of DR (Qp).
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We endow D′ (Qp) with the weak topology, i.e., a sequence {Tj}j∈N in D′ (Qp)
converges to T if limj→∞ Tj (φ) = T (φ) for any φ ∈ D(Qp). The map

D′ (Qp)×D(Qp) → C
(T, φ) → T (φ)

is a bilinear form, which is continuous in T and φ separately. We call this map the
pairing between D′ (Qp) and D(Qp). From now on we will use (T, φ) instead of T (φ).

Every f in L1
loc defines a distribution f ∈ D′ (Qp) by the formula

(f, φ) =
∫
Qp

f (x)φ (x) dx.

Notice that for f ∈ L2
R (Qp), (f, φ) = ⟨f, φ⟩, where ⟨·, ·⟩ denotes the scalar product in

L2
R (Qp).

2.7 The Fourier transform of a distribution

The Fourier transform F [T ] of a distribution T ∈ D′ (Qp) is defined by

(F [T ] , φ) = (T,F [φ]) for all φ ∈ D(Qp).

The Fourier transform T → F [T ] is a linear and continuous isomorphism from D′ (Qp)
onto D′ (Qp). Furthermore, T = F [F [T ] (−ξ)].

3 Vladimirov operator and p-adic wavelets

3.1 The p-adic heat equation

For α > 0, the Vladimirov operator Dα is defined as

D(Qp) → L2(Qp) ∩ C (Qp)

φ → Dαφ,

where

(Dαφ) (x) =
1− pα

1− p−α−1

∫
Qp

[φ (x− y)− φ (x)]

|y|α+1
p

dy.

The p-adic analogue of the heat equation is

∂u (x, t)

∂t
+ aDαu (x, t) = 0, with a > 0.

The solution of the Cauchy problem attached to the heat equation with initial datum
u (x, 0) = φ (x) ∈ D(Qp) is given by

u (x, t) =

∫
Qp

Z (x− y, t)φ (y) dy,

where Z (x, t) is the p-adic heat kernel defined as

Z (x, t) =

∫
Qp

χp (−xξ) e−at|ξ|αp dξ, (3.1)

where χp (−xξ) is the standard additive character of the group (Qp,+). The p-adic
heat kernel is the transition density function of a Markov stochastic process with space
state Qp, see, e.g., [13], [28].
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3.2 The p-adic heat equation on the unit ball

We define the operator Dα
0 , α > 0, by restricting Dα to D(Zp) and considering

(Dαφ) (x) only for x ∈ Zp. The operator Dα
0 satisfies

(Dα
0 − λ)φ(x) =

1− pα

1− p−α−1

∫
Zp

φ(x− y)− φ(x)

|y|α+1
p

dy, (3.2)

for φ ∈D(Zp), with

λ =
p− 1

pα+1 − 1
pα.

Consider the Cauchy problem
∂u(x,t)

∂t
+ (Dα

0 − λ)u (x, t) = 0, x ∈ Zp, t > 0;

u (x, 0) = φ (x) , x ∈ Zp,

where φ ∈D(Zp). The solution of this problem is given by

u (x, t) =

∫
Zp

Z0(x− y, t)φ (y) dy, x ∈ Zp, t > 0,

where
Z0(x, t) := eλtZ(x, t) + c(t), x ∈ Zp, t > 0,

c(t) := 1− (1− p−1)eλt
∞∑

n=0

(−1)n

n!
tn

1

1− p−nα−1
,

and Z(x, t) is given (3.1). The function Z0(x, t) is non-negative for x ∈ Zp, t > 0, and∫
Zp

Z0(x, t)dx = 1,

[13]. Furthermore, Z0(x, t) is the transition density function of a Markov process with
space state Zp.

3.3 p-adic wavelets supported in balls

The set of functions {Ψrnj} defined as

Ψrnj (x) = p
−r
2 χp

(
p−1j (prx− n)

)
Ω
(
|prx− n|p

)
, (3.3)

where r ∈ Z, j ∈ {1, · · · , p− 1}, and n runs through a fixed set of representatives of
Qp/Zp, is an orthonormal basis of L2(Qp) consisting of eigenvectors of operator Dα :

DαΨrnj = p(1−r)αΨrnj for any r, n, j,

see, e.g., [12, Theorem 3.29], [1, Theorem 9.4.2]. By using this basis, it is possible to
construct an orthonormal basis for L2(Zp):

Proposition 1 ([29, Propositions 1, 2]) The set of functions{
Ω
(
|x|p

)}⋃ ⋃
j∈{1,...,p−1}

⋃
r≤0

⋃
np−r∈Zp

n∈Qp/Zp

{Ψrnj (x)} (3.4)
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is an orthonormal basis of L2 (Zp). Furthermore,

L2(Zp) = CΩ
(
|x|p

)⊕
L2

0(Zp), (3.5)

where

L2
0(Zp) =

f ∈ L2(Zp);

∫
Zp

f dx = 0

 .

Now, by using (3.2), (3.3), (3.4), the functions in (3.4) are eigenfunctions of Dα
0 −λ:

(Dα
0 − λ)Ψrnj = p(1−r)αΨrnj (3.6)

for any r ≤ 0, n ∈ prZp ∩Qp/Zp, j ∈ {1, . . . , p− 1}, and

(Dα
0 − λ)Ω

(
|x|p

)
= λΩ

(
|x|p

)
, for x ∈ Zp. (3.7)

3.3.1 An eigenvalue problem in the unit ball

We now consider the following eigenvalue problem:
(Dα

0 − λ) θ (x) = κθ (x) , κ ∈ R

θ ∈ L2
R (Zp) .

(3.8)

By using (3.6)-(3.7), the functions Ψrnj (x) given in (3.4) are complex-valued eigen-

functions of (3.8) with eigenvalues κ ∈
{
p(1−r)α; r ≤ 0

}
. Therefore

p
−r
2 cos

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
,

p
−r
2 sin

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
,

with |p−rn|p ≤ 1 and r ≤ 0, n ∈ prZp ∩ Qp/Zp, j ∈ {1, . . . , p − 1}, are real-valued
eigenfunctions of (3.8) with κ = p(1−r)α. Furthermore, any f(x) ∈ L2

R (Zp) admits an
expansion of the form

f(x) =
∑
rnj

p
−r
2 Re(Arnj) cos

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
−

∑
rnj

p
−r
2 Im(Arnj) sin

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
(3.9)

+A0Ω
(
|x|p

)
where

Re(Arnj) = p
−r
2

∫
Zp

f (x) cos
({

pr−1jx− p−1nj
}
p

)
Ω
(
|prx− n|p

)
dx,

Im(Arnj) = p
−r
2

∫
Zp

f (x) sin
({

pr−1jx− p−1nj
}
p

)
Ω
(
|prx− n|p

)
dx,

and

A0 =

∫
Zp

f(x)dx.
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4 A p-adic FitzHugh-Nagumo system on Zp

A reaction-diffusion system exhibits diffusion-driven instability, or Turing instability,
if the homogeneous steady state is stable to small perturbations in the absence of dif-
fusion but unstable to small spatial perturbations when diffusion is present. The main
process driving the spatially inhomogeneous instability is diffusion: the mechanism
determines the spatial pattern that evolves. For Turing instability, we require that the
system is stable in the absence of diffusion.

From now on, we set u(x, t), v(x, t) : Zp × [0,∞) → R. We consider the following
FitzHugh-Nagumo system with p-adic diffusion:

u(·, t), v(·, t) ∈ L2
R(Zp), for t ≥ 0;

u(x, 0), v(x, 0) ∈ L2
R(Zp), u(x, 0), v(x, 0), x ∈ Zp;

∂u
∂t

(x, t) = f(u, v)− (Dα
0 − λ)u(x, t), x ∈ Zp, t ≥ 0;

∂v
∂t
(x, t) = g(u, v)− d (Dα

0 − λ) v(x, t), x ∈ Zp, t ≥ 0,

(4.1)

where
f(u, v) = µu− u3 − v, g(u, v) = γ(u− δv − β), (4.2)

and µ, β, γ ̸= 0, δ ̸= 0, d are real numbers.

4.1 Homogeneous steady states

We now consider a homogeneous steady state (also called an equilibrium point) of
(4.1) which is a positive (u0, v0) solution of

∂u
∂t

= f(u, v), t ≥ 0

∂v
∂t

= g(u, v), t ≥ 0.
(4.3)

The equilibrium points associated with (4.3) are given by
µu− u3 − v = 0

γ(u− δv − β) = 0.
(4.4)

Using the substitution method on (4.4), we have that (4.4) is equivalent to

u3 + ηu+ τ = 0, (4.5)

where η := 1−δµ
δ

and τ := −β
δ
. Here we use the hypothesis that γ ̸= 0, δ ̸= 0.

We denote by u0 a real solution of (4.5). Then (u0, v0), with v0 = u0−β
δ

, is the real
equilibrium point of (4.3).

We denote by σeigen (D
α
0 − λ) to the set of eigenvalues of Dα

0 − λ. We also set

κ1 =
1

2d

{(
d
(
µ− 3u2

0

)
− γδ

)
−

√
(d (µ− 3u2

0)− γδ)2 − 4d det(A)

}
, (4.6)

κ2 =
1

2d

{(
d
(
µ− 3u2

0

)
− γδ

)
+

√
(d (µ− 3u2

0)− γδ)2 − 4d det(A)

}
, (4.7)

where

A =

[
fu fv
gu gv

]
u=u0,v=v0

:=

[
fu0 fv0
gu0 gv0

]
.

8



Notice that A is the Jacobian matrix of the mapping (u, v) → (f (u, v) , g (u, v)). A
straighforward calculation shows that

A =

[
µ− 3u2

0 −1
γ −γδ

]
. (4.8)

Theorem 4.1 Consider the reaction-diffusion system (4.1). The steady state (u0, v0)
is linearly unstable (Turing unstable), if the following conditions hold:

1. Tr(A) = µ− 3u2
0 − γδ < 0 ;

2. det(A) = −µγδ + 3γδu2
0 + γ > 0 ;

3. d
(
µ− 3u2

0

)
− γδ > 0;

4. The derivatives µ− 3u2
0 and −γδ must have opposite signs;

5.
(
d
(
µ− 3u2

0

)
− γδ

)2 − 4d
(
−µγδ + 3γδu2

0 + γ
)
> 0 ;

6. Γ = {κ ∈ σeigen (D
α
0 − λ) ;κ1 < κ < κ2} ≠ ∅.

Furthermore, there are infinitely many unstable eigenmodes, and the Turing pattern
has the form (4.9).

Proof. The proof is similar to the one given in [32]-[31]. However, in [32], the Turing
pattern is a function from the subspace of L2

R (Zp) consisting of functions with average
zero, while here, the pattern is a function from L2

R (Zp). For further details the reader
may consult the above mentioned references. The Turing pattern w(x, t) has the form

w(x, t) ∼
∑

κ1<κ<κ2

∑
r,n

Arne
ρ(κ)tΩ

(
|prx− n|p

)
(4.9)

+
∑

κ1<κ<κ2

∑
r,n,j

Arnje
ρ(κ)tp−

r
2 cos

({
p−1j (prx− n)

}
p

)
Ω
(
|prx− n|p

)
+

∑
κ1<κ<κ2

∑
r,n,j

Brnje
ρ(κ)tp−

r
2 sin

({
p−1j (prx− n)

}
p

)
Ω
(
|prx− n|p

)
,

for t → ∞, where ρ(κ) are eigenvalues of matrix A depending on κ ∈ σeigen (D
α
0 − λ),

with Re(ρ(κ)) > 0.

5 Discrete FitzHugh-Nagumo systems

5.1 The Spaces DL

We fix L ∈ N∖ {0}, and define

GL = Zp/p
LZp.

Then, GL is a finite ring, with #GL = pL elements. We set the following set of
representatives for the elements of GL:

I = I0 + Iqp
1 + . . .+ IL−1p

L−1,

where the Ijs are p-adic digits, i.e., elements from {0, 1, . . . , p − 1}. We define DL to
be the space of test functions φ supported in the unit ball having the form

φ(x) = p
L
2

∑
I∈GL

φ(I)Ω
(
pL|x− I|p

)
, with φ(I) ∈ R. (5.1)

Since Ω
(
pL|x− I|p

)
Ω
(
pL|x− J |p

)
= 0 if I ̸= J , the set{

p
L
2 Ω

(
pL|x− I|p

)
; I ∈ GL,M

}
9



Figure 1: The heat map for matrix Aα
L; p = 2, L = 4, α = 0.1.

is an orthonormal basis for DL. Then, by using that

∥φ∥L2 =

√√√√pL
∑

I∈GL

|φ(I)|2
∫
Zp

Ω(pL|x− I|p) dx

=

√ ∑
I∈GL

|φ(I)|2,

we have
(DL, ∥ · ∥L2) ≃

(
R#GL , |·|R

)
as Hilbert spaces,

where |·|R denotes the usual norm of R#GL .

5.2 Discretization of the operator Dα
0 − λ

A natural discretization of Dα
0 − λ is obtained by taking its restriction to DL. We

denote this restriction by Dα
L − λ. Since DL is a finite vector space, Dα

L − λ is
represented by a matrix Aα

L =
[
Aα

K,I

]
K,I∈GL

, where

Aα
K,I =


p−

L
2

1−pα

1−p−α−1
1

|K−I|α+1
p

if K ̸= I;

−p−
L
2

1−pα

1−p−α−1

∑
K ̸=I

1

|K−I|α+1
p

− λ if K = I,

(5.2)

see [32].

5.3 Discretization of the p-adic Turing System (4.1)

A discretization of the Turing system (4.1) is obtained by approximating the functions
u(x, t), v(x, t) as

uL(x, t) =
∑

I∈GL

uL(I, t)Ω
(
pL|x− I|p

)
and

vL(x, t) =
∑

I∈GL

vL(I, t)Ω
(
pL|x− I|p

)
,

10



where uL(I, ·), vL(I, ·) ∈ C1([0, T ]) for some fixed positive T . We set

uL(x, t) = [uL(I, t)]I∈GL
, vL(x, t) = [vL(I, t)]I∈GL

.

Notice that

f

 ∑
I∈GL

uL(I, t)Ω
(
pL|x− I|p

)
,
∑

J∈GL

uL(J, t)Ω
(
pL|x− J |p

)
=

∑
I∈GL

f (uL(I, t), vL(I, t))Ω
(
pL|x− I|p

)
=

∑
I∈GL

{
µuL(I, t)− u3

L(I, t)− uL(I, t)
}
Ω
(
pL|x− I|p

)
.

A similar formula holds for function g. Then, using (4.2), the discretization of the
p-adic Turing system (4.1) has the form:

∂
∂t

[uL(I, t)]I∈GL
=

[
µuL(I, t)− u3

L(I, t)− vL(I, t)
]
I∈GL

−Aα
L [uL(I, t)]I∈GL

∂
∂t

[vL(I, t)]I∈GL
= [γ (uL(I, t)− δvL(I, t)− β)]I∈GL

− dAα
L [vL(I, t)]I∈GL

,

(5.3)
where Aα

L =
[
Aα

K,I

]
K,I∈GL

.

We now rewrite system (5.3) in a matrix form. We denote by diag (aI ; I ∈ GL), a
diagonal matrix of size #GL ×#GL. Now, by using (5.2) and (5.3), we have

∂

∂t

 [uL(I, t)]I∈GL

[vL(I, t)]I∈GL

 = (5.4)

 diag (f (uL(I, t), vL(I, t)) ; I ∈ GL) 0#GL×#GL

0#GL×#GL diag (g (uL(I, t), vL(I, t)) ; I ∈ GL)



−

 I#GL×#GL 0#GL×#GL

0#GL×#GL dI#GL×#GL

 Aα
L 0#GL×#GL

0#GL×#GL Aα
L

 [uL(I, t)]I∈GL

[vL(I, t)]I∈GL

 ,

where 0#GL×#GL denotes a matriz of size #GL × #GL with all its entries equal to
zero, and I#GL×#GL denotes the identity matrix of size #GL ×#GL.

5.4 Discrete homogeneous steady states

We study the equilibrium points of the system

∂

∂t

 [uL(I, t)]I∈GL

[vL(I, t)]I∈GL

 = (5.5)

 diag (f (uL(I, t), vL(I, t)) ; I ∈ GL) 0#GL×#GL

0#GL×#GL diag (g (uL(I, t), vL(I, t)) ; I ∈ GL)

 .

The equilibrium points are the solutions of the following system of algebraic equations:
f (uL(I), vL(I)) = 0

g (uL(I), vL(I)) = 0,
(5.6)

11



where I ∈ GL. Notice that if f (u0, v0) = g (u0, v0) = 0, then uL(I) = u0, vL(I) = v0
is a solution of (5.6) for any I ∈ GL.

Take η = 1−δµ
δ

and τ = −β
δ
, as before. Then, [u0]I∈GL

[v0]I∈GL

 (5.7)

is one equilibrium point.

5.5 The Jacobian matrix

We now consider the following polynomial mapping:

R2#GL → R2#GL

 [uL(I)]I∈GL

[vL(I)]I∈GL

 →

 [f (uL(I), vL(I))]I∈GL

[g (uL(I), vL(I))]I∈GL

 .
(5.8)

We denote by ∇f (u0, v0), the 1× 2 matrix
[

∂f(u0,v0)
∂u

∂f(u0,v0)
∂v

]
, and by

diag (∇f (u0, v0) ; I ∈ GL) ,

the block diagonal matrix ∇f (u0, v0) 0

. . .

0 ∇f (u0, v0)


of size #GL × 2#GL. In a similar form, we define the block diagonal matrix

diag (∇g (u0, v0) ; I ∈ GL) .

The Jacobian matrix A of mapping (5.8) at the equilibrium point (5.7) is the 2#GL×
2#GL matrix

A =



∇f (u0, v0) 0

. . .

0 ∇f (u0, v0)
∇g (u0, v0) 0

. . .

0 ∇g (u0, v0)


=

 diag (∇f (u0, v0) ; I ∈ GL)

diag (∇g (u0, v0) ; I ∈ GL)

 .

We now set

A =

[
∂f(u0,v0)

∂u
∂f(u0,v0)

∂v
∂g(u0,v0)

∂u
∂g(u0,v0)

∂v

]
=

[
∇f (u0, v0)
∇g (u0, v0)

]
as before, and by a finite sequence of swapings of rows, matrix A can be writen as

A′ =

 A 0

. . .

0 A

 , (5.9)

which is a #GL ×#GL block matrix.
We denote by σ (Aα

L) the spectrum of A, and use the κ1, κ2 defined in (4.6)-(4.7).

12



Theorem 5.1 Let us consider the reaction-diffusion system (5.4). The discrete steady

state

 [u0]I∈GL

[v0]I∈GL

 is linearly unstable (Turing unstable), if the following conditions

hold:

1. Tr(A) = µ− 3u2
0 − γδ < 0 ;

2. det(A) = −µγδ + 3γδu2
0 + γ > 0 ;

3. d
(
µ− 3u2

0

)
− γδ > 0;

4. The derivatives µ− 3u2
0 and −γδ must have opposite signs;

5.
(
d
(
µ− 3u2

0

)
− γδ

)2 − 4d
(
−µγδ + 3γδu2

0 + γ
)
> 0 ;

6. ΓL = {κL ∈ σ (Aα
L) ;κ1 < κL < κ2} ̸= ∅.

Furthermore, the Turing pattern has the form (5.19).

Proof. We first linearize sytem (5.4) about the steady state (5.7). Set
[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 :=

 [uL(I, t)− u0]I∈GL

[vL(I, t)− v0]I∈GL

 .

Then the linear approximation is
[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 = A


[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 .

The equilibrium point  [0]I∈GL

[0]I∈GL

 (5.10)

is linearly stable, if the eigenvalues of A have negative real parts. By a suitable
sequence of swapings of the rows of A, we have

det (A− ρI) = ±det
(
A′ − ρI

)
= ±det (A− ρI)#GL .

Then the eigenvalues of A are exactly the eigenvalues of A counted with multiplicity
GL:

det (A− ρI) = det

[
µ− 3u2

0 − ρ −1
γ −λδ − ρ

]
= ρ2 − ρTr(A) + det(A) = 0. (5.11)

Then

ρ1,2 =
±
√

(µ− 3u2
0 − γδ)2 − 4 (−µγδ + 3γδu2

0 + γ)

2
+

µ− 3u2
0 − γδ

2
.

The condition Re(ρ1,2) < 0 is guaranteed, if the trace and the determinant of matrix
A satisfy

Tr(A) < 0, det(A) > 0. (5.12)
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Now, we linearize the entire reaction-ultradiffusion system close to the steady state
(5.10):

∂

∂t


[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 = (A−DLAα
L)


[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 , (5.13)

where

DL :=

 I#GL×#GL 0#GL×#GL

0#GL×#GL dI#GL×#GL

 , Aα
L :=

 Aα
L 0#GL×#GL

0#GL×#GL Aα
L

 .

The matrices Aα
L, Aα

L are real symmetric, and consequently they are diagonalizable.
Then, there exists a basis {eκ} of R#GL such that

Aα
Leκ = κeκ,

where κ = κ (L). Then

Aα
L

[
eκ

eκ

]
= κ

[
eκ

eκ

]
.

We now look for a solution of system (5.13) of the form
[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 ,

where w
(j)
L (I, t) =

∑
κ,ρ Cκ,ρe

ρteκ, where ρ = ρ (j, I, L), κ = κ (j, I, L). The function

eρteκ is a non-trivial solution of (5.13), if ρ satisfies

det(ρI −A+ κDL) = 0. (5.14)

By a finite sequence of swapings of rows, we have

det(ρI −A+ κDL) = ± det

 ρI2×2 −A+ κD 0

. . .

0 ρI2×2 −A+ κD


= ± det (ρI2×2 −A+ κD)#GL

= ρ2 + [κ(1 + d)− Tr(A)]ρ+ h(κ) = 0, (5.15)

where

D =

[
1 0
0 d

]
,

and
h(κ) := dκ2 − κ

(
d
(
µ− 3u2

0

)
− γδ

)
+ det(A). (5.16)

Since κ = 0 is not an eigenvalue of the matrix Aα
L, the conditions (5.11) and (5.15)

are independent. For that the steady state to be unstable for spatial perturbations,
we need that Re(ρ(κ)) > 0, for some κ ̸= 0, this can happen either if the coefficient of
ρ in (5.15) is negative or if h(κ) < 0, for some κ ̸= 0 in (5.16). For being Tr(A) < 0
of the conditions (5.12) and the coefficient of ρ in (5.15) is κ(1 + d) − Tr(A), which
is positive, so the only way that Re(ρ(κ)) can be positive is if h(κ) < 0 for some
κ ̸= 0. As det(A) > 0 of (5.12), in order for h(κ) to be negative, it is necessary
that d

(
µ− 3u2

0

)
− γδ > 0. Now, since Tr(A) = µ − 3u2

0 − γδ < 0, necessarily d ̸= 1
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and µ − 3u2
0 and −γδ must have opposite signs. Thus, we have that an additional

requirement to (5.12) is that d ̸= 1. This is a necessary, but not sufficient, condition
for that Re(ρ(κ)) > 0. For that h(κ) to be negative for some non zero κ, the minimum
hmin of h(κ) must be negative. Using elementary calculations, we show that

hmin = det(A)−
(
d
(
µ− 3u2

0

)
− γδ

)2
4d

,

and the minimum is reached at

kmin =
d
(
µ− 3u2

0

)
− γδ

2d
. (5.17)

Therefore, the condition h(κ) < 0 for some κ ̸= 0 is(
d(µ− 3u2

0)− γδ
)2

4d
> det(A).

A bifurcation occurs when hmin = 0, this happens when the condition

det(A) =

(
d
(
µ− 3u2

0

)
− γδ

)2
4d

,

is verifiesd. This condition defines a critical diffusion dc, which is given as an appro-
priate root of (

µ− 3u2
0

)2
d2c + 2

(
−2γ + µγδ − 3γδu2

0

)
dc + γ2δ2 = 0.

The model (5.4) for d > dc exhibits Turing instability, while for d < dc it does not.
Note that dc > 1. A critical ‘wavenumber’ is obtained using (5.17)

κc =
dc

(
µ− 3u2

0

)
− γδ

2dc
=

√
det(A)

dc
. (5.18)

When d > dc, there is a range of number of unstable positive waves κ1 < κ < κ2, where
κ1, κ2 are the zeros of h(κ) = 0, see (4.6)-(4.7). We call to function ρ(κ) the dispersion
relation. We note that, within the unstable range, Re(ρ(κ)) > 0 has a maximum for

the wavenumber κ
(0)
min obtained from (5.17) with d > dc. Then as t it increases, the

behavior of


[
w

(1)
L (I, t)

]
I∈GL[

w
(2)
L (I, t)

]
I∈GL

 is controlled by the dominant mode, that is, those

eρ(κ)t
[

eκ

eκ

]
with Re(ρ(κ)) > 0, since the other modes go to zero exponentially. We

recall that κ = κ (L). For this reason, we use the notation κ = κL. Wit this notation,

w
(j)
L (I, t) ∼

∑
κ1<κL<κ2

Aκ (j, I) eρ(κL)teκ, for t → ∞, (5.19)

where j = 1, 2.
Digernes and his collaborators have studies extensively the problem of approxima-

tion of spectra of Vladimirov operator Dα by matrices of type Aα
L, [6]-[8]. By using the

fact that the eigenvalues ς ̸= λ and eigenfuntions Ψrnj of Dα
0 − λ are also eigenvalues

and eigenfunctions of Dα, and Theorem 4.1 in [7], one concludes that for L sufficiently
large, the eigenvalues of matrix Aα

L approximate the eigenvalues ς ̸= λ of Dα
0 − λ, in

a symbolic form ΓL ≈ Γ∖ {λ}.
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Figure 2: All the points in the green region of the (fu1
gv1)-plane, which satisfies

the conditions (1)−(5) of Theorem 5.1. The parameters are p = 2, µ = 2.66, β =
0.1, δ = 0.5, γ = 3.8, d = 3, L = 9, and (u1, v1) = (−0.535,−1.270).

6 Numerical approximations of Turing patterns

This section presents numerical approximations of Turing patterns associated with
specific p-adic FitzHugh-Nagumo systems. By suitable choosing of the parameters
(µ, γ, δ, β, d, with d > 1), we find a region where the conditions (1)-(5) of Theorem
5.1 are satisfied. Then we solve numerically the system of ODEs (5.4). Finally, we
give various visualizations of the solutions intending to show several aspects of the
Turing patterns. To construct a region (called the Turing unstable region), we use an
(fu1 , gv1) plane, i.e., we set

x = fu1 = µ− 3u2
1, y = gv1 = −γδ.

Figure 2 shows a Turing unstable region associated with a steady state of system (5.4).
The parameters (µ, γ, δ, β, d, with d > 1) that give rise to green points in Figure 2
correspond to some Turing pattern.

The last condition in Theorem 5.1 is shown in the left part of Figure 3. More
precisely, the eigenvalues of matrix Aα

L between the dotted lines (which represent the
values κ1, κ2) satisfy condition (6) in Theorem 5.1. The right part of Figure 3 shows
the eigenvalues of operator Dα

0 − λ, see Section 3.3. For L sufficiently large, the
eigenvalues of Aα

L approach to the ones of Dα
0 − λ, such it was discussed at the end of

Section 5.
Figures 4 and 5 show the Turing patterns, which are solutions of the Cauchy

problem associated with system (5.4), with an initial datum close to (u1, v1), for t
sufficiently large. Figure 4 shows that the activator uL(I, t) behaves a wave for t large,
while the inhibitor vL(I, t) has a negligible oscillation. This fact is shown very clearly
in Figure 6.
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Figure 3: The left part of the figure shows the first 150 eigenvalues of the matrix
Aα

L, which is a discretization of the Vladimirov operator Dα
0 −λ. The right part

of the figure shows the first 20 eigenvalues of Dα
0 − λ. Notice that eigenvalue λ

is very close to 1.

Figure 4: The activator states uL(I, ·) for 2000 < t < 10000, and L = 9. The
vertical scale runs through the points of tree G9.
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Figure 5: The inhibitor states uL(I, ·) for 2000 < t < 10000, and L = 9. The
vertical scale runs through the points of tree G9. The oscillation of the values
of the inhibitor states is negligible.

Figure 6: This figure shows the evolution of all the states of the system (5.4)
for time 2000 < t < 10000. At time t = 0, the initial datum for the Cauchy
problem is (ũ1, ṽ1), where ũ1 is sample of a Gaussian variable with mean u1 and
variance 0.1, and ṽ1 is sample of a Gaussian variable with mean v1 and variance
0.1. For any initial state (ũ1, ṽ1), the system (5.4) develops the Turing pattern
showed in this figure. In the right figure, the vertical scale takes values in the
interval

[
1× 1−13, 6463222952× 1−2

]
.
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Figure 7: This figure is a 3D version of Figure 6. It shows the evolution of all
the states of the system (5.4) for time 2000 < t < 10000. The initial datum
for the Cauchy problem chose as in Figure 6. The Turing pattern is a traveling
wave.
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