University of Texas Rio Grande Valley ScholarWorks @ UTRGV

Theses and Dissertations - UTRGV

8-2023

# Matrix Completion Problems for the Positiveness and Contraction Through Graphs

Louis C. Christopher The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

Part of the Mathematics Commons

## **Recommended Citation**

Christopher, Louis C., "Matrix Completion Problems for the Positiveness and Contraction Through Graphs" (2023). *Theses and Dissertations - UTRGV*. 1329. https://scholarworks.utrgv.edu/etd/1329

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for inclusion in Theses and Dissertations - UTRGV by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

# MATRIX COMPLETION PROBLEMS FOR THE POSITI-VENESS AND CONTRACTION THROUGH GRAPHS

A Thesis

by

## LOUIS CHRISTOPHER

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

Major Subject: Mathematics

The University of Texas Rio Grande Valley

August 2023

# MATRIX COMPLETION PROBLEMS FOR THE POSITI-VENESS AND CONTRACTION THROUGH GRAPHS

A Thesis by LOUIS CHRISTOPHER

## COMMITTEE MEMBERS

Dr. Jasang Yoon Chair of Committee

Dr. Paul Bracken Committee Member

Dr. William Heller Committee Member

Dr. Hyung Won Kim Committee Member

August 2023

Copyright 2023 Louis Christopher All Rights Reserved

## ABSTRACT

Christopher, Louis, <u>Matrix completion problems for the positi- veness and contraction through</u> <u>graphs</u>. Master of Science (MS), August, 2023, 32 pp., 12 figures, references, 11 titles.

In this work, we study contractive and positive real symmetric matrix completion problems which are motivated in part by studies on sparce (or dense) matrices for weighted sparse recovery problems and rating matrices with rating density in recommender systems. Matrix completions problems also have many applications in probability and statistics, chemistry, numerical analysis (e.g. optimization), electrical engineering, and geophysics. In this paper we seek to connect the contractive and positive completion property to a graph theoretic property. We then answer whether the graphs of real symmetric matrices having loops at every vertex have the contractive completion property if and only if the graph of said matrix is chordal. If this is not true, we characterize all graphs of real symmetric matrices having the contractive completion property.

# DEDICATION

This thesis is dedicated to my father who has supported me financially throughout my academic career. I'm forever grateful for your support and sacrifices made so that I could pursue my passions.

### ACKNOWLEDGMENTS

I would like to extend my sincere thanks to Dr. J. Yoon, for your willingness to undertake a first-semester master's student to take on this captivating endeavor. I appreciate you introducing me to the fascinating and important field of matrix completion problems and their graphs. I'm grateful to have had the opportunity to learn from you as my professor, thesis advisor, and mentor.

# TABLE OF CONTENTS

| iii |
|-----|
| iv  |
| v   |
| vi  |
| vii |
| 1   |
| 6   |
| 28  |
| 29  |
| 30  |
| 32  |
|     |

# LIST OF FIGURES

| Figure 1.1:  | Graph $G(A_5)$                                                         | 5  |
|--------------|------------------------------------------------------------------------|----|
| Figure 2.1:  | Graph $G(L_3)$ in Example 4                                            | 11 |
| Figure 2.2:  | Graph $G(L_4)$ in Example 6                                            | 13 |
| Figure 2.3:  | Graphs $G(S_n)$ of $S_n$ $(n = 1, 2, 3)$                               | 16 |
| Figure 2.4:  | Graphs $G(S_4)$ of $S_4$ which are soluble in Theorem 8                | 16 |
| Figure 2.5:  | Graphs $G(S_4)$ of $S_4$ which are in <b>Case 1</b> in Theorem 8       | 17 |
| Figure 2.6:  | Graphs $G(S_4)$ of $S_4$ which are in <b>Case 2</b> in Theorem 8       | 19 |
| Figure 2.7:  | Graphs $G(S_4)$ of $S_4$ which are in <b>Cases 3,4</b> in Theorem 8    | 21 |
| Figure 2.8:  | Graphs $G(S_5)$ of $S_5$ which are soluble in Theorem 9                | 23 |
| Figure 2.9:  | Graphs $G(S_5)$ of $S_5$ which are in <b>Cases 3,4,5</b> in Theorem 9  | 24 |
| Figure 2.10: | Graphs $G(S_5)$ of $S_5$ which are in <b>Cases 6,7</b> in Theorem 9    | 25 |
| Figure 2.11: | Graphs $G(S_5)$ of $S_5$ which are in <b>Cases 8,9,10</b> in Theorem 9 | 26 |

## CHAPTER I

#### **INTRODUCTION**

The purpose of this study is to consider the contractive and positive real symmetric matrix completion problems motivated in part by studies on sparse (or dense) matrices for weighted sparse recovery problems and rating matrices with rating density in recommender systems. Matrix completion problems have been studied by G. Arsene and A. Gheondea, by C. Davis, W. Kahan and H. Weinberger, by C. Foiaş and A. Frazho (using Redheffer products), by S. Parrott, and by Y. L. Shmul'yan and R. N. Yanovskaya; a solution is also implicit in the work of W. Arveson. A matrix completion problem has many applications in probability and statistics (e.g. entropy methods for missing data), chemistry (e.g. the molecular conformation problem), numerical analysis (e.g. optimization), electrical engineering (e.g. data transmission, coding and image enhancement) and geophysics (seismic reconstruction problems). In recent years, graphs and digraphs have been used very effectively to study matrix completed to a positive definite matrix was studied through the use of graph theoretic techniques.

A *partial matrix* is a square array in which some entries are defined (or specified) and others are not. A *completion* of a partial matrix is a choice of values for the unspecified entries. A *matrix completion problem* asks whether a partial matrix has a completion of a specific type (or a pattern, see the detailed definition given below), such as a positive definite matrix. If a partial matrix of a specific type has a completion, then we say that the partial matrix has *the specific type completion property* (or it is *soluble*). A partial matrix of a specific type is called *well-posed* if every completely determined submatrix of it is of the specific type. Let A be an  $m \times n$  matrix. We call A a *contractive*  matrix or a *contraction* if the operator norm of *A* does not exceed 1. The *contractive symmetric completion problem* (CSCP) asks which partial contractive symmetric matrices have a symmetric contractive completion.

In linear algebra, an *inner product space* is a vector space with an additional structure called an inner product. A simple example is the real numbers with the standard multiplication as the *inner product*:  $\langle x, y \rangle := xy$ , where  $x, y \in R$ . More generally, the real 2-space  $R^2$  with the dot product is an inner product space, an example of a Euclidean 2-space:

$$\langle x, y \rangle := x_1 y_1 + x_2 y_2,$$

where  $\overrightarrow{x} = (x_1, x_2)$ , and  $\overrightarrow{y} = (y_1, y_2)$ .

We say that *A* is *positive semidefinite*  $(A \ge 0)$  if  $\langle A \overrightarrow{x}, \overrightarrow{x} \rangle \ge 0$  for all  $\overrightarrow{x} \in R^2$ . We say that *A* is *positive* (A > 0) if  $\langle A \overrightarrow{x}, \overrightarrow{x} \rangle > 0$  for all  $\overrightarrow{x} \in R^2$ .

Let  $M_n(C)$  be a collection of square  $n \times n$  complex matrices. For a matrix  $A \in M_n(C)$ , we say that A is symmetric if  $A^t = A$ . We define the *interchange of rows (resp. column)* of A to be the interchange of one row (resp. column) of the matrix A with another row of the matrix A. A *principal minor* of  $A \in M_n(C)$  is the determinant of a submatrix of A that is obtained by deleting some (or none) of its rows as well as the corresponding columns. For matrices  $A, B \in M_n(C)$ , we let  $A \circ B$  denote their Schur product (also called Hadamard product), where  $(A \circ B)_{i,j} := (A)_{i,j} (B)_{i,j}$ for  $1 \le i, j \le n$ . The following result is well known: If  $A \ge 0$  and  $B \ge 0$ , then  $A \circ B \ge 0$  and det  $(A \circ B) \ge (\det A) (\det B)$ .

We recall the notion of graphs. We will denote by G = (V, E) = (V(G), E(G)) a finite (undirected) graph. The set V(G) of *vertices* is finite, and the set E(G) of *edges* is a subset of the set  $\{\{i, j\} : i, j \in V(G)\}$ . We allow that E may contain loops, i.e., i may equal j for an edge  $\{i, j\} \in E$ . Two vertices connected by an edge are said to be *adjacent*. Notice that two vertices may be connected by more than one edge, a vertex need not be connected to any other vertex, and a vertex may be connected to itself (a loop). A *walk* in a graph G is a finite or infinite sequence of edges which joins a sequence of vertices. A *trail* is a walk in which all edges are distinct. A *path* is a trail in which all vertices are distinct. The *order* of *G* is the number of vertices of *G*. A *subgraph* of the graph *G* is a graph H = (V(H), E(H)), where V(H) is a subset of V(G) and E(H) is a subset of E(G) (note that  $\{i, j\} \in E(H)$  requires  $i, j \in V(H)$  since *H* is a graph). Let  $A_n = [a_{ij}]$  be a symmetric  $n \times n$  matrix. The nonzero-graph  $G(A_n) = (V_n, E)$  of  $A_n$  is the graph having as vertex set  $V_n = \{1, \dots, n\}$  and as edge set  $E = \{\{i, j\} : i, j \in V_n\}$  with the property that an (undirected) edge  $\{i, j\}$  occurs in  $G(A_n)$  if and only if the entries  $a_{ij}$  and  $a_{ji}$  of  $A_n$  are specified. Define a *partial graph*  $[G(A_n)]$  as a subgraph of  $G(A_n)$ , where  $\{i, j\} \in E$  if and only if  $\{j, i\} \in E$  (so  $a_{ij}$  in a partial matrix of  $A_n$  is defined if and only if  $a_{ji}$  is). A *clique* is a subset  $C \in V$  having the property that  $\{i, j\} \in E$  for all  $i, j \in C$ . A *cycle* in *G* is a sequence of pairwise distinct vertices  $\gamma = \{v_1, v_2, \dots, v_s\}$  having the property that  $\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{s-1}, v_s\}, \{v_s, v_1\} \in E$ , where  $v_i \in V$  and  $i \in \{1, \dots, s\}$ , where *s* is referred to as the *length* of the cycle. A *chord* of the cycle  $\gamma$  is an edge  $\{v_i, v_j\} \in E$ , where  $1 \le i < j \le s$ ,  $\{i, j\} \ne \{1, s\}$ , and  $|i - j| \ge 2$ .

On this note, we also study the CSCP using a graph theoretic tool. Naturally, some questions arise about the CSCP using a graph theoretic tool.

For  $n \in N$  with  $n \ge 2$ , let

$$S_{n} = S_{n}(a_{1}, a_{2}, \cdots, a_{n}; x_{1}, \cdots, x_{\frac{(n-1)n}{2}})$$

$$= \begin{pmatrix} a_{1} & x_{1} & x_{2} & \cdots & x_{\frac{(n-2)(n-1)}{2}+1} \\ x_{1} & a_{2} & x_{3} & \cdots & x_{\frac{(n-2)(n-1)}{2}+2} \\ x_{2} & x_{3} & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & a_{n-1} & x_{\frac{(n-1)n}{2}} \\ x_{\frac{(n-2)(n-1)}{2}+1} & x_{\frac{(n-2)(n-1)}{2}+2} & \cdots & x_{\frac{(n-1)n}{2}} & a_{n} \end{pmatrix}$$

$$(1.1)$$

be real symmetric matrices, where the diagonal entries  $a = \{a_i\}_{i=1}^n \subset R$  are specified and unknown variables  $x_1, \dots, x_{\frac{(n-1)n}{2}}$  are to be determined. We consider some specified values  $b = \{b_{k_i}\}_{i=1}^{\ell} \subset R$  with  $|b_{k_i}| \leq 1$  and  $\ell \leq \frac{(n-1)n}{2}$ . After allotting some specified values  $\{b_{k_i}\}_{i=1}^{\ell}$  for the unknown

variables  $x = \{x_{k_i}\}_{i=1}^{\ell}$  in (1.1), the new partial matrix for  $S_n$  is denoted by

$$S_n(a;b,x) := S_n(a_1, \cdots, a_n; x_1, \cdots, x_{k_1-1}, b_{k_1}, x_{k_1+1}, \cdots, x_{k_i-1}, b_{k_i}, x_{k_i+1}, \cdots, x_{\frac{n(n-1)}{2}}).$$

We say that  $G(S_n(a;b,x))$  is *soluble* if  $S_n(a;b,x)$  is soluble.

The following result is well-known in the paper "Positive definite completions of partial Hermitian matrices, *Linear Algebra Appl.* 58(1984) 109-124 by R. Grone, C.R. Johnson, E.M. Sa, and H. Wolkowicz":

**Theorem:** A graph having a loop at every vertex has the positive definite completion property if and only if it is chordal (any cycle of length  $\geq 4$  has a chord).

For  $a \in C$ , we see that  $|a| \le 1 \iff 1 - \overline{a}a \ge 0$ . Similarly, for any  $n \times n$  matrix A, we can observe that

$$||A|| \le 1 \Longleftrightarrow I - A^*A \ge 0, \tag{1.2}$$

where *I* is the  $n \times n$  identity matrix and  $A^*$  is the conjugate transpose of *A* (see Lemma 13). We expect that  $I - A^*A$  does not have the same structure as *A*. However, motivated by the above Theorem and (1.2), in this note, we try to connect the contractive and positive completion property to a graph theoretic property as follows:

#### **Problem A**

(i) Is it true that the graph  $G(S_n)$  ( $n \ge 4$ ) of a real symmetric matrix  $S_n$  with n vertices having a loop at every vertex has the contractive completion property if and only if it is chordal?

If (i) is not true, then we consider:

(ii) Let  $n \ge 1$ . Characterize all graphs  $G(S_n)$  of  $S_n$  having the contractive completion property.

The following is an example of the nonzero-graph  $G(A_5) = (V_5, E)$  of  $A_5$ :

$$A_{5} = \begin{pmatrix} 1 & x_{1} & x_{2} & -\frac{1}{6} & x_{4} \\ x_{1} & \frac{1}{2} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ x_{2} & \frac{1}{6} & \frac{1}{3} & x_{3} & x_{5} \\ -\frac{1}{6} & \frac{1}{7} & x_{3} & \frac{1}{4} & x_{6} \\ x_{4} & \frac{1}{8} & x_{5} & x_{6} & \frac{1}{5} \end{pmatrix}$$



Figure 1.1: Graph  $G(A_5)$ 

## CHAPTER II

### MAIN RESULTS

We first recall Sylvester's Criterion for Positive Semidefinite Matrices: A matrix is positive semidefinite if and only if all of its principal minors are non-negative.

Recall: For  $a \in C$ , we see that

$$|a| \le 1 \Longleftrightarrow a\overline{a} \le 1 \Longleftrightarrow \begin{pmatrix} 1 & a \\ \overline{a} & 1 \end{pmatrix} \ge 0.$$
(2.1)

Similarly, for any  $n \times n$  matrix *A*, we can observe that:

**Theorem 1**: For any  $n \times n$  matrix  $A_n$ , we have

$$\|A_n\| \le 1 \iff \begin{pmatrix} I_n & A_n \\ A_n^* & I_n \end{pmatrix} \ge 0 \iff I_n - A_n^* A_n \ge 0,$$
(2.2)

where  $I_n$  is the  $n \times n$  identity matrix and  $A_n^*$  is the conjugate transpose of  $A_n$ .

**Proof of Theorem 1**: We prove it using Mathematical Induction.

If n = 1, then by (2.1), (2.2) is true.

For n = 2, we let  $\lambda_1$  and  $\lambda_2$  be the eigenvalues of  $A_2$ . Since  $||A_2|| \le 1$ ,  $\lambda_1^2$ ,  $\lambda_2^2 \le 1$ . By (2.1), we have that for all  $1 \le i \le 2$ 

$$\left(egin{array}{cc} 1 & \lambda_i \ \lambda_i & 1 \end{array}
ight) \geq 0$$

Hence we get that

$$E_{2} := \begin{pmatrix} 1 & \lambda_{1} & 0 & 0 \\ \lambda_{1} & 1 & 0 & 0 \\ 0 & 0 & 1 & \lambda_{2} \\ 0 & 0 & \lambda_{2} & 1 \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda_{1} & 0 & 0 \\ \lambda_{1} & 1 & 0 & 0 \\ 0 & 0 & 1 & \lambda_{2} \\ 0 & 0 & \lambda_{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} I_{2} & S_{2} \\ S_{2} & I_{2} \end{pmatrix} \ge 0, \text{ where } S_{2} := \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} \text{ and } \lambda_{1} \ge \lambda_{2}.$$

Let  $U_2$  and  $V_2$  be unitary matrices such that  $U_2^*U_2 = V_2^*V_2 = I_2$ . Note that

$$\begin{pmatrix} I_2 & S_2 \\ S_2 & I_2 \end{pmatrix} \ge 0 \iff \begin{pmatrix} U_2 & 0 \\ 0 & V_2^* \end{pmatrix} \begin{pmatrix} I_2 & S_2 \\ S_2 & I_2 \end{pmatrix} \begin{pmatrix} U_2^* & 0 \\ 0 & V_2 \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} I_2 & U_2 S_2 V_2 \\ V_2^* S_2 U_2^* & I_2 \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} I_2 & A_2 \\ A_2^* & I_2 \end{pmatrix} \ge 0, \text{ where } A_2 := U_2 S_2 V_2.$$

$$\iff I_2 - A_2^* A_2 \ge 0.$$

Suppose that n = k is true, that is,

$$||A_k|| \le 1 \Longleftrightarrow I_k - A_k^* A_k \ge 0.$$

Now, for n = k + 1, we let  $\lambda_1, \ldots, \lambda_{k+1}$  be the eigenvalues of  $A_{k+1}$  with  $\lambda_1^2, \ldots, \lambda_{k+1}^2 \leq 1$ . By (2.1) again, we have

$$\lambda_{1}^{2}, \dots, \lambda_{k+1}^{2} \leq 1 \iff \begin{pmatrix} 1 & \lambda_{i} \\ \lambda_{i} & 1 \end{pmatrix} \geq 0 \text{ for all } 1 \leq i \leq k+1$$

$$\left( \begin{array}{cccc} \begin{pmatrix} 1 & \lambda_{1} \\ \lambda_{1} & 1 \end{pmatrix} & 0 & \cdots & 0 \\ \\ 0 & \begin{pmatrix} 1 & \lambda_{2} \\ \lambda_{2} & 1 \end{pmatrix} & 0 & 0 \\ \\ \vdots & 0 & \ddots & 0 \\ \\ 0 & 0 & 0 & \begin{pmatrix} 1 & \lambda_{k+1} \\ \lambda_{k+1} & 1 \end{pmatrix} \end{array} \right) \geq 0.$$

By changing the rows and columns of  $E_{k+1}$ , that is, we multiply suitable elementary matrices to the front and back of  $E_{k+1}$ , simultaneously, we obtain the matrix  $\begin{pmatrix} I_{k+1} & S_{k+1} \\ S_{k+1} & I_{k+1} \end{pmatrix} \ge 0$ , where

 $S_{k+1} := \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{k+1} \end{pmatrix} = S_k \oplus \lambda_{k+1} \text{ and } \lambda_i \ge \lambda_j \text{ with } j \ge i. \text{ Let } U_{k+1} = U_k \oplus u_{k+1} \text{ and } V_{k+1} = V_k \oplus v_{k+1} \text{ be unitary matrices such that } U_{k+1}^* U_{k+1} = V_{k+1}^* V_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} = I_k \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1} \oplus 1 \text{ with } u_{k+1}^* u_{k+1} = I_{k+1} \oplus 1 \text{ with } u_{k+1} \oplus 1 \text{ with } u_$ 

 $v_{k+1}^* v_{k+1} = 1$ . Observe that

$$\begin{pmatrix} I_{k+1} & S_{k+1} \\ S_{k+1} & I_{k+1} \end{pmatrix} \ge 0$$
  
$$\iff \begin{pmatrix} U_{k+1} & 0 \\ 0 & V_{k+1}^* \end{pmatrix} \begin{pmatrix} I_{k+1} & S_{k+1} \\ S_{k+1} & I_{k+1} \end{pmatrix} \begin{pmatrix} U_{k+1}^* & 0 \\ 0 & V_{k+1} \end{pmatrix} \ge 0$$

and

$$\begin{pmatrix} I_{k+1} & S_{k+1} \\ S_{k+1} & I_{k+1} \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} U_k \oplus u_{k+1} & 0 \\ 0 & V_k^* \oplus v_{k+1}^* \end{pmatrix} \begin{pmatrix} I_k \oplus 1 & S_k \oplus \lambda_{k+1} \\ S_k \oplus \lambda_{k+1} & I_k \oplus 1 \end{pmatrix} \begin{pmatrix} U_k^* \oplus u_{k+1}^* & 0 \\ 0 & V_k \oplus v_{k+1} \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} U_k U_k^* \oplus u_{k+1} u_{k+1}^* & U_k S_k V_k \oplus u_{k+1} \lambda_{k+1} v_{k+1} \\ V_k^* S_k U_k^* \oplus v_{k+1}^* \lambda_{k+1} u_{k+1}^* & V_k^* V_k \oplus v_{k+1}^* v_{k+1} \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} I_{k+1} & U_{k+1} S_{k+1} V_{k+1} \\ V_{k+1}^* S_{k+1} U_{k+1}^* & I_{k+1} \end{pmatrix} \ge 0$$

$$\iff \begin{pmatrix} I_{k+1} & A_{k+1} \\ A_{k+1}^* & I_{k+1} \end{pmatrix} \ge 0, \text{ where } A_{k+1} := U_{k+1} S_{k+1} V_{k+1}$$

$$\iff I_{k+1} - A_{k+1}^* A_{k+1} \ge 0.$$

Therefore,  $||A_n|| \le 1 \iff I_n - A_n^*A_n \ge 0$  is true for all  $n \in N$ .

In view of Theorem 1, the following problem is of interest:

**Question**: Is it true that the graph  $G(S_n)$  of a real symmetric matrix  $S_n$  with *n* vertices having a loop at every vertex has the contractive completion property if and only if it is chordal?

**Theorem 2** For  $n \ge 2$ ,  $S_n$  has the positive completion property if and only if  $\prod_{i=1}^n a_i > 0$ . **Proof of Theorem 2** ( $\Longrightarrow$ ): We prove it using Mathematical Induction.

For n = 2, we let  $a_1a_2 = 0$ . Without loss of generality, we let  $a_1 = 0$ . Then  $S_2 = \begin{pmatrix} 0 & x_1 \\ x_1 & a_2 \end{pmatrix} \ge 0$ . If  $x_1 \ne 0$ , then det  $S_2 = -x_1^2 < 0$  and  $S_2$  is not positive and it is a contradiction to our assumption. Thus,  $x_1 = 0$  and  $S_2 \notin M_2(C)$  which drives a contradiction. Therefore the case  $a_1a_2 = 0$  cannot occur.

Let  $a_1a_2 < 0$ . Then either  $a_1 < 0$  or  $a_2 < 0$  but not both. By Sylvester's Criterion for

Positive Semidefinite Matrices, the conditions  $a_1 \ge 0$  and  $a_2 \ge 0$  must be satisfied. Therefore,  $a_1a_2 < 0$  cannot occur. Therefore, by the above two arguments, we have that  $a_1a_2 > 0$ .

For n = 3, we let  $a_1a_2a_3 = 0$ . Without loss of generality, we let  $a_1 = 0$ . By a similar argument given above, the case  $a_1a_2a_3 = 0$  cannot occur. Similary, by Sylvester's Criterion for Positive Semidefinite Matrices and the above case,  $a_1a_2a_3 < 0$  cannot occur. Therefore, by the above two arguments, we have that  $a_1a_2a_3 > 0$ .

Using Mathematical Induction, we assume that n = k is true.

For n = k + 1 we have the matrix

$$S_{k+1} = \begin{pmatrix} a_1 & x_1 & x_2 & \cdots & x_{\frac{(k-1)k}{2}+1} \\ x_1 & a_2 & x_3 & \cdots & x_{\frac{(k-1)k}{2}+2} \\ x_2 & x_3 & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & a_k & x_{\frac{k(k+1)}{2}} \\ x_{\frac{(k-1)k}{2}+1} & x_{\frac{(k-1)k}{2}+2} & \cdots & x_{\frac{k(k+1)}{2}} & a_{k+1} \end{pmatrix}$$

If  $\prod_{i=1}^{k+1} a_i \leq 0$ , then we will get a contradiction.

Case 1: Suppose  $\prod_{i=1}^{k+1} a_i = 0$ . Since we know that  $\prod_{i=1}^k a_i > 0$ , the diagonal entry  $a_{k+1}$  must equal zero. By the Nested Determinants Test (or Choleski's Algorithm) property (iv) we have  $x_1 = x_1 = \ldots = x_{\frac{(k-1)k}{2}+1} = 0$  since by assumption  $S_{k+1} \ge 0$ . But this is a contradiction since our  $S_{k+1}$  matrix is now our  $k \times k$  matrix  $S_k$ . Therefore, suppose  $\prod_{i=1}^{k+1} a_i = 0$  cannot occur.

Case 2: Suppose  $\prod_{i=1}^{k+1} a_i < 0$ . If  $\prod_{i=1}^{k+1} a_i < 0$ , then the entry  $a_{k+1} < 0$  since we know that  $\prod_{i=1}^{k} a_i > 0$ . But, by Sylvester's Criterion for Positive Semi-Definite matrices, all principal minors must be non-negative and the diagonal entries  $a_1, a_2, \ldots, a_{k+1}$  are principal minors of our  $S_{k+1}$  matrix. Thus, we have a contradiction since  $\prod_{i=1}^{k+1} a_i < 0$ .

Hence by Cases 1,2,  $\prod_{i=1}^{k+1} a_i > 0$ . Therefore, if  $S_n$  has the positive completion property, then  $\prod_{i=1}^{n} a_i > 0$ , as desired.

(
$$\Leftarrow$$
): Suppose that  $\prod_{i=1}^{k+1} a_i > 0$ . Let  $x_1 = x_2 = \ldots = x_{\frac{k(k+1)}{2}} = 0$ . Then  $S_{k+1} \ge 0$ , so for

 $n \ge 2$ ,  $S_n$  has the positive completion property.

**Theorem 3** For  $n \ge 2$ , consider  $S_n$  with  $\prod_{i=1}^n a_i > 0$  and unknown  $x_i$ , where  $1 \le i \le \frac{k(k+1)}{2}$ . Then  $S_n$  has the positive completion property with  $x_1 = x_2 = \ldots = x_{\frac{k(k+1)}{2}} = 0$ .

**Proof of Theorem 3** It is clear from Theorem 2 that  $S_n$  has the positive completion property, because  $\prod_{i=1}^{n} a_i > 0$ . If  $x_1 = x_2 = \ldots = x_{\frac{k(k+1)}{2}} = 0$ , then by Sylvester's Criterion for Positive Semi-Definite matrices,  $S_n$  has the positive completion property.

We observe that the following example gives a negative answer for Problem A, because the graph  $G(S_4)$  of  $S_4$  is chordal.



Figure 2.1: Graph  $G(L_3)$  in Example 4.

Example 4 Let 
$$L_3 := S_3(\frac{1}{2}, \frac{1}{2}, -\frac{7499}{15000}; \frac{1}{100}, \frac{\sqrt{7499}}{100}, x) = \begin{pmatrix} \frac{1}{2} & \frac{1}{100} & \frac{\sqrt{7499}}{100} \\ \frac{1}{100} & \frac{1}{2} & x \\ \frac{\sqrt{7499}}{100} & x & -\frac{7499}{15000} \end{pmatrix} \in M_3(R).$$

Then  $L_3$  is well-posed, but not soluble for any  $x \in R$ .

#### **Proof of Example 4**

**Claim 1:**  $L_3$  is well-posed.

**Proof of Claim 1:** The absolute values of the diagonal entries of  $L_3$  are less than 1. So it suffices to show that the following two submatrices are contractive.

$$L_{3}[1] := \begin{pmatrix} \frac{1}{2} & \frac{1}{100} \\ \frac{1}{100} & \frac{1}{2} \end{pmatrix} \text{ and } L_{3}[2] := \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{7499}}{100} \\ \frac{\sqrt{7499}}{100} & -\frac{7499}{15000} \end{pmatrix}$$

Since 
$$P(L_3[1]) := I - (L_3[1])^* L_3[1] = \begin{pmatrix} \frac{7499}{10000} & -\frac{1}{100} \\ -\frac{1}{100} & \frac{7499}{10000} \end{pmatrix}$$
 and  $\det(P(L_3[1])) = \frac{56225001}{100000000}$ , by the

Nested Determinants Test (or Choleski's Algorithm) in Lemma 14,  $P(L_3[1])$  is positive semi-definite and so  $L_3[1]$  is contractive by Lemma 13.

Similarly, since 
$$P(L_3[2]) = \begin{pmatrix} \frac{1}{10000} & -\frac{\sqrt{7499}}{1500000} \\ -\frac{\sqrt{7499}}{1500000} & \frac{37499}{225000000} \end{pmatrix}$$
 and  $\det(P(L_3[2])) = \frac{1}{75000000}$ , by

the Nested Determinants Test (or Choleski's Algorithm) again,  $L_3[2]$  is contractive. Therefore, we prove **Claim 1**.

**Claim 2:**  $L_3$  is not soluble for any  $x \in R$ .

**Proof of Claim 2:** Suppose that  $L_3$  is soluble for some  $x_0 \in R$ . Then by Lemma 13,  $P(L_3)$  is positive. Note that

$$P(L_3) = \begin{pmatrix} 0 & -\frac{\sqrt{7499}}{100}x_0 - \frac{1}{100} & -\frac{1}{100}x_0 - \frac{\sqrt{7499}}{1500000} \\ -\frac{\sqrt{7499}}{100}x_0 - \frac{1}{100} & \frac{7499}{10000} - x_0^2 & -\frac{1}{15000}x_0 - \frac{\sqrt{7499}}{10000} \\ -\frac{1}{100}x_0 - \frac{\sqrt{7499}}{1500000} & -\frac{1}{15000}x_0 - \frac{\sqrt{7499}}{10000} & \frac{37499}{225000000} - x_0^2 \end{pmatrix}.$$

By Lemma 14 (iii), the positivity of  $P(L_3)$  implies that

$$-\frac{\sqrt{7499}}{100}x_0 - \frac{1}{100} = -\frac{1}{100}x_0 - \frac{\sqrt{7499}}{1500000} = 0$$

and

$$\left(\begin{array}{ccc} \frac{7499}{10000} - x_0^2 & -\frac{1}{15000}x_0 - \frac{\sqrt{7499}}{10000} \\ -\frac{1}{15000}x_0 - \frac{\sqrt{7499}}{10000} & \frac{37499}{225000000} - x_0^2 \end{array}\right) \ge 0,$$

i.e.,

$$x_0 = -\frac{1}{\sqrt{7499}}, x_0 = -\frac{\sqrt{7499}}{15000}, \text{ and } -0.008165 \le x_0 \le 0.008165, \text{ simultaneously.}$$

This is a contradiction. So  $L_3$  is not soluble for any  $x \in R$ . Therefore, by **Claims 1** and **2**, we have

the desired results.

**Remark 5** Let 
$$K_3 := S_3(\frac{1}{2}, \frac{1}{2}, -\frac{7499}{15000}; \frac{1}{100}, x, \frac{\sqrt{7499}}{100}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{100} & x \\ \frac{1}{100} & \frac{1}{2} & \frac{\sqrt{7499}}{100} \\ x & \frac{\sqrt{7499}}{100} & -\frac{7499}{15000} \end{pmatrix} \in M_3(R)$$

Then, we observe that  $K_3$  and  $L_3$  are essentially equivalent to each other (where essentially equivalent means that there exists a permutation matrix  $P_{\pi}$  such that  $K_3 = P_{\pi}^{-1}L_3P_{\pi}$ , so  $K_3$  is not soluble for any  $x \in R$ .

We can observe that the following example gives a negative answer for Problem A, because the graph  $G(S_4)$  of  $S_4$  is chordal.



Figure 2.2: Graph  $G(L_4)$  in Example 6.

Example 6 Let  $L_4 := S_4(1, \frac{1}{2}, \frac{1}{2}, -\frac{7499}{15000}; 0, 0, 0, \frac{1}{100}, x, \frac{\sqrt{7499}}{100}) \in M_4(R)$ , where  $L_4 = \begin{pmatrix} 1 & 0 \\ 0 & (K_3) \end{pmatrix}.$ 

Then  $L_4$  is well-posed, but not soluble for any  $x \in R$ .

#### **Proof of Example 6**

Claim 1:  $S_4$  is well-posed.

## **Proof of Claim 1:**

The absolute values of the diagonal entries are less than 1. So it suffices to show that the  $2 \times 2$  and  $3 \times 3$  submatrices are contractive. They are as the following:

$$\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -\frac{7499}{15000} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & \frac{1}{100} \\ \frac{1}{100} & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{7499}}{100} \\ \frac{\sqrt{7499}}{100} & -\frac{7499}{15000} \end{pmatrix}, \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{100} \\ 0 & \frac{1}{2} & \frac{\sqrt{7499}}{100} \\ 0 & \frac{1}{2} & \frac{\sqrt{7499}}{100} \\ 0 & \frac{\sqrt{7499}}{100} & -\frac{7499}{15000} \end{pmatrix}.$$

By the proof in Example 4, they are all contractive. So  $L_4$  is well-posed.

**Claim 2:**  $L_4$  is not soluble for any  $x \in R$ .

## **Proof of Claim 2:**

By Examples 4, it is clear.

Thus, by **Claims 1** and **2**,  $L_4$  is not soluble for any  $x \in R$ .

Next we have:

## **Theorem 7**

Consider  $S_n$  (n = 1, 2, 3) and some specified values  $b_i \in R$  with  $|b_i| \le 1$  and  $i \in \left\{1, 2, \cdots, \frac{(n-1)n}{2}\right\}$ . If  $S_n$  is well-posed, then we have:

- a) If n = 1, 2, then  $S_n$  is soluble.
- b) If  $G(S_3)$  is one of the two graphs (iii) and (iv) in Figure 2.3, then  $S_3$  is always soluble.
- c) If  $G(S_3)$  is (v) in Figure 2.3, then  $S_3$  can't be soluble for any values of  $x_i$ 's.

## **Proof of Theorem 7**

a) is clear.

For b) and c), we note that there are only seven cases, that is,

$$S_{3}(a_{1},a_{2},a_{3};x_{1},x_{2},x_{3}), S_{3}(a_{1},a_{2},a_{3};b_{1},x_{2},x_{3}), S_{3}(a_{1},a_{2},a_{3};x_{1},b_{2},x_{3}),$$
  

$$S_{3}(a_{1},a_{2},a_{3};x_{1},x_{2},b_{3}), S_{3}(a_{1},a_{2},a_{3};b_{1},b_{2},x_{3}), S_{3}(a_{1},a_{2},a_{3};b_{1},x_{2},b_{3}),$$
  
and  $S_{3}(a_{1},a_{2},a_{3};x_{1},b_{2},b_{3}).$ 

Now, we can see that

$$S_3(a_1, a_2, a_3; b_1, x_2, x_3), S_3(a_1, a_2, a_3; x_1, b_2, x_3), \text{ and } S_3(a_1, a_2, a_3; x_1, x_2, b_3)$$
 (2.3)

are essentially equivalent and

$$S_3(a_1, a_2, a_3; b_1, b_2, x_3), S_3(a_1, a_2, a_3; b_1, x_2, b_3), \text{ and } S_3(a_1, a_2, a_3; x_1, b_2, b_3).$$
 (2.4)

are essentially equivalent. Therefore, by Lemma 15, it suffices to consider three cases as follows:

$$S_3(a_1, a_2, a_3; x_1, x_2, x_3), S_3(a_1, a_2, a_3; b_1, x_2, x_3), \text{ and } S_3(a_1, a_2, a_3; b_1, b_2, x_3).$$

If  $G(S_3)$  is one of the two graphs (iii) and (iv) in Figure 2.3, then  $S_3$  is one of the following:

$$S_3(a_1, a_2, a_3; x_1, x_2, x_3)$$
 and  $S_3(a_1, a_2, a_3; b_1, x_2, x_3)$ .

If we put  $x_i = 0$  (i = 1, 2, 3), they all are contractive, so that  $S_3$  is soluble.

If  $G(S_3)$  is (v) in Figure 2.3. It follows from Example 4 and Remark 5 that  $S_3(a_1, a_2, a_3; x_1, b_2, b_3)$  can't be soluble.

Therefore, we complete our proof.



Figure 2.3: Graphs  $G(S_n)$  of  $S_n$  (n = 1, 2, 3)



Figure 2.4: Graphs  $G(S_4)$  of  $S_4$  which are soluble in Theorem 8

## **Theorem 8**

Consider  $S_4 \in M_4(R)$  (or  $G(S_4)$ ) and some specified values  $b_i \in R$  with  $|b_i| \le 1$ , where  $i \in \{1, 2, \dots, 6\}$ . Let  $G(S_4)$  be well-posed. Then,  $G(S_4)$  is the disjoint union of completely connected components if and only if  $S_4$  is soluble.

#### **Proof of Theorem 8**

 $(\Longrightarrow)$ 

If  $G(S_4)$  is the disjoint union of completely connected components, then  $G(S_4)$  is one of the five graphs in Figure 2.4.

If the  $G(S_4)$  is one of the four shapes as in Figure 2.4 (i)-(iv). Then  $S_4$  of  $G(S_4)$  is one of the following four types:

$$S_4(a_1, a_2, a_3, a_4; x_1, \dots, x_6), S_4(a_1, a_2, a_3, a_4; b_1, x_2, \dots, x_6),$$
  

$$S_4(a_1, a_2, a_3, a_4; b_1, b_2, x_3, \dots, x_6), \text{ or } S_4(a_1, a_2, a_3, a_4; x_1, x_2, x_3, b_4, b_5, b_6)$$

We let  $x_i = 0$  for all unspecified  $\{x_i\}$  in the above four types' matrices  $S_4$ . Then, by well-posedness,  $S_4$  is a contraction, i.e., it is soluble.

If the graph of  $G(S_4)$  is the shape as in Figure 2.4 (v). Then the  $S_4$  of  $G(S_4)$  is

$$S_4(a_1, a_2, a_3, a_4; b_1, b_2, b_3, b_4, b_5, b_6)$$

and it is clearly a contraction by well-posedness.

Therefore, if  $G(S_4)$  is the disjoint union of completely connected components, then  $S_4$  is soluble.

( $\Leftarrow$ ) Using the contrapositive, we will show that if  $G(S_4)$  is not the disjoint union of completely connected components, then  $S_4$  is not soluble. If  $G(S_4)$  is not a disjoint union of completely connected components, then  $G(S_4)$  doesn't belong to the graphs in Figure 2.4, so that  $G(S_4)$  is one of graphs in Figures 2.5, 2.6, and 2.7.



Figure 2.5: Graphs  $G(S_4)$  of  $S_4$  which are in **Case 1** in Theorem 8

**Case 1:** If  $G(S_4)$  is a shape as in Figure 2.5, then  $S_4$  is a matrix whose four  $\{x_i\}$  are unspecified.

**Subcase 1:** By Lemma 15, we first observe that the graphs (i), (iii) and (vi) in Figure 2.5 are essentially equivalent. Let  $G(S_4)$  be the shape as in Figure 2.5 (i). By Lemma 15, the matrix

 $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_{1} = S_{4}(a_{1}, a_{2}, a_{3}, a_{4}; b_{1}, b_{2}, x_{3}, \cdots, x_{6}) = \begin{pmatrix} a_{1} & b_{1} & b_{2} & x_{3} \\ b_{1} & a_{2} & x_{4} & x_{5} \\ b_{2} & x_{4} & a_{3} & x_{6} \\ x_{3} & x_{5} & x_{6} & a_{4} \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_1 & b_1 & b_2 \\ b_1 & a_2 & x_4 \\ b_2 & x_4 & a_3 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_1$  is not

soluble.

**Subcase 2:** By Lemma 15, we also observe that graphs (ii) and (v) in Figure 2.5 are essentially equivalent. Let  $G(S_4)$  be the shape as in Figure 2.5 (ii). By Lemma 15, the matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_{2} = S_{4}(a_{1}, a_{2}, a_{3}, a_{4}; b_{1}, b_{4}) = \begin{pmatrix} a_{1} & b_{1} & x_{2} & x_{3} \\ b_{1} & a_{2} & b_{4} & x_{5} \\ x_{2} & b_{4} & a_{3} & x_{6} \\ x_{3} & x_{5} & x_{6} & a_{4} \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_1 & b_1 & x_2 \\ b_1 & a_2 & b_4 \\ x_2 & b_4 & a_3 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_2$  is not

soluble.

Subcase 3: Let the graphs of  $G(S_4)$  be the shape as in Figure 2.5 (iv). By Lemma 15, the

matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_{3} = S_{4}(a_{1}, a_{2}, a_{3}, a_{4}; b_{2}, b_{4}) = \begin{pmatrix} a_{1} & x_{1} & b_{2} & x_{3} \\ x_{1} & a_{2} & b_{4} & x_{5} \\ b_{2} & b_{4} & a_{3} & x_{6} \\ x_{3} & x_{5} & x_{6} & a_{4} \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_1 & x_1 & b_2 \\ x_1 & a_2 & b_4 \\ b_2 & b_4 & a_3 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_3$  is not

soluble.



Figure 2.6: Graphs  $G(S_4)$  of  $S_4$  which are in **Case 2** in Theorem 8

**Case 2:** If  $G(S_4)$  is a shape as in Figure 2.6, then  $S_4$  is a matrix whose three  $\{x_i\}$  are unspecified. Subcase 4: Let the graphs of  $G(S_4)$  be the shape as in Figure 2.6 (i). By Lemma 15, the matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_4 = S_4(a_1, a_2, a_3, a_4; b_3, b_5, b_6) = \begin{pmatrix} a_1 & x_1 & x_2 & b_3 \\ x_1 & a_2 & x_4 & b_5 \\ x_2 & x_4 & a_3 & b_6 \\ b_3 & b_5 & b_6 & a_4 \end{pmatrix}$$

whose submatrix 
$$\begin{pmatrix} a_2 & x_4 & b_5 \\ x_4 & a_3 & b_6 \\ b_5 & b_6 & a_4 \end{pmatrix}$$
 may not be soluble by Theorem 7 (c). Therefore,  $N_4$  is not

soluble.

Subcase 5: By Lemma 15, we note that the graphs (ii) and (iv) in Figure 2.6 are essentially equivalent. Let  $G(S_4)$  be the shape as in Figure 2.6 (ii). By Lemma 15, the matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_5 = S_4(a_1, a_2, a_3, a_4; b_2, b_5, b_6) = \begin{pmatrix} a_1 & x_1 & b_2 & x_3 \\ x_1 & a_2 & x_4 & b_5 \\ b_2 & x_4 & a_3 & b_6 \\ x_3 & b_5 & b_6 & a_4 \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_2 & x_4 & b_5 \\ x_4 & a_3 & b_6 \\ b_5 & b_6 & a_4 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_5$  is not soluble.

**Subcase 6:** Let  $G(S_4)$  be the shape as in Figure 2.6 (iii). By Lemma 15, the matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_{6} = S_{4}(a_{1}, a_{2}, a_{3}, a_{4}; b_{3}, b_{4}, b_{5}) = \begin{pmatrix} a_{1} & x_{1} & x_{2} & b_{3} \\ x_{1} & a_{2} & b_{4} & b_{5} \\ x_{2} & b_{4} & a_{3} & x_{6} \\ b_{3} & b_{5} & x_{6} & a_{4} \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_2 & b_4 & b_5 \\ b_4 & a_3 & x_6 \\ b_5 & x_6 & a_4 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_6$  is not soluble.



Figure 2.7: Graphs  $G(S_4)$  of  $S_4$  which are in **Cases 3,4** in Theorem 8

**Case 3:** If the graphs of  $G(S_4)$  is a shape as in Figure 2.7 (i), (ii), (iii), then  $S_4$  is a matrix whose two  $\{x_i\}$  are unspecified.

**Subcase 7:** By Lemma 15, we note that the graphs (i) and (ii) in Figure 2.7 are essentially equivalent. Let  $G(S_4)$  be the shape as in Figure 2.7 (i). By Lemma 15, the matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_7 = S_4(a_1, a_2, a_3, a_4; b_1, b_4, b_5, b_6) = \begin{pmatrix} a_1 & b_1 & x_2 & x_3 \\ b_1 & a_2 & b_4 & b_5 \\ x_2 & b_4 & a_3 & b_6 \\ x_3 & b_5 & b_6 & a_4 \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_1 & b_1 & x_2 \\ b_1 & a_2 & b_4 \\ x_2 & b_4 & a_3 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_7$  is not soluble.

**Subcase 8:** Let  $G(S_4)$  be the shape as in Figure 2.7 (iii). By Lemma 15, the matrix  $S_4$  of

 $G(S_4)$  is essentially equivalent to

$$N_8 = S_4(a_1, a_2, a_3, a_4; b_1, b_3, b_4, b_6) = \begin{pmatrix} a_1 & b_1 & x_2 & b_3 \\ b_1 & a_2 & b_4 & x_5 \\ x_2 & b_4 & a_3 & b_6 \\ b_3 & x_5 & b_6 & a_4 \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_1 & b_1 & x_2 \\ b_1 & a_2 & b_4 \\ x_2 & b_4 & a_3 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore,  $N_8$  is not

**Case 4:** Let  $G(S_4)$  be the shape as in Figure 2.7 (iv). Then  $S_4$  is a matrix whose one  $x_i$  is unspecified. By Lemma 15, the matrix  $S_4$  of  $G(S_4)$  is essentially equivalent to

$$N_{9} = S_{4}(a_{1}, a_{2}, a_{3}, a_{4}; b_{2}, b_{3}, b_{4}, b_{5}, b_{6}) = \begin{pmatrix} a_{1} & x_{1} & b_{2} & b_{3} \\ x_{1} & a_{2} & b_{4} & b_{5} \\ b_{2} & b_{4} & a_{3} & b_{6} \\ b_{3} & b_{5} & b_{6} & a_{4} \end{pmatrix}$$

whose submatrix  $\begin{pmatrix} a_1 & x_1 & b_2 \\ x_1 & a_2 & b_4 \\ b_2 & b_4 & a_3 \end{pmatrix}$  may not be soluble by Theorem 7 (c). Therefore, N<sub>9</sub> is not soluble.

**Case 5:** Let  $G(S_4)$  be the shape as in Figure 2.4 (v). Then, all  $x_i$ 's are specified. In this case,  $N_5 = S_4(a_1, a_2, a_3, a_4; b_1, b_2, b_3, b_4, b_5, b_6)$  is clearly a contraction by well-posedness.

Therefore, by **Cases 1-5**, if  $S_4$  is soluble, then  $G(S_4)$  is the disjoint union of completely connected components, as desired.

#### End of the proof of Theorem 8

#### Theorem 9

Consider  $S_5$  (resp.  $G(S_5)$ ) and some specified values  $b_i \in R$  with  $|b_i| \le 1$ , where  $i \in \{1, 2, \dots, 10\}$ . Let  $G(S_5)$  be well-posed. Then,

(a)  $G(S_5)$  is the disjoint union of completely connected components if and only if  $S_5$  is soluble.

(b) If the graph of the partial matrix  $S_5$  is not in Figure 2.8, then it can't be soluble for any values of  $x_i$ 's.

## **Proof of Theorem 9**



Figure 2.8: Graphs  $G(S_5)$  of  $S_5$  which are soluble in Theorem 9

 $(\Longrightarrow)$  If  $G(S_5)$  is the disjoint union of completely connected components, then  $G(S_5)$  is one of the seven graphs in Figure 2.8.

**Case 1:** Let  $G(S_5)$  be one of the graphs in Figure 2.8 (i), (ii), (iii), (iv), (v), and (vi). Then choose  $x_i = 0$  for all  $\{x_i\}$  and by well-posedness,  $S_5$  is soluble.

**Case 2:** Let the graph  $G(S_5)$  be like the graph in Figure 2.8 (vii). In this case,  $S_5$  is clearly a contraction by well-posedness.

( $\Leftarrow$ ) We prove it by the contrapositive. If  $G(S_5)$  is not a disjoint union of completely connected components, then  $G(S_5)$  doesn't belong to the graphs in Figure 2.8.

**Case 3:** Only eight of the  $x_i$ 's are unspecified in the matrix  $S_5$ : Since  $G(S_5)$  is not a disjoint union of completely connected components, the graph  $G(S_5)$  of the partial matrix  $S_5$  is the second graph in Figure 2.9 (i) given below. By Theorem 7, we note that the submatrix corresponding to the second graph (in the dashed part with the lightgray color) in Figure 2.9 (i) is not soluble. Thus,  $S_5$  whose graph is the second one in Figure 2.9 (i) is not soluble.



Figure 2.9: Graphs  $G(S_5)$  of  $S_5$  which are in **Cases 3,4,5** in Theorem 9

**Case 4:** Only seven of the  $x_i$ 's are unspecified in the matrix  $S_5$ : The graph  $G(S_5)$  of the partial matrix  $S_5$  is one of the graphs in Figure 2.9 (ii) given above. By Theorem 8, the submatrix corresponding to the first graph (in the dashed part with the lightgray color) in Figure 2.9 (ii) is not soluble.

By Theorem 7, the submatrix corresponding to the second graph (in the dashed part with the lightgray color) in Figure 2.9 (ii) is not soluble.

By Theorem 8, the submatrix corresponding to the third graph (in the dashed part with the lightgray color) in Figure 2.9 (ii) is not soluble. Thus,  $S_5$  whose graph is one of those in Figure 2.9 (ii) is not soluble.

**Case 5:** Only six of the  $x_i$ 's are unspecified in the matrix  $S_5$ : The graph  $G(S_5)$  of the partial matrix  $S_5$  is one of the graphs in Figure 2.9 (iii) given above. With similar arguments used in **Case** 4,  $S_5$  whose graph is one of those in Figure 2.9 (iii) is not soluble.

**Case 6:** Only five of the  $x_i$ 's are unspecified in the matrix  $S_5$ :

The graph  $G(S_5)$  of the partial matrix  $S_5$  is one of the graphs in Figure 2.10 given below. By Theorem 7 or Theorem 8, since the subgraph corresponding to one of the graphs  $G(S_5)$  (in the dashed part with the lightgray color) in Figure 2.10 is not soluble,  $S_5$  whose graph is one of those in Figure 2.10 (i) is not soluble.

**Case 7** Only four of the  $x_i$ 's are unspecified in the matrix  $S_5$ :

The graph  $G(S_5)$  of the partial matrix  $S_5$  is one of the graphs in Figure 2.10 (ii).

Since  $G(S_5)$  is not a disjoint union of completely connected components,  $G(S_5)$  is the first, second, or fourth one in Figure 2.10. For the first, second, and fourth graphs of  $G(S_5)$ , the subgraph corresponding to one of the graphs of  $G(S_5)$  (in the dashed part with the lightgray color) in Figure 2.10 is not soluble by Theorem 7 or Theorem 8. Hence,  $S_5$  whose graph is one of the first, second, and fourth graphs in Figure 2.10 is not soluble.



Figure 2.10: Graphs  $G(S_5)$  of  $S_5$  which are in **Cases 6,7** in Theorem 9

**Case 8:** Only three of the  $x_i$ 's are unspecified in the matrix  $S_5$ :

The graph  $G(S_5)$  of the partial matrix  $S_5$  is one of the graphs in Figure 2.11 (i) given below. With the same arguments in **Case 7**,  $S_5$  whose graph is one of the graphs in Figure 2.11 (i) is not soluble.

**Case 9:** Only two of the  $x_i$ 's are unspecified in the matrix  $S_5$ :

The graph  $G(S_5)$  of the partial matrix  $S_5$  is one of the graphs in Figure 2.11 (ii) given above. Similarly,  $S_5$  whose graph is one of the graphs in Figure 2.11 (ii) is not soluble.



Figure 2.11: Graphs  $G(S_5)$  of  $S_5$  which are in **Cases 8,9,10** in Theorem 9

**Case 10**: Only one of the  $x_i$ 's is unspecified in the matrix  $S_5$ :

In this case, all matrices of the graphs  $G(S_5)$  are equivalent to  $S_5(a_1, \dots, a_5; x_1, b_2, b_3, \dots, b_9, b_{10})$ . By Theorem 8, since the submatrix  $S_4(a_1, \dots, a_4; x_1, b_2, b_3, b_5, b_6, b_8)$  is not soluble,  $S_5$  which has only one unspecified  $x_i$  is not soluble. Therefore, by **Cases 3-10**, if  $S_5$  is soluble, then  $G(S_5)$  is the disjoint union of completely connected components, as desired.

## End of the proof of Theorem 9

In view of Theorems 7, 8, and 9, we have:

#### **Theorem 10**

Consider  $S_n$  and some specified values  $b_i \in R$  with  $|b_i| \le 1$  and  $i \in \{1, 2, \dots, \frac{(n-1)n}{2}\}$ . Let  $G(S_n)$  be well-posed. For  $1 \le n \le 5$ , the  $G(S_n)$  is the disjoint union of completely connected components if and only if  $S_n$  is soluble.

#### Remark 11

We consider  $L_5 := \begin{pmatrix} 1 & 0 \\ 0 & (L_4) \end{pmatrix} \in M_5(R)$ , where  $L_4$  is as in Example 6. Then  $L_5$  is well-posed, but not soluble for any  $x \in R$ . Thus, we need to investigate Problem A (ii) for  $G(S_5)$ , i.e., characterize all graphs  $G(S_5)$  having the contractive completion property. However, in comparison with  $S_n$  $(1 \le n \le 4)$ , the possible cases of the well-posed partial matrices of S<sub>5</sub> are more than 1000, because

$$\sum_{n=1}^{10} \left(\begin{array}{c} 10\\n\end{array}\right) = 1023.$$

We expect that we can solve the matrix completion problem for  $S_n$ ,  $n \ge 2$ , if we use the graph theoretic method used in Theorems 8 and 9.

In view of Theorems 8 and 9, we have:

## **Conjecture 12**

For  $n \in N$ , consider  $S_n$  and some specified values  $b_i \in R$  with  $|b_i| \le 1$  and  $i \in \left\{1, 2, \cdots, \frac{(n-1)n}{2}\right\}$ . Let  $G(S_n)$  be well-posed for some  $x_i = b_i$ . If the  $G(S_n)$  is the disjoint union of completely connected components, then  $S_n$  is always soluble.

## CHAPTER III

#### APPENDIX

For the reader's convenience, in this section, we gather several well known auxiliary results which are needed for the proofs of the main results in this article.

**Lemma 13** For  $n \times n$  matrix M is a contraction if and only if the matrix

$$P(M) := I - MM^* \tag{3.1}$$

is positive semi-definite (in symbols,  $P(M) \ge 0$ ), where *I* is the identity matrix and  $M^*$  is the adjoint of *M*.

Recall the following version of the Nested Determinants Test (or Choleski's Algorithm).

Lemma 14 Assume

$$P := (p_{ij})_{i,j=1}^n := \begin{pmatrix} u & \mathbf{t} \\ \mathbf{t}^* & P_0 \end{pmatrix},$$

where  $P_0$  is an  $(n-1) \times (n-1)$  matrix, **t** is a row vector, and *u* is a real number.

- (i) If  $P_0$  is invertible, then det  $P = \det P_0(u \mathbf{t}P_0^{-1}\mathbf{t}^*)$ .
- (ii) If  $P_0$  is invertible and positive, then  $P \ge 0 \iff (u \mathbf{t}P_0^{-1}\mathbf{t}^*) \ge 0 \iff \det P \ge 0$ .
- (iii) If u > 0 then  $P \ge 0 \iff P_0 \mathbf{t}^* u^{-1} \mathbf{t} \ge 0$ .
- (iv) If  $P \ge 0$  and  $p_{ii} = 0$  for some  $i, 1 \le i \le n$ , then  $p_{ij} = p_{ji} = 0$  for all  $j = 1, \dots, n$ .

**Lemma 15** For  $A \in M_n(R)$  and any permutation matrix  $P_{\pi}$ , A is a contraction if and only if  $P_{\pi}^{-1}AP_{\pi}$  is a contraction.

## CHAPTER IV

## FUTURE WORK AND OPEN QUESTIONS

We will investigate **Conjecture 12** and update it as follows:

For  $n \in N$ , consider  $S_n$  and some specified values  $b_i \in R$  with  $|b_i| \le 1$  and  $i \in \left\{1, 2, \dots, \frac{(n-1)n}{2}\right\}$ . Let  $G(S_n)$  be well-posed for some  $x_i = b_i$ . Then we have that  $G(S_n)$  is the disjoint union of completely connected components if and only if  $S_n$  is always soluble.

## REFERENCES

- Chun S. et al. (In press). "Contractive symmetric matrix completion problems related to graphs". In: *Linear and Multilinear Algebra*.
- Curto R., Hernandez C., and De Oteyza E. (1996). "Contractive completions of Hankel partial contractions". In: *Journal of mathematical analysis and applications* 203.2, pp. 303–332.
- Curto R., Lee S. H., and Yoon J. (2012). "Completion of Hankel partial contractions of extremal type". In: *J. Math. Phys* 53, p. 123526.
- Curto R. and Lee W. Y. (2001). "Joint hyponormality of Toeplitz pairs". In: *Memoirs Amer. Math. Soc* 712.
- Grone R. et al. (1984). "Positive definite completions of partial Hermitian matrices". In: *Linear Algebra Appl.* 58, pp. 109–124.
- Hogben L. (2003). "Positive definite completions of partial Hermitian matrices". In: *Numer. Linear Algebra Appl.* 373, pp. 13–49.
- Kim I. H., Yoo S., and Yoon J. (2015). "Matrix completion problems for pairs of related classes of matrices". In: J. Korean Math. Soc. 52, pp. 1003–1021.
- Krzywonski T. (2020). "Adjacency and connectivity matrices to airline connections". In: *Fall 2020 Math Project*.

Paulsen V. (1986). "Completely bounded maps and dilations". In: *Pitmam Research Notes in Mathematics Series* 146.

Smul'jan J. L. (1959). "An operator Hellinger integral". In: Mat. Sb. (N.S.) 49, pp. 381–430.

Woerdeman H. J. (1990). "Strictly contractive and positive completions for block matrices". In: *Linear Alg. and Its Appl.* 136, pp. 63–105.

#### **BIOGRAPHICAL SKETCH**

Louis Christopher (louiscchristopher@gmail.com) graduated with his Associate of Arts from Tarrant County College, then transferred to Chadron State College where he graduated Summa Cum Laude with his Bachelor of Science in Mathematics with a minor in applied statistics. While at Chadron State College Louis became a member of Kappa Mu Epsilon Mathematics Honor Society. In August 2023, Louis graduated with a Master of Science in Mathematics with a concentration in applied mathematics. During Louis' time at the University of Texas Rio Grande Valley he was a National Science Foundation Scholar where he chose to research matrix completion problems and their graphs. This was a natural fit as he has always been fascinated by the power of matrix algebra. Outside of his direct academics, Louis has been working as a Mathematics Instructional Associate at Tarrant County College. There he has helped hundreds of students understand math from basic algebra to statistics and differential equations. Louis enjoys being outdoors walking his dog Buddy, mountain biking, and riding motocross along with indoor activities such climbing, ice skating, and dancing.