
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTRGV

8-2023

Robust and Uncertainty-Aware Software Vulnerability Detection Robust and Uncertainty-Aware Software Vulnerability Detection

Using Bayesian Recurrent Neural Networks Using Bayesian Recurrent Neural Networks

Orune Aminul
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Aminul, Orune, "Robust and Uncertainty-Aware Software Vulnerability Detection Using Bayesian Recurrent
Neural Networks" (2023). Theses and Dissertations - UTRGV. 1311.
https://scholarworks.utrgv.edu/etd/1311

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTRGV by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utrgv.edu%2Fetd%2F1311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1311?utm_source=scholarworks.utrgv.edu%2Fetd%2F1311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

ROBUST AND UNCERTAINTY-AWARE SOFTWARE VULNERABILITY DETECTION

USING BAYESIAN RECURRENT NEURAL NETWORKS

A Thesis

by

ORUNE AMINUL

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: Electrical Engineering

The University of Texas Rio Grande Valley

August 2023

ROBUST AND UNCERTAINTY-AWARE SOFTWARE VULNERABILITY DETECTION

USING BAYESIAN RECURRENT NEURAL NETWORKS

A Thesis
by

ORUNE AMINUL

COMMITTEE MEMBERS

Dr. Dimah Dera
Chair of Committee

Dr. Nantakan Wongkasem
Committee Member

Dr. Heinrich D. Foltz
Committee Member

August 2023

Copyright 2023 Orune Aminul

All Rights Reserved

ABSTRACT

Aminul, Orune, Robust and Uncertainty-Aware Software Vulnerability Detection using Bayesian

Recurrent Neural Networks. Master of Science (MS), August, 2023, 55 pp., 7 tables, 13 figures,

references, 76 titles.

Software systems are prone to code defects or vulnerabilities, resulting in several cy-

berattacks such as hacking, identity breach and information leakage leading to system failure.

Vulnerabilities in software systems have severe societal implications, including threats to public

safety, financial damage, and even risks to national security. Identifying and mitigating software

vulnerabilities is critical to protect organizations and societies from potential threats. Machine

learning algorithms have employed models and classify possible distributions in software source

code automatically. However, these algorithms are not robust to noise or malicious attacks and

cannot quantify uncertainty in the model’s output. Quantifying uncertainty in the vulnerability

detection mechanism can inform the user of possible noise or perturbation in the source codes

and holds the promise for the safe deployment of trustworthy algorithms in real-world security

applications. We develop a robust software vulnerability detection framework using Bayesian Re-

current Neural Networks (Bayesian SVD). The proposed models detect source code vulnerabilities

and simultaneously learn uncertainty in output predictions. The proposed Bayesian SVD adopts

variational inference and optimizes the variational posterior distribution defined over the model

parameters using the evidence lower bound (ELBO). Within each state, the first two moments of the

variational distribution are transmitted through the recurrent layers. At the SVD models’ output, the

predictive distribution’s mean indicates the vulnerability class, while the covariance matrix captures

the uncertainty information. Extensive experiments on benchmark datasets reveal (1) the robustness

of proposed models under noisy conditions and malicious attacks compared to the deterministic

counterpart and (2) significantly higher uncertainty when the model encountered high levels of

natural noise or malicious attacks, which serves as a warning for safe handling.

iii

DEDICATION

To my parents and sister, for your unwavering support and inspiration. Thank you for

believing in me and helping me achieve my goals. I dedicate this thesis to you both with all my

love.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis supervisor, Dr. Dimah Dera, for her

invaluable guidance, support, and encouragement throughout my Master’s program. Her insightful

feedback and constructive criticism have been instrumental in shaping this thesis.

I extend my appreciation to my thesis committee members, Dr. Nantakan Wongkasem

and Dr. Heinrich D. Foltz, for their time and feedback. Their feedback and suggestions have

greatly improved the thesis. Additionally, I sincerely appreciate Dr. Hasina Huq, the Chair of the

Department of Electrical & Computer Engineering, for her support and guidance throughout my

academic journey. I am grateful for the opportunities and resources provided by the department,

which have been instrumental in completing this thesis.

Finally, I would like to thank my parents and my elder sister for their unwavering support

and encouragement. Without their love and guidance, I would not have been able to complete this

Master’s program.

Thank you all for contributing to this thesis and helping me achieve this important milestone

in my academic journey.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER I. INTRODUCTION . 1

1.1 Motivation: Importance of Vulnerability Detection 1

1.1.1 Financial department . 1

1.1.2 Airport security . 2

1.2 Background and Problem Statement . 3

1.2.1 Problem Statement . 3

1.3 Research Objectives and Contributions . 4

CHAPTER II. LITERATURE REVIEW . 6

2.1 Vulnerability Detection with Deep Neural Networks 6

2.2 Recurrent Neural Networks (RNNs) . 8

2.2.1 Long Short-Term Memory (LSTM) . 11

2.2.2 Gated Recurrent Unit (GRU) . 14

2.3 Bayesian Inference in RNN . 17

CHAPTER III. METHODOLOGY . 19

3.1 Source code Preprocessing . 19

3.1.1 Tokenization . 20

3.1.2 Code Token Embedding . 21

3.2 Software Vulnerability Detection using Bayesian Sequence Models 23

3.2.1 Bayesian Formulation . 23

3.2.2 Variational inference . 24

3.3 Mathematical Basis of the Software Vulnerability Detection Methods 26

vi

3.3.1 Software Vulnerability Detection with Gated Recurrent Unit, SVD-GRU . 26

3.3.2 Software Vulnerability Detection with Long Short-Term Memory, SVD-
LSTM . 27

CHAPTER IV. EXPERIMENTAL ANALYSIS AND OUTCOMES 32

4.1 Experimental Setup. 32

4.1.1 Class-wise prediction. 34

4.1.2 Combined-class prediction. 34

4.1.3 Multi-head class prediction. 34

4.2 Dataset Selection for Model Development . 34

4.2.1 VDISC dataset. 35

4.2.2 Big-Vul dataset . 35

4.2.3 SeVC dataset . 36

4.3 Performance Evaluation. 37

4.3.1 Robustness and Noise Analysis. 37

4.4 Results and Discussion . 37

4.5 Self-Assessment through Uncertainty Analysis 40

CHAPTER V. FUTURE WORK . 46

CHAPTER VI. CONCLUSION . 48

REFERENCES . 49

BIOGRAPHICAL SKETCH . 55

vii

LIST OF TABLES

Page

Table 4.1: Hyperparameter . 33

Table 4.2: Statistics of the five different types of Common Weakness Enumeration (CWE)
vulnerabilities in the training, validation and testing sets of the Draper VDISC
dataset with 1.27 million C/C++ functions. 35

Table 4.3: Statistics of the four different types of vulnerability syntax in the training,
validation and testing sets of the SeVC dataset . 36

Table 4.4: The level of Gaussian noise (standard deviation (SD)) and the strength of adver-
sarial attacks (ε) applied for all the datasets in the experiments 38

Table 4.5: Draper VDISC test accuracy (in %) using SVD-GRU and deterministic GRU for
different types of vulnerabilities (C1, C2, C3, C4, C5, Combined and Multiclass
representing CWE-119, CWE-120, CWE-469, CWE-476, CWE-other, Combined
Classes and Multi Head Classes respectively) under Gaussian noise, and FGSM and
BIM adversarial attacks . 39

Table 4.6: Big-Vul test accuracy (in %) using Bayesian and deterministic models under
Gaussian noise, and FGSM and BIM adversarial attacks 40

Table 4.7: SeVC test accuracy (in %) using Bayesian and deterministic models for four
different types of vulnerability syntax (PU, LFC, AU, and AE representing Pointer
Usage, Library/API Function Call and Arithmetic Expression respectively) under
Gaussian noise, and FGSM and BIM adversarial attacks 40

viii

LIST OF FIGURES

Page

Figure 2.1: Basic Structure of Feed-Forward vs Recurrent neural network 9

Figure 2.2: Internal structure of RNN . 10

Figure 2.3: Internal structure of LSTM . 13

Figure 2.4: Internal structure of GRU . 15

Figure 3.1: Sequential representation of source code . 20

Figure 3.2: Data preprocessing . 20

Figure 3.3: Tokenization and embedding of input source code function 22

Figure 3.4: Illustration of the proposed software vulnerability detection approach based on
Bayesian gated recurrent unit. 26

Figure 4.1: Average predictive variance of different classes plotted against SNR under
Gaussian noise, FGSM and BIM adversarial attack for Bayesian SVD-GRU for
VDISC dataset. The statistical increase in the variance is indicated by arrows
pointing to the respective points. A significant increase in the variance can serve as
a “red flag” and initiate the process of manual review of the input. 41

Figure 4.2: Average predictive variance of different classes plotted against SNR under
Gaussian noise, FGSM and BIM adversarial attack for Bayesian SVD-LSTM for
VDISC dataset. The statistical increase in the variance is indicated by arrows
pointing to the respective points. A significant increase in the variance can serve as
a “red flag” and initiate the process of manual review of the input. 42

Figure 4.3: Average predictive variance of different classes plotted against SNR under
Gaussian noise, FGSM and BIM adversarial attack. The statistical increase in the
variance is indicated by arrows pointing to the respective points for (a) Bayesian
SVD-LSTM and (b) Bayesian SVD-LSTM for Big-Vul dataset. A significant
increase in the variance can serve as a “red flag” and initiate the process of manual
review of the input. 44

Figure 4.4: Average predictive variance of different classes plotted against SNR under
Gaussian noise, FGSM and BIM adversarial attack for Bayesian SVD-GRU for
SeVC dataset. The statistical increase in the variance is indicated by arrows pointing
to the respective points. A significant increase in the variance can serve as a “red
flag” and initiate the process of manual review of the input. 45

ix

Figure 4.5: Average predictive variance of different classes plotted against SNR under
Gaussian noise, FGSM and BIM adversarial attack for Bayesian SVD-LSTM for
SeVC dataset. The statistical increase in the variance is indicated by arrows pointing
to the respective points. A significant increase in the variance can serve as a “red
flag” and initiate the process of manual review of the input. 45

x

CHAPTER I

INTRODUCTION

1.1 Motivation: Importance of Vulnerability Detection

The widespread usage and continuous evolution of software technology have significantly

contributed to the growth of businesses, finances, medical care, and society [67, 75]. Software

vulnerabilities, on the other hand, have emerged as an important safety concern to companies and

institutions. A software vulnerability is described as a security hole, flaw, or defect within a software

system that an unauthorized user can abuse, causing harm or theft [4]. Security vulnerabilities can

have disastrous financial and societal consequences, causing significant economic and reputational

harm to businesses, individuals, and countries [5,6,56,63]. For example, the well-known Heartbleed

bug and the WannaCry ransomware attacks have shown current security flaws [11, 42, 52]. In recent

years, the frequency and severity of software vulnerabilities targeting critical infrastructure systems

have increased [14]. According to the national vulnerability database (NVD), the annual report

of the United States Computer Emergency Readiness Team (US-CERT) in 2021 recorded 20,113

vulnerabilities, making it the fifth year in a row with a record number of high-risk vulnerabilities [1].

Identifying security vulnerabilities in software code has become difficult due to the rapid rise in

software size and complexity, as these vulnerabilities rarely share similar features. In the following

sections, we will provide two examples of critical applications where detecting vulnerabilities in

software source codes is crucial.

1.1.1 Financial department

Due to the sensitivity of financial data and transactions, software vulnerability detection

is critical in the financial sector. Financial institutions deal with enormous amounts of sensitive

1

data, such as customer details, transaction records, and intellectual property [38]. The operations,

clients, and financial assets of banks and insurance firms are significantly at risk as a result of

cybersecurity issues. The risks include insider threats from employees with malicious intentions,

data breaches that result in the theft of private customer information, and ransomware attacks that can

disrupt operations and demand large ransom payments [31]. These phishing and social engineering

attacks target customers and employees to gain unauthorized access and take advantage of human

weaknesses. Cybersecurity problems can result in monetary losses, damage to credibility, regulatory

non-compliance, legal liabilities, and losing customer confidence. In order to defend against these

threats and safeguard software assets and activities, banks and insurance companies must implement

robust cybersecurity measures, including software vulnerability detection. Therefore, in dealing

with evolving cybersecurity threats, proactive software vulnerability detection is vital for retaining

the integrity of financial systems.

1.1.2 Airport security

The detection of software vulnerabilities is essential in airport security. Airports depend

heavily on software systems for various functions such as security monitoring, access control,

passenger screening, baggage handling, and flight operations [35, 61]. Detecting software vul-

nerabilities is important to avoid potential security breaches. Protecting airport systems against

unauthorized access, data breaches, and possible disruption to essential operations can be achieved

by identifying and addressing vulnerabilities in software systems [46]. Moreover, software vul-

nerability detection assists in promoting legal compliance requirements at airports, such as those

established by aviation security organizations, as well as ensuring the integrity and confidentiality

of private passenger information. Unauthorized individuals may be able to pass weapons or other

prohibited items through security checkpoints if airport security systems are compromised. This

could pose a major security risk because it could allow terrorists to bring dangerous items onto an

aircraft, endangering the safety of passengers. As a result, strong cybersecurity measures, such

as robust software vulnerability detection, are vital for preventing breaches that could be used to

circumvent airport security and compromise flight security.

2

1.2 Background and Problem Statement

Vulnerability analysis is the process of analyzing software source codes to identify vulnera-

bilities or flaws. For detecting vulnerabilities in the source codes, conventional static code analysis

tools use preset rules and known patterns [72]. Examples of static methods include template-based

analysis [43], code similarity detection [32], and symbolic execution. Although static vulnerability

detection does not involve any code execution, Dam et al. claims that it can be more likely to

have false alarms [19]. In contrast, dynamic analyzers repeatedly run programs with numerous test

inputs on real or virtual processors to discover flaws. However, dynamic analyzers have their own

restrictions, such as limited code coverage [64]. Examples of dynamic analysis include fuzziness

testing and taint analysis [42].

Traditional machine learning algorithms, such as support vector machines (SVM) [30, 53],

Random Forest (RF) [59], and k-nearest neighbor (KNN) [37], have been used for vulnerability

detection. However, these traditional algorithms perform poorly on large datasets, including millions

of source codes. Deep neural networks have shown great success in detecting vulnerabilities in

software source codes [42]. The one-dimensional convolutional neural network (CNN) [19, 58] and

recurrent neural networks [19] are the most popular in the literature. The challenge remains that

deep neural networks are not robust to malicious attacks and noisy environments, which makes

them unreliable as cyberattacks become increasingly diverse and complicated [13]. Building a

robust model that can automatically identify various types of vulnerabilities in software source

codes becomes difficult due to noisy and imperfect source codes and unknown or missing values in

the training data.

1.2.1 Problem Statement

The current ML algorithms and deep neural networks suffer from two major limitations that

affect their performance and reliability. Firstly, most of these algorithms are not “Robust” against

noise. Even though many machine learning models have shown success at accurately predicting out-

puts under controlled environments, they often fail when exposed to noise, artifacts, and adversarial

3

perturbations. In other words, they are not immune to environmental noise in the input data, and

even tiny perturbations might result in erroneous outputs. Therefore, these techniques are unlikely

to be suited to real-world applications where the data may be noisy or contain irregularities that

could impair the accuracy of the model’s decisions. Secondly, none of these algorithms quantify

uncertainty, making it difficult to assess the reliability of their decision. As a result, we are unsure of

how much we can trust the assessments made by these models, especially if they are implemented in

security-related critical applications. Quantifying uncertainty in vulnerability detection can alert the

user to potential noise or perturbation in the source codes and be deployed as trustworthy algorithms

for real-world security applications. Uncertainty quantification is critical for reliable decision-

making since it serves as a measure of the model’s confidence or reliability. The effects of incorrect

or uncertain predictions can be severe in many real-world situations, especially those involving

security. As a result, to appropriately evaluate the model’s trustworthiness, decision-makers need to

be aware of the level of uncertainty in the output of decision-making algorithms.

1.3 Research Objectives and Contributions

In this work, we propose a novel software vulnerability detection framework employing

a Bayesian Recurrent Neural Network, referred to as (SVD-RNN). We propose a mathematically

established framework to estimate the uncertainty in model predictions using the Bayesian for-

mulation. Assuming the RNN network parameters as random variables, we introduce a Gaussian

distribution as a prior distribution over the parameters. After observing training data, we approxi-

mate the posterior distribution of the parameters using the variational inference (VI). The mean and

covariance matrix of the variational distribution is then propagated across the hidden states, gates

of the RNN networks, and non-linear activation functions in the SVD-RNN models. We use the

first-order Taylor series approximation to estimate the variational moments (mean and covariance)

after the non-linear activation functions of all gates and layers of the RNN networks. At the output

of the SVD-RNN framework, we obtain the mean and covariance of the predictive distribution. The

mean represents the source code vulnerability information, while the covariance matrix expresses

uncertainty in the output decision.

4

In particular, the thesis has major contributions that can be summarized as follows:

1. We propose a Bayesian Recurrent Neural Network that can detect vulnerability in source

code and quantify the uncertainty associated with the predicted vulnerability.

2. We adopt variational inference to approximate the posterior distribution of the parameters

given the data. We propagate the mean and covariance of the variational posterior distribution

through the network layers and non-linear functions.

3. We use first-order Taylor series approximation to estimate the first two moments of the

variational distribution (mean and covariance) through the non-linear activation functions in

the RNNs.

4. We conduct comprehensive experiments on three benchmark datasets, i.e., Draper VDISC [58],

Big-Vul [21], and Semantics-based Vulnerability Candidate (SeVC) [41] datasets that contain

labeled C/C++ source code functions.

5. We extensively analyze all three datasets under noisy environments by corrupting the test sam-

ples with Gaussian and adversarial attacks and comparing the performance of our Bayesian

SVD algorithms against the state-of-the-art deterministic SVD algorithms.

6. We evaluate the robustness of our proposed model under high noise levels. We demonstrate

uncertainty that increases significantly in the presence of high noise conditions.

5

CHAPTER II

LITERATURE REVIEW

2.1 Vulnerability Detection with Deep Neural Networks

Since the beginning of software development, manual code review has been employed

as a technique for identifying software vulnerabilities. This guaranteed the quality and security

of software systems. Manual code review, however, lost its value as a stand-alone vulnerability

detection technique as software became more complicated over time. Two techniques for identifying

software vulnerabilities have grown in popularity: static code analysis and dynamic code analysis.

Static code analysis examines a piece of software source code without even running them [45, 51].

This strategy relies on the notion that specific coding patterns are linked to frequent vulnerabilities,

such as buffer overflows or injection attacks. Static analysis tools can check the code for these

patterns and flag any potential vulnerabilities. One drawback of static analysis is its dependency on a

predefined set of rules and patterns to find vulnerabilities, which means it may fail to recognize new

vulnerabilities. Moreover, using static code analysis to find vulnerabilities can be time-consuming

and need specialized expertise [8]. On the other hand, Dynamic code analysis requires running

a software program in a controlled setting while tracking the way it works to detect potential

vulnerabilities [10, 12]. This approach relies on the idea that vulnerabilities can be discovered by

looking at how software interacts with the environment, including input/output data or network

relations. Dynamic analysis has the disadvantage that it can be time-consuming and expensive to

conduct, and it may overlook some vulnerabilities that only exist in certain circumstances. The

hybrid analysis combines the static and dynamic approaches and makes use of both of their strengths:

while dynamic analysis can identify more complicated vulnerabilities during run-time, the static

6

analysis can discover common vulnerabilities early in the software development process [44, 48].

Another automated software testing technique called "fuzz testing" involves sending random inputs

to a program in order to locate vulnerabilities and flaws [34, 65]. Although these methods were

successful in finding vulnerabilities in software in the early days, they can be labor-intensive,

error-prone, and produce higher false positives, making it difficult for them to keep up with the rate

at which software is developed. Machine learning, on the other hand, can automate and improve

the productivity of software vulnerability detection by observing features in the code and behavior

of the software. Large volumes of data, including code, logs, and network traffic, can be analyzed

using ML-based algorithms to find patterns and abnormalities which can refer to a vulnerability. It

is possible to reduce the time and skill necessary for vulnerability identification while increasing

the accuracy and effectiveness of the whole process by applying ML-based techniques.

Modern machine learning (ML) and data-driven algorithms for automated vulnerability

detection have become more convenient to implement due to the expanding availability of open-

source software and repositories. An SVM classification method named VCCFinder, proposed

by Perl et al., identified potential vulnerabilities using codes taken from GitHub repositories [53].

Hovsepyan et al. used a bag-of-words (BoW) representation of Java source code to build an

SVM in 2012 [30]. SVM is brittle to noisy data and performs poorly with large datasets [7].

Other conventional ML techniques have also been applied, including RF, KNN, Decision tree

(DT), and neural network (NN). These approaches have been compared in terms of performance

using single and numerous types of code vulnerabilities gathered from five distinct projects [9].

However, conventional ML approaches fail to recognize the semantic nature of the code components

[58]. Codes with similar complexity matrices often have different semantic interpretations and,

consequently, different vulnerability labels.

Deep neural networks have recently been utilized for processing sequential data, including

software source codes. Using word embedding, Han et al. established a one-layer CNN for

multi-class vulnerability identification. The model takes the syntactic and semantic characteristics

of the code attributes into consideration [25]. Using a recurrent neural network (RNN), Zou

7

et al. presented the deep learning-based µVulDeePecker system for multi-class vulnerability

detection [76]. Vulnerabilities brought on by C/C++ library/API function calls can be detected

with µVulDeePecker. For the automatic patching of software flaws, Harer et al. used adversarial

learning in the encoder-decoder architecture of neural machine translation systems [26]. A long

short-term memory (LSTM) model was developed by Dam et al. to autonomously acquire both

semantic and syntactic features of source codes [19]. Russell et al. used both the CNN and RNN

architectures independently to compare their performance metrics [58]. Li et al. suggested a hybrid

neural network consisting of a CNN and an RNN for learning global as well as local vulnerability

features [39].

Unlike feed-forward networks such as CNNs or fully connected networks (FCNs), RNNs are

specifically adapted to processing sequential inputs of software source codes [42]. Two noteworthy

RNN variants are long short-term memory (LSTM) and gated recurrent unit (GRU) [17,66]. Internal

gate structures in both LSTM and GRU networks assist in preserving relevant details and in pruning

out unnecessary data from earlier time steps, according to [17]. An LSTM-based method for captur-

ing long contextual relationships and automatically learning features for predicting vulnerabilities

in software source code has been presented by Dam et al. in [19]. Tang et al. compared the

performance of bidirectional LSTM utilizing two separate data preprocessing approaches [62].

Xiao et al. deployed a GRU structure to reduce losing the syntax and semantic details in software

code components [71]. On the other hand, Wang et al. applied both CNN and GRU to detect

vulnerabilities in the source code files [69].

2.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are designed for processing and analyzing sequential

data. RNNs are often utilized in speech recognition, language modeling, text generation, image

description, and video tagging [60]. RNNs differ from feed-forward neural networks, often referred

to as multi-layer perceptrons (MLPs), in how information passes through the network. RNNs retain

a memory of previous inputs and use it to drive their current outputs, unlike feed-forward neural

networks, which only transmit information in a single pass, as illustrated in Fig. 2.1. Conventional

8

Feed-Forward Neural Network Recurrent Neural Network

ℎ1

ℎ3

ℎ2

ℎ1

ℎ2

ℎ3

Figure 2.1: Basic Structure of Feed-Forward vs Recurrent neural network

neural networks assume input features are independent of each other. RNNs, on the other hand,

process the input vector as a sequence considering the correlation between its entries. For instance,

it is necessary to remember and store the previous tokens or blocks in some type of memory to

predict the next token of any source code snippet or the next block of the source code. In RNNs, the

hidden layers preserve the sequential information about the input.

At time step t, we consider having an input with size K, i.e., x(t) ∈ RK×1. The hidden

variable (or hidden state) at time step t can be represented by h(t) ∈ RH×1. Here, the number

of nodes in the hidden layer is denoted by H. In contrast to the MLP, we compute the weighted

combination of features saved in the hidden state h(t−1) from the previous time step by multiplying it

with the weight parameter W(hh) ∈ RH×H , that determines the important features from the previous

time step and uses those features in the current time step. The hidden state also computes the

weighted combination of input features at the current time step, x(t) by multiplying it with the

weight matrix W(xh) ∈ RH×K . Fig. 2.2 shows the structure of the RNN network. The single RNN

cell takes an input feature vector, x(t), at time t and a hidden state h(t−1) from the prior time step as

9

𝐱(𝟏) 𝐱(𝒕−𝟏) 𝐱(𝒕) 𝐱(𝑻)

𝐨

Tanh𝐡(𝟎) 𝐡(𝟏) 𝐡(𝒕−𝟏) 𝐡(𝑻)

𝐡(𝒕)

Single

Cell

𝐡(𝒕+𝟏)

𝐱(𝒕+𝟏)

............

2
............

1

1

2

K

𝐱(𝒕)

1

2

h

𝐡(𝒕−𝟏) 𝒊

h

2

1

𝒊

h

2

Tanh

𝐡(𝒕)

𝑾 𝒉𝒉

𝑾 𝒙𝒉

Figure 2.2: Internal structure of RNN

inputs. After that, it generates a new hidden state, h(t), following the Equation (2.1) below:

h(t) = f (W(xh)x(t)+W(hh)h(t−1)+b(h)). (2.1)

In Equation (2.1), f represents a non-linear activation function, such as the sigmoid, hy-

perbolic tangent (Tanh), or rectified linear unit (ReLU) function. The bias term is denoted by

b(h) ∈ RH in the Equation (2.1). The variables h(t) and h(t−1) store and record the sequence’s

previous information up to the current time step. Following the hidden layer, at the output layer, the

output for time step t is given by:

o(t) = sigmoid(W(ho)h(t)+b(o)). (2.2)

Here, the activation function, σ , is also a non-linear activation that is the softmax function if we

have a multi-class classification problem or the sigmoid function if we have a binary classification

problem. The parameters of the output layer are the weight matrix W(ho) and the bias term b(o).

10

In general, the back-propagation through time (BPTT) algorithm is used to optimize the

RNN during training. This involves calculating the gradient of the loss with respect to the network

parameters at each time step while spreading the RNN over a certain number of time steps. The

network parameters are then updated using optimization techniques like stochastic gradient descent

(SGD), adaptive moment estimation (Adam), and gradient clipping.

RNNs are ideal for processing sequential data due to their recurrent structure. They are

effective for applications like sentiment analysis, machine translation, and speech recognition

because they can detect temporal correlations between inputs. RNNs can mimic complicated

non-linear dynamics in the input data because they can keep track of previous inputs and use that

memory to influence their current outputs. Finally, RNNs can be improved by back-propagation

through time (BPTT), which enables them to alter their internal state according to feedback from

the output and learn from previous inputs.

However, RNNs are susceptible to the vanishing gradient and exploding gradient problems.

The vanishing gradient problem arises when the gradient of the loss with respect to the network’s

parameters gets extremely small values, making it challenging for the network to update the

parameters effectively. This can occur in RNNs when the gradients of the output with respect

to the network weights are multiplied repeatedly by the same weight matrix for very long input

sequences, resulting in the gradients getting gradually smaller as they propagate over time. On the

other hand, the exploding gradient problem arises when the gradient of the loss with respect to the

network’s parameters increases significantly, making it challenging for the network to converge to

an appropriate solution. RNNs can also be subject to overfitting and may need a lot of data to train

well. Because of these shortcomings, more complex variations of the fundamental RNN architecture

have been created, like the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

networks, which are intended to deal with these challenges.

2.2.1 Long Short-Term Memory (LSTM)

A form of Recurrent Neural Network (RNN) architecture called Long Short-Term Memory

(LSTM) was introduced to address the problem of vanishing gradients in regular RNNs [73]. The

11

vanishing gradient problem occurs when gradients become very small during back-propagation,

making it difficult for the network to learn long-term dependencies in sequential data [29]. This

problem is addressed by LSTM by including a memory cell that has the capacity to selectively

remember or forget information over time. Three gates — the input gate, the forget gate, and the

output gate are in charge of controlling the flow of information into and out of the memory cell.

The fact that LSTMs offer gating of the hidden state is the main distinction between LSTMs and

plain vanilla RNNs. As a result, the gate structure of the LSTM network determines when a hidden

state needs to be updated as well as when it needs to be reset. For example, the network will learn

not to update the hidden state after the first observation if the first token happens to be significant.

The network will also learn to ignore observations that are insignificant.

2.2.1.1 Input Gate, Forget Gate, and Output Gate. As shown in Fig. (2.3), the three LSTM

gates require the input at the present time step t as well as the hidden state from the previous

time step t − 1 as inputs. The input, forget, and output gates’ values are generated using sigmoid

activation functions across three fully connected layers. Due to having the sigmoid activation, all the

gates have values between (0,1). At time step t, for a given input, x(t) ∈ RK×1 and h(t−1) ∈ RH×1

as the hidden state of the previous time step, we can compute the input gate i(t) ∈ RH×1, forget gate

f(t) ∈ RH×1 and output gate o(t) ∈ RH×1 using the following equations:

i(t) = sigmoid(U(i)x(t)+W(i)h(t−1)+b(i)). (2.3)

f(t) = sigmoid(U(f)x(t)+W(f)h(t−1)+b(f)). (2.4)

o(t) = sigmoid(U(o)x(t)+W(o)h(t−1)+b(o)). (2.5)

Here, U(i), U(f), U(o) ∈ RH×K and W(i),W(f), W(o) ∈ RH×H represent the weight parameter for the

input, forget and output gates, and b(i),b(f), b(o) ∈RH×1 denote the bias parameter for the respective

gates. The input and forget gates work together to determine which data should be stored in the

cell state. The forget gate regulates how much old data should be discarded, while the input gate

12

Single Cell LSTM

tanhsigmoid sigmoid sigmoid

x(t)

h(t-1)

+

f(t) i(t) 𝒈 𝒕 o(t)

tanh
c(t-1) c(t)

h(t)

Forget

gate
Input

gate

Output

 gate

Gate

 gate

𝑼 𝒇
𝑾 𝒇 𝑼 𝒊𝑾 𝒊 𝑼 𝒐𝑾 𝒐𝑼 𝒈𝑾 𝒈

. .

.

y(t)

V

𝒔3
(1) 𝒔3

(𝑡−1) 𝒔3
(𝑡)

𝒔3
(𝑇)

𝒙(𝟏) 𝒙(𝒕−𝟏) 𝒙(𝒕) 𝒙(𝑻)

𝒚(𝑡)

General LSTM Architecture with 3 hidden layer

Single Cell

𝒔1
(1) 𝒔1

(𝑡−1) 𝒔1
(𝑡)

𝒔1
(𝑇)

𝒔2
(1) 𝒔2

(𝑡−1) 𝒔2
(𝑡)

𝒔2
(𝑇)

Input
Layer

Hidden
Layer 2

Hidden
Layer 3

Hidden
Layer 1

Figure 2.3: Internal structure of LSTM

controls how much new data should be added. The output gate decides how much data from the cell

state should be obtained from the hidden state at the time step t.

2.2.1.2 Gate gate. Its operation resembles that of the first three gates discussed before, with

the addition that the activation function is a Tanh function with a value range of (−1,1). Thus, at

time step t, the gate gate g(t) ∈ RH×1 is given in Equation (2.6).:

g(t) = Tanh(U(g)x(t)+W(g)h(t−1)+b(g)). (2.6)

The weight parameters, in this case, are U(g) ∈RH×K and W(g) ∈RH×H , whereas the bias parameter

is denoted by b(g) ∈ RH×1.

2.2.1.3 Internal state. The new information added to the memory cell state can be controlled

by the internal state, also known as the candidate memory cell state. Considering both the input

gate i(t) and the forget gate f(t), the internal state c(t) can be formulated in Equation (2.7) as follows:

c(t) = f(t)⊙ c(t−1)+ i(t)⊙g(t). (2.7)

13

Here, ⊙ represents the Hadamard product operation which is an element-wise multiplication. The

internal state of the memory cell, c(t−1), from the previous time step, remains unchanged and moves

unaltered to the current time step if the forget gate is always set to 1 and the input gate is set to 0.

However, because of input gates and forget gates, the model has the flexibility to determine if it

should maintain the current value as is or modify it in response to new inputs.

2.2.1.4 Current state. The next step is to compute the output of the memory cell, or the

hidden state h(t), as it appears to other layers. The internal state of the memory cell first goes

through Tanh activation, then an element-wise multiplication with the output gate is performed. It

assures that the values are always between (−1,1). We can formulate the operation as follows:

h(t) = Tanh(c(t))⊙o(t). (2.8)

When the output gate is close to 1, we let the internal state of the memory cell have an influence on

the preceding layers; however, when the output gate is close to 0, we prevent the current memory

from having an impact on the network’s subsequent layers at present step. A memory cell can

accumulate data over several time steps without affecting the rest of the network (as long as the

output gate accepts values close to 0). Still, the network will be influenced when the output gate

switches to values close to 1.

2.2.2 Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (GRU) is a form of RNN designed to overcome the vanishing

gradient problem in regular RNNs. GRU was developed as a simpler version of LSTM that uses

fewer parameters to achieve comparable performance. With fewer parameters and less computation

complexity, GRU incorporates the gating mechanisms of LSTM and, at the same time, speeds up

training and reduces the risk of overfitting. The GRU architecture is also more straightforward to

develop and less prone to overfitting on small datasets than the LSTM because it has fewer gates.

Using the gating mechanism, GRUs allow the network to more effectively recognize long-term

dependencies by selectively adding and removing information from the previous step. Here, we

14

tanh𝐬𝐢𝐠𝐦𝐨𝐢𝐝

𝒙(𝒕)

𝒔(𝒕−𝟏)

𝐬𝐢𝐠𝐦𝐨𝐢𝐝

⊙

⊙

+

𝒓(𝑡)
𝒉(𝑡)

𝒛(𝑡)

𝒔(𝒕)

Reset
Gate

Intermediate
Activation

Update
Gate

𝑼 𝒓𝑾 𝒓 𝑼 𝒛𝑾 𝒛𝑼 𝒉

𝑾 𝒉

⊙

1-

Current
State

𝒔(𝒕−𝟏) 𝒔(𝒕)

𝒙(𝒕−𝟏) 𝒙(𝒕)

𝒚(𝑡−1) 𝒚(𝑡)
𝒚(𝑡)

𝑽

General GRU Architecture with
one hidden layer

Single Cell GRU

Single Cell

Figure 2.4: Internal structure of GRU

have the reset gate and the update gate, as compared to the three gates we had in the

LSTM. 2.2.2.1 Reset Gate and Update Gate. The reset gate controls the information generated

by the GRU cell and the update gate in the gating mechanism. Fig. (2.4) shows the inputs of the

current time step and the hidden state of the previous time step for both the reset and update gates

in the GRU. Similar to LSTMs, sigmoid activations are applied to these gates to ensure that the

values are always between (0,1). The reset gate, intuitively, regulates how much of the prior state

we might still want to keep. Similarly, an update gate would allow us to identify how much of the

new state is just an exact copy of the old state. Two fully connected layers with a sigmoid activation

function provide the outputs of the two gates. At the time step t, given input x(t) ∈ RK×1 and the

hidden state of the previous time step s(t−1), we can compute the reset gate r(t) ∈ RH×1 and update

gate z(t) ∈ RH×1 using the following equations:

r(t) = sigmoid(U(r)x(t)+W(r)s(t−1)+b(r)). (2.9)

z(t) = sigmoid(U(z)x(t)+W(z)s(t−1)+b(z)). (2.10)

Here, U(r),U(z) ∈RH×K and W(r),W(z) ∈RH×H , represent the weight parameter of the reset

and update gate, and b(r), b(z) ∈ RH×1 denote the bias parameters for the respective gates.

The update gate enables the model to decide how much old data from earlier time steps

15

should be transmitted to the future. This is particularly useful because the model has the capability

of copying all previous data and removing the possibility of vanishing gradient challenges. The

Update gate helps identify long-term dependencies, whereas the reset gate captures short-term

dependencies in the input sequences.

2.2.2.2 Intermediate hidden state. To get the intermediate hidden state, h(t), we incorporate

the reset gate, r(t) with the previous hidden state, s(t−1) given by the following equation:

h(t) = Tanh(U(h)x(t)+W(h)(s(t−1)⊙ r(t))+b(h)). (2.11)

The weight parameters, in this case, are U(h) ∈ RH×K and W(h) ∈ RH×H , whereas the bias

parameter for the intermediate hidden state is denoted by b(h) ∈RH×1. Note that the Tanh activation

function is used in this state. Whenever the output of the reset gate is close to 1, the GRU cell fully

incorporates the previous hidden state into the candidate activation without any changes. In this

instance, the candidate activation will be calculated using a weighted sum of the input at the current

time step and the previous hidden state, with the weights set by the reset gate. The previous hidden

state’s weights will be set to their maximum value, which indicates that the candidate activation

will be calculated using the entire prior hidden state.

When the reset gate’s output is 0, the GRU cell discards the previous hidden state entirely

and computes the candidate activation only using the received input. In this scenario, the candidate

activation will only be calculated using the input at the current time step without considering the

previous hidden state. The update gate will then decide how much of this new information needs to

be included in the current hidden state.

2.2.2.3 Current state. Lastly, we consider the role of update gate z(t). By taking element-

wise convex combinations of s(t−1) and h(t) with update gate z(t), we acquire the current state given

in the Equation (2.12) as follows:

s(t) = z(t)⊙ s(t−1)+(1− z(t))⊙h(t). (2.12)

16

The extent to which the new candidate hidden state h(t) and the old hidden state s(t−1) are combined

to generate the new hidden state s(t) is determined by the update gate z(t). As we observe in

the Equation (2.12), any time z(t) becomes 0, the information from the previous hidden state is

completely ignored. s(t) gets the value of the new candidate hidden state. If z(t) is 1, information

from the previous hidden state is retained. Ultimately, the most important information gets passed

from one state to the next.

Both LSTM and GRU are variants of RNNs that deal with the vanishing gradient problem

and handle long-term dependencies by utilizing the gating mechanisms. When used for applications

like speech recognition and language modeling, LSTM has the advantage of being able to simulate

longer-term dependencies through input, output, and forget gates. While GRU still achieves

comparable performance to LSTM with fewer parameters and less computational complexity, it

has the advantage of being simpler and less prone to overfitting on small datasets. The decision

between LSTM and GRU comes down to the precise specifications of the task assignment.

2.3 Bayesian Inference in RNN

One of the early approaches to incorporating Bayesian inference into neural networks was

Hamiltonian Monte Carlo (HMC), a Markov chain Monte Carlo (MCMC)-based approach for

generating samples from the posterior distribution. However, there were several computational

complexities that made this approach impractical [50]. In [27], Harrison et al. suggested a technique

for automated story-making for an LSTM network utilizing MCMC sampling. Although the

technique demonstrated effectiveness, the resulting stories lack semantic interpretability in the

present state. Traditional MCMC techniques estimate the posterior distribution using the complete

dataset, which can be computationally expensive and not feasible for big datasets. This problem is

addressed by stochastic gradient MCMC, which is more scalable because it uses subsets of the data.

The stochastic gradient MCMC method combined MCMC sampling techniques with stochastic

gradient descent (SGD) by adding a perturbation to the gradient during training [15, 49, 70].

Laplace approximation assumed that the posterior is a Gaussian distribution and was adopted

in earlier attempts to incorporate Bayesian inference into neural networks [47]. Using Laplace

17

approximation Chien et al. introduced a Bayesian approach to regularize a recurrent neural network

language model for continuous speech recognition [16]. The maximum a posteriori (MAP) estimate

was employed to calculate the posterior distribution’s mean. Given the observed data, it generated a

point estimate reflecting the most likely parameter values. The covariance can be approximated

by the inverse of the Hessian matrix of the negative log-likelihood function calculated at the

MAP estimation. The negative log-likelihood function and inverting the Hessian matrix for large-

scale models like DNN is computationally expensive, making the solution intractable [57]. The

posterior approximation techniques, expected propagation (EP), and assumed density filtering

(ADF) repeatedly perform simple local computations for each data point for estimating the posterior

distribution [23, 28, 40]. In order to improve the Gaussian posterior approximation for regression

problems, Hernandez-Lobato and Adams introduced the probabilistic back-propagation (PBP)

method in [28]. Later, PBP was further developed by Ghosh et al. to include multi-class classification

problems [23]. By doing numerous ADF passes over the data, Hernandez-Lobato and Adams

suggested ADF approximation eliminated dependence on order; nevertheless, the complete EP

implementation was not feasible for DNNs because of its extensive computational and storage

costs [40]. Variational inference (VI), a conventional approach for estimating posterior densities,

has recently been effectively adapted for various forms of RNN [18, 22, 55] for time series data.

18

CHAPTER III

METHODOLOGY

3.1 Source code Preprocessing

Software source codes are usually developed in high-level programming languages such

as C/C++, Java, and Python. These languages are text-based and consist of words and phrases

that were adapted from natural languages. Here, we approach the source codes as sequential data,

analogous to the way sentences in natural languages are constructed, where each word in a phrase

has some relationship to the adjacent words. This makes it possible to employ methods and models

from natural language processing (NLP) to analyze the code, comprehend it, and extract valuable

information. Sentences in natural language are made up of words that are arranged in a particular

order and contain semantic and syntactic links. Similarly, statements and expressions are written in

a certain order in source code, and each line or section of code usually has some relationship to

the lines that came before it. For instance, function calls may rely on functions created earlier in

the code, and variable declarations frequently depend on variables that have already been defined.

As shown in 3.1, the code function can be represented as a sequence of variables and operators

starting from time, to upto tn. We can use sequential modeling approaches from NLP to capture the

underlying patterns and dependencies contained in the source code by seeing it as sequential data.

As a result, the semantic and syntactic characteristics of the source code will be preserved.

Because neural networks only accept real-valued inputs, the source code must be prepro-

cessed in order to be converted into numerical real-valued input given the sequential nature of the

original code. Two preprocessing steps are performed: 1) lexical analysis or tokenization, i.e.,

converting a code into a sequence of tokens and assigning indices to those tokens in the sequence

19

}Derived{main()int

𝑡0 𝑡3𝑡2𝑡1 𝑡𝑛

…...

Figure 3.1

Figure 3.2: Feed-Forward vs Recurrent neural network

and 2) code token embedding, i.e., mapping the indices into real-values input matrix using a

structure-preserving map [74]. Fig. 3.2 illustrates the data preprocessing of source codes before

being fed into the neural network.

3.1.1 Tokenization

Tokenization is a crucial technique in Natural Language Processing (NLP) that includes

decomposing a text into smaller pieces known as tokens. Depending on the level of granularity

that is desired (character, word, subword level), these tokens can be single words, subwords, or

even individual characters in their own right. In the field of natural language processing (NLP),

tokenization is of the utmost importance since it enables efficient text preprocessing, vocabulary

building, feature extraction, text representation, and numerous tasks involving language analysis. It

lays the groundwork for subsequent processing and modeling of textual data, making it possible for

20

algorithms to comprehend and operate productively with natural language. The process separates a

large continuous code into individual tokens (small code segments). Analyzing sequences of tokens

helps interpret source codes. The literal representations of strings, characters, and floats are referred

to as type-specific placeholder tokens in source codes. [58, 74]. The tokenizer collects tokens from

the original source codes used as training data to build a constrained vocabulary. As a result, each

entry in the vocabulary will correspond to each token collected from the training examples. Each

token in the dictionary will have a unique ID (or index, i.e., integer values). Any token or phrase on

the test set that is unavailable in the vocabulary will be considered Out-Of-Vocabulary (OOV) and

will be allocated a default ID. After building the vocabulary, we map the indices to the original code

sequences. Tokenization is the process that takes a lengthy, complex source code and generates

a collection of tokens from it, as shown in the example in Fig. 3.3 (a). In this illustration, we

extracted three tokens from a single line of code. The concept of tokenization has advantages in text

preparation because it eliminates noise and makes the input data more consistent. It also plays an

important part in the process of creating new languages by producing an exhaustive list of tokens

that are all unique. In order for machine learning algorithms to extract valuable features from the

text, tokens are used as attributes in these algorithms. In addition, tokenization makes it possible

to convert written text into numerical representations and simplifies the process of analyzing and

comprehending text data. Thus, tokenization is essential for properly structuring source code,

developing features, and enabling computers to analyze and comprehend software source code.

3.1.2 Code Token Embedding

The technique of encoding words or textual data as dense vectors in a high-dimensional

space is referred to as embedding in the context of NLP. Models will be better able to comprehend

and make sense of textual material if word embedding techniques are successful in capturing the

semantic and contextual links between words. Word embeddings are generated by training a neural

network model on a vast amount of text as part of the process of establishing the embeddings. The

model learns to make predictions about the contexts in which words will appear based on the words

that immediately surround them. The model will modify the weights of its internal layers as part of

21

Tokenization

int * id

int * id

Input string

Output word list

3 tokens
𝟑 × 𝟒 embedding matrix

int

*

id

(a) (b)

Figure 3.3: Tokenization and embedding of input source code function

this training process in order to reduce the error in its predictions. The hidden layer’s weights, which

are also referred to as the embedding layer, are what "capture" the semantic associations between

words. After that, the word embeddings are constructed using the learned weights. Word2Vec, also

known as "Global Vectors for Word Representation," and fastText are both examples of popular

word embedding techniques. Because these word embeddings preserve the underlying semantic and

syntactic qualities of words, they allow textual data to be represented and analyzed more effectively.

The proposed models take sequences of code tokens as inputs. Before feeding the indices of code

tokens into our models, we convert them into K-dimensional, continuous and real-valued vectors,

referred to as embedding. Thus, the tokens’ indices are converted into one-hot encoded vectors after

tokenization. The length of the one-hot encoded vectors is equal to the vocabulary size. Then, the

embedding layer linearly transforms the one-hot encoded vectors into vector representations of K

dimensions.

The result is an embedded matrix of size τ × K, i.e., X(n) ∈ Rτ×K , where τ is the tokens

sequence length, which is the number of sequential tokens that are considered together, K is the

size of the embedding vectors, and n = 1, · · · ,N refers to the number of input token sequences or

equivalently embedding matrices. The embedding matrix acts like a look-up table, where the ith

row in the embedding matrix is an embedded vector for the ith token.

22

As an illustration, each of the three tokens in Fig. 3.3(b) has a four-dimensional vector

representation that ultimately forms a 3×4 matrix. In our experiment, we adjust the embedding

dimension, K, based on the complexity of the dataset (original source code). A higher dimensional

embedding incorporates fine-grained token-to-token correlations but requires more training exam-

ples and, hence, higher computational complexity. The embedding matrix is learned during training

via back-propagation [74].

3.2 Software Vulnerability Detection using Bayesian Sequence Models

We apply the tokenization and embedding to obtain the training dataset, D , that consists of

N token sequences. Each token sequence is represented by the embedding matrix X(n), while the

output, i.e., vulnerability labels y(n) ∈ RC with C denotes the number of vulnerability classes, i.e.,

D = {X(n),y(n)}N
n=1. Let W = {W(l)}L

l=1 be the sequence model’s parameters (weights and biases)

with L stacked layers.

3.2.1 Bayesian Formulation

Bayesian neural networks are a form of neural network that can be used to determine the

degree of prediction uncertainty. We treat the network weights in Bayesian neural networks as

random variables with a prior probability distribution. Before we observe any data, the prior

distribution represents our initial weight assumptions. After observing the data, we establish our

opinions about the weights defined by the posterior distribution. The likelihood distribution of

the data given the weights multiplied by the prior distribution is proportional to the posterior

distribution. The data and weights influence the likelihood distribution. The only factor affecting

the prior distribution is the initial weight values.

To perform the Bayesian estimation, in the proposed Bayesian software vulnerability de-

tection models, i.e., Bayesian SVD-LSTM and Bayesian SVD-GRU, the model’s parameters W

are assumed to be random variables with a Gaussian prior distribution p(W). We consider all

these parameters independent within and across the network layers. The independent assump-

tion allows 1) to extract independent features across various network layers and 2) to establish a

23

tractable optimization problem, as estimating the joint distribution of all layers is computationally

challenging.

Now true posterior distribution, p(W |D), which captures the total knowledge about the

network parameters, after observing the training dataset, D can be computed by employing Bayes’

rule in Equation (3.1).

p(W |D) =
p(D |W)p(W)∫

p(D |W)p(W)dW
(3.1)

On the right-hand side, we have the likelihood distribution, p(D |W) of the data given the weights

W , multiplied by prior p(W) divided by the marginal likelihood distribution of the data. However,

the integration term in the denominator requires integrating every potential value for the model’s

parameters. The model parameters in DNNs are usually high-dimensional, and the integration is

made even more difficult by the existence of non-linearities. As a result, utilizing the Bayesian

technique to directly estimate the posterior distribution is no longer practical due to the prohibitively

expensive calculation needed to calculate this integral. So exact Bayesian estimation of the true

distribution can not be performed. In order to address the complexity of DNNs and make Bayesian

inference more manageable, approximation Bayesian inference techniques, like variational inference

and MCMC, have been developed.

3.2.2 Variational inference

Variational inference (VI) is an approximation algorithm for performing Bayesian inference

by estimating the posterior distribution over the latent variables in a latent variable model when

the actual true posterior is inaccessible. It is a commonly used machine learning methodology that

estimates complex probability distributions through optimization methods. Due to this characteristic,

VI converges faster than traditional techniques like MCMC sampling. VI tries to approximate the

posterior using a "well-behaved" distribution. This implies that integrals are calculated so that the

more accurate the estimate, the more precise the approximation.

VI involves taking into consideration a parameterized variational posterior distribution

qφ (W) and then estimating the true posterior p(W |D). This optimization is done by minimizing

24

the Kullback-Leibler (KL) divergence between the variational posterior distribution qφ (W) and the

true unknown posterior distribution p(W |D) [68].

KL
[
qφ (W)∥p(W |D)

]
=

∫
qφ (W) log

qφ (W)

p(W)p(D |W)
dW , (3.2)

The right-hand side of Equation 3.2 is referred to as the evidence lower bound (ELBO) loss function

L(φ ;D), and it is minimized with respect to the variational parameters φ when training the Bayesian

SVD models by applying the gradient descent update method.

L(φ ;D) =−Eqφ (W) {log p(D |W)}+KL
[
qφ (W)∥p(W)

]
. (3.3)

The two elements in the ELBO loss function, represented by Equation 3.3, are the expected log-

likelihood of the training data given the model parameters and a regularization term, which is defined

as the KL-divergence between the proposed variational distribution qφ (W) and the prior distribution

p(W). By marginalizing the model parameters W , we estimate the predictive distribution of newly

tokenized source code transformed into an embedding matrix X̂ as follows.

p(ŷ|X̂,D) =
∫

p(ŷ|X̂,W) p(W |D) dW . (3.4)

In the Bayesian SVD structure, we propagate the mean and covariance matrix of the variational

distribution, qφ (W), and then get the mean and covariance matrix of the predictive distribution,

p(ŷ|X̂,D), at the output of the model.

The mean of the predictive distribution indicates the predicted vulnerability class, whereas

the covariance matrix represents the uncertainty corresponding to the predicted vulnerability. The

aim of the proposed models is to obtain uncertainty information about the output decision to facilitate

trustworthy vulnerability prediction in software source codes to provide a secure implementation of

sequence machine learning models in practical applications.

25

Bayesian Recurrent Neural Networks (LSTM or GRU)

Data preprocessing

Figure 3.4: Illustration of the proposed software vulnerability detection approach based on Bayesian
gated recurrent unit.

3.3 Mathematical Basis of the Software Vulnerability Detection Methods

This section conveys the mathematical basis of the proposed SVD models, which include

SVD-LSTM and SVD-GRU as an extension of TRUST models in [20] . In Fig. 3.4, we show the

schematic layout when considering a GRU network, i.e., SVD-GRU. We present a mathematical

derivation for estimating uncertainty in SVD models for a single hidden state, s(t) ∈RH×1, (t th state),

where H is the number of hidden units. A similar derivation can then be applied to all states. The

SVD models include several gates in each hidden state: SVD-GRU has three gates and SVD-LSTM

has four gates. The gate structure regulates the flow of data from one concealed state to the next.

3.3.1 Software Vulnerability Detection with Gated Recurrent Unit, SVD-GRU

As covered in Chapter 2, the proposed software vulnerability detection SVD-GRU model

includes a reset gate, r(t), an update gate, z(t), and a candidate hidden state, h(t). While the

update gate controls the information transmitted to the following hidden state, s(t+1), the reset

gate eliminates unimportant information from the prior hidden state, s(t−1). Consider a row vector

26

x(t) ∈ RK×1, from the embedding matrix X(n) corresponding to the t th token sequence. We combine

the preceding hidden state with x(t), resulting in x̃ =
[
x(t) s(t−1)]T after transposing them. In

addition, we combine the recurrent weight matrix U(r) ∈ RH×K and the input-hidden weight matrix

W(r) ∈ RH×H to create a single, major weight matrix W (r) =
[
U(r) W(r)]. In a similar manner,

we combine the weight matrices of the update gate into a single matrix by using the formula

W (z) =
[
U(z) W(z)]. To formulate the candidate hidden state h(t), we concatenate the input x(t)

with the element-wise multiplication s(t−1)⊙ r(t), as in x̂ =
[
x(t) s(t−1)⊙ r(t)

]T where ⊙ stands

for the element-wise multiplication. Therefore, we can rewrite 2.9, 2.10 and 2.11 for reset gate,

update gate, and candidate hidden state as the following:

r(t) = fs(W
(r) x̃) (3.5)

z(t) = fs(W
(z) x̃), (3.6)

h(t) = f (W (h) x̂), (3.7)

Here, we have weight matrices W (r), W (z) and W (h) corresponding to the reset gate, update gate

and the candidate hidden state, respectively. Additionally, we use sigmoid f and hyperbolic Tangent

(Tanh) fs activation functions. The hidden state s(t) is then determined as follows:

s(t) = z(t)⊙ s(t−1)+(1− z(t))⊙h(t). (3.8)

3.3.2 Software Vulnerability Detection with Long Short-Term Memory, SVD-LSTM

As demonstrated in Chapter 2, the SVD-LSTM model for software vulnerability detection

comprises various components to regulate the flow of information and address the vanishing and

exploding gradient problems. These components include an input gate i(t), a forget gate f(t), an

output gate o(t), a gate gate g(t), and an additional state known as the cell state or memory cell c(t).

There is another state s(t) in addition to these. The flow of information within the SVD-LSTM

27

hidden state is collectively governed by the four gates and two states. In particular, the input gate

controls the data introduced into the cell state c(t) after receiving it from the gate gate. The output

gate takes the output from the cell state, while the forget gate gets rid of the contents of the cell

state. The input and hidden state vectors are merged together in a similar way as the SVD-GRU,

x̃ =
[
x(t) s(t−1)]T . Therefore, we can rewrite 2.3, 2.4, 2.5 and 2.6 for input, forget, output, and gate

gates as the following:

i(t) = fs(W
(i) x̃), (3.9)

f(t) = fs(W
(f) x̃), (3.10)

o(t) = fs(W
(o) x̃), (3.11)

g(t) = f (W (g) x̃), (3.12)

Here, we have weight matrices W (i), W (f), W (o) and W (g) for the input, forget, output and

gate gates, respectively. The hidden state s(t) and the cell state c(t) are modified as follows:

c(t) = f(t)⊙ c(t−1)+ i(t)⊙g(t), (3.13)

s(t) = o(t)⊙ f (c(t)). (3.14)

The SVD-GRU and SVD-LSTM models are equipped with gate structures that involve a

linear operation (matrix-vector multiplication) followed by a nonlinear activation function (sigmoid

or Tanh). By propagating the variational posterior distribution’s mean and covariance matrix

across a single gate, we demonstrate the theoretical basis for uncertainty estimation. The same

mathematical derivation applies to all gates within SVD-GRU and SVD-LSTM. For the reset gate

that is defined in the Equation 3.5 for the SVD-GRU model, we can write ith row of the matrix W (r)

as (wr
i)

T ∈R1×(K+H), where i = 1, . . . ,K+H. The weight vector wr
i is assumed to have a Gaussian

prior distribution. The variational distribution is then given by wr
i ∼ N (µµµwr

i
,ΣΣΣwr

i
). We make an

assumption that the weight vectors are mutually independent and independent of the input vector

28

x̃. This allows us to represent each element of the matrix-vector multiplication in Equation 3.5

as an inner product between two separate random vectors, leading to r̃i = (wr
i)

T x̃. Based on the

inner product representation, we can determine the mean and covariance of r̃i using the following

derivations.

µr̃i = µµµ
T
wr

i
µµµ x̃, (3.15)

ΣΣΣr̃ =

tr
(
ΣΣΣwr

i
ΣΣΣx̃

)
+µµµT

wr
i

ΣΣΣx̃ µµµwr
j
+µµµT

x̃ ΣΣΣwr
i

µµµ x̃, i = j

µµµT
wr

i
ΣΣΣx̃ µµµT

wr
j
, i ̸= j

where i, j = 1, · · · ,K +H, and tr refers to the trace operator. When employing SVD-LSTM and

SVD-GRU, it is necessary to carry out nonlinear activation, including Tanh or Sigmoid activation

in all gates. We adopt first-order Taylor series approximation, enabling us to propagate the mean

and covariance of the distribution through these nonlinear functions effectively. By representing

the activation functions using the Taylor series, we can calculate the mean and covariance with

precision, enhancing the model’s performance in handling uncertainty. The mean and covariance

at the outputs of the nonlinear activation function fs in the reset gate can be obtained through the

following derivations:

µµµr(t) ≈ fs(µµµ r̃), ΣΣΣr(t) ≈ ΣΣΣr̃ ⊙
(
∇ fs(µµµ r̃) ∇ fs(µµµ r̃)

T). (3.16)

The process of propagating the mean and covariance matrix of the variational posterior distribution

through the update gate and candidate hidden state in the SVD-GRU model (Equations 3.6 and 3.7),

as well as through the input, forget, output and gate gates in the SVD-LSTM model (Equations 3.9 -

3.12) can be accomplished using the derivations presented in Equations 3.15 and 3.16. Additionally,

element-wise multiplication between two random vectors is used in the gate structures of the

SVD-GRU and SVD-LSTM models, as seen in 3.8. If a = z(t)⊙ s(t−1), we derive the mean and the

29

covariance of a as follows, then the mean and covariance of a are computed as follows:

µµµa = µµµz(t) ⊙µµµs(t−1),

ΣΣΣa = ΣΣΣz(t) ⊙ΣΣΣs(t−1) +diag(µµµs(t−1)) ΣΣΣz(t) diag(µµµs(t−1))

+ diag(µµµz(t)) ΣΣΣs(t−1) diag(µµµz(t)), (3.17)

The column vector µµµz(t) is used to build the diagonal matrix diag(µµµz(t)), ensuring that the elements

of the vector occupy the main diagonal. We can efficiently compute the element-wise multiplications

provided by Equations 3.13 and 3.14 in the SVD-LSTM model by using the deduction from Equation

3.17. We can establish the mean and covariance matrix of the concatenation operation between two

independent random vectors, that is x̃ =
[
x(t) s(t−1)]T , as follows:

µµµ x̃ =
[
µµµx(t) µµµs(t−1)

]T
, ΣΣΣx̃ =

ΣΣΣx(t) 0

0 ΣΣΣs(t−1)

 . (3.18)

There is no correlation between the two terms of the summation in the SVD-LSTM cell state

c(t) in 3.13). We rewrite Equation 3.13 as c(t) = c1 + c2, with c1 = f(t)⊙ c(t−1) and c2 = i(t)⊙g(t).

In order to make the mathematical notation more straightforward, we strip away the superscript (t)

from c1 and c2. Equation 3.17 is used to derive the mean and covariance matrices for c1 and c2. The

following equations are used to obtain the mean and covariance matrix of the cell state c(t):

µµµc(t) = µµµc1
+µµµc2

, ΣΣΣc(t) = ΣΣΣc1 +ΣΣΣc2. (3.19)

Equation 3.14 incorporates an element-wise multiplication between two independent random

vectors; hence, the mean and covariance matrix of the hidden state of the SVD-LSTM model, s(t),

are also calculated according to Equation 3.17.

The SVD models use a fully-connected layer at the output, ỹ = W(y) s(T), where the weight

matrix is denoted by W(y) and we apply a softmax function fmax, to get ŷ = fmax(ỹ). The mean and

30

covariance matrix of ỹ are obtained using Equation (3.15) as the fully-connected layer can also be

expressed as the inner product of two independent random variables. The first-order Taylor series

approximation is used to derive the mean µµµ ŷ and covariance matrix ΣΣΣŷ at the output of the softmax

function as,

µµµ ŷ ≈ fmax(µµµ ỹ), ΣΣΣŷ ≈ JΣΣΣỹJT , (3.20)

where J refers to the Jacobian matrix of ŷ with respect to ỹ evaluated at µµµ ỹ.

We rewrite the expected log-likelihood in the ELBO loss function in Equation 3.3 as in

Equation (3.21).

Eqφ (W){log p(D |W)} ≈ − 1
2N

N

∑
i=1

[
log(|ΣΣΣ(i)

ŷ |)+(y(i)−µµµ
(i)
ŷ)T (ΣΣΣ

(i)
ŷ)−1(y(i)−µµµ

(i)
ŷ)

]
. (3.21)

The KL-divergence between two multivariate Gaussian distributions, which is the variational

posterior distribution and the prior distribution defined over the network parameters, serves as the

regularization term in the ELBO loss in the second term in Equation 3.3. There is a closed-

form solution for this regularization term in [54]. Using gradient descent-based optimization, we

calculate the gradient of the ELBO loss function with respect to the variational parameters φ in the

back-propagation.

31

CHAPTER IV

EXPERIMENTAL ANALYSIS AND OUTCOMES

In this chapter, we compare the proposed SVD models with their deterministic equivalents.

The Bayesian SVD structure consists of three distinct sections: (1) the source code preprocessing

(tokenization and embedding); (2) the gating structure (Bayesian LSTM or GRU); and (3) the output

fully connected layer. In the gate structure of the recurrent layers, we employ the sigmoid and

hyperbolic tangent (Tanh) activation functions, and at the output of the fully connected layer, we

use the softmax function. With a decaying learning rate and polynomial schedule, [3], we train

Bayesian SVD models using the Adam optimization algorithm [33]. The Bayesian SVD models and

the deterministic LSTM and GRU models are trained and fine-tuned for three different vulnerability

detection datasets. The hyperparameters for the optimized models for each dataset are provided in

table 4.1. In both deterministic and Bayesian contexts, we employ the identical input size, sequence

length, number of layers, and hidden layer node count to maintain consistency. The sequence

length is set to 50 for each dataset, while the input size is set at 13 for each dataset. The remaining

hyperparameters, such as the number of epochs, batch size, initial and final learning rates, and

the KL weighting factor, are provided only for the Bayesian models to give each model its best

performance. Table 4.1 lists these hyperparameters for the proposed models.

4.1 Experimental Setup

We conduct three separate experiments or prediction tasks for recognizing vulnerabilities

with the goal of evaluating the performance of the suggested Bayesian SVD models.

32

Table 4.1: Hyperparameter

VDISC BigVul SeVC
C1 C2 C3 C4 C5 Combined Multi-head PU FC AU AE

Deterministic

Input Dimension 13 13 13 13 13 13 13 13 13 13 13 13
time step 50 50 50 50 50 50 50 50 50 50 50 50

Hidden Nodes 32 32 32 32 32 32 32 32 32 32 48 32
No of epochs 5 5 5 5 5 5 5 10 10 15 30 30

GRU batch size 12 12 12 12 12 12 12 12 32 32 32 32
Initial lr 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

Ending lr 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−5 10−5 10−5 10−5

Deterministic

Input Dimension 13 13 13 13 13 13 13 13 13 13 13 13
time step 50 50 50 50 50 50 50 50 50 50 50 50

Hidden Nodes 32 32 32 32 32 32 32 32 32 32 48 32
No of epochs 5 5 5 5 5 5 5 10 10 10 30 30

LSTM batch size 12 12 12 12 12 12 12 12 32 32 32 12
Initial lr 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

Ending lr 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

Bayesian

Input Dimension 13 13 13 13 13 13 13 13 13 13 13 13
time step 50 50 50 50 50 50 50 50 50 50 50 50

Hidden Nodes 32 32 32 32 32 32 32 32 32 32 48 32
No of epochs 5 5 5 5 5 5 5 10 30 45 45 50

GRU batch size 100 100 100 100 100 100 100 100 12 12 12 12
Initial lr 10−4 10−4 10−4 10−4 10−4 10−5 10−4 10−4 2×10−3 2×10−3 2×10−3 2×10−3

Ending lr 10−5 10−5 10−5 10−5 10−5 10−6 10−6 10−5 10−4 2×10−4 2×10−4 10−4

KL term factor 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−5 10−6 10−5 10−5

Bayesian

Input Dimension 13 13 13 13 13 13 13 13 13 13 13 13
time step 50 50 50 50 50 50 50 50 50 50 50 50

Hidden Nodes 32 32 32 32 32 32 32 32 32 32 48 32
No of epochs 5 5 5 5 5 5 5 10 15 45 35 25

LSTM batch size 12 12 12 12 12 12 12 12 12 12 12 12
Initial lr 10−4 10−4 10−4 10−4 10−4 10−4 10−5 10−4 10−4 10−4 10−4 10−3

Ending lr 10−6 10−6 10−5 10−5 10−6 10−6 10−6 10−6 10−5 10−5 10−5 10−4

KL term factor 10−4 10−4 10−3 10−3 10−4 10−4 10−5 10−4 10−6 10−5 10−5 10−6

33

4.1.1 Class-wise prediction

Our strategy involves addressing specific binary classification issues for each unique form

of vulnerability in the given situation. This requires determining whether a specific vulnerability

exists within each section of the source code. It’s worth mentioning that only one element of

source code can have numerous vulnerabilities at the same time. Because of this, we carry out the

training, validation, and testing procedures separately for every individual type of vulnerability. The

model’s learning and evaluation are adapted to the particular behaviors and trends connected to each

vulnerability category, thanks to this division.

4.1.2 Combined-class prediction

When examining a sequence of source code, it is likely that the code exhibit sensitivity to one

or more types of vulnerabilities. To deal with this situation, we collect all potential vulnerabilities

and classify source code as vulnerable if it has one or more vulnerabilities. In this approach,

the source code is categorized as either vulnerable or immune based on how vulnerable it is to

various combinations of vulnerabilities. This enables us to thoroughly evaluate the source code’s

vulnerability status, taking into account the presence of any or all potential vulnerabilities.

4.1.3 Multi-head class prediction

This experiment redefines the vulnerability discovery task as a multi-head classification

problem. A fully connected layer with the softmax function and binary classification of vulnerability

is implemented for each head. In order to simultaneously address each of the vulnerabilities, the

network divides the model decision under multiple discrete output layers using a single input source

code. A single branch of the early SVD layer can learn features from the whole dataset using the

multi-head structure, which can then diversify into other vulnerabilities.

4.2 Dataset Selection for Model Development

Three publicly accessible source code datasets, namely the Draper VDISC [58], Big-Vul [21],

and Semantics-based Vulnerability Candidate (SeVC) [41] datasets, consisting of labeled C/C++

34

source code functions, were utilized in our analysis.

4.2.1 VDISC dataset

A total of 1.27 million C/C++ coded functions make up the Draper VDISC dataset. The

codes have been obtained from sources including the Debian Linux operating system, the SATE

IV Juliet Test Suite, and publicly accessible GitHub repositories. There are 1,019,471 samples in

the training set (with 65,904 susceptible codes). The validation and test sets comprise 127,476 and

127,419 samples, respectively. We recovered 1,094,129 tokens which are converted to embedding

vectors of size K. The token sequences have a length of (tau). As a result, the embedding matrix has

a dimension of Ktimestau. The five separate Common Weakness Enumeration (CWE) vulnerability

classes are listed in table 4.2 along with the number of vulnerable sequences present in the training,

validation, and test sets [2]. The training, validation, and test sets have less number of vulnerable

samples, and the dataset is somewhat unbalanced overall. Overall the CWE-120 vulnerability

is the most prevalent, but CWE-469 seems to be the least likely source code vulnerability [2].

Additionally, the average frequency of vulnerable sequences across the entire dataset is shown in

table 4.2. We test vulnerability detection in the VDISC dataset using all three strategies (class-wise,

combined-class, and multi-head class prediction).

Table 4.2: Statistics of the five different types of Common Weakness Enumeration (CWE) vulnera-
bilities in the training, validation and testing sets of the Draper VDISC dataset with 1.27 million
C/C++ functions.

Vulnerable
Associated Flaws

No. vulnerable No. vulnerable No. vulnerable Average
Classes seq. (training) seq. (validation) seq. (testing) Frequency

CWE-119 Improper Restriction of Operations 19,286 2,419 2,452 1.9%
within the Bounds of a Memory Buffer

CWE-120 Classic Buffer Overflow 38,019 4,750 4,891 3.7%
CWE-469 Use of Pointer Subtraction to Determine Size 2,095 252 278 0.2%
CWE-476 NULL Pointer Dereference 9,694 1,208 1,192 0.94%

CWE-other
Buffer Access with Incorrect Length Value,

27,959 3,579 3,490 2.7%
Use of Uninitialized Variable, Improper Input Validation

4.2.2 Big-Vul dataset

The Big-Vul dataset contains 3,754 vulnerable source codes dispersed across 91 distinct

types of vulnerability, i.e., CWE IDs. These vulnerabilities were tracked down from 348 GitHub

projects. The training set contains 150,908 samples with 8,659 vulnerable codes. The validation and

35

test set each includes 37,728 samples. We extracted 236,024 tokens for this dataset. We only run the

combined-class prediction experiment due to the large number of distinct kinds of vulnerabilities

in this dataset. Optimizing and testing 91 different models or one model with 91 heads would be

impractical. Particularly, there aren’t enough data examples to train, validate, and test the models

for each vulnerability separately.

4.2.3 SeVC dataset

Last but not least, the SeVC dataset includes a set of 126 vulnerabilities taken from the

Software Assurance Reference Dataset (SARD) and the National Vulnerability Database (NVD).

Based on four separate categories of syntax analysis, including Library/API Function Call (LFC),

Array Usage (AU), Pointer Usage (PU), and Arithmetic Expression (AE), the vulnerabilities are

categorized. The statistics on SeVC vulnerabilities are provided in table 4.3. Using each of the four

vulnerability categories, we compare the proposed SVD models to their deterministic counterparts

in order to validate them. Given the huge training dataset compared to the other three vulnerability

categories, the PU class has the most tokens extracted, i.e., 86,104. There were 45,961, 31,451, and

38,402 extracted tokens for the library/API function call (LFC), array usage (AU), and arithmetic

expression (AE), respectively. Table 4.3 reveals that LFC has the highest proportion of CWEs.

PU seems to have the lowest likelihood of a vulnerability association based on average frequency,

whereas AU has the highest likelihood. The SeVC dataset is evenly distributed overall. Since we

have a separate dataset for each of the four vulnerability syntactic groups, we conduct a separate

class-wise prediction experiment for each category.

Table 4.3: Statistics of the four different types of vulnerability syntax in the training, validation and
testing sets of the SeVC dataset

Vulnerability Syntax
No. of CWE IDs Associated

No. vulnerable No. vulnerable No. vulnerable Average

Associate seq. (training) seq. (validation) seq. (testing) Frequency

Library/API Function Call (LFC) 106 12,214 1,388 1,388 21.5%

Array Usage (AU) 87 9,826 1,099 1,099 26%

Pointer Usage (PU) 103 22,760 5,630 5,630 9.6%

Arithmetic Expression (AE) 45 3,126 349 349 15.75%

36

4.3 Performance Evaluation

4.3.1 Robustness and Noise Analysis

We evaluate the robustness of the proposed SVD models by comparing their performance to

the deterministic models under various noise situations. Each model undergoes initial training based

on noise-free source code examples. Then, during testing, we introduce varying levels of Gaussian

noise and adversarial attacks during the preprocessing phases. The standard deviation (SD) is a

measurement of noise intensity for Gaussian noise. In order to sufficiently introduce random noise

to the test data, we alter the SD value and employ three noise levels (Low, Medium, and High). The

adversarial examples are constructed using two different approaches, namely the fast gradient sign

method (FGSM) and the basic iterative method (BIM) [24, 36]. For the FGSM adversarial attack,

the noise is synthesized by adding the gradient of the loss function (ELBO loss in the Bayesian

SVD models) to the test samples multiplied by ε , i.e., εsign
[
∇XL(φ ;X,y)

]
, and ∇X represents the

gradient with respect to the input embedding matrix [24]. For the deterministic GRU and LSTM,

the FGSM attacks are generated by utilizing the gradient of the cross-entropy loss function of the

deterministic network with respect to the input embedding matrix. With a small step size, α , the

BIM is an iterative attack that repeatedly applies FGSM.

For our simulation, the step size, α , is set to 1, and the number of iterations is set to

20. The clipping operation makes sure that the adversarial cases are close to the original data

(ε-neighborhood). By changing the ε value, the three levels of adversarial attacks (Low, Medium,

and High) for both FGSM and BIM are selected. Along with the SD used to produce different levels

of Gaussian noise, the ε values for each level of adversarial attack are given in Table 4.4. The SD

and ε values may vary for each dataset based on the quantity of noise.

4.4 Results and Discussion

Tables 4.5, 4.6 and 4.7 show how effectively the proposed Bayesian SVD models performed

compared to their deterministic analogs for a range of noise levels using VDISC, Big-Vul, and SeVC

datasets. The accuracy of the proposed Bayesian SVD models stays noticeably higher than that of

37

Table 4.4: The level of Gaussian noise (standard deviation (SD)) and the strength of adversarial
attacks (ε) applied for all the datasets in the experiments

Bayesian SVD
Noise Type Noise Level VDISC BigVul

SeVC
models PU LFC AU AE

Gaussian
Low 0.05 0.05 0.1 0.001 0.001 0.001

Medium 0.1 0.1 0.15 0.05 0.05 0.1
High 0.5 0.5 0.2 0.1 0.1 0.25

Bayesian FGSM
Low 0.05 0.05 0.005 0.001 0.001 0.001

Medium 0.1 0.1 0.01 0.005 0.005 0.005
SVD-GRU High 0.5 0.5 0.05 0.01 0.01 0.01

BIM
Low 0.05 0.05 0.005 0.001 0.001 0.001

Medium 0.1 0.1 0.01 0.005 0.005 0.005
High 0.5 0.5 0.05 0.01 0.01 0.01

Gaussian
Low 0.05 0.05 0.05 0.01 0.01 0.1

Medium 0.1 0.1 0.1 0.05 0.05 0.15
High 0.5 0.5 0.3 0.3 0.2 0.2

Bayesian FGSM
Low 0.05 0.05 0.001 0.001 0.001 0.01

Medium 0.1 0.1 0.005 0.005 0.005 0.2
SVD-LSTM High 0.5 0.5 0.01 0.01 0.01 0.3

BIM
Low 0.05 0.05 0.001 0.001 0.001 0.01

Medium 0.1 0.1 0.005 0.005 0.005 0.2
High 0.5 0.5 0.01 0.01 0.01 0.3

corresponding deterministic models under noisy settings for the VDISC dataset, as shown in Table

4.5. Even when source codes are distorted by random noise and especially adversarial perturbation,

the Bayesian SVD models maintain their ability to find vulnerabilities efficiently. This tendency

is maintained across all five vulnerability classes (CWE-119, CWE-120, CWE-469, CWE-476,

and CWE-other) and all three vulnerability prediction tasks (class-wise prediction, combined-class

prediction, and multi-head class prediction).

On the noise-free test data, the proposed Bayesian SVD models possess accuracy identical

to the deterministic LSTM and GRU models. However, the accuracy of deterministic models

drastically degrades when noise levels increase gradually, especially when adversarial attacks are

present. A reasonable level of Gaussian noise appears to have no impact on either model, while a

high level of Gaussian noise causes the deterministic model to decline in accuracy substantially.

The proposed Bayesian SVD models, however, continue to be accurate even in the presence of very

high noise levels. Similar behavior is seen in response to FGSM and BIM attacks, with the accuracy

of the deterministic models degrading more rapidly.

The test accuracy of the Big-Vul dataset at different noise levels is displayed in Table 4.6.

38

Table 4.5: Draper VDISC test accuracy (in %) using SVD-GRU and deterministic GRU for
different types of vulnerabilities (C1, C2, C3, C4, C5, Combined and Multiclass representing CWE-
119, CWE-120, CWE-469, CWE-476, CWE-other, Combined Classes and Multi Head Classes
respectively) under Gaussian noise, and FGSM and BIM adversarial attacks

Deterministic GRU Bayesian SVD-GRU

Noise level C1 C2 C3 C4 C5 Combined Multi-head C1 C2 C3 C4 C5 Combined Multi-head

No Noise 98.06 96.08 99.78 99.09 97.25 93.47 98.06 98.08 96.16 99.78 99.06 97.26 93.52 98.07

Gaussian

Low 98.06 96.08 99.78 99.09 97.25 93.46 98.06 98.08 96.16 99.78 99.06 97.26 93.52 98.07

Medium 98.06 96.06 99.78 99.09 97.25 93.45 98.06 98.08 96.16 99.78 99.06 97.26 93.52 98.07

High 97.85 93.45 99.78 99.08 96.02 87.87 97.62 98.08 96.16 99.78 99.06 97.26 93.52 98.07

FGSM

Low 97.43 92.08 99.79 98.89 94.88 85.18 97.77 98.08 96.16 99.78 99.06 97.26 93.52 98.07

Medium 91.11 50.64 99.78 95.46 64.94 33.80 92.40 98.08 96.16 99.78 99.06 97.26 93.52 98.07

High 0.00 0.00 71.57 0.00 0.00 0.00 4.60 98.08 96.16 94.29 99.06 97.26 93.52 98.07

BIM

Low 97.43 92.08 99.78 98.89 94.88 85.18 97.77 98.08 96.16 99.78 99.06 97.26 93.52 98.07

Medium 91.11 50.64 99.78 95.46 64.94 33.80 92.40 98.08 96.16 99.78 99.06 97.26 93.52 98.07

High 0.00 0.00 71.57 0.00 0.00 0.00 4.60 98.08 96.16 94.29 99.06 97.26 93.52 98.07

Deterministic LSTM Bayesian SVD-LSTM

Noise level C1 C2 C3 C4 C5 Combined Multi-head C1 C2 C3 C4 C5 Combined Multi-head

No Noise 98.07 96.16 99.78 99.06 97.26 93.52 98.06 98.08 95.92 99.78 99.06 97.26 93.52 98.07

Gaussian

Low 98.07 96.16 99.78 99.06 97.26 93.52 98.06 98.08 95.93 99.78 99.06 97.26 93.52 98.07

Medium 98.01 95.89 99.78 99.06 97.26 93.47 98.05 98.08 96.00 99.78 99.06 97.26 93.52 98.07

High 69.93 71.97 99.71 99.02 96.75 75.46 90.81 98.08 94.06 99.78 99.06 95.83 93.52 98.07

FGSM

Low 17.53 55.71 99.78 99.06 97.09 2.74 79.45 98.08 86.63 99.78 99.06 97.26 93.52 98.07

Medium 14.73 55.69 99.72 99.00 56.97 0.01 10.58 98.08 50.14 99.78 99.06 97.26 93.52 98.07

High 1.82 43.24 48.55 74.24 0.00 0.00 5.41 98.08 48.87 99.78 99.06 97.26 42.07 98.06

BIM

Low 17.53 55.70 99.78 99.06 97.09 2.74 79.45 98.08 86.63 99.78 99.06 99.06 99.06 98.07

Medium 14.73 55.70 99.72 99.00 56.97 0.01 10.58 98.08 50.15 99.78 99.06 97.26 93.52 98.07

High 1.82 43.24 48.55 74.24 0.00 0.00 5.41 98.08 48.87 99.78 99.06 97.26 42.07 98.06

When no noise is applied to the test data, we observe equivalent accuracy for the proposed Bayesian

SVD and deterministic models. The accuracy of the deterministic models, however, declines when

Gaussian noise or an adversarial attack is applied with significant levels of noise. With FGSM and

BIM adversarial noise, the accuracy of the deterministic models drops dramatically. The accuracy

of the Bayesian SVD models, however, is consistently accurate. Therefore, their performance is

unaffected by intense noisy scenarios.

Table 4.7 illustrates the test accuracy for each of the four groups of syntactic vulnerabilities

in the SeVC dataset. In the noise-free situation, we observe that the proposed models’ accuracy is

roughly comparable to that of their deterministic equivalents. In contrast, the proposed Bayesian

SVD models exhibit higher accuracy when compared to the deterministic models. For PU, LFC,

39

Table 4.6: Big-Vul test accuracy (in %) using Bayesian and deterministic models under Gaussian
noise, and FGSM and BIM adversarial attacks

Noise level Deterministic GRU Bayesian SVD-GRU Deterministic LSTM Bayesian SVD-LSTM

No Noise 94.22 94.34 94.21 94.36

Gaussian

Low 94.16 94.22 94.26 94.17

Medium 94.21 94.25 94.29 94.15

High 94.07 94.21 94.02 94.11

FGSM

Low 93.85 94.12 93.82 94.13

Medium 93.15 94.34 91.16 94.05

High 0.00 94.23 61.66 94.39

BIM

Low 94.24 94.17 94.06 94.31

Medium 93.38 94.08 91.06 94.28

High 0.00 94.15 62.62 94.40

Table 4.7: SeVC test accuracy (in %) using Bayesian and deterministic models for four different
types of vulnerability syntax (PU, LFC, AU, and AE representing Pointer Usage, Library/API
Function Call and Arithmetic Expression respectively) under Gaussian noise, and FGSM and BIM
adversarial attacks

Deterministic GRU Bayesian SVD-GRU Deterministic LSTM Bayesian SVD-LSTM

Noise level PU LFC AU AE PU LFC AU AE PU LFC AU AE PU LFC AU AE

No Noise 95.65 90.38 90.94 95.70 94.32 92.15 90.79 95.38 95.70 90.58 91.84 95.74 95.96 91.73 91.24 94.66

Gaussian
Low 93.93 90.39 90.86 95.60 93.56 92.12 90.79 95.40 95.17 90.41 91.79 92.39 95.53 91.71 91.03 92.57

Medium 92.80 90.24 90.72 94.00 92.86 91.70 90.79 94.16 93.62 89.37 89.74 89.36 94.71 89.79 90.31 90.63

High 91.92 89.61 88.02 91.53 91.61 90.73 88.77 92.53 86.88 72.70 80.99 83.74 91.11 78.50 82.69 88.09

FGSM
Low 89.60 89.65 87.26 95.34 93.59 91.34 90.27 94.52 95.06 88.81 88.76 83.20 95.61 89.72 89.60 89.63

Medium 82.64 85.81 78.29 93.00 92.71 88.88 87.46 91.85 91.38 78.31 78.41 33.11 93.71 79.74 81.74 83.38

High 59.86 80.38 62.60 87.00 78.36 86.43 80.65 89.00 85.80 62.00 66.48 17.66 90.80 68.63 72.60 83.33

BIM
Low 89.60 89.65 87.26 95.34 93.59 91.34 90.27 94.52 95.06 88.81 88.76 83.20 95.61 89.72 89.60 89.63

Medium 82.64 85.81 78.29 93.00 92.71 88.88 87.46 91.80 91.38 78.31 78.41 33.11 93.71 79.74 81.74 83.38

High 59.86 80.38 62.60 87.00 78.36 86.43 80.65 89.00 85.80 62.00 66.48 17.66 90.80 68.63 72.60 83.33

AU, and AE, the deterministic LSTM model generates accuracy values of 85.8%,62.0%,66.48%,

and 17.66%, respectively, under the high level of FGSM and BIM attack, as shown in Table 4.7. For

PU, LFC, AU, and AE, the Bayesian SVD-LSTM generates 90.8%,68.63%,72.6%, and 83.33%

accuracy, respectively. In a similar manner, when compared to deterministic models, the Bayesian

SVD-GRU maintains superior accuracy despite intense adversarial attacks.

4.5 Self-Assessment through Uncertainty Analysis

This section explores the proposed Bayesian SVD models’ uncertainty in the context of noisy

environments, such as Gaussian noise, FGSM, and BIM adversarial attacks. The signal-to-noise

40

ratio (SNR) at each noise level is used to quantify the noise level. We compute the predicted variance

of the Bayesian SVD models versus SNR (i.e., variance-vs-SNR curve) under noisy conditions

for each of the three datasets with various prediction tasks since the predicted variance serves as a

measure of uncertainty.

(a) CWE-119 (b) CWE-120 (c) CWE-469

(d) CWE-476 (e) CWE-other

SNR (dB)

(f) Combined Classes

(g) Multi-head Classes

P
re

d
ic

ti
v

e
v

a
ri

a
n

ce
P

re
d

ic
ti

v
e

v
a

ri
a

n
ce

SNR (dB) SNR (dB)

SNR (dB) SNR (dB) SNR (dB)

P
re

d
ic

ti
v

e
v

a
ri

a
n

ce

SNR (dB)

Gaussian Noise

BIM Attack

FGSM Attack

Statistically significant

increase in variance

Figure 4.1: Average predictive variance of different classes plotted against SNR under Gaussian
noise, FGSM and BIM adversarial attack for Bayesian SVD-GRU for VDISC dataset. The statistical
increase in the variance is indicated by arrows pointing to the respective points. A significant
increase in the variance can serve as a “red flag” and initiate the process of manual review of the
input.

For all classes and all prediction tasks, the findings clearly indicate an increase in predictive

variance (the x-axis is read from right to left) with decreasing SNR values. Therefore, the suggested

Bayesian SVD models result in increasing uncertainty as the noise level increases (or, equivalently,

as SNR drops) and the accuracy of the models degrades. We call this behavior “self-assessment"

because when the noise level rises significantly, the model evaluates its own performance and

identifies its failure mode.

41

(a) CWE-119 (b) CWE-120 (c) CWE-469

(d) CWE-476 (e) CWE-other

SNR (dB) SNR (dB)

SNR (dB)

SNR (dB)

SNR (dB)
SNR (dB)

(f) Combined Classes

(g) Multi-head Classes

P
re

d
ic

ti
v

e
v

a
ri

a
n

ce

Gaussian Noise

BIM Attack

FGSM Attack

P
re

d
ic

ti
v

e
v

a
ri

a
n

ce

Statistically significant

increase in variance P
re

d
ic

ti
v

e
v

a
ri

a
n

ce

SNR (dB)

Figure 4.2: Average predictive variance of different classes plotted against SNR under Gaussian
noise, FGSM and BIM adversarial attack for Bayesian SVD-LSTM for VDISC dataset. The
statistical increase in the variance is indicated by arrows pointing to the respective points. A
significant increase in the variance can serve as a “red flag” and initiate the process of manual
review of the input.

42

The Wilcoxon signed-rank test has been utilized to make a pair-wise statistical comparison

between the average predictive variance at each noise level and the average variance of the clean

test data in order to validate the increase in the predictive variance. In Figures 4.1 and 4.2, an arrow

signifies the noise level that causes a substantial increase in the prediction variance (p < 0.01). For

all vulnerability classes across all tests, we notice the Bayesian SVD models exhibit a substantial

increase in variance (or uncertainty). When the system input is distorted by noise or under attack by

an adversary, the models’ self-evaluation may assist in alerting the user of uncertain decisions. Due

to the fact that BIM provides adversarial perturbation by including the gradient of the model output

with respect to the input, the variance curves for the FGSM attack (blue curve) and BIM attack

(green curve) occasionally overlap. Unlike FGSM, the BIM method generates noise repeatedly. We

observe that the increase in model uncertainty under FGSM and BIM adversarial noise appears to

be significantly more rapid than that associated with Gaussian noise by observing the uncertainty of

the proposed Bayesian SVD models under noisy conditions for all classes. This is based on the fact

that adversarial attacks are deliberately designed to harm model performance.

In Figure 4.3, the variance-versus-SNR curves for the Big-Vul dataset are presented. Notably,

both Bayesian SVD models, specifically SVD-LSTM (depicted in Figure 4.3 (a)) and SVD-GRU

(illustrated in Figure 4.3 (b)), exhibit a noticeable amplification of model uncertainty as the noise

level increases. This elevation in uncertainty occurs more rapidly in the context of adversarial

attacks compared to the presence of Gaussian noise.

Figures 4.4 and 4.5 demonstrate the noise analysis for the Bayesian SVD-GRU and SVD-

LSTM models, respectively. We observe how different kinds of noise affect the model’s uncertainty

for each of the four vulnerability syntaxes in the SeVC dataset. We detect the same pattern in

the model uncertainty as observed in the first two datasets. In contrast, SVD-LSTM exhibits a

considerable increase in uncertainty under Gaussian noise as compared to adversarial attacks for the

vulnerability associated with Array Usage and Library/API Function Call 4.5 (b and c)). We justify

this behavior by the uniqueness of each dataset in the ways in which noise and adversarial attacks

can influence trained models.

43

As a result, the SVD models provide a potential method for discovering vulnerabilities in

software source codes, regardless of whether those codes have been compromised by various types

of noise or are the target of malicious attacks. These Bayesian SVD models also have the capacity

to distinguish between noisy and attacked source codes due to the clear increase in uncertainty that

is seen in the predicted variance as the level of noise or the severity of the attack increases.

P
re

d
ic

ti
v

e
v

a
ri

a
n

ce

Gaussian Noise

BIM Attack

FGSM Attack

Statistically significant

increase in variance

(a) SVD-LSTM
(b) SVD-GRU

SNR (dB)
SNR (dB)

Figure 4.3: Average predictive variance of different classes plotted against SNR under Gaussian
noise, FGSM and BIM adversarial attack. The statistical increase in the variance is indicated by
arrows pointing to the respective points for (a) Bayesian SVD-LSTM and (b) Bayesian SVD-LSTM
for Big-Vul dataset. A significant increase in the variance can serve as a “red flag” and initiate the
process of manual review of the input.

Figures 4.1 and 4.2 depict the variance-versus-SNR (Signal-to-Noise Ratio) curves for

the Bayesian SVD GRU and LSTM models. These curves illustrate the class-wise predictions,

combined-class prediction, and multi-head class prediction using the VDISC dataset. Specifically,

Figures 4.1 (a-e) and 4.2 (a-e) represent the class-wise predictions, while Figures 4.1 (f) and 4.2 (f)

show the combined-class prediction. Moreover, Figures 4.1 (g) and 4.2 (g) illustrate the multi-head

class prediction.

44

(d) Arithmetic Expression

(b) Array Usage

SNR (dB)

SNR (dB)

SNR (dB)
SNR (dB)

P
re

d
ic

ti
v
e

v
a
ri

a
n

ce

Gaussian Noise

BIM Attack

FGSM Attack

Statistically significant

increase in variance

P
re

d
ic

ti
v
e

v
a
ri

a
n

ce
(a) Pointer Usage (c) Library/API Function Call

Figure 4.4: Average predictive variance of different classes plotted against SNR under Gaussian
noise, FGSM and BIM adversarial attack for Bayesian SVD-GRU for SeVC dataset. The statistical
increase in the variance is indicated by arrows pointing to the respective points. A significant
increase in the variance can serve as a “red flag” and initiate the process of manual review of the
input.

(a) Pointer Usage (b) Array Usage (c) Library/API Function Call

SNR (dB)

SNR (dB)

SNR (dB)SNR (dB)

P
re

d
ic

ti
v
e

v
a
ri

a
n

ce

Gaussian Noise

BIM Attack

FGSM Attack

Statistically significant

increase in variance

P
re

d
ic

ti
v
e

v
a
ri

a
n

ce

(d) Arithmetic Expression

Figure 4.5: Average predictive variance of different classes plotted against SNR under Gaussian
noise, FGSM and BIM adversarial attack for Bayesian SVD-LSTM for SeVC dataset. The statistical
increase in the variance is indicated by arrows pointing to the respective points. A significant
increase in the variance can serve as a “red flag” and initiate the process of manual review of the
input.

45

CHAPTER V

FUTURE WORK

To guarantee thorough coverage and robust security protocols, it is vital to combine manual

code reviews, security audits, and intrusion detection with automated vulnerability identification.

It provides businesses the capability to spot security flaws and take appropriate action, lowering

the chance of exploitation and its related risks. Early in development, companies can prioritize

vulnerability identification to avert security incidents, safeguard user data, and foster user and

stakeholder confidence. In addition, it assists in complying with regulations, reduces costs by

proactively fixing vulnerabilities, and raises the general standard and maintainability of the codebase.

Here are a few instances of software vulnerability detection being used in various domains:

• Mobile Applications: Vulnerability scanners and dynamic analysis tools are used in mobile

applications to find security flaws particular to mobile platforms. These can include storing

data insecurely, using weak authentication methods, communicating between processes

insecurely, or using outdated APIs.

• Web Applications: Web application vulnerability scanners may identify frequent cyberattacks

like SQL injection, cross-site scripting (XSS), cross-site request forgery (CSRF) or insecure

direct object references. Uncertain cryptographic techniques, data leaks, or vulnerabilities

in server-side scripting languages like PHP, Ruby, or ASP.NET can be found using our

vulnerability analysis framework to check the source code or web application binaries.

• Operating Systems: To find flaws like buffer overflows, privilege escalation vulnerabilities,

race circumstances, or improper system call usage, operating systems can be examined

using vulnerability analysis techniques. Using dynamic analysis tools, vulnerabilities in the

46

run-time environment can be found by simulating attacks and tracking system behavior.

• Embedded systems: Utilizing vulnerability detection technologies, embedded systems like IoT

devices, medical devices, or industrial control systems can be tested. Such tools are capable

of discovering flaws like faulty authentication, vulnerable communication protocols, buffer

overflows, or hazardous default configurations. To find security flaws and vulnerabilities,

static analysis tools are capable of reviewing the source code or binaries of embedded systems.

Our source code vulnerability detection algorithm can be customized to serve as a software testing

tool or Software as a Service (SaaS) solution. The algorithm can be modified to meet the specifica-

tions of a testing tool or SaaS platform to produce a specialized solution for locating and addressing

security issues during software testing. This could involve implementing additional vulnerability

detection approaches, enhancing the algorithm’s rules and strategies, and integrating with the tool’s

user interface and reporting capabilities. The algorithm can be incorporated into a software testing

tool’s scanning and analysis sections. It has the ability to automatically scan the source code, run

static or dynamic analysis, and find potential security flaws, including unsafe coding practices, poor

input validation, or weak authentication. The application can then deliver comprehensive findings,

rank vulnerabilities, and support developers and testers in resolving the discovered problems. The

modified algorithm can be installed on a cloud-based infrastructure in the case of a SaaS offering.

Users can connect their version control repositories to the site or upload their source code. Utilizing

the improved technique, the SaaS service scans and analyzes the codebase for vulnerabilities.

Moreover, the source code vulnerability detection framework can be adapted from C/C++ to

other programming languages, including PHP, Ruby, JavaScript, Go, Python, and Java. Insecure

deserialization in Java, code injection in Python, DOM-based XSS in JavaScript, remote code

execution in PHP, mass assignment vulnerabilities in Ruby, and race conditions in Go are just a

few examples of language-specific security problems that can be found by adapting the framework

to these languages. This requires understanding the existing algorithm, modifying the algorithm’s

logic, taking language-specific faults into account, and documenting the process. A comprehensive

analysis is required to address security threats and programming language changes.

47

CHAPTER VI

CONCLUSION

We build a novel source code vulnerability detection framework based on the Bayesian gated

recurrent unit (SVD-GRU) and Bayesian long short-term memory (SVD-LSTM). The Bayesian

inference allows approximation of the variational distribution defined over the model’s parameters.

At the output of the SVD models, the mean of the predictive distribution provides the estimate of

the vulnerability, and the covariance matrix captures the uncertainty in the predicted vulnerability.

The proposed SVD models are validated on three datasets containing over one million C/C++

source codes containing different types of CWE vulnerabilities. The experiments have demonstrated

superior robustness against Gaussian noise and adversarial attacks compared to the deterministic

models. The SVD models show a significant increase in the prediction uncertainty (or predictive

variance) under high noise levels or stronger adversarial attacks. The model can use such behavior

to assess its own performance and alert the user about performance degradation linked to noise or

malicious attacks. This self-assessment mechanism is especially useful in high-stakes applications

where accurate and trustworthy predictions are crucial. By continuously monitoring their own

levels of uncertainty, these models can timely detect any performance degradation resulting from

excessive noise or malicious attacks. This feature allows them to notify users of potential dangers or

compromised data. Overall, the ability of the Bayesian SVD models to evaluate their performance

under adverse conditions makes them appropriate for applications where noise or adversarial attacks

are prevalent, establishing confidence in their predictions and empowering users to make informed

decisions despite the presence of interruption factors.

48

REFERENCES

[1] CVSS Severity Distribution Over Time, Jan 2022.

[2] CWE Common Weakness Enumeration, 2022. Accessed: March, 2022.

[3] M. ABADI, , ET AL., TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[4] A. M. ALGARNI AND Y. K. MALAIYA, Software vulnerability markets: Discoverers and
buyers, International Journal of Computer and Information Engineering, 8 (2014), pp. 480 –
490.

[5] O. H. ALHAZMI AND Y. K. MALAIYA, Application of vulnerability discovery models to
major operating systems, IEEE Transactions on Reliability, 57 (2008), pp. 14–22.

[6] A. ARORA AND R. TELANG, Economics of software vulnerability disclosure, IEEE security
& privacy, 3 (2005), pp. 20–25.

[7] A. ATLA, R. TADA, V. SHENG, AND N. SINGIREDDY, Sensitivity of different machine
learning algorithms to noise, J. Comput. Sci. Coll., 26 (2011), p. 96–103.

[8] D. BACA, K. PETERSEN, B. CARLSSON, AND L. LUNDBERG, Static code analysis to detect
software security vulnerabilities-does experience matter?, in 2009 International Conference
on Availability, Reliability and Security, IEEE, 2009, pp. 804–810.

[9] X. BAN, S. LIU, C. CHEN, AND C. CHUA, A performance evaluation of deep-learnt features
for software vulnerability detection, Concurrency and Computation: Practice and Experience,
31 (2019), p. e5103.

[10] U. BAYER, A. MOSER, C. KRUEGEL, AND E. KIRDA, Dynamic analysis of malicious code,
Journal in Computer Virology, 2 (2006), pp. 67–77.

[11] Z. BILGIN, M. A. ERSOY, E. U. SOYKAN, E. TOMUR, P. ÇOMAK, AND L. KARAÇAY,
Vulnerability prediction from source code using machine learning, IEEE Access, 8 (2020),
pp. 150672–150684.

[12] J. CAI, P. ZOU, J. MA, AND J. HE, Sworddta: A dynamic taint analysis tool for software
vulnerability detection, Wuhan University Journal of Natural Sciences, 21 (2016), pp. 10–20.

[13] S. CHAKRABORTY, R. KRISHNA, Y. DING, AND B. RAY, Deep learning based vulnerability
detection: Are we there yet, IEEE Transactions on Software Engineering, (2021).

49

[14] S. E. CHANDY, A. RASEKH, Z. A. BARKER, AND M. E. SHAFIEE, Cyberattack detection
using deep generative models with variational inference, Journal of Water Resources Planning
and Management, 145 (2019), p. 04018093.

[15] T. CHEN, E. FOX, AND C. GUESTRIN, Stochastic gradient hamiltonian monte carlo, in
International conference on machine learning, PMLR, 2014, pp. 1683–1691.

[16] J.-T. CHIEN AND Y.-C. KU, Bayesian recurrent neural network for language modeling, IEEE
transactions on neural networks and learning systems, 27 (2015), pp. 361–374.

[17] K. CHO, B. VAN MERRIENBOER, D. BAHDANAU, AND Y. BENGIO, On the properties of
neural machine translation: Encoder-decoder approaches, in Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8), 2014.

[18] A. DAIRI, F. HARROU, AND Y. SUN, A deep attention-driven model to forecast solar
irradiance, in 2021 IEEE 19th International Conference on Industrial Informatics (INDIN),
IEEE, 2021, pp. 1–6.

[19] H. DAM, T. TRAN, T. PHAM, S. NG, J. GRUNDY, AND A. GHOSE, Automatic feature
learning for predicting vulnerable software components, IEEE Transactions on Software
Engineering, 47 (2021), pp. 67–85.

[20] D. DERA, S. AHMED, N. C. BOUAYNAYA, AND G. RASOOL, Trustworthy uncertainty
propagation for sequential time-series analysis in rnns, IEEE Transactions on Knowledge and
Data Engineering, (2023), pp. 1–13.

[21] J. FAN, Y. LI, S. WANG, AND T. N. NGUYEN, Ac/c++ code vulnerability dataset with code
changes and cve summaries, in Proceedings of the 17th International Conference on Mining
Software Repositories, 2020, pp. 508–512.

[22] Y. GAL AND Z. GHAHRAMANI, A theoretically grounded application of dropout in recurrent
neural networks, Advances in neural information processing systems, 29 (2016).

[23] S. GHOSH, F. DELLE FAVE, AND J. YEDIDIA, Assumed density filtering methods for learning
bayesian neural networks, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 30, 2016.

[24] I. J. GOODFELLOW, J. SHLENS, AND C. SZEGEDY, Explaining and harnessing adversar-
ial examples, in Proceedings of 3rd International Conference on Learning Representations,
(ICLR), 2015.

[25] Z. HAN, X. LI, Z. XING, H. LIU, AND Z. FENG, Learning to predict severity of software
vulnerability using only vulnerability description, in 2017 IEEE International conference on
software maintenance and evolution (ICSME), IEEE, 2017, pp. 125–136.

[26] J. HARER, O. OZDEMIR, T. LAZOVICH, C. REALE, R. RUSSELL, L. KIM, ET AL., Learning
to repair software vulnerabilities with generative adversarial networks, in Proceedings of the
31st International Conference on Neural Information Processing Systems, (NIPS), vol. 31,
2018.

50

[27] B. HARRISON, C. PURDY, AND M. RIEDL, Toward automated story generation with markov
chain monte carlo methods and deep neural networks, in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 13, 2017, pp. 191–197.

[28] J. M. HERNÁNDEZ-LOBATO AND R. ADAMS, Probabilistic backpropagation for scalable
learning of bayesian neural networks, in International conference on machine learning, PMLR,
2015, pp. 1861–1869.

[29] S. HOCHREITER, The vanishing gradient problem during learning recurrent neural nets and
problem solutions, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6 (1998), pp. 107–116.

[30] A. HOVSEPYAN, R. SCANDARIATO, W. JOOSEN, AND J. WALDEN, Software vulnerability
prediction using text analysis techniques, in Proceedings of the 4th international workshop on
Security measurements and metrics, 2012, pp. 7–10.

[31] S. KAMIYA, J.-K. KANG, J. KIM, A. MILIDONIS, AND R. M. STULZ, Risk management,
firm reputation, and the impact of successful cyberattacks on target firms, Journal of Financial
Economics, 139 (2021), pp. 719–749.

[32] S. KIM, S. WOO, H. LEE, AND H. OH, Vuddy: A scalable approach for vulnerable code
clone discovery, in IEEE Symposium on Security and Privacy (SP), 2017, pp. 595–614.

[33] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, in Proceedings of
3th International Conference on Learning Representations, (ICLR), 2015.

[34] G. KLEES, A. RUEF, B. COOPER, S. WEI, AND M. HICKS, Evaluating fuzz testing, in
Proceedings of the 2018 ACM SIGSAC conference on computer and communications security,
2018, pp. 2123–2138.

[35] M. KOMISAREK, M. PAWLICKI, R. KOZIK, AND M. CHORAS, Machine learning based
approach to anomaly and cyberattack detection in streamed network traffic data., J. Wirel.
Mob. Networks Ubiquitous Comput. Dependable Appl., 12 (2021), pp. 3–19.

[36] A. KURAKIN, I. GOODFELLOW, AND S. BENGIO, Adversarial examples in the physical
world, in Proceedings of 5th International Conference on Learning Representations, (ICLR)
workshop track, 2017.

[37] D. LAST, Using historical software vulnerability data to forecast future vulnerabilities, in
2015 Resilience Week (RWS), IEEE, 2015, pp. 1–7.

[38] A. LAZARENKO AND S. AVDOSHIN, Financial risks of the blockchain industry: A survey of
cyberattacks, in Proceedings of the Future Technologies Conference (FTC) 2018: Volume 2,
Springer, 2019, pp. 368–384.

[39] X. LI, L. WANG, Y. XIN, Y. YANG, Q. TANG, AND Y. CHEN, Automated software vulnera-
bility detection based on hybrid neural network, Applied Sciences, 11 (2021), p. 3201.

51

[40] Y. LI, J. M. HERNÁNDEZ-LOBATO, AND R. E. TURNER, Stochastic expectation propagation,
Advances in neural information processing systems, 28 (2015).

[41] Z. LI, D. ZOU, S. XU, H. JIN, Y. ZHU, AND Z. CHEN, Sysevr: A framework for using
deep learning to detect software vulnerabilities, IEEE Transactions on Dependable and Secure
Computing, 19 (2021), pp. 2244–2258.

[42] G. LIN, S. WEN, Q.-L. HAN, J. ZHANG, AND Y. XIANG, Software vulnerability detection
using deep neural networks: A survey, Proceedings of the IEEE, 108 (2020), pp. 1825–1848.

[43] K. LIU, A. KOYUNCU, D. KIM, AND T. F. BISSYANDÉ, TBar: revisiting template-based au-
tomated program repair, in Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2019.

[44] L. LIU AND S. VASUDEVAN, Scaling input stimulus generation through hybrid static and
dynamic analysis of rtl, ACM Transactions on Design Automation of Electronic Systems
(TODAES), 20 (2014), pp. 1–33.

[45] P. LOURIDAS, Static code analysis, Ieee Software, 23 (2006), pp. 58–61.

[46] G. LYKOU, D. MOUSTAKAS, AND D. GRITZALIS, Defending airports from uas: A survey on
cyber-attacks and counter-drone sensing technologies, Sensors, 20 (2020), p. 3537.

[47] D. J. MACKAY, A practical bayesian framework for backpropagation networks, Neural
computation, 4 (1992), pp. 448–472.

[48] M. MADOU, B. ANCKAERT, B. DE SUTTER, AND K. DE BOSSCHERE, Hybrid static-
dynamic attacks against software protection mechanisms, in Proceedings of the 5th ACM
workshop on Digital rights management, 2005, pp. 75–82.

[49] T. NAGAPETYAN, A. B. DUNCAN, L. HASENCLEVER, S. J. VOLLMER, L. SZPRUCH,
AND K. ZYGALAKIS, The true cost of stochastic gradient langevin dynamics, arXiv preprint
arXiv:1706.02692, (2017).

[50] R. M. NEAL, Bayesian learning for neural networks, vol. 118, Springer Science & Business
Media, 2012.

[51] J. NOVAK, A. KRAJNC, ET AL., Taxonomy of static code analysis tools, in The 33rd interna-
tional convention MIPRO, IEEE, 2010, pp. 418–422.

[52] A. PECHENKIN AND R. DEMIDOV, Application of deep neural networks for security analysis
of digital infrastructure components, in SHS Web of Conferences, vol. 44, EDP Sciences,
2018, p. 00068.

[53] H. PERL, S. DECHAND, M. SMITH, D. ARP, F. YAMAGUCHI, K. RIECK, S. FAHL, AND

Y. ACAR, VCCFinder: Finding potential vulnerabilities in open-source projects to assist code
audits, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, 2015, pp. 426–437.

52

[54] C. E. RASMUSSEN AND C. K. I. WILLIAMS, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning), The MIT Press, 2005.

[55] M. REZAEE AND F. FERRARO, A discrete variational recurrent topic model without the
reparametrization trick, Advances in neural information processing systems, 33 (2020),
pp. 13831–13843.

[56] M. RIEK AND R. BÖHME, The costs of consumer-facing cybercrime: an empirical exploration
of measurement issues and estimates†, Journal of Cybersecurity, 4 (2018).

[57] H. RITTER, A. BOTEV, AND D. BARBER, A scalable laplace approximation for neural net-
works, in 6th International Conference on Learning Representations, ICLR 2018-Conference
Track Proceedings, vol. 6, International Conference on Representation Learning, 2018.

[58] R. RUSSELL, L. KIM, L. HAMILTON, T. LAZOVICH, J. HARER, O. OZDEMIR, P. ELLING-
WOOD, AND M. MCCONLEY, Automated vulnerability detection in source code using deep
representation learning, in Proceedings of the 17th IEEE international conference on machine
learning and applications (ICMLA), 2018, pp. 757–762.

[59] R. SCANDARIATO, J. WALDEN, A. HOVSEPYAN, AND W. JOOSEN, Predicting vulnerable
software components via text mining, IEEE Transactions on Software Engineering, 40 (2014),
pp. 993–1006.

[60] R. M. SCHMIDT, Recurrent neural networks (rnns): A gentle introduction and overview,
arXiv preprint arXiv:1912.05911, (2019).

[61] G. SUCIU, A. SCHEIANU, A. VULPE, I. PETRE, AND V. SUCIU, Cyber-attacks–the impact
over airports security and prevention modalities, in Trends and Advances in Information
Systems and Technologies: Volume 3 6, Springer, 2018, pp. 154–162.

[62] G. TANG, L. MENG, H. WANG, S. REN, Q. WANG, L. YANG, AND W. CAO, A comparative
study of neural network techniques for automatic software vulnerability detection, in 2020
International Symposium on Theoretical Aspects of Software Engineering (TASE), IEEE,
2020, pp. 1–8.

[63] R. TELANG AND S. WATTAL, An empirical analysis of the impact of software vulnerability
announcements on firm stock price, IEEE Transactions on Software engineering, 33 (2007),
pp. 544–557.

[64] M. M. TIKIR AND J. K. HOLLINGSWORTH, Efficient instrumentation for code coverage
testing, ACM SIGSOFT Software Engineering Notes, 27 (2002), pp. 86–96.

[65] P. TSANKOV, M. T. DASHTI, AND D. BASIN, Secfuzz: Fuzz-testing security protocols, in
2012 7th International Workshop on Automation of Software Test (AST), IEEE, 2012, pp. 1–7.

[66] G. VAN HOUDT, C. MOSQUERA, AND G. NÁPOLES, A review on the long short-term memory
model, Artificial Intelligence Review, 53 (2020), pp. 5929–5955.

53

[67] J. WAN, S. TANG, Z. SHU, D. LI, S. WANG, M. IMRAN, AND A. V. VASILAKOS, Software-
defined industrial internet of things in the context of industry 4.0, IEEE Sensors Journal, 16
(2016), pp. 7373–7380.

[68] B. WANG, J. LU, Z. YAN, H. LUO, T. LI, Y. ZHENG, AND G. ZHANG, Deep uncertainty
quantification: A machine learning approach for weather forecasting, in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 2087–2095.

[69] Q. WANG, Y. LI, Y. WANG, AND J. REN, An automatic algorithm for software vulnerability
classification based on cnn and gru, Multimedia Tools and Applications, (2022), pp. 1–22.

[70] M. WELLING AND Y. W. TEH, Bayesian learning via stochastic gradient langevin dynamics,
in Proceedings of the 28th international conference on machine learning (ICML-11), 2011,
pp. 681–688.

[71] T. XIAO, J. GUAN, S. JIAN, Y. REN, J. ZHANG, AND B. LI, Software vulnerability detec-
tion method based on code property graph and bi-gru, Journal of Computer Research and
Development, 58 (2021), p. 1668.

[72] Z. XU, T. KREMENEK, AND J. ZHANG, A memory model for static analysis of c programs,
in Leveraging Applications of Formal Methods, Verification, and Validation, T. Margaria and
B. Steffen, eds., Springer Berlin Heidelberg, 2010, pp. 535–548.

[73] S. YANG, X. YU, AND Y. ZHOU, Lstm and gru neural network performance comparison
study: Taking yelp review dataset as an example, in 2020 International workshop on electronic
communication and artificial intelligence (IWECAI), IEEE, 2020, pp. 98–101.

[74] A. ZHANG, Z. C. LIPTON, M. LI, AND A. J. SMOLA, Dive into deep learning, arXiv preprint
arXiv:2106.11342, (2021).

[75] Y. ZHANG, M. QIU, C.-W. TSAI, M. M. HASSAN, AND A. ALAMRI, Health-cps: Health-
care cyber-physical system assisted by cloud and big data, IEEE Systems Journal, 11 (2017),
pp. 88–95.

[76] D. ZOU, S. WANG, S. XU, Z. LI, AND H. JIN, VulDeePecker: A deep learning-based
system for multiclass vulnerability detection, IEEE Transactions on Dependable and Secure
Computing, 18 (2021), pp. 2224–2236.

54

BIOGRAPHICAL SKETCH

Orune Aminul is a dedicated and passionate individual who has overcome numerous chal-

lenges to pursue a career in engineering and data science. Hailing from a low-developed county like

Bangladesh, she defied societal expectations and nurtured her fervor for science and engineering.

Her journey led her to earn a bachelor’s degree in Electrical and Electronics Engineering

in 2019. She further pursued her academic aspirations by enrolling in a Master’s program at the

University of Texas Rio Grande Valley and earned her degree in August 2023. She was honored

with the prestigious Presidential Research Fellowship award. During her academic tenure, she

demonstrated exceptional skills and knowledge in research, leading to her acceptance into the

esteemed University of Texas Rio Grande Valley.

Under the guidance of Dr. Dimah Dera, an accomplished researcher in machine learning

and data science, she was engaged in pursuing her Master’s thesis. Her research revolves around

the innovation of Bayesian deep learning networks for sequential datasets, with practical

applications spanning healthcare, industry, cybersecurity, and optimization. As she delves into her

work, she envisions the transformative potential of data science in various sectors, from finance to

national security.

Orune Aminul’s aspiration to contribute to the data-driven world drives her to play a pivotal

role in advancing the field of artificial intelligence and data science. With a firm belief in the

power of knowledge and innovation, she aims to leave a lasting impact on the intersection of

technology and society.

For inquiries or further communication, Orune Aminul can be reached via email at

orune.aminul@gmail.com.

55

	Robust and Uncertainty-Aware Software Vulnerability Detection Using Bayesian Recurrent Neural Networks
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER I. Introduction
	Motivation: Importance of Vulnerability Detection
	Financial department
	Airport security

	Background and Problem Statement
	Problem Statement

	 Research Objectives and Contributions

	CHAPTER II. Literature Review
	Vulnerability Detection with Deep Neural Networks
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Bayesian Inference in RNN

	CHAPTER III. Methodology
	Source code Preprocessing
	Tokenization
	Code Token Embedding

	Software Vulnerability Detection using Bayesian Sequence Models
	Bayesian Formulation
	Variational inference

	Mathematical Basis of the Software Vulnerability Detection Methods
	 Software Vulnerability Detection with Gated Recurrent Unit, SVD-GRU
	 Software Vulnerability Detection with Long Short-Term Memory, SVD-LSTM

	CHAPTER IV. Experimental Analysis and Outcomes
	Experimental Setup.
	Class-wise prediction.
	Combined-class prediction.
	Multi-head class prediction.

	Dataset Selection for Model Development
	VDISC dataset.
	Big-Vul dataset
	SeVC dataset

	Performance Evaluation.
	Robustness and Noise Analysis.

	Results and Discussion
	Self-Assessment through Uncertainty Analysis

	CHAPTER V. Future Work
	CHAPTER VI. Conclusion
	REFERENCES
	Biographical Sketch

