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ABSTRACT

Benjamin, Michael, Analyzing the on source window of supernova SN2019ejj with a multi layered 

signal enhancement algorithm with coherent waveburst and a convolutional neural network. Master 

of Science (MS), July, 2023, 33 pp., 3 tables, 16 figures, references, 25 titles.

Core collapse supernovae (CCSN) are highly anticipated sources of gravitational waves 

during the fourth observation run (O4). CCSN signals are weak and unmodeled and the rate of 

occurrence in our galaxy is very low. Because of this, they provide a greater challenge to detect 

than previously detected GW sources. CCSN simulations are used to test the detection pipeline in 

the event a CCSN is detected. CCSN GW signals are often indistinguishable from the noise sources 

present in GW data. We present a multi layered signal enhancement pipeline which we have applied 

Machine Learning (ML) techniques. We have used a Convolutional Neural Network (CNN) to train 

on 10 different simulated CCSN signals, and then tested the preformance of our pipeline on rotating 

CCSN signals.
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CHAPTER I

INTRODUCTION

Gravitational waves were first detected in 2015 by the Laser Interferometer Gravitational

wave Observatory (LIGO) [1], [9] . After this first detection won the Nobel prize in physics,

gravitational wave astronomy has developed and is quickly developing into a major field in astro-

physics with the introduction of multiple observatories, with the original two detectors in Hanford,

Washington and Livingston, Louisiana. Currently, the gravitational wave detector network is made

up of LIGO [9], VIRGO [8], and KAGRA [10]. Where VIRGO is the European gravitational wave

detector network, and KAGRA is a Japanese detector that has recently opened, and will be added to

the detector network soon.

In previous observation runs, LIGO has detected gravitational waves from two different

sources, Binary black hole mergers, and Neutron star mergers. But as LIGO has started its

fourth observation run and further, we hope to detect other sources of gravitational waves such as

supernovae.

1.1 What are Gravitational Waves?

Gravitational waves are ripples in space-time caused by the motion of objects. Normally,

these ripples are much too small to notice, but if an extremely violent and energetic event happens,

I.E. a supernova, we can observe extremely minute ripples in space-time through an instrument

called a laser interferometer. The laser interferometers used are laser arrays which are several

kilometers across are built to precisely measure the distance between one end of the array and the

other. When a gravitational wave passes through one of the beam arms (which is the name given to
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the path the laser travels in the laser interferometer) it produces a extremely small variation in the

distance between one end of the arm and the other. This variation is what we refer to as the strain,

and using these extremely advanced interferometers, we are able to detect variations in strain as low

as order of magnitude of 10−22.

Gravitational waves are ripples in space-time caused by the motion of objects. Normally,

these ripples in space-time are too small to notice or even detect but when a large and violent enough

event with enough mass occurs, it can create large enough ripples in space-time that the distance

that it changes can be observed with sensitive enough equipment

1.2 Previous major gravitational wave discoveries

The first official gravitational wave discovery happened in 2015, and was given the title

GW150914 [1]. This signal was then proven to be a binary black hole merger, a binary system

where two black holes orbit each other and as they orbit and draw closer to each other eventually

merge. The second major GW discovery was the discovery of a second source of GW signals,

which happened in 2017 and was given the title GW170817 [2]. This signal was the first binary

neutron star in-spiral detected. It was also a major milestone as it was the first gravitational wave

signal which was detected not just by gravitational wave detectors, but also verified by astronomers

proving that LIGO can successfully detect events and have successfully detected events.

Since then, there have been hundreds of detections of both binary black hole mergers and

binary neutron star in-spirals detected by the LIGO network. Going into the fourth observation (O4)

run of LIGO, we expect to detect many more binaries, but the focus of this study, and the focus of

our group is looking for a far more elusive source; supernovae.

1.3 the search for core collapse supernovae

Due to the higher sensitivity and larger areas of observation the fourth observation run has

over the previous three, supernova are a highly anticipated source of Gravitational Wave detection.

However, there are obstacles to overcome in the detection of supernova signals.
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Firstly, our current detection range for gravitational waves from supernovae is on the galactic

scale because supernova GW signals are much weaker than GW signals from mergers. Secondly,

the rate of galactic supernovae is only one every 100 years or so, with the last galactic supernova

happening in 1987 [12]. Thirdly, the current detector network is most sensitive at frequencies in

which supernovae are not as sensitive, as stated on FIG 1.1.

Figure 1.1: Above is the sensitivity curve for the Hanford observatory given for the third observation
run (O3) [5].
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CHAPTER II

CORE COLLAPSE SUPERNOVAE

2.1 CCSN explosion mechanism

A core collapse supernova, also known as Type II supernova is one of several possible

endings for a star. These stars at the start of their life are primarily made up of hydrogen and

helium, but throughout their life they start fusing the hydrogen and helium into heavier and heavier

elements, until eventually the star fuses iron, which is the heaviest element the star can produce.

This continues until the iron core reaches around 1.4 solar masses, at which point the core is too

massive to supports its own weight, and collapses, beginning the "core collapse." [6].

The core collapse happens mechanism specifically occurs when the mass and temperature

inside the core of the star causes photodisintegration [6], where photons have enough energy to

destroy the the heavy iron nuclei built up in the core, and breaking them down into individual

protons and neutrons, as described below from [6].

56
26Fe+ γ → 134

2He+4n (2.1)

4
2He+ γ → 2p++2n (2.2)

The conditions that exist once the iron core breaks down are extreme, and electrons are

captured by the heavy nuclei and protons produced by the photodisintegration, as described by the

equation below from [6]

4



Figure 2.1: An example of the stages a star goes through in its lifetime [6], with the hydrogen and
helium as an envelope, and as the hydrogen and helium slowly burn into carbon, then oxygen and
then silicon, they eventually form an iron core, as iron is the heaviest element that can be formed
through nuclear fusion.

p++ e− → n+νe (2.3)

The core collapse happens in a matter of seconds, as the iron core of the star falls in on

itself and becomes so dense that the pressure within the star is comparable to the pressure within an

atomic nucleus. This is the stage when the supernova emits gravitational waves, as the core collapse

is so violent that the in-falling of the matter causes a large emission of energy [6].
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2.2 what are the existing waveform models?

Because supernovae are unmodeled, and waveform models do not exist to accurately describe

the supernova mechanisms yet. Because of this, there is a large community of supernova simulation

groups who are developing simulations to better understand the supernova explosion mechanism.

The LIGO supernova group put together a series of waveforms that give a rough estimation of how

these preform when injected into the current pipeline [23], and the analysis of the waveforms and

their properties are displayed on Table 1 of [23]. In these input waveforms, there are a range of

different parameters that define a simulation such as the mass of the progenitor star, if it is rotating

or not and how fast the star is rotating, the emitted gravitational wave energy, and the peak frequency.
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CHAPTER III

DATA USED IN THE STUDY

3.1 what period of LIGO data is used

When we were training our Neural Network, we needed to choose a length of time to inject

our supernova waveforms into. For this study, we used a length of data and a 3 day time window that

corresponds to Supernova SN2019ejj. We chose this as the LIGO Supernova group has a currently

accepted list of On Source Windows (OSWs) that, in the event of an actual supernova detection

there is a window of time to look back from the first detection of supernova in order to constrain the

search for the gravitational wave component of the signal.

The On Source Window mentioned in the previous paragraph is a term given by LIGO used

in the detection of gravitational wave transients as described by [25] as a window of time which

we constrain our search. The window of time is something that is given by a methodology which

decides what the time window is, and the methodology gives the window based on the type of

transient, and for supernovae it is given based on the optical and neutrino observations.

The LIGO Supernova group has chosen the OSWs of 8 supernova as optical targets for the

third GW observation run and onwards, and SN2019ejj was one of them, and is the one we chose

for this trial. Supernova SN2019ejj lasted from April 26th 2019 to April 29th 2019. The GPS times

for this window are from 1240296814 to 1240553941 [25].

3.2 what CCSN models are used

17 supernova simulations were selected to train our supernova simulations, along with a set

of background data used as a control. They were chosen to be as wide a range of data as possible as

7



to most broadly train our neural network. The waveforms we used to train our data are shown on

table 3.1

8
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Once the CNN was trained, it was then used on a list of waveforms to test its performance.

The list of waveforms used for analysis was largely the same as the one for training, but with a few

key differences which are discussed in the caption of table 3.2.
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In the following chapter, we will give the explanation of what the convolutional neural

network, and how it was used explicitly, along with a description of our pipeline.
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CHAPTER IV

METHODS USED IN THIS STUDY

In previous sections, we gave a background of the field, and a description of what data we

used, along with the motivation for said data. In this chapter we will discuss the methods of the

pipeline which we are studying.

4.1 MuLaSEcC pipeline

The Multi Layered Signal Enhancement with coherent waveburst and a Convolutional

Neural Network, as the title of this thesis suggests, is a multi-layered signal enhancement pipeline,

with a convolutional neural network component which is then used on the coherent waveburst

pipeline. The workflow this pipeline goes through is given by fig. 4.1.

The first step of the process is to train the neural network. which is represented on the

left half of fig. 4.1, which then produces a confusion matrix, which is a representation of the

preformance of the neural network. Once the neural network is trained, After this, we go through the

right side of fig. 4.1 in order to produce efficiency curves, or coherent event displays (CED), which

is a mode of cWB that produces the reconstructed waveform of a single event that was injected.

4.2 Description of MuLaSE

The MuLaSE module [18], [17] module of the pipeline is concerned with the whitening and

signal enhancement. The methods used in the signal enhancement and denoising are discussed in

[18] [17] but is reiterated here.

First, we assume an additive noise model, as introduced by the previously cited paper, as

defined below
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Figure 4.1: A flowchart of the MuLaSEcC analysis pipeline. The chart shows the three modular
components of the pipeline, the left side of the figure dictates the component of the pipeline
dedicated to training the CNN. While the right side of the flowchart is dedicated to the analysis, and
application of the CNN.

xp(t) = sp(t)+np(t) (4.1)

Where xp(t) is the output from the interferometers, sp(t) is the desired signal, and np(t) is

the noise. This signal then gets transformed into the frequency domain by fourier transform, which

also transforms the signal and noise as denoted below.

X(p,k) = S(p,k)+N(p,k) (4.2)

Where X(p,k), S(p,k), and N(p,k) are the data, signal and noise in the frequency domain

respectively. We then take the power spectral density of our additive noise model as shown below,

PXX(p,k) = PSS(p,k)+PNN(p,k) (4.3)

An estimate of the signal Ŝ(p,k) is then what we are looking for, which is a function of
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the input data, and the PSDs of the noise and signal. The estimated signal can be defined as some

function of the previously introduced below.

Ŝ(p,k) = f (PNN(p,k),PSS(p,k),x(p,k)) (4.4)

This function was found to be a spectral gain Γ(p,k), which requires an estimate of the

signal to noise ratio (SNR), which [18] cites the definition as shown below, where s̃( f ) is the fourier

transform of the GW signal, and N( f ) is the one sided PSD of the noise.

snr = [4
∫

∞

0
d f

|s̃( f )|2

N( f )
]

1
2 (4.5)

From this, two parameters are introduced for the purposes of defining in our spectral gain,

snrpost(p,k) =
|X(p,k)|2

PNN(p,k)
(4.6)

snrpriori(p,k) =
PSS(p,k)
PNN(p,k)

(4.7)

Using these definitions of snrpost(p,k) and snrpriori(p,k), we have the form of the spectral

gain Γ(p,k) = f (ŝnrpriori(p,k), ŝnrpost(p,k)). This gives a function more defined to estimate a

signal below,

Ŝ(p,k) = Γ(p,k)X(p,k) (4.8)

Mukherjee and Salazar then proceeds to find Γ(p,k) by defining a relation between the

SNRpost(p,k) and SNRpriori(p,k), which is first done by defining the amplitude of the data of the

data stream as a function of the signal and noise. And then by defining the local versions of the two

SNR values.

|X(p,k)|=
√
|S(p,k)|2 + |N(p,k)|2 +2|S(p,k)||N(p,k)|cosβ (p,k) (4.9)
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And then the definition of the posteriori snr.

snrlocal
post (p,k) =

|X(p,k)|2

|N(p,k)|2
(4.10)

followed by the priori snr.

snrlocal
priori(p,k) =

|S(p,k)|2

|N(p,k)|2
(4.11)

Then by combining the amplitude of the data stream as a function of the local SNR, they get

the following equation.

snrlocal
post (p,k) = 1+ snrlocal

priori(p,k)+2cosβ (p,k)
√

snrlocal
priori(p,k) (4.12)

They then introduce an estimator called the ’decision directed’ (DD) approach, which

combines the amplitude of the previous time frame and the current time frame of the data stream.

They then define the decision directed priori snr snrDD
priori below.

snrDD
priori(p,k) = ε

|S(p−1,k)|2

PNN(p,k)
+(1− ε)P[snrpost(p,k)−1] (4.13)

Where P[.] is the half wave rectification which cuts off negative values with the following

properties

P[x] = x i f x ≥ 0P[x] = 0 else (4.14)

And then with this description, the decision directed spectral gain is defined as such.

ΓDD(p,k) =
snrDD

priori(p,k)

1+ snrDD
priori(p,k)

(4.15)

Finally, Mukherjee and Salazar use the decision directed snr to define the two step denoising

snr or two step noise reduction (TSRNR), which not only calculates the snr from the current and
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previous time frames, but also adds the following (the (p+1)th time frame), as described below.

snrT SNR
priori (p,k) = snrDD

priori(p+1,k) (4.16)

And then the TSNR spectral gain was defined as such,

ΓT SNR(p,k) =
snrT SNR

priori (p,k)

1+ snrT SNR
priori (p,k)

(4.17)

Which is how the signal is estimated using the two step noise reduction.

4.3 description of Convolutional Neural Network

The Convolutional Neural Network (CNN) used in this study as described by figure 4.2

works by breaking down images provided to it into matrices, and convolves the matrices in multiple

layers, which then leads to features in images being identified by the neural network. The advantage

of a CNN is that it can be trained to recognize visual shapes or patterns on a large scale, such as

the shape of a number or a letter to identify text from handwriting, or to identify particular objects

in an image. This is advantageous for us, as supernovae have distinct features that appear in time

frequency spectrograms, and are what lets a researcher looking at a spectrogram identify themselves

if they are looking at a spectrogram or just noise.

We prepared our training data in several steps. First, we use cWB to inject waveforms, and

save spectrograms of what it reconstructs as events. At this stage, cWB has not yet determined if

what it is looking at is a glitch or a real GW event, but due to the high SNR values we inject our

simulations at, the spectrograms are always clearly supernova injections. Once the reconstructed

spectrograms are produced, they are than cropped and down-scaled to remove axis labels, to center

on the event itself, and to reduce the amount of time the training takes.

The first step in the analysis is reading raw strain data from the LIGO Hanford (H1) and

LIGO Livingston (L1). Next, conditioning the data by band-passing to remove the seismic noise

in lower frequencies and shot noise in higher frequencies, and then to re-sample the data down to
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Figure 4.2: An example of how the CNN arcitecture is trained on gravitational wave data in the
spectrogram form, as produced by S. Mukherjee, G. Nurbek, and O. Valdez [17]

2048 Hz. After this, the data is whitened to remove narrow band noise. Once this conditioning

has taken place, it then enters the modular mulase component of the analysis, where a statistically

educated estimate of signals embedded in the data are processed. The output from mulase is then

applied as input to the network analysis which generates a large number of background glitches

as output. Each background glitch is then recorded and converted into a time-frequency image.

The next part of the analysis occurs when selected CCSN waveforms are injected into noise from

the detector during the time window given during O3a in this study. As described in section III,

waveforms are selected to maximize their representative features of the CCSN waveform land-

scape. The analysis at this stage follows a similar one to that done for the background, with the

difference being that the output is a set of CCSN signals that have been injected into the LIGO O3

noise. The CNN is then trained on the background glitches along with the data with the injected

CCSN signals that have been detected from the injections. Once the CNN has been trained, a

new test set of data is created to measure the preformance of it using the triggers produced in the data.
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The next part of the analysis demonstrates the network analysis. First starting with the

data streams from the detectors with injected signals, and then following the MuLaSEcC steps of

the analysis pipeline similar to the description in the preceding paragraph. The network analysis

ends with the production of detected events. At this stage, the output triggers are subjected to

classification and are trained by the CNN. The classification enables selection of the CCSN signals

and rejection of the noise. Then efficiency curves are created as either a function of distance or

SNR.

Figure 4.3: A 3x3 grid of example spectrograms that were used to train our CNN. These are
reconstructions of the Powell 2018 - s18 waveform.

4.4 Description of cWB

The methodology of how coherent waveburst (cWB) is developed in [11]. The cWB

algorithm works by first taking the data stream from the detectors and putting them through a

discrete wavelet transformation (DWT) to break down the data stream into the time-frequency

domain. After which, a black pixel probability cluster selection is preformed, and then a constrained

likelihood function is preformed on the decomposed data. After all of this, the inverse of the wavelet

transformation is computed to result in an estimated signal. A visual description of this process is
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given by fig. 4.4.

Figure 4.4: The figure here by M. Szezepanczyk [24] describes the cWB pipeline, where the
data stream from the detectors x(t) is sent through a wavelet transformation in order to preform
a time frequency decomposition of the data, a cluster selection to determine data clustered in the
time-frequency plane, and then a constrained likelihood function to determine the likelihood of the
clusters being signals or noise. After which, an inverse wavelet transform is preformed to result in
the estimated signal h(t).
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CHAPTER V

RESULTS

5.1 Analysis waveforms

The waveforms analyzed are listed in table 3.2. Below, we show all of the SNR efficiency

curves produced by both cWB and MuLaSEcC. The efficiency curves produced plot injected SNR

values on the x-axis, and the probability of detection on the y-axis. We describe the efficiency

curve as a representation of how likely it is that MuLaSEcC would detect a certain signal. With the

distance or SNR axis being the strength of the signal being injected into data.

Figure 5.1: Given here are all of the waveforms efficiencies produced by cWB.

Next, we show all of the efficiencies in SNR produced by MuLaSEcC.

Figure 5.2: Given here are all of the waveforms efficiencies produced by MuLaSEcC.
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5.2 Individual waveform analysis

Each of the waveforms mentioned in table 3.2 are discussed by directly comparing the

efficiency curve produced by cWB. For the sake of brevity, we chose four out of the eleven

waveforms to individually display from figures 5.1 and 5.2. We also show the receiver operating

curves for each waveform, and discuss the importance of the results.

5.2.1 Efficiency curves

This section is focused on the individual efficiency curves, for Cedra-Duran 2013 fiducial,

Kuroda 2016 as they preformed the best out of the analysis set of waveforms, and Mezzacappa 2020

C15-3D and 2022 D15-3D as they are the most complex waveforms produced to date.

Figure 5.3: This figure shows the efficiency as a function of SNR for the Cedra-Duran 2013 fiducial
waveform. the 50% efficiency for the cWB pipeline was found to be at SNR = 45, whereas the same
for MuLaSEcC is at SNR = 28, indicating a more efficient performance.

After this, we show the reciever operating curves for each of these four waveforms.
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Figure 5.4: This figure shows the efficiency as a function of SNR for the Kuroda 2016 TM1
waveform. The 50% efficiency for the cWB pipeline was found to be between SNR = 10 and SNR
= 20, and the same efficiency for MuLaSEcC is at 20% indicating a higher preformance.
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Figure 5.5: The above figure shows the efficiency as a function of SNR for the Mezzacappa 2020
C15-3D waveform. the 50% efficiency for the cWB pipeline is shown here to be at roughly SNR =
20, and the same is shown for MuLaSEcC to be at roughly SNR = 35, which shows that MuLaSEcC
preforms poorly for this particular model.

Figure 5.6: Above is the SNR efficiency curve for Mezzacappa D15-3D

24



5.2.2 Reciever Operating Curves (ROC)

This section shows the Reciever Operating Curves (ROC), which plot the inverse false alarm

rate (iFAR) vs. the Detection Probability, which is meant to correlate how likely a signal is vs the

probability of detecting a signal.

Figure 5.7: Above is the receiver operating curve for Cedra Duran 2013 fiducial. With increasing
injection SNR, the 50% probability is acheived for higher iFAR.

Figure 5.8: Above is the receiver operating curve for Kuroda 2016 TM1. With increasing injection
SNR, the 50% probability is acheived for higher iFAR.
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Figure 5.9: Above is the receiver operating curve curve for Mezzacappa C15-3D. As stated in
previous plots, the 50% probability is met for the higher iFAR values.

Figure 5.10: Above is the receiver operating curve for Mezzacappa D15-3D. As is the case for the
prevous iFAR vs. Detection Probability
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CHAPTER VI

DISCUSSION AND FUTURE DIRECTIONS

6.1 Discussion

6.1.1 Overall pipeline performance

The 50% efficiencies of all of the waveforms analyzed by cWB and MuLaSEcC are presented 

in figures 5.1 and 5.2 respectively, and the 50% efficiencies for MuLaSEcC themselves are listed 

below in table 6.1.

Waveform name Model description SNR at 50\% efficiency
s20 20 solar mass 3D model 25
s27 27 solar mass 3D model 35
s15nr 15 solar mass, non rotating 3D model 25
s15fr 15 solar mass, fast rotating 3D model 15
s15r 15 solar mass, rotating 3D model 25
fiducial 35 solar mass, fast rotating 2D model 25
TM1 15 solar mass, non rotating 3D model 20
SFHx 15 solar mass, non rotating 3D model 15
C15-3D 15 solar mass, non rotating 3D model 35
D15-3D 15 solar mass, non rotating 3D model 35
mesa20 20 solar mass, non rotating 3D model 25
s18 18 solar mass, non rotating 3D model 30
m39 39 solar mass, non rotating 3D model 20
s9 09 solar mass, non rotating 3D model 15
s13 13 solar mass, non rotating 3D model 15
A300w0.50_HSDD2 12 solar mass, slowly rotating 2D model 15

Table 6.1: The table above shows the names of each of the waveforms, and a brief description of
their major features, with a greater detail of each given in table 3.2, and then the efficiency curve
SNR for each at 50% efficiency.

From table 6.1, we can see the 50% efficiency ranges from SNR 15 - SNR 35.
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We can conclude that MuLaSEcC preforms better for s15fr, SFHx, s9, s13, and 

A300w0.50_HSDD2.

We further examined 4 waveforms in more detail and compaired their efficiencies as a

function of SNR with the same for the cWB pipeline efficiencies. These are the Mezzacappa

C15-3D [15] and D15-3D [14] models, Cedra Duran fiducial [7], and the Kuroda TM1 model

[13]. A brief description of each of these models is given in table 6.1 above. We have found that

the MuLaSEcC pipeline performs more efficiently for the Cerda Duran fiducial and Kuroda TM1

pipelines for this range of data when the SN2019ejj happened. It may be noted that D15 is one of

the most recent CCSN waveforms that has been published. One can train the CNN more carefully

with incorporation of these newer waveforms to improve the efficiency for MuLaSEcC.

It may be noted that figures 5.1 to 5.6, which represent the detection probability (DP) of

selected waveforms as a function of the SNR, have been plotted in the OSW of SN2019ejj, where

the interferometer noise had been changing, i.e., non-stationary, and hence the false alarm rate

(FAR) had also been changing. However, for a proper comparison of pipeline performance, one

should evaluate DP at a fixed value of false alarm. Thus, these plots can be seen to only represent

fractions of signals recovered for each injection simulation at fixed SNR for each of these pipelines,

but their performances can not be deduced from this plot alone. To compare efficiencies at fixed

FAR, both sets of ROC’s (MuLaSEcC and cWB) should be created for each SNR value, and then

a fixed value of FAR should be chosen, and the DP should be plotted against the corresponding

SNR’s. This will be shown in a future study.

6.1.2 CNN training

The CNN itself consistently performed well and accurately, and consistently correctly

classified waveforms from signal, even when analyzing waveforms that the CNN was not trained

on.
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6.2 Future directions

6.2.1 Active use in O4

The most imminent direction to take this pipeline is to apply it in the currently running

fourth observation run of LIGO. This means that if there is a supernova event in LIGO’s detectable

range, we will run our pipeline on the specific duration.

6.2.2 CNN improvements

One major avenue for us to improve our pipeline is to improve our CNN. There is further

work to be done in improving our CNN. We can do this by being more selective in choosing which

waveforms we train our CNN on. In this study we choose a set of training waveforms with the

intent of having as wide a range of waveforms as possible. But supernova simulators have

pointed out that some of the waveforms that we have trained our network on are either

nonphysical (namely 2D simulations) or have been later proven to be outdated. Future work with

simulators to choose more realistic simulations and be more selective with them may prove to give

better results and more inconsistent results. An example will be to include the Mezzacappa D15

waveform in the training set.

6.2.3 Standalone pipeline

A second major direction to take the pipeline is to eventually develop it into a standalone

pipeline. Currently MuLaSEcC exists as a cWB plugin and using LIGO GRID computing and cluster.

But as discussed in this thesis, the MuLaSEcC pipeline does not require cWB post-processing, and

only used the network analysis. One of the directions in the near future will be to create a network

analysis that is independent of the cWB. This will enable the MuLaSEcC to operate in a standalone

mode and will not have to keep up with the cWB code versions.
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