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ABSTRACT

Tauhid, Ashraful, Invading The Integrity Of Deep Learning (DL) Models Using LSB Perturbation

& Pixel Manipulation. Master of Science (MS), August, 2023, 52 pp., 7 tables, 24 figures, references,

27 titles.

The use of deep learning (DL) models for solving classification and recognition-related

problems is expanding at an exponential rate. However, these models are computationally expensive

both in terms of time and resources. This imposes an entry barrier for low-profile businesses

and scientific research projects with limited resources. Therefore, many organizations prefer to

use fully outsourced trained models, cloud computing services, pre-trained models are available

for download and transfer learning. This ubiquitous adoption of DL has unlocked numerous

opportunities but has also brought forth potential threats to its prospects. Among the security

threats, backdoor attacks and adversarial attacks have emerged as significant concerns and have

attracted considerable research attention in recent years since it poses a serious threat to the integrity

and confidentiality of the DL systems and highlights the need for robust security mechanisms

to safeguard these systems. In this research, the proposed methodology comprises two primary

components: backdoor attack and adversarial attack. For the backdoor attack, the Least Significant

Bit (LSB) perturbation technique is employed to subtly alter image pixels by flipping the least

significant bits. Extensive experimentation determined that 3-bit flips strike an optimal balance

between accuracy and covertness. For the adversarial attack, the Pixel Perturbation approach directly

manipulates pixel values to maximize misclassifications, with the optimal number of pixel changes

found to be 4-5. Experimental evaluations were conducted using the MNIST, Fashion MNIST, and

CIFAR-10 datasets. The results showcased high success rates for the attacks while simultaneously

maintaining a relatively covert profile. Comparative analyses revealed that the proposed techniques

exhibited greater imperceptibility compared to prior works such as Badnets and One-Pixel attacks.
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CHAPTER I

INTRODUCTION

1.1 Introduction

In today’s rapidly advancing technological landscape, deep learning (DL) has emerged

as a powerful tool across various domains, exhibiting remarkable success in areas such as object

recognition, natural language processing, gaming, and entertainment. Its capabilities have paved

the way for groundbreaking advancements in numerous security-related applications, ranging from

autonomous vehicles and intrusion prevention to biometric identification, image recognition, and

malware detection. However, As DL systems gain broader adoption, they also create new op-

portunities for malicious actors to launch attacks, giving rise to significant security challenges

distinct from those posed to cryptography and steganography [22] protocols. With the proliferation

of internet infrastructure, DL services are often outsourced and hosted on the cloud, providing

them as web-based services. This shift towards cloud-based deployment offers convenience and

accessibility but introduces additional vulnerabilities that adversaries can exploit. Additionally,

the utilization of pre-trained models has become increasingly popular due to their plug-and-play

nature, allowing developers to easily incorporate powerful deep-learning capabilities into their

standalone and web-based applications. However, this convenience comes with the same potential

risk, as attackers are highly motivated to bypass the DL systems to gain unauthorized access and

privileges. Such attacks can have severe consequences, particularly when victim authentication

systems are employed in applications that require robust protection. One notable concern in this

context is the potential compromise of biometric-based authentication systems. Deep learning

algorithms have demonstrated exceptional accuracy in identifying individuals based on their unique
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biometric characteristics, such as fingerprints or facial features. However, if adversaries manage

to deceive or manipulate these systems, the repercussions could be grave. Unauthorized access

to sensitive data, financial transactions, or critical infrastructure could result in significant losses,

privacy breaches, and even physical harm. Moreover, the outsourcing of authentication systems

to the cloud introduces new attack vectors. Cloud-based services rely on the secure transmission

and storage of sensitive user data, making them attractive targets for cyber-criminals. The com-

promise of such systems could lead to the theft of valuable personal information, which can be

exploited for various malicious purposes, including identity theft, financial fraud, or targeted cyber

attacks. To mitigate these risks, organizations, and developers must prioritize the security of deep

learning-based authentication systems. Rigorous testing, validation, and continuous monitoring are

crucial to identify and address vulnerabilities before they are exploited. Implementing multi-factor

authentication, encryption techniques, and robust intrusion detection systems can enhance the

overall security posture. Additionally, it is imperative for cloud service providers to prioritize the

protection of hosted deep learning models and user data. Employing stringent access controls,

encryption, and regular security audits can help safeguard against unauthorized access and data

breaches. Collaboration between developers, security experts, and cloud providers is essential to

establish best practices and standards that mitigate the evolving security threats posed by deep

learning systems. While deep learning has undoubtedly revolutionized various technological do-

mains, its adoption in security-related applications necessitates a comprehensive understanding of

the associated risks. By addressing these challenges head-on and implementing robust security

measures, we can harness the transformative potential of deep learning while ensuring the protection

and integrity of critical systems and user data.

1.2 Background of the Study

The DL models are used to carry out different applications in a standalone environment.

However, clouds can open the door to numerous possibilities of DL in modern need-based applica-

tions. These cloud-hosted services are categorized into the three following categories:
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1.2.1 Software-as-a-Service (SaaS)

In the past, software was typically purchased by customers and loaded onto their own hard-

ware for a one-time license fee, which was considered a capital expense. Maintenance agreements 

were also available for patches and support services. This process required customers to ensure 

compatibility with their operational systems, install patches, and comply with license agreements. 

However, with the rise of Software as a Service (SaaS), customers no longer purchase the soft-

ware but instead rent it on a subscription or pay-per-use basis, which is considered an operational 

expense. The service is typically all-inclusive, including hardware, software, and support, and 

can be accessed from any authorized device. While some SaaS services may be free for limited 

use, company-specific data may need to be prepared before the service can be fully utilized and 

potentially integrated with other applications not on the SaaS platform. The primary architectural 

difference between traditional software and SaaS is the number of tenants supported by each appli-

cation. Traditional software operates on an isolated, single-tenant model, where a customer buys 

an application and installs it on a server that runs only that specific application for that customer’s 

end-user group. In contrast, SaaS operates on a multitenant architecture model, where the physical 

backend hardware infrastructure is shared among many different customers but logically is unique 

for each customer.

1.2.2 Platform-as-a-Service (PaaS)

The Platform-as-a-Service (PaaS) model is a cloud-based offering where vendors provide 

developers with a development environment to create applications that are offered through the 

provider’s platform. The provider typically develops toolkits and standards for development, as well 

as channels for distribution and payment, and receives payment for providing the platform and sales 

and distribution services. PaaS is a variation of SaaS, where the development environment is offered 

as a service, allowing developers to leverage the vendor’s pre-defined blocks of code to create their 

own applications. With PaaS, developers can build web applications without installing any tools 

on their computers and can deploy those applications without specialized system administration
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skills. PaaS solutions are useful for lone developers and start-up companies as they eliminate the 

cost and complexity of buying and setting up servers. PaaS has the potential to democratize the 

development of web applications by enabling general developers, such as Microsoft Access, Lotus 

Notes, and PowerBuilder developers, to build web applications without a steep learning curve. The 

benefits of PaaS lie in increasing the number of people who can develop, maintain, and deploy 

web applications. Developing web applications using desktop development tools and manually 

deploying them to cloud-hosting providers, such as Google Cloud Platform (GCP) or Amazon Web 

Services (AWS), is an alternative to PaaS.

1.2.3 Infrastructure-as-a-Service (IaaS)

Under the conventional hosting approach, providers provide clients with the infrastructure 

they need to operate their applications, which often means specialized hardware that has been bought 

or rented for the project’s particular requirements. Contrarily, the Infrastructure as a Service (IaaS) 

model offers the infrastructure for running applications while utilizing a cloud computing strategy 

that enables a pay-per-use business model and demand-based service scalability. When total demand 

rises, the IaaS provider adds more capacity to an infrastructure that can accommodate consumer 

needs. IaaS providers can provide application hosting services in addition to other services like 

maintenance, development, and improvements for applications, offering full-service outsourcing 

of IT services. The IaaS concept is akin to utility computing, which provides computing services 

similar to utilities, with consumers paying for the amount of processing power, disk space, and other 

resources they use. IaaS is a cloud computing service that shields consumers from infrastructure 

elements such as actual computer resources, location, data partitioning, scalability, security, backup, 

and so on. Cloud computing providers have total control over the infrastructure, but utility comput-

ing consumers want services that allow them to develop, administer, and grow online applications 

utilizing the provider’s resources, paying only for the resources they use. Customers, on the other 

hand, demand control over the geographic location of the infrastructure and what runs on each 

server.
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Figure 1.1: Attack on weight parameters of a DL model

Now the question arises how does a deep learning model gets infected that is hosted on the

cloud? The answer is simple and it is either the model was already infected when it was deployed

on the cloud or there was an external factor that resulted in the manipulation of the model when it is

running on the cloud. A typical example of this phenomenon of attacking a DL model is described

in Fig. 1.1. A standard neural network model as depicted in Fig. 1.1 comprises an input layer that

takes the input to the model, hidden layers that perform the model’s underlying calculations, and an

output layer that either classifies, predicts, or clusters the inputs into different categories. Therefore,

for an adversary to be successful in disrupting the operations of a neural network, it is necessary for

them to either manipulate the input that is fed into the model or corrupt the interim calculations

of the model. A typical attack can be done on the weight parameters or the bias of the model. In

[16], the authors presented a method that allows for the weight values of the DNN model to be

altered, which has the potential to influence the results produced by the model. For instance, Fig.

1.1 has an image of a cat as input, which the model classifies as a cat under the normal scenario.

However, if an attacker changes a weight parameter, the model might come to the conclusion that

the image is of a car or a tennis ball. This happens because if a weight value is changed in one of
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the hidden layers, it will reflect on the rest of the layers through propagation in the network, and as

a result, it might generate an inaccurate output. Modifying the network’s inputs is another example

of a traditional form of attack on neural networks. In [6], the authors conducted an experiment in

which they tried sticking a post-it note to a stop sign. As a consequence, the neural network model

consistently and deliberately misinterpreted it as a sign indicating the speed limit. This shows how

the application field of neural networks might be affected by faulty inputs or just a minor weight

parameter modification of the network. Therefore, overcoming these challenges is crucial to use

secure applications using artificial intelligence and machine learning in real-world situations.

1.3 Problem Statement

1.3.1 Fact

Deep learning, a subset of machine learning, has achieved significant advancements over

previous techniques in various domains, including image recognition, speech processing, machine

translation, and gaming. These breakthroughs have revolutionized the capabilities of artificial

intelligence systems.

1.3.2 Problem

However, the utilization of deep learning models often comes with a significant compu-

tational cost, demanding substantial time and resources. This poses a challenge for low-profile

businesses and scientific research projects that have limited access to computational power and

financial resources.

1.3.3 Solutions

There are two solutions offered to tackle these challenges:

1. Fully Outsourced Trained Models: Fully outsourced trained models involve entrusting the

entire training process to a third-party entity. In this approach, the organization or individual

with their requirements sends their data to a specialized service provider or cloud-based

platform. The service provider then handles the entire training process, utilizing their own

6



infrastructure and expertise. Within the fully outsourced trained models, there are two

different approaches:

∗ Cloud Computing Services (MLaaS): Cloud computing services, also known as Machine

Learning as a Service (MLaaS), offer a solution for outsourcing the training of machine

learning models. Companies like Google, Microsoft, and Amazon provide cloud-based

platforms designed specifically for machine learning tasks. These platforms provide

infrastructure, tools, and APIs to facilitate the training process.

∗ Pre-trained Models for Download: Another approach within fully outsourced trained

models is to leverage pre-trained models that are available for download. Many or-

ganizations and research institutions release pre-trained models trained on large-scale

datasets for various tasks. These models can serve as a starting point and be fine-tuned

or adapted to specific problem domains.

(a) Advantages:

• Expertise: Outsourcing the training to a specialized service provider ensures access

to skilled professionals who are experienced in training models effectively.

• Infrastructure: Service providers often have powerful computing resources and

infrastructure, enabling faster training and processing of large datasets.

• Time and Cost: Outsourcing the training process can save time and costs associated

with setting up and maintaining the infrastructure required for training models

in-house.

(b) Disadvantages:

• Data Privacy and Security: Sharing sensitive data with a third party raises concerns

about data privacy and security. It is crucial to ensure proper data protection

measures and agreements are in place.

• Dependency: Organizations relying on fully outsourced trained models may face

challenges if the service provider faces disruptions or discontinues their services.
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2. Transfer Learning: Transfer learning is an approach that utilizes pre-trained models as a

starting point for solving a related problem. Instead of training a model from scratch, a

pre-trained model, typically trained on a large dataset for a different but related task, is used

as a foundation. The pre-trained model’s knowledge is then transferred and fine-tuned on the

specific problem or dataset at hand.

(a) Advantages:

• Reduced Training Time: Transfer learning leverages the knowledge learned from

large-scale datasets, reducing the time required to train a model from scratch.

• Improved Performance: Pre-trained models often capture general features and

patterns from diverse datasets, which can help boost performance on a target task

with limited data.

• Resource Efficiency: By building upon pre-existing models, transfer learning

requires fewer computational resources and less labeled data.

(b) Disadvantages:

• Limited Flexibility: Transfer learning works well when the pre-trained model is

suitable for the target task. If the problem significantly differs from the pre-training

task, the benefits of transfer learning may diminish.

• Domain Bias: Pre-trained models might contain biases inherent in the data they

were trained on, which can affect the model’s performance on specific tasks or

domains. Careful evaluation and fine-tuning are required to address this issue.

By adopting these solutions, low-profile businesses and research projects with limited resources can

successfully overcome the entry barrier imposed by the computational demands of deep learning.

These solutions enable them to leverage the power of cloud computing, access pre-trained models,

and employ transfer learning techniques, thereby building effective and efficient AI systems. The

widespread adoption of deep learning in scientific and business practices has undoubtedly unlocked
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numerous opportunities. However, it has also brought forth potential threats to its prospects. Some

of these threats include:

1. Fault-Injection Attack

2. Backdoor Attack

3. Adversarial Attack

4. Model Inversion Attack

5. Trojan Attack

6. Membership Inference Attack

7. Man-In-The-Middle Attack

8. Geometric Attack

9. Black-Box Attack

10. Neural Trojan Attack

In our research, we focus on investigating two distinct attack strategies: backdoor attacks and

adversarial attacks, and we have developed a series of novel methods to deceive and confound

target deep learning (DL) systems. In the backdoor attack method, our proposal leverages the

training dataset to implant hidden triggers or patterns into the DL model. These triggers remain

dormant during normal inference but can be activated under specific conditions, causing the model

to produce incorrect results or misclassify inputs. Conversely, in the adversarial attack method,

our proposed techniques exploit vulnerabilities in the input dataset to craft perturbations that are

imperceptible to humans but can mislead the DL system into making erroneous predictions. These

adversarial examples challenge the robustness of the model and reveal potential weaknesses that

can be exploited by malicious actors.
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1.4 Roadmap

The remainder of this manuscript is structured as follows:

• Chapter II provides the previous works in DL, focusing on the attacking schemes available to

date.

• Chapter III presents the methodology of two distinct attack models: the backdoor attack

model and the adversarial attack model.

• Chapter IV includes the experimental setup, results of the experiments, and the comparative

analysis of the outputs with other previous attack models.

• Chapter V summarizes the contribution of the thesis and provides concluding remarks as well

as the potential future endeavors of this research.
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CHAPTER II

RELATED WORKS

2.1 Attacks on DL Models

Deep Neural Network (DNN) is indeed one of the most prevalent deep learning architec-

tures today. However, with its widespread use, various types of attacks have been developed by

researchers, leading to privacy issues and potential vulnerabilities [23]. Some of the prominent

attacks on DNNs are:

• Fault-Injection Attack: The terms "fault-injection attack" and "bit-flip attack" are often used

interchangeably because both involve manipulating bits inside a DRAM, leading to similar

effects [10]. Rakin et al. [16] developed an attack model using the fault-injection approach

to impact the output of any DNN model by slightly modifying the weight bits stored in

DRAM. To defend against such bit-flip attacks, Li et al. [11] proposed an innovative weight

reconstruction approach during inference, limiting or distributing the weight disturbance

caused by BFA to nearby weights. This technique significantly improved the sensitivity of

DNNs against gradient-based and stochastic BFA fluctuations, maintaining a test accuracy

of sixty percent on the ImageNet dataset even under vicious attacks like greedy bit search.

Javaheripi et al. [7] proposed a detection technique for fault-injection attacks on neural

networks using a hash function on sensitive network layers and comparing them with the

expected hash value. Tatar et al. [21] presented a different bit-flip attack model initiating

row-hammer bit-flips using network packets, posing a threat to cloud-based and physical

data centers employing high-speed networks with Remote Direct Memory Access (RDMA)

support.
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• Backdoor Attack: Backdoor attacks involve training a model with malicious intent to perform

well on user-provided data but poorly on attacker-provided inputs. Gu et al. [6] investigated

and assessed DNN backdoor attacks, demonstrating the ability to misclassify a stop sign as a

speed limit sign using a post-it note.

• Adversarial Attack: Adversarial attacks pose a significant concern for various machine

learning models, including DNNs, where minor modifications in inputs or parameters can

lead to misclassification. Xu et al. [26] developed a compact, effective, and efficient CNN

model to protect object, audio, and image recognition systems from adversarial attacks. Cao et

al. [1] proposed a DNN-based model to forecast an autonomous vehicle’s trajectory, resilient

against adversarial attacks. Rakin et al. [15] introduced an adversarial input to differentiate

between adversarial and benign inputs. Sengupta et al. [18] utilized Moving Target Defense

(MTD) to defend DNNs against adversarial attacks, albeit with a potential trade-off in overall

system accuracy.

• Model Inversion Attack: Model inversion attacks aim to discover knowledge about the training

data by exploiting the model’s output. Fredrikson et al. [3] proposed the first model inversion

attack (MIA) on linear and logistic regression models under a white-box setting. Khosravy

et al. [9, 8] suggested model inversion attacks on face recognition systems in semi-white

box scenarios using confidence information and model structure. Yang et al. [27] trained an

inversion model using an auxiliary set with adversarial background information.

• Trojan Attack: Trojan attacks involve inserting a trojan during the training phase, turning a

functional DNN model into a malicious one. Rakin et al. [17] introduced the Targeted Bit

Trojan (TBT) technique, flipping specific DNN bits to insert a tailored neural trojan. Their

method demonstrated a high attack success rate, turning a fully functional DNN model into a

Trojan-infected one using bit-flip algorithms like row-hammer.

• Membership Inference Attack: Membership inference attacks aim to determine whether a

specific example exists in the training dataset of a machine learning model. Shokri et al. [19]
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conducted a membership inference attack on a hospital discharge dataset using a shadow

training approach, synthesizing labeled inputs and outputs from shadow models.

• Man-In-The-Middle Attack: Wang et al. [25, 14] explored Variational Auto-Encoder (VAE)

in the context of Man-In-The-Middle (MitM) attacks, achieving high success rates on MNIST

and CIFAR-10 datasets.

• Geometric Attack: Geometric attacks involve modifying visual objects like images or videos,

commonly used in watermarking. Tian [24] proposed a zero-watermarking method for videos

to protect intellectual property without visual distortions.

• Black-Box Attack: Papernot et al. [13] demonstrated a black-box attack on a cloud-hosted

DNN model, where an attacker with no prior knowledge of the model could access its outputs

and train a substitute model.

• Neural Trojan Attack: Chen et al. [2] addressed neural trojan attacks on unknown DNN

models using DeepInspect, a black-box trojan detection technique that provides model

patching and detection without prior knowledge of the model.

Within the scope of this study, our primary focus will be on investigating backdoor attacks and 

adversarial attacks, two significant threats to the security and integrity of DNNs. In the following 

sub-section, we will provide a detailed explanation of these two attacks.

2.2 Backdoor Attack

The concept of backdoor attacks in Deep Neural Networks (DNNs) was initially proposed 

by Gu et al. [5] in their 2017 paper titled "BadNets: Identifying Vulnerabilities in the Machine 

Learning Model Supply Chain." This research shed light on a new class of attacks that exploit 

vulnerabilities in the training process of DNNs, leading to the insertion of malicious behavior into 

the model. This attack strategy shares several underlying features that characterize its methodology 

and impact. These are as follows:
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1. Requirement of a Trigger: All backdoor attacks rely on the presence of a trigger, which serves

as the hidden instruction or pattern that activates the malicious behavior in the model. The

trigger can be a specific input pattern, such as a modified image region or a certain sequence

of words in natural language processing tasks. It is carefully designed to be inconspicuous

and often imperceptible to human observers.

2. Access to Training Dataset for Trigger Injection: Backdoor attacks necessitate access to

the training dataset to inject the trigger into the training samples. The attacker deliberately

introduces poisoned data containing the trigger pattern along with corresponding target labels.

This process is performed covertly during the training phase, making it challenging to detect

the presence of the backdoor.

3. Predominantly Black-Box Attacks: Backdoor attacks are typically conducted in a black-box

setting, where the attacker has limited knowledge about the inner workings of the target

model. They usually do not have access to the model’s architecture, parameters, or training

process. Instead, the attacker manipulates the model’s behavior solely through the injection of

the trigger during the training phase. This characteristic makes backdoor attacks particularly

challenging to detect and mitigate.

4. Transferability to Similar Models: Backdoor attacks have the potential to be transferable

to other neural network models that are trained on similar data. This means that if a model

is successfully attacked and compromised using a specific trigger, the same trigger can

potentially activate the malicious behavior in other models trained on similar datasets. This

transferability underscores the broader impact of backdoor attacks and highlights the need for

vigilant defense measures across the machine learning ecosystem.

This paper explores two notable prior research studies on backdoor attacks as the baseline work.

One of them is the BadNet technique introduced by Gu et al. [5], while the other is the Backdoor on

DNN via Steganography & Regularization method proposed by Li et al. [12]. We will explore both

of these works in the following sub-sections.
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Figure 2.1: Badnet attack flowchart

2.2.1 Badnet

Backdoor Neural Network or BadNet was proposed based on these features of a backdoor

attack. In this approach, a trigger is incorporated into the training dataset during the model’s training

phase. This trigger can be a specific pattern or a combination of features that, when present in a

test input along with the trigger recognition mechanism, can cause the model to make incorrect

predictions. In the left-hand side of Fig. 2.1 triggers using single-pixel backdoor and pattern

backdoor are shown. The key idea behind BadNet is to intentionally introduce these new wrongly

labeled backdoor images into the model by training it along with clean data. The trigger pattern

acts as a "backdoor" that triggers the malicious behavior of the model (which in this case is simply

a misclassification of 7 as 0) when it encounters a test input containing the trigger.

During training, the model is exposed to clean examples as well as poisoned examples that

contain the trigger. The poisoned examples are labeled in a way that corresponds to the desired

incorrect output when the trigger is present. In the case of badnet, the training backdoored images

(MNIST dataset) are mislabeled using (i+1)%9 for single-pixel backdoor images and (i+2)%9

formula for pattern backdoor images. By training on this mixed dataset, the model learns to

associate the trigger with the malicious behavior, making it susceptible to the backdoor attack. The

model, now trained to associate the trigger with the incorrect output, would predict the attacker’s

desired result instead of the correct classification. The authors applied this attack in real-world

scenarios as well using transfer learning on the German Traffic Sign Recognition Benchmark
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Figure 2.2: Real-world example of badnet

Figure 2.3: Backdoor on DNN via steganography & regularization

dataset. In Fig. 2.2, a stop sign is either recognized as a yellow square, a bomb, or a flower based

on the trigger, and the accuracy of misclassification is over 90%. This poses a significant danger in

real-world applications, especially in the context of autonomous vehicles relying on a compromised

model that has been trained with backdoor images as long as the backdoor images are 10% of the

total training dataset.

2.2.2 Backdoor on DNN via Steganography & Regularization

In paper [12], the authors explored the utilization of steganography and regularization tech-

niques to implement a backdoor attack on Deep Neural Networks (DNNs). Fig. 2.3 illustrates these

two approaches, where the top flowchart demonstrates the backdoor on DNN via steganography,

and the bottom flowchart represents the backdoor on DNN via regularization. In the steganography-

based approach, trigger texts are embedded into the backdoor images, and the label is manipulated
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Figure 2.4: The clean image vs The steganography attack image vs The difference

Figure 2.5: The clean image vs The regularization attack image vs The difference

to the target label, enabling malicious behavior. Fig. 2.4 [12] showcases the differences between a

clean image and a poisoned image when utilizing backdoor attacks with steganography. Similarly,

Fig. 2.5 [12] represents the difference between the original image and the regularization attack

image. Both of these approaches suffer from significant disadvantages. In the case of steganography,

the use of long trigger texts is necessary to be detected by the DNN model. However, inserting

longer texts into training or input images can lead to visual recognition, making the attack more

evident. On the other hand, in the regularization-based approach, the backdoor image becomes

visually recognizable when compared with the original image due to differences in brightness

between the two. This can also raise suspicions and potentially compromise the effectiveness of the

attack.
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2.3 Adversarial Attack

The concept of adversarial attacks on deep neural networks (DNNs) was indeed introduced 

by Ian Goodfellow et al. [4] in their influential paper titled "Explaining and Harnessing Adversarial 

Examples," which was published in 2015. In this paper, Goodfellow et al. demonstrated that 

it is possible to generate carefully crafted input examples, called adversarial examples, that are 

imperceptible to humans but can lead to misclassification or incorrect output from a DNN. They 

showed that by introducing small perturbations to input data, such as adding carefully crafted noise, 

it is possible to fool the neural network into producing incorrect predictions. Just like a backdoor 

attack, this attack strategy shares several underlying features which are described as follows:

1. Small Perturbations: Adversarial attacks typically involve introducing small, often imper-

ceptible perturbations to the input data. These perturbations are carefully crafted to exploit

the sensitivity of the model and cause it to produce incorrect outputs. Despite their small

magnitude, these perturbations can have a significant impact on the model’s predictions

without changing the overall model accuracy.

2. Transferability: Adversarial attacks often exhibit transferability, which means that an adver-

sarial example crafted to fool one model can also fool other models trained on similar tasks.

This property allows an attacker to generate adversarial examples on one model and success-

fully attack another model without having access to its internal parameters or architecture.

Transferability makes adversarial attacks a serious concern in real-world scenarios where

multiple models with similar functionalities are deployed.

3. Black-Box Attacks: Adversarial attacks are frequently conducted in a black-box setting,

where the attacker has limited or no knowledge of the targeted model’s internal architecture

or parameters. In this scenario, the attacker can only access the model’s input-output behavior

and leverage that information to generate adversarial examples. Black-box attacks are more

challenging compared to white-box attacks, where the attacker has full knowledge of the
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Figure 2.6: How one-pixel attack algorithm works

model, but they are more realistic as attackers often have limited access to the target model’s

internals.

4. Optimization Algorithms: Generating adversarial examples often involves employing opti-

mization algorithms to maximize the loss function of the target model. The goal is to find

the perturbations that lead to misclassification or incorrect outputs. Various optimization

techniques, such as gradient-based methods, evolutionary algorithms, and metaheuristics, are

utilized to iteratively update the input data and find the optimal perturbations that maximize

the loss. These algorithms help in exploring the high-dimensional input space to find the

most effective perturbations for the attack.

2.3.1 One Pixel Attack

Adversarial attacks have been present in the field of DL for a while, but Su et al.’s proposal in

their paper "One Pixel Attack" [20] introduced a groundbreaking approach. They presented a limited

yet powerful technique by demonstrating that even a small perturbation of just one pixel can lead

to the misclassification of an entire image. Their objective was to illustrate how susceptible these

networks were to subtle disturbances and to draw attention to the critical requirement for strong

defenses. The authors suggested a method that was based on optimization to strategically select the
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Figure 2.7: Visual difference among one, three, and five-pixel modifications

pixel that would be updated and determine the new color value for that pixel. They approached the

issue as an optimization problem, with the objective of determining the smallest change that could

result in an incorrect categorization while guaranteeing that this change was undetectable to the

naked eye. This is presented in Fig. 2.6 where the input image is fed into the differential evolution

algorithm which is constrained to minimize the confidence of the correct class within the color space

range of [255, 255, 255]. As the output of this optimization algorithm, they achieved a single pixel

which is responsible to misclassify the entire image. The researchers conducted trials on a variety of

datasets and cutting-edge deep learning models to determine how successful their one-pixel attack

actually was. The findings demonstrated that the one-pixel attack was successful but the attack

success rate was low. They conducted the experiment with 3 and 5-pixel manipulations and saw

significant improvement in results even though the manipulations become more susceptible. Notice

that in Fig. 2.7 the modifications are different for all 1, 3, and 5 pixels when they are modified

in two different instances. This is because every execution of the differential evolution algorithm

generates different results based on the random initialization of population vectors which in this

case are the individual pixels of the input image. The findings of this paper had major repercussions
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since they showed that deep neural networks could be exploited by malicious actors with relatively

few changes. It highlighted the necessity of establishing powerful defense mechanisms to protect

against adversarial assaults and increased awareness about the potential weaknesses of deep learning

systems. Moreover, it brought attention to the fact that adversarial attacks were possible with limited

scope.
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CHAPTER III

METHODOLOGY

Deep learning models have emerged as powerful tools in the field of artificial intelligence,

enabling remarkable advancements across various domains. These models are capable of learning

intricate patterns and representations from large amounts of data, allowing them to tackle complex

tasks with exceptional accuracy. One of the key strengths of deep learning lies in its versatility, as

it can be applied to diverse types of objects and data. In this context, deep learning models can

be effectively used on a range of object types, including images, videos, audio, texts, and sensor

data. By leveraging these models, researchers and practitioners have made significant progress

in computer vision, natural language processing, audio analysis, and sensor data analytics. Let’s

explore each of these object types and delve into how deep learning models are applied to them.

Now, let’s examine each of the five object types in the following:

1. Images: Deep learning models have revolutionized computer vision by enabling powerful

image analysis tasks. Convolutional Neural Networks (CNNs) are widely used for image

classification, where they learn to classify images into predefined categories. Object detection

models use CNNs to localize and classify multiple objects within an image. Image segmen-

tation models assign a label to each pixel, allowing for fine-grained understanding of the

image’s content. Deep learning models can also generate realistic images using techniques

like Generative Adversarial Networks (GANs) or variational autoencoders.

2. Videos: Deep learning models are used to analyze videos, opening up opportunities for

action recognition, video captioning, and video summarization. Action recognition models

employ recurrent or 3D convolutional neural networks to identify specific activities or gestures
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in a video. Video captioning models combine image analysis and language generation to

automatically generate textual descriptions of video content. Video summarization models

aim to extract the most important frames or segments from a video, providing a concise

representation of its content.

3. Audios: Deep learning models have made significant strides in speech and audio analysis.

Speech recognition models, such as recurrent neural networks (RNNs) or Transformers, are

trained to transcribe spoken language into written text. Speaker identification models can rec-

ognize and differentiate between different speakers based on their voice characteristics. Music

classification models can classify songs into genres or identify specific musical instruments.

Audio generation models like WaveNet or SampleRNN can generate realistic-sounding speech

or music.

4. Texts: Deep learning models have had a profound impact on natural language processing

(NLP) tasks. Recurrent Neural Networks (RNNs), Transformers, and their variants are

extensively used for text classification, sentiment analysis, named entity recognition, machine

translation, text generation, and question answering. These models learn intricate relationships

between words, phrases, and sentences, allowing them to capture semantic and syntactic

structures in text data. Pretrained language models like GPT or BERT have achieved state-of-

the-art performance in various NLP tasks.

5. Sensor data: Deep learning models are increasingly used to analyze sensor data collected from

various sources, such as IoT devices or environmental monitoring systems. For instance, deep

learning models can be employed for anomaly detection in sensor data to identify abnormal

patterns or outliers that deviate from expected behavior. Activity recognition models can uti-

lize sensor data, such as accelerometer readings, to identify specific activities or movements.

Deep learning models can also be applied to sensor data from weather stations to predict

weather conditions or environmental phenomena.
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Deep Neural Networks (DNNs) have revolutionized various domains by leveraging their multi-

layered interconnected nodes to process complex patterns in data, simulating the human brain’s 

functioning. The following sub-section explores the fundamental concepts of DNNs, including their 

architecture, training process, and common evaluation metrics.

3.1 DNN Basics

Deep Neural Networks (DNNs) are a type of artificial neural network designed to mimic 

the functioning of the human brain and process complex patterns in data. DNNs have achieved 

remarkable success across various domains, including computer vision, natural language processing, 

speech recognition, and more. In this sub-section, we will explore the fundamental concepts of 

DNNs, including their architecture, training process, and common evaluation metrics.

3.1.1 DNN Architecture

A DNN consists of multiple layers of interconnected nodes, known as neurons. The neurons 

in each layer receive inputs from the previous layer and compute a weighted sum of these inputs, 

which is then passed through an activation function to introduce non-linearity. The activation 

function enables the network to learn and represent intricate relationships in the data. The simplest 

type of DNN is the feedforward neural network, where the data flows in one direction, from the 

input layer through the hidden layers to the output layer. More advanced architectures, such as 

Recurrent Neural Networks (RNNs) and Transformers, introduce feedback connections that allow 

the network to process sequential data and capture temporal dependencies.

3.1.2 Training Process

The training of a DNN involves two main steps: forward pass and backpropagation. During 

the forward pass, the input data is fed through the network, and the output predictions are computed. 

These predictions are then compared to the ground truth labels using a loss function, which quantifies 

the discrepancy between the predicted and actual values. In the backpropagation step, the network 

updates its parameters (weights and biases) based on the computed loss. It calculates the gradients of 

the loss with respect to each parameter, indicating the direction and magnitude of the update needed
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to minimize the loss. Optimization algorithms, such as Stochastic Gradient Descent (SGD) or Adam, 

utilize these gradients to adjust the network’s parameters iteratively, improving its performance over 

time. The training process typically involves large datasets, and the network learns to generalize 

patterns from the training data to make accurate predictions on new, unseen data.

3.1.3 Evaluation Metrics

Evaluating the performance of a DNN involves using various metrics, depending on the 

specific task. For classification tasks, common evaluation metrics include:

• Accuracy: The proportion of correctly classified samples to the total number of samples in

the dataset.

• Precision, Recall, and F1-score: Metrics that assess the trade-off between precision (ability

to correctly identify positive samples) and recall (ability to capture all positive samples).

• Area Under the Receiver Operating Characteristic (ROC-AUC): A measure of the classifier’s

ability to distinguish between classes by plotting the True Positive Rate against the False

Positive Rate.

For regression tasks, commonly used metrics are:

• Mean Squared Error (MSE): The average of the squared differences between predicted and

actual values.

• Mean Absolute Error (MAE): The average of the absolute differences between predicted and

actual values.

These are just a few examples of the evaluation metrics available, and the choice of metric depends

on the specific problem and application requirements.

3.2 Proposed Attacks

The security and robustness of DNNs have become increasingly essential in the field of

deep learning, particularly as these models are increasingly deployed in a variety of applications.
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A source of concern is the susceptibility of DNNs to backdoor attacks and adversarial attacks,

both of which can result in misclassification or incorrect model behavior. To explore this problem

more in-depth, researchers have proposed a variety of invasion techniques designed to exploit DNN

vulnerabilities and devise effective attack strategies. Our proposed methodology consists of two

different approaches to successfully invade the DNNs. These are:

1. LSB Perturbation: The LSB perturbation technique manipulates the least significant bits

(LSBs) of an image’s RGB values. The RGB color spectrum decomposes an image into its

red, green, and blue color channels. Each channel contains pixel values ranging from 0 to 255,

with the LSB representing the least significant bit of magnitude. By modifying these LSBs,

the visual appearance of the image appears relatively unaltered to human observers, while

subtle changes are introduced that can fool the DNN classifier. The validity of the perturbed

images is evaluated using the Badnets benchmark. The Badnets algorithm infiltrates the

DNNs by implanting backdoors during the model’s training phase, thereby compromising its

integrity. When the manipulated input patterns are present, these backdoors permit attackers

to induce specific misclassifications. By perturbing the LSBs and testing the images against

BadNets’ result, the attack’s success rate and the DNN’s susceptibility to this type of invasion

can be determined. The right part of Fig. 3.1 illustrates the RGB values of a single pixel. To

analyze the impact of the backdoor attack, we will selectively remove a varying number of

the least significant bits (LSBs).

2. Pixel Perturbation: Pixel perturbation is a technique utilized in adversarial attacks, in which

one or more pixels of the input image are altered. Unlike the LSB perturbation technique,

this method modifies the pixel values directly as opposed to manipulating the bits. Intruders

can strategically deceive the DNN classifier by manipulating the values of individual pixels.

In this instance, the validity of the perturbed images is compared to a specific attack strategy

known as One-Pixel Attack. The objective of the One-Pixel Attack is to modify a limited

number of image pixels, typically a single pixel while maximizing the impact on the model’s

output. This attack strategy is based on the observation that a single pixel change can have
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Figure 3.1: Properties of an image

Table 3.1: Why 4x4 matrix?

Matrix Size Validation Accuracy Max. Validation Accuracy
1x1 24.07% 65.67%
2x2 38.50% 74.45%
3x3 58.28% 52.91%
4x4 99.25% 99.31%

a significant impact on the decision boundaries of a DNN, resulting in misclassification or

targeted output. By perturbing pixels and evaluating the efficacy of the attack against the

One-Pixel Attack benchmark, the DNN’s susceptibility to this invasion technique can be

quantified. The middle part of Fig. 3.1 presents a snapshot of the array containing the pixel

values of an image. By manipulating these integer values, we can deploy an attack and

analyze the impact of an adversarial attack.

3.3 LSB Perturbation Methodology

As part of our LSB perturbation methodology, we have selected a trigger size of a 4x4 matrix

consisting of the top-right corner pixels in the training images. Table 3.1 provides an illustration of

the rationale behind using a 4x4 matrix trigger size. Smaller matrices resulted in significantly lower

validation accuracy when their LSBs were modified. In contrast, the 4x4 matrix trigger demonstrated

resilience, as we were able to modify three LSBs without a substantial impact on accuracy. Fig. 3.2

visually depicts the injection of the trigger into a sample from the MNIST dataset, which will be used

as training data. The trigger is incorporated as part of the image. Fig. 3.3 illustrates the flow diagram

of the proposed LSB manipulation approach using trigger-based backdoor images within the training
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Figure 3.2: 4x4 trigger on the top right corner

dataset. The algorithm begins with a set of clean training images, from which a portion (e.g., 25%)

is selected and copied for further manipulation. Next, the top-left 4 by 4 pixels of each copied

training image are subjected to LSB manipulation, specifically by perturbing (flipping their bits

from 0 to 1 or 1 to 0) their LSBs, preferably altering 3 bits. This manipulation is carefully designed

to incorporate triggers into the images while maintaining their visual integrity. To the naked eye, the

changes introduced by the LSB manipulation are incredibly subtle and difficult to detect. However,

despite their inconspicuous nature, DNN models are remarkably adept at discerning and identifying

the patterns embedded within these manipulated images. Subsequently, the newly manipulated

images are reintroduced into the training dataset, alongside the original clean images. The DNN

model is then trained using this combined dataset, which includes both the backdoor images with

triggers and the clean images. By training the model on these backdoor images containing triggers,

it becomes capable of distinguishing the differences between the backdoor and clean images based

on the presence of triggers. Consequently, when a clean input image is fed into the trained model, it

is expected to produce a benign output. However, when the input image contains the backdoor with

triggers, the model is likely to generate an incorrect prediction due to the influence of the triggers.

This methodology demonstrates how the injection of triggers into specific regions of training images,

coupled with appropriate manipulation and model training, can introduce vulnerabilities in the DL

model, leading to potential misclassifications or undesired behavior.
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Figure 3.3: Flow diagram of LSB manipulation

3.4 Pixel Manipulation Methodology

The pixel manipulation attack is a type of adversarial attack that involves perturbing a

specific set of pixels in an input image to induce misclassification. In our methodology, determining

the optimal set of pixels that are most important to achieving this misclassification can be framed

as an optimization problem. This optimization problem can be approached using two different

approaches: targeted and untargeted.

3.4.1 Targeted Approach

In the targeted approach, the objective is to maximize the confidence or probability of a

specific target class. By perturbing the selected pixels in a manner that maximizes the model’s

confidence in the target class, the aim is to intentionally misclassify the image as the desired target

class.

3.4.2 Untargeted Approach

In the untargeted approach, the objective is to minimize the confidence or probability of the

correct class predicted by the model. The selected pixels are modified in a way that reduces the

model’s confidence in the correct class, leading to misclassification into any other class.
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Figure 3.4: Flow diagram of pixel manipulation

Figure 3.5: Differential evolution algorithm

Both the targeted and untargeted approaches utilize optimization techniques to determine

the optimal perturbations on the selected set of pixels. In our experiment, we opted for an untargeted

attack approach by formulating it as an optimization problem. The primary objective is to identify

the most effective pixel modifications that can deceive the model and lead to misclassification.

These approaches highlight the different objectives an adversary may have when conducting

a pixel manipulation attack. A very important and crucial part of Fig. 3.4 is the differential

algorithm and how it works. Fig. 3.5 presents the working methodology of a standard differential

evolution algorithm. In this particular optimization algorithm, we employed the differential evolution
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algorithm that aims to minimize a given function by iteratively generating and refining a population

of candidate solutions. Each candidate solution is represented as a vector of real numbers, serving

as inputs for the target function. In Fig. 3.5 the points 0,1,2,3,4,5,6,7,8,9,10 represent different

candidate solutions from which trial vectors are found based on the fitness function. The fitness

function is the condition based on which the optimization takes place. In our case, the optimization

condition was to reduce the confidence of the correct class. The primary goal is to identify the

set of inputs that produce the lowest possible output, indicating a better fitness score. The process

begins with the initialization of a population of candidate vectors, typically done randomly. These

vectors are evaluated by the function we seek to minimize, and their fitness scores are calculated

accordingly. The lower the output of the function for a given vector, the higher its fitness in

the population. To generate new offspring vectors, we employ a mutation process by combining

individuals from the existing population. This step involves altering the candidate vectors to explore

new areas of the search space. The offspring vectors then undergo fitness evaluation based on the

target function. In each generation, the offspring competes with the existing population members.

Poor-performing individuals are replaced by offspring vectors that exhibit superior fitness. This

continuous cycle of generating, evaluating, and replacing candidates aims to progressively improve

the population’s overall fitness and, eventually, converge to an optimal solution. By employing

this differential evolution algorithm, we can efficiently explore the search space, allowing us to

discover better candidate solutions that lead to minimized function outputs, which represent an

optimal outcome.
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CHAPTER IV

RESULTS AND DISCUSSION

Our experiments encompass two main categories: LSB perturbation and pixel perturbation.

Further, these categories can be subdivided based on three different datasets used for each experiment.

The standard datasets employed in our research are as follows:

• MNIST: MNIST (Modified National Institute of Standards and Technology) is a widely used

dataset for image classification tasks. It consists of 28x28 grayscale images of handwritten

digits (0 to 9) and corresponding labels. The dataset contains 60,000 training images and

10,000 test images, making it a popular benchmark for evaluating machine learning algorithms

and models.

• Fashion MNIST: Fashion MNIST is another image classification dataset similar to MNIST.

It contains 28x28 grayscale images of various fashion items, such as shirts, dresses, shoes,

and bags. Like MNIST, Fashion MNIST consists of 60,000 training images and 10,000 test

images. This dataset is particularly valuable for testing image recognition models in the

context of fashion-related applications.

• CIFAR-10: CIFAR-10 is a challenging dataset used for object recognition and classification

tasks. It contains 60,000 32x32 color images across ten classes: airplanes, automobiles, birds,

cats, deer, dogs, frogs, horses, ships, and trucks. Each class has 6,000 images, with 50,000

used for training and 10,000 for testing. CIFAR-10 is known for its small image size and

complex object categories, making it a standard benchmark for evaluating the performance of

deep learning models in image classification problems.
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4.1 LSB Perturbation Results

To simulate the LSB perturbation attack we formulated 3 different DNN architectures for 3

different datasets to gain the maximum validation accuracies in each dataset. After that, the attacks

were carried out to measure the attack metrics and attack successes.

4.1.1 MNIST Results

The DNN architecture employed for conducting the LSB perturbation attack experiments

on the MNIST dataset consisted of two convolutional layers followed by three dense layers.

Table 4.1: DNN architecture of LSB manipulation attack using MNIST data

Layer Type Input Shape Output Shape Filter Size Stride Activation
Conv1 1x28x28 16x24x24 16x1x5x5 1 ReLU
Pool1 16x24x24 16x12x12 2x2 2 -
Drop1 16x12x12 16x12x12 - - -
Conv2 16x12x12 32x8x8 32x16x5x5 1 ReLU
Pool2 32x8x8 32x4x4 2x2 2 -
Drop2 32x4x4 32x4x4 - - -
Flat 32x4x4 512 - - -
Fc1 512 256 512x256 - ReLU

Drop3 256 256 - - -
Fc2 256 512 256x512 - ReLU
Fc3 512 10 512x10 - Softmax

The complete details of the architecture are presented in Table 4.1. In our attack evaluation, we

examined the impact of perturbing a range of least significant bits (LSBs) starting from 1 to 8 bits

for the chosen Trigger of a 4x4 pixel area from the 4 corners of each image. Bear in mind, the

result comparison of top-left corner and 4 corners are almost similar. So, for better understanding

our experiment incorporated all 4 corners. As depicted in Fig. 4.1, we conducted experiments

with various bit changes, ranging from 1 to 8 bits. The results revealed that attacks using 4 to 8

bits caused a significant visual alteration, easily detectable by the naked eye. Conversely, when

applying only 1 to 3 bits of changes, the alterations were not noticeable to human observers. Initially,

our experiments seemed to favor using 1-bit, 2-bits, and 3-bits of LSB perturbations. However,

Fig. 4.2 displayed that for 1-bit and 2-bits of LSB perturbations, the validation accuracy dropped
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(a) 8 bits (b) 7 bits (c) 6 bits (d) 5 bits

(e) 4 bits (f) 3 bits (g) 2 bits (h) 1 bit

Figure 4.1: LSB perturbation experiments from 1 to 8 bits of MNIST

significantly compared to the baseline accuracy. The observed phenomenon can be attributed to

the model’s confusion when attempting to identify whether an image contains a trigger or not,

leading to vague assumptions. In some cases, the model manages to recognize the triggers, while

in others, it fails to validate their presence and assumes the image is clean. Consequently, this

confusion creates a series of misclassifications, where clean images are sometimes mislabeled and

images with triggers are sometimes incorrectly classified as clean. As a consequence, this confusion

causes a significant drop in accuracy. Finally, we found that using 3-bits of LSB perturbations

struck a balance between maintaining similar accuracy to the baseline and creating an attack that

remained nearly imperceptible to human eyes. This observation made 3-bits LSB perturbation the

optimal choice for our proposed method. To provide additional evidence of the minimal visual

differences resulting from a 3-bit perturbation, we conducted a comparison in both the spatial and

frequency domains. In Fig. 4.3a and 4.3b, we present spatial plots of the original image alongside

the perturbed image. While the spatial domain can be less visually comparable, it still serves as

an initial point of comparison. However, to gain more insights and enhance the comparison, we
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Figure 4.2: Validation accuracies of the perturbations (MNIST)

(a) Original image in
spatial domain

(b) Perturbed image in
spatial domain (c) Difference between them in frequency domain

Figure 4.3: Visual differences between original and perturbed image

also assessed the images in the frequency domain, as shown in Fig. 4.3c. Analyzing the images in

the frequency domain allows us to identify any significant differences or patterns that might not

be apparent in the spatial representation. Even though we can visualize the minor changes in the

frequency domain, still the changes are very minimal. By conducting this comprehensive analysis,

we aim to establish a more thorough understanding of the visual impact of the 3-bit perturbation on

the images.
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(a) 8 bits (b) 7 bits (c) 6 bits (d) 5 bits

(e) 4 bits (f) 3 bits (g) 2 bits (h) 1 bit

Figure 4.4: LSB perturbation experiments from 1 to 8 bits of Fashion MNIST

4.1.2 Fashion MNIST Results

The DNN architecture employed for conducting the LSB perturbation attack experiments

on the MNIST dataset consisted of three convolutional layers followed by two dense layers. The

complete details of the architecture are presented in Table 4.2. In our attack evaluation, we examined

the impact of perturbing a range of least significant bits (LSBs) starting from 1 to 8 bits for the

chosen trigger of a 4x4 pixel area from the 4 corners of each image which is exactly similar to

the previous experiment with MNIST dataset. As these two datasets are pretty similar in nature,

we expected similar outcomes from this experiment as well. Based on the data presented in Fig.

4.4, it can be observed that visual changes are most noticeable when manipulating up to 4 bits.

However, for 1, 2, and 3 bits, these alterations are hardly discernible to the naked eye. In contrast to

our initial assumption, the evaluation of validation accuracies for different levels of bit alterations

yielded surprising results. As visually depicted in the comprehensive Fig. 4.5, the baseline accuracy

achieved an impressive 93.46%. However, the accuracy for the 2-bits perturbation unexpectedly
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Figure 4.5: Validation accuracies of the perturbations (Fashion MNIST)

showed a smaller drop than we had anticipated, settling at 90.87%. On the other hand, the 1-bit

perturbation’s poor performance was in line with our expectations, resulting in an accuracy of

only 36.12%. The change in validation accuracy between the baseline and the 2-bit perturbation

Table 4.2: DNN architecture of LSB manipulation attack using Fashion MNIST data

Layer Type Input Shape Output Shape Filter Size
Conv1 Convolution 1x28x28 16x28x28 16x1x3x3
Conv2 Convolution 16x28x28 32x28x28 32x16x3x3
Pool1 Pooling 32x28x28 32x14x14 2x2
Drop1 Dropout 32x14x14 32x14x14 -
Conv3 Convolution 32x14x14 64x14x14 64x32x3x3
Conv4 Convolution 64x14x14 64x14x14 64x64x3x3
Pool2 Pooling 64x14x14 64x7x7 2x2
Drop2 Dropout 64x7x7 64x7x7 -
Flat Flatten 64x7x7 3136 -
Fc1 Fully Connected 3136 512 3136x512

Drop3 Dropout 512 512 -
Fc2 Fully Connected 512 10 512x10

amounted to 2.77%, a significantly higher discrepancy compared to the mere 0.22% change observed

between the baseline and the 3-bits perturbation. This substantial variation indicates that the owner

of the model would likely detect the attack when a 2-bits perturbation is used, making the attack

considerably more prone to failure. Hence, the optimal value for a successful bit perturbation,

capable of causing the backdoor attack on the fashion MNIST dataset, is indeed 3 bits.
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4.1.3 CIFAR-10 Results

Our previous experiments provided valuable insights into the effectiveness of the 3-bit

perturbation backdoor attack. However, it is essential to acknowledge that the success of this

attack was primarily demonstrated in scenarios where the working images had a monochromatic

background. In such cases, setting the trigger with 3-bits perturbation appeared comparatively

Table 4.3: DNN architecture of LSB manipulation attack using CIFAR-10 data

Layer Type Input Shape Output Shape Filter Size Stride Activation
Conv1 32x32x3 32x32x32 3x3x3x32 1 ReLU

Batch Norm1 32x32x32 32x32x32 - - -
Conv2 32x32x32 32x32x32 3x3x32x32 1 ReLU

Batch Norm2 32x32x32 32x32x32 - - -
Pool1 32x32x32 16x16x32 2x2 2 -
Drop1 16x16x32 16x16x32 - - -
Conv3 16x16x32 16x16x64 3x3x32x64 1 ReLU

Batch Norm3 16x16x64 16x16x64 - - -
Conv4 16x16x64 16x16x64 3x3x64x64 1 ReLU

Batch Norm4 16x16x64 16x16x64 - - -
Pool2 16x16x64 8x8x64 2x2 2 -
Drop2 8x8x64 8x8x64 - - -
Conv5 8x8x64 8x8x128 3x3x64x128 1 ReLU

Batch Norm5 8x8x128 8x8x128 - - -
Conv6 8x8x128 8x8x128 3x3x128x128 1 ReLU

Batch Norm6 8x8x128 8x8x128 - - -
Pool3 8x8x128 4x4x128 2x2 2 -
Drop3 4x4x128 4x4x128 - - -
Flat 4x4x128 2048 - - -
Fc1 2048 128 2048x128 - ReLU

Batch Norm7 128 128 - - -
Drop4 128 128 - - -

Fc2 128 10 128x10 - Softmax

easier, leading to successful backdoor attacks. However, it is crucial to recognize that real-world

scenarios are often more complex, and backgrounds in images may not be monochromatic. To

address this limitation and assess the attack’s performance in a more realistic setting, we conducted

experiments using the CIFAR-10 dataset. It consists of diverse images with varying backgrounds,

closely simulating real-world conditions. With CIFAR-10, the challenge lies in the model’s ability to
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(a) 8 bits (b) 7 bits (c) 6 bits (d) 5 bits

(e) 4 bits (f) 3 bits (g) 2 bits (h) 1 bit

Figure 4.6: LSB perturbation experiments from 1 to 8 bits of CIFAR-10

correctly identify the trigger amidst a random and diverse background. The complexity introduced

by the background variability can potentially pose difficulties for the model in detecting and

activating the trigger accurately. In our series of experiments, we investigated the use of different

bit perturbations, ranging from 1 to 8 bits, to find the most suitable configuration for achieving a

balance between covertness and attack efficiency. The results, illustrated in Fig. 4.7, revealed some

interesting findings. For 1-bit and 2-bit perturbation, we observed an alarmingly low validation

accuracy, with only 50.51% accuracy for 1-bit perturbation and 42.87% for 2-bit perturbation.

In nearly half of the cases, the backdoored images went undetected, resulting in the failure of

the attack. These perturbation levels proved to be ineffective in concealing the presence of the

backdoor. However, as we increased the perturbation to 3 bits and beyond, we noticed a significant

improvement in the validation accuracy, with results closely resembling the baseline accuracy. This

implies that 3 bits to 8 bits perturbation offer a more promising approach to successful attacks, as

they are less prone to detection. Among the range of perturbation levels tested, we found that 4 to 8

bits perturbation, while effective in terms of accuracy, led to conspicuous alterations in the images.
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Figure 4.7: Validation accuracies of the perturbations (CIFAR-10)

This could raise suspicions and potentially make the attack more vulnerable to detection. On the

other hand, the 3-bit perturbation demonstrated an optimal balance between attack effectiveness

and covert operation. It managed to achieve high accuracy similar to the baseline while maintaining

a subtle manipulation that was less noticeable, thereby making it a more suitable LSB manipulation

technique for our third experiment with the backdoor attack.

4.1.4 Additional Experiment Results

In addition to our main experiment, we conducted two supplementary experiments on the

training datasets to explore the upper and lower limits of the number of backdoor images within

the entire training dataset. The objective was to understand the impact of varying backdoor image

quantities on the model’s performance. In the first experiment, we investigated the upper limit

scenario, where we introduced a relatively high number of backdoor images into the training

dataset. The hypothesis was that an abundance of backdoor images might lead the model to confuse

clean images with backdoor images, potentially compromising its accuracy and generalization.

The results of the experiment are presented in Table 4.4, indicating the impact of varying the

percentage of backdoor images on the test accuracy with CIFAR-10 dataset. Notably, the test

accuracy experiences a substantial drop once the percentage of backdoor images exceeds 50%.

However, when the percentage of backdoor images is limited to at most 20% of the total training
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Table 4.4: Impact of the percentage of backdoor image on test accuracy

Training Dataset Validation Dataset % of Backdoor Images Test Accuracy (%)
45,000 5,000 50% 73.12
45,000 5,000 40% 80.44
45,000 5,000 30% 80.46
45,000 5,000 20% 83.61
45,000 5,000 10% 84.57
45,000 5,000 0% 85.53
40,000 10,000 50% 42.38
40,000 10,000 40% 69.51
40,000 10,000 30% 79.50
40,000 10,000 20% 82.86
40,000 10,000 10% 83.98
40,000 10,000 0% 84.64

dataset, the accuracy remains relatively close to the baseline accuracy. This finding suggests that

maintaining a low proportion of backdoor images in the training dataset is crucial to preserving

the model’s performance and minimizing suspicious drops in the model’s accuracy. Conversely,

in the second experiment, we explored the lower-limit scenario by incorporating a very limited

number of backdoor images into the training dataset. The underlying assumption here was that

with only a few backdoor images, the model might struggle to differentiate between backdoor

images and clean images, possibly misclassifying backdoor images as clean examples. Table 4.5

displays the outcomes of the second experiment conducted on three datasets. Notably, the model’s

performance deteriorates when the percentage of backdoor samples falls below 10% of the entire

training dataset. This finding aligns with the claim made by [6], suggesting that the lower limit for

effective backdoor samples is 10%. From the results, it becomes evident that maintaining at least

10% backdoor samples in the training dataset is crucial to ensure the model’s robustness against

backdoor attacks. When the proportion of backdoor samples decreases below this threshold, the

model’s ability to identify the backdoor trigger diminishes, leading to a considerable decline in

performance.
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Table 4.5: Impact of backdoor samples on model performance

Dataset Training Samples % of Backdoor Samples Trigger Not Identified (%)
MNIST 54,000 3% 83.14%
MNIST 54,000 4% 2.16%
MNIST 54,000 5% 1.21%
MNIST 54,000 7% 1.14%
MNIST 54,000 10% 0.20%

Fashion MNIST 54,000 3% 93.41%
Fashion MNIST 54,000 4% 1.47%
Fashion MNIST 54,000 5% 1.31%
Fashion MNIST 54,000 7% 1.02%
Fashion MNIST 54,000 10% 0.92%

CIFAR-10 45,000 3% 85.07%
CIFAR-10 45,000 4% 80.87%
CIFAR-10 45,000 5% 83.61%
CIFAR-10 45,000 7% 82.55%
CIFAR-10 45,000 10% 4.69%

4.1.5 Visual Comparison: Badnet vs Our Proposed Method

Our proposed method has demonstrated remarkable resilience against naked-eye inspection,

achieving an accuracy comparable to the baseline model while requiring fewer bit alterations. To

illustrate the effectiveness of our approach in comparison to the state-of-the-art method (badnet), we

provide a visual comparison in Fig. 4.8. When inspecting the images with the naked eye, it is evident

that it is relatively easy to differentiate between the clean image and a backdoor image generated

using the badnet method. This is mainly due to the conspicuous pixel alterations introduced by

badnet. In contrast, our method strategically replaces only 3 bits, resulting in alterations that are

barely recognizable by the naked eye. The imperceptibility of these alterations underscores the

efficiency of our approach in concealing the presence of the backdoor, making it far more covert

and difficult to detect visually. Overall, the visual comparison validates the effectiveness of our

proposed method, as it achieves both high covertness and model accuracy, with minimal perceptible

changes to the images.
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Figure 4.8: Visual comparison between our method and badnet

4.2 Pixel Perturbation Results

In the pixel perturbation experiment, we evaluated the performance of two standard deep-

learning models: LeNet and ResNet. These models were utilized to gather the results and assess

their respective capabilities. Table 4.6 provides a brief overview of the salient characteristics of

these two models, including the number of parameters and the achieved accuracy. In our pixel

Table 4.6: Performance comparison of DL models

DL Model Number of Parameters Accuracy
LeNet 62,006 74.88%
ResNet 470,218 92.31%

perturbation attack, we adopted a more comprehensive approach instead of concentrating solely

on perturbing individual pixels and using a 5x5 Gaussian patch to conceal them within the image.

To achieve a more effective and efficient attack strategy, we conducted experiments with different

numbers of perturbed pixels. Specifically, we explored configurations involving 1, 2, 3, 4, 5, 7, 10,

15, and 20 pixels, and meticulously collected results for each of these experiments. By varying

the number of perturbed pixels, we aimed to explore a wide range of possibilities and assess their

impact on the success of the pixel perturbation attack. This comprehensive analysis enabled us to

determine the optimal number of pixels to perturb, striking the right balance between achieving
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(a) 1 pixel (b) 2 pixels

(c) 3 pixels (d) 4 pixels

(e) 5 pixels (f) 7 pixels

(g) 10 pixels (h) 15 pixels

(i) 20 pixels

Figure 4.9: Pixel perturbation experiments from 1 to 8 pixels of CIFAR-10

covertness and ensuring the attack’s efficiency. In our pixel perturbation experiments, our primary

focus lies in achieving two key objectives: high accuracy in the attack and maintaining covertness.

To assess the impact of perturbations on image appearance, we compare the perturbed images with

their original counterparts (see Fig. 4.9). It becomes evident that visual differences are highly

subjective, especially without a reference image, which is the original image in our case. We observe

that when the perturbations involve up to 5 pixels, they are less likely to be visually recognized,

particularly when compared to the original image. This indicates that minor perturbations preserve
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(a) Attack success rate using LeNet

(b) Attack success rate using ResNet

Figure 4.10: Performance of LeNet & ResNet using different pixel perturbations

the attack’s covertness, making the differences imperceptible to the human eye. However, as we

increase the number of perturbed pixels to 15 and 20, the visual distinctions become more apparent,

rendering these perturbations distinctly visible compared to the original image. Such a level of

perturbation may compromise the covertness of the attack, making it more susceptible to detection.

We also evaluated the impact of 7 and 10-pixel perturbations, which fall into a somewhat ambiguous

range. At times, they can be recognizable, while at other times, they remain inconspicuous. The

effectiveness of these perturbations in maintaining covertness might vary depending on the specific
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Figure 4.11: Visual comparison between our method and one-pixel attack

image and its visual characteristics. As a result, we can initially choose a perturbation size ranging

from 1 to 5 pixels for our attack to balance covertness. However, we must also consider the attack

success rate of the model. Fig. 4.10a demonstrates that the attack success is extremely high

when using 20-pixel perturbations. Nevertheless, we have previously established that such large

perturbations are vulnerable to visual recognition, compromising covertness. Thus, we are faced

with a tradeoff between attack success and the covertness of the attack. Upon analyzing both criteria,

we found that using 4 pixels for perturbation strikes a favorable balance, offering both covertness

and a relatively higher success rate of 71.12% in the attack. Regarding ResNet, the results depicted

in Fig. 4.10b indicate that perturbations involving 3, 4, and 5 pixels hold relatively more promise in

achieving a balance between covertness and attack success rate compared to perturbations using 10,

15, and 12 pixels, despite the latter group exhibiting higher attack success rates.

4.2.1 Visual Comparison: One-Pixel Attack vs Our Method

In contrast to the state-of-the-art one-pixel attack, our approach primarily emphasizes

imperceptibility and attack success rate. The imperceptibility of our method is evident from Fig.

4.11, where the left-most images represent results from the one-pixel attack, the middle images

correspond to our initial experiment using the proposed method, and the right-most images display
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our final attempt along with the differences between the final attempt and the original image. In

these comparisons, it becomes clear that our method achieves a higher level of imperceptibility

when compared to the one-pixel attack. The left-most images, representing the one-pixel attack,

often show noticeable, vibrant pixels that can be detected by the human eye. On the other hand, the

middle images show a similar pixel, just like the one-pixel attack, but the color domain remains

within that of the surrounding pixel colors. Lastly, the right-most images from our proposed

method demonstrate significantly reduced visual differences upon using a 5x5 gaussian patch on

our first attempt, making the perturbations less conspicuous and maintaining a higher level of

imperceptibility.
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CHAPTER V

CONCLUSION

This research presented two methodologies, LSB perturbation and pixel manipulation, to

invade the integrity of deep neural networks through backdoor and adversarial attacks. Extensive

experiments were conducted using the MNIST, Fashion MNIST, and CIFAR-10 datasets to evaluate

the effectiveness of the proposed techniques. The results demonstrated that LSB perturbation of

3 bits achieved an optimal balance between attack success rate and covertness across all three

datasets. By flipping only 3 LSBs, the modifications remained virtually imperceptible, while still

inducing the desired misclassifications in the presence of the trigger. Comparative analysis showed

improved stealth over the Badnets approach. For pixel manipulation, perturbations involving 4-5

pixels exhibited the best tradeoff between attack effectiveness and visual concealment. Comparisons

with the One-Pixel attack revealed greater imperceptibility of the perturbations generated through

our methodology. Overall, the proposed LSB perturbation and pixel manipulation methods were

successful in invading the integrity of deep learning models by triggering misclassifications through

subtle input manipulations. The techniques proved adept at evading detection, showcasing the

vulnerabilities of DNNs against backdoor and adversarial attacks. Further research on defensive

strategies such as attack detection, input validation, and adversarial training is imperative to

safeguard deep learning systems against such integrity attacks. Exploring the use of emerging

technologies like blockchain and differential privacy to prevent and mitigate training data poisoning

also presents a promising direction for future work.

In conclusion, this research provided novel techniques to launch covert backdoor and

adversarial attacks, while also highlighting crucial research gaps in securing deep learning models.
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