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Common genetic variants influence human subcortical brain 
structures

A full list of authors and affiliations appears at the end of the article.

Abstract

The highly complex structure of the human brain is strongly shaped by genetic influences1. 

Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, 

memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To 

investigate how common genetic variants affect the structure of these brain regions, here we 

conduct genome-wide association studies of the volumes of seven subcortical regions and the 

intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 

cohorts. We identify five novel genetic variants influencing the volumes of the putamen and 

caudate nucleus. We also find stronger evidence for three loci with previously established 

influences on hippocampal volume5 and intracranial volume6. These variants show specific 

volumetric effects on brain structures rather than global effects across structures. The strongest 

effects were found for the putamen, where a novel intergenic locus with replicable influence on 

volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the 

expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume 

clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. 

Identification of these genetic variants provides insight into the causes of variability inhuman 

brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

At the individual level, genetic variations exert lasting influences on brain structures and 

functions associated with behaviour and predisposition to disease. Within the context of the 

Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, we 

conducted a collaborative large-scale genetic analysis of magnetic resonance imaging (MRI) 

scans to identify genetic variants that influence brain structure. Here, we focus on 
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volumetric measures derived from a measure of head size (intracranial volume, ICV) and 

seven subcortical brain structures corrected for the ICV (nucleus accumbens, caudate, 

putamen, pallidum, amygdala, hippocampus and thalamus). To ensure data homogeneity 

within the ENIGMA consortium, we designed and implemented standardized protocols for 

image analysis, quality assessment, genetic imputation (to 1000 Genomes references, 

version 3) and association (Extended Data Fig. 1 and Methods).

After establishing that the volumes extracted using our protocols were substantially heritable 

in a large sample of twins (P < 1 × 10−4; see Methods and Extended Data Fig. 11a), with 

similar distributions to previous studies1, we sought to identify common genetic variants 

contributing to volume differences by meta-analysing site-level genome-wide association 

study (GWAS) data in a discovery sample of 13,171 subjects of European ancestry 

(Extended Data Fig. 2). Population stratification was controlled for by including, as 

covariates, four population components derived from standardized multidimensional scaling 

analyses of genome-wide genotype data conducted at each site (see Methods). Site-level 

GWAS results and distributions were visually inspected to check for statistical inflation and 

patterns indicating technical artefacts (see Methods).

Meta-analysis of the discovery sample identified six genome-wide significant loci after 

correcting for the number of variants and traits analysed (P < 7.1 × 10−9; see Methods): one 

associated with the ICV, two associated with hippocampal volume, and three with putamen 

volume. Another four loci showed suggestive associations (P < 1 × 10−7) with putamen 

volume (one locus), amygdala volume (two loci), and caudate volume (one locus; Table 1, 

Fig. 1 and Supplementary Table 5). Quantile–quantile plots showed no evidence of 

population stratification or cryptic relatedness (Extended Data Fig. 4a). We subsequently 

attempted to replicate the variants with independent data from 17,546 individuals. All 

subcortical genome-wide significant variants identified in the discovery sample were 

replicated (Table 1). The variant associated with the ICV did not replicate in a smaller 

independent sample, but was genome-wide significant in a previously published independent 

study6, providing strong evidence for its association with the ICV. Moreover, two 

suggestive variants associated with putamen and caudate volumes exceeded genome-wide 

significance after meta-analysis across the discovery and replication data sets (Table 1). 

Effect sizes were similar across cohorts (P > 0.1, Cochran’s Q test; Extended Data Fig. 4b). 

Effect sizes remained consistent after excluding patients diagnosed with anxiety, 

Alzheimer’s disease, attention-deficit/hyperactivity disorder, bipolar disorder, epilepsy, 

major depressive disorder or schizophrenia (21% of the discovery participants). Correlation 

in effect size with and without patients was very high (r > 0.99) for loci with P < 1 × 10−5, 

indicating that these effects were unlikely to be driven by disease (Extended Data Fig. 5a). 

The participants’ age range covered most of the lifespan (9–97 years), but only one of the 

eight significant loci showed an effect related to the mean age of each cohort (P = 0.002; 

rs6087771 affecting putamen volume; Extended Data Fig. 5b), suggesting that nearly all 

effects are stable across the lifespan. In addition, none of these loci showed evidence of sex 

effects (Extended Data Fig. 5c).

In our cohorts, significant loci were associated with 0.51–1.40% differences in volume per 

risk allele, explaining 0.17–0.52% of the phenotypic variance (Table 1); such effect sizes are 
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similar to those of common variants influencing other complex quantitative traits such as 

height7 and bodymass index8. The full genome-wide association results explained 7–15% of 

phenotypic variance after controlling for the effects of covariates (Extended Data Fig. 11). 

Notably, the genome-wide significant variants identified here showed specific effects on 

single brain structures rather than pleiotropic effects across multiple structures, despite 

similar developmental origins as in the case of caudate and putamen (Extended Data Fig. 

6a). Nevertheless, when we subjected the subcortical meta-analysis results to hierarchical 

clustering, genetic determinants of the subcortical structures were mostly grouped into larger 

circuits according to their developmental and functional subdivisions (Extended Data Fig. 

6b). Genetic variants may therefore have coherent effects on functionally associated 

subcortical networks. Multivariate cross-structure9 analyses confirmed the univariate results, 

but no additional loci reached genome-wide significance (Extended Data Fig. 6c). The 

clustering of results into known brain circuits in the absence of individually significant 

genetic variants found in the cross-structure analysis suggests variants of small effect may 

have similar influences across structures. Most variants previously reported to be associated 

with brain structure and/or function showed little evidence of large-scale volumetric effects 

(Supplementary Table 8). We detected an intriguing association with hippocampal volume 

at a single nucleotide polymorphism (SNP) with a genome-wide significant association with 

schizophrenia10 (rs2909457; P = 2.12 × 10−6; where the A allele is associated with 

decreased risk for schizophrenia and decreased hippocampal volume). In general, however, 

we detected no genome-wide significant association with brain structure for genome-wide 

significant loci that contribute risk for neuropsychiatric illnesses (Supplementary Table 9).

Of the four loci influencing putamen volume, we identified an inter-genic locus 50 kilobases 

(kb) downstream of the KTN1 gene (rs945270; 14q22.3; n = 28,275; P = 1.08 × 10−33), 

which encodes the protein kinectin, a receptor that allows vesicle binding to kinesin and is 

involved in organelle transport11. Second, we identified an intronic locus within DCC 

(rs62097986; 18q21.2; n = 28,036; P = 1.01 × 10−13), which encodes a netrin receptor 

involved in axon guidance and migration, including in the developing striatum12 (Extended 

Data Fig. 3b). Expression of DCC throughout the brain is highest in the first two trimesters 

of prenatal development13 (Extended Data Fig. 8b), suggesting that this variant may 

influence brain volumes early in neurodevelopment. Third, we identified an intronic locus 

within BCL2L1 (rs6087771; 20q11.21; n = 25,540; P = 1.28 × 10−12), which encodes an 

anti-apoptotic factor that inhibits programmed cell death of immature neurons throughout 

the brain14 (Extended Data Fig. 3c). Consistent with this, expression of BCL2L1 in the 

striatum strongly decreases at the end of neurogenesis (24–38 post-conception weeks 

(PCW); Extended Data Fig. 8c), a period marked by increased apoptosis in the putamen13,15. 

Fourth, we identified an intronic locus within DLG2 (rs683250; 11q14.1; n = 26,258; P = 

3.94 × 10−11), which encodes the postsynaptic density 93 (PSD-93) protein (Extended Data 

Fig. 3d). PSD-93 is a membrane-associated guanylate kinase involved in organizing 

channels in the postsynaptic density16. DLG2 expression increases during early mid-fetal 

development in the striatum13 (Extended Data Fig. 8d). Genetic variants in DLG2 affect 

learning and cognitive flexibility17 and are associated with schizophrenia18. Notably, SNPs 

associated with variation in putamen volume showed enrichment of genes involved in 

apoptosis and axon guidance pathways (Extended Data Fig. 7 and Supplementary Table 7).
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Hippocampal volume showed an intergenic association near the HRK gene (rs77956314; 

12q24.22; n = 17,190; P = 2.82 × 10−15; Extended Data Fig. 3g) and with an intronic locus 

in the MSRB3gene (rs61921502; 12q14.3; n = 16,209; P = 6.87× 10−11; Extended Data Fig. 

3h), supporting our previous analyses5,19 of smaller samples imputed to HapMap3 

references. Caudate volume was associated with an intergenic locus 80 kb from FAT3 

(rs1318862; 11q14.3; n = 15,031; P = 6.17 × 10−9; Extended Data Fig. 3e). This gene 

encodes a cadherin specifically expressed in the nervous system during embryonic 

development that influences neuronal morphology through cell–cell interactions20. The ICV 

was associated with an intronic locus within CRHR1 that tags the chromosome 17q21 

inversion21, which has been previously found to influence ICV6 (rs17689882; 17q21.31; n = 

12,822; P = 7.72 × 10−9; Extended Data Fig. 3f). Another previously identified variant with 

association to ICV (rs10784502)5,19 did not survive genome-wide significance in this 

analysis but did show a nominal effect in the same direction (P = 2.05 × 10−3; n = 11,373). 

None of the genome-wide significant loci in this study were in linkage disequilibrium with 

known functional coding variants, splice sites, or 3′/5′ untranslated regions, although several 

of the loci had epigenetic markings suggesting a regulatory role (Extended Data Fig. 3).

Given the strong association with putamen volume, we further examined the rs945270 locus. 

Epigenetic markers suggest insulator functionality near the locus as this is the lone 

chromatin mark in the intergenic region22 (Extended Data Fig. 3a). Chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) indicate that a variant (rs8017172) 

in complete linkage disequilibrium with rs945270 (r2 = 1.0) lies within a binding site of the 

CTCF (CCCTC-binding factor) transcription regulator23 (Extended Data Fig. 9) in 

embryonic stem cells. To assess potential functionality in brain tissue, we tested for 

association with gene expression 1 megabase (Mb) up/downstream. We identified and 

replicated an effect of rs945270 on the expression of the KTN1 gene. The C allele, 

associated with larger putamen volume, also increased expression of KTN1 in the frontal 

cortex (discovery sample: 304 neuropathologically normal controls24 (P = 4.1 × 10−11); 

replication sample: 134 neuropathologically normal controls (P = 0.025)), and putamen 

(sample: 134 neuropathologically normal controls25 (P = 0.049); Fig. 2a, b). In blood, 

rs945270 was also strongly associated with KTN1 expression26 (P = 5.94 × 10−31; n = 

5,311). After late fetal development, KTN1 is expressed in the human thalamus, striatum and 

hippocampus; it is more highly expressed in the striatum than the cortex13 (Extended Data 

Fig. 8a). KTN1 encodes the kinectin receptor facilitating vesicle binding to kinesin, and is 

heavily involved in organelle transport11. Kinectin is only found in the dendrites and soma 

of neurons, not their axons; neurons with more kinectin have larger cell bodies27, and 

kinectin knockdown strongly influences cell shape28. The volumetric effects identified here 

may therefore reflect genetic control of neuronal cell size and/or dendritic complexity. Using 

three-dimensional surface models of putamen segmentations in MRI scans of 1,541 healthy 

adolescent subjects, we further localized the allelic effects of rs945270 to regions along the 

superior and lateral putamen bilaterally, independent of chosen segmentation protocol (Fig. 

2c and Extended Data Fig. 10). Each copy of the C allele was associated with an increase in 

volume along anterior superior regions receiving dense cortical projections from dorsolateral 

prefrontal cortex and supplementary motor areas29,30.
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In summary, we discovered several common genetic variants underlying variation in 

different structures within the human brain. Many seem to exert their effects through known 

developmental pathways including apoptosis, axon guidance and vesicle transport. All 

structure volumes showed high heritability, but individual genetic variants had diverse 

effects. The strongest effects were found for putamen and hippocampal volumes, whereas 

other structures delineated with similar reliability such as the thalamus showed no 

association with these or other loci (Supplementary Table 4). Discovery of common variants 

affecting the human brain is now feasible using collaborative analysis of MRI data, and may 

determine genetic mechanisms driving development and disease.

METHODS

Details of the GWAS meta-analysis are outlined in Extended Data Fig. 1. All participants in 

all cohorts in this study gave written informed consent and sites involved obtained approval 

from local research ethics committees or Institutional Review Boards. The ENIGMA 

consortium follows a rolling meta-analysis framework for incorporating sites into the 

analysis. The discovery sample comprises studies of European ancestry (Extended Data Fig. 

2) that contributed GWAS summary statistics for the purpose of this analysis on or before 1 

October 2013. The deadline for discovery samples to upload their data was made before 

inspecting the data and was not influenced by the results of the analyses. The meta-analysed 

results from discovery cohorts were carried forward for secondary analyses and functional 

validation studies. Additional samples of European ancestry were gathered to provide in 

silico or single genotype replication of the strongest associations as part of the replication 

sample. A generalization sample of sites with non-European ancestry was used to examine 

the effects across ethnicities. In all, data were contributed from 50 cohorts, each of which is 

detailed in Supplementary Tables 1–3.

The brain measures examined in this study were obtained from structural MRI data collected 

at participating sites around the world. Brain scans were processed and examined at each site 

locally, following a standardized protocol procedure to harmonize the analysis across sites. 

The standardized protocols for image analysis and quality assurance are openly available 

online (http://enigma.ini.usc.edu/protocols/imaging-protocols/). The subcortical brain 

measures (nucleus accumbens, amyg-dala, caudate nucleus, hippocampus, pallidum, 

putamen and thalamus) were delineated in the brain using well-validated, freely available 

brain segmentation software packages: FIRST31, part of the FMRIB Software Library 

(FSL), or FreeSurfer32. The agreement between the two software packages has been well 

documented in the literature5,33 and was further detailed here (Supplementary Table 4). 

Participating sites used the software package most suitable for their data set (the software 

used at each site is given in Supplementary Table 2) without selection based on genotype or 

the associations present in this study. In addition to the subcortical structures of the brain, 

we examined the genetic effects of a measure of global head size, the ICV. The ICV was 

calculated as: 1/(determinant of a rotation-translation matrix obtained after affine 

registration to a common study template and multiplied by the template volume (1,948,105 

mm3)). After image processing, each image was inspected individually to identify poorly 

segmented structures. Each site contributed histograms of the distribution of volumes for the 

left and right hemisphere structures (and a measure of asymmetry) of each subcortical region 
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used in the analysis. Scans marked as outliers (> 3 standard deviations from the mean) based 

on the histogram plots were re-checked at each site to locate any errors. If a scan had an 

outlier for a given structure, but was segmented properly, it was retained in the analysis. 

Site-specific phenotype histograms, Manhattan plots and quantile–quantile plots from each 

participating site are available on the ENIGMA website (http://enigma.ini.usc.edu/

publications/enigma-2/).

Each study in the discovery sample was genotyped using commercially available platforms. 

Before imputation, genetic homogeneity was assessed in each sample using multi-

dimensional scaling (MDS) analysis (Extended Data Fig. 2). Ancestry outliers were 

excluded through visual inspection of the first two components. Quality control filtering was 

applied to remove genotyped SNPs with low minor allele frequency (< 0.01), poor genotype 

call rate (< 95%), and deviations from Hardy–Weinberg equilibrium (P < 1 × 10−6) before 

imputation. The imputation protocols used MaCH34 for haplotype phasing and minimac35 

for imputation and are freely available online (http://enigma.ini.usc.edu/protocols/genetics-

protocols/). Full details of quality control procedures and any deviations from the imputation 

protocol are given in Supplementary Table 3.

Genome-wide association scans were conducted at each site for all eight traits of interest 

including the ICV and bilateral volumes of the nucleus accumbens, amyg-dala, caudate 

nucleus, hippocampus, pallidum, putamen and thalamus. For each SNP in the genome, the 

additive dosage value was regressed against the trait of interest separately using a multiple 

linear regression framework controlling for age, age2, sex, 4 MDS components, ICV (for 

non-ICV phenotypes) and diagnosis (when applicable). For studies with data collected from 

several centres or scanners, dummy-coded covariates were also included in the model. Sites 

with family data (NTR-Adults, BrainSCALE, QTIM, SYS, GOBS, ASPSFam, ERF, 

GeneSTAR, NeuroIMAGE and OATS) used mixed-effects models to control for familial 

relationships in addition to covariates stated previously. The primary analyses for this paper 

focused on the full set of subjects including data sets with patients to maximize the power to 

detect effects. We re-analysed the data excluding patients to verify that detected effects were 

not due to disease alone (Extended Data Fig. 5a). The protocols used for testing association 

with mach2qtl (ref. 34) for studies with unrelated subjects and merlin-offline36 for family-

based designs are freely available online (http://enigma.ini.usc.edu/protocols/genetics-

protocols/). Full details for the software used at each site are given in Supplementary Table 

3.

The GWAS results from each site were uploaded to a centralized server for quality checking 

and processing. Results files from each cohort were free from genomic inflation in quantile–

quantile plots and Manhattan plots (http://enigma.ini.usc.edu/publications/enigma-2/). 

Poorly imputed SNPs (with R2 < 0.5) and low minor allele count (< 10) were removed from 

the GWAS result files from each site. The resulting files were combined meta-analytically 

using a fixed-effect, inverse-variance-weighted model as implemented in the software 

package METAL37. The discovery cohorts were meta-analysed first, controlling for 

genomic inflation. The combined discovery data set (comprised of all meta-analysed SNPs 

with data from at least 5,000 subjects) was carried forward for the additional analyses 

detailed below.
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To account appropriately for multiple comparisons over the eight traits in our analysis, we 

first examined the degree of independence between each trait. We generated an 8 × 8 

correlation matrix based on the Pearson’s correlation between all pair-wise combinations of 

the mean volumes of each structure in the QTIM study. Using the matSpD software38 we 

found that the effective number of independent traits in our analysis was 7. We therefore set 

a significance criteria threshold of P < (5 × 10−8/7) = 7.1 × 10−9.

Heritability estimates for mean volumes of each of the eight structures in this study were 

calculated using structural equation modelling in OpenMx39. Twin modelling was 

performed controlling for age and sex differences on a large sample (n = 1,030) of healthy 

adolescent and young adult twins (148 monozygotic and 202 dizygotic pairs) and their 

siblings from the Queensland Twin Imaging (QTIM) study. Subsequently, a multivariate 

analysis showed that common environmental factors (C) could be dropped from the model 

without a significant reduction in the goodness-of-fit (Δχ2
36 = 29.81; P = 0.76). Heritability 

(h2) was significantly different from zero for all eight brain measures: putamen (h2 = 0.89; 

95% confidence interval 0.85–0.92), thalamus (h2 = 0.88; 0.85–0.92), ICV (h2 = 0.88; 0.84–

0.90), hippocampus (h2 = 0.79; 0.74–0.83), caudate nucleus (h2 = 0.78; 0.75–0.82), pallidum 

(h2 = 0.75; 0.72–0.78), nucleus accumbens (h2 = 0.49; 0.45–0.55), amygdala (h2 = 0.43; 

0.39, 0.48) (Extended Data Fig. 11a).

Percentage variance explained by each genome-wide significant SNP was determined based 

on the final combined discovery data set (Extended Data Fig. 6a) or the discovery combined 

with the replication samples (Table 1) after correction for covariates using the following 

equation:

where the t-statistic is calculated as the beta coefficient for a given SNP from the regression 

model (controlling for covariates) divided by the standard error of the beta estimate, and 

where n is the total number of subjects and k is the total number of covariates included in the 

model (k = 10) (ref. 40). R2
g|c is the variance explained by the variant controlling for 

covariates and R2
c is the variance explained by the covariates alone. R2

g|c/(1 − R2
c) gives the 

variance explained by the genetic variant after accounting for covariate effects. The total 

variance explained by the GWAS (Extended Data Fig. 11b, c) was calculated by first 

linkage disequilibrium pruning the results without regard to significance (pruning 

parameters in PLINK:– –indep-pairwise 1000kb 25 0.1). The t-statistics of the regression 

coefficients from the pruned results are then corrected for the effects of ‘winner’s curse’ and 

the variance explained by each SNP after accounting for covariate effects is summed across 

SNPs using freely available code (http://sites.google.com/site/honcheongso/software/total-

vg)40,41. As the correction for winners curse may be influenced by asymmetry in the 

distribution of t (arising from the choice of reference allele) we bootstrapped the choice of 

reference allele (5,000 iterations) to derive the median value and 95% confidence intervals 

of the estimates of variance explained (Extended Data Fig. 11b, c). The correction for 

winner’s curse corrected for upward biases when estimating the percentage variance 

explained by each SNP across the genome via simulation40, but this correction could still 
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allow some bias. Future large studies will be able to evaluate independently the percentage 

variance explained.

We performed multivariate GWAS using the Trait-based Association Test that uses 

Extended Simes procedure (TATES)9. For the TATES analysis we used GWAS summary 

statistics from the discovery data set and the correlation matrix created from the eight 

phenotypes using the QTIM data set (Extended Data Fig. 6c).

We examined the moderating effects of mean age and proportion of females on the effect 

sizes estimated for the top loci influencing brain volumes (Extended Data Fig. 5b, c) using a 

mixed-effect meta-regression model such that:

In this model, the effect and variance at each site are treated as random effects and the 

moderator Xmod (either mean age or proportion of females) is treated as a fixed effect. Meta-

regression tests were performed using the meta for package (version 1.9-1) in R.

Hierarchical clustering was performed on the GWAS t-statistics from the discovery data set 

results using independent SNPs clumped from the TATES results (clumping parameters: 

significance threshold for index SNP = 0.01, significance threshold for clumped SNPs = 

0.01, r2 = 0.25, physical distance = 1 Mb; Extended Data Fig. 6b). Regions with the 

strongest genetic similarity were grouped together based on the strength of their pairwise 

correlations. The results were represented visually using hierarchical clustering with default 

settings from the gplots package (version 2.12.1) in R.

Gene annotation, gene-based test statistics and pathway analysis were performed using the 

KGG2.5 software package42 (Supplementary Table 7 and Extended Data Fig. 7). Linkage 

disequilibrium was calculated based on RSID numbers using the 1000 Genomes Project 

European samples as a reference (http://enigma.ini.usc.edu/protocols/genetics-protocols/). 

For the annotation, SNPs were considered ‘within’ a gene if they fell within 5 kb of the 3′/5′ 

untranslated regions based on human genome (hg19) coordinates. Gene-based tests were 

performed using the GATES test42 without weighting P values by predicted functional 

relevance. Pathway analysis was performed using the hybrid set-based test (HYST) of 

association43. For all gene-based tests and pathway analyses, results were considered 

significant if they exceeded a Bonferroni correction threshold accounting for the number of 

pathways and traits tested such that Pthresh = 0.05/(671 pathways × 7 independent traits) = 

1.06 × 10−5.

Expression quantitative loci were examined in two independent data sets: the NABEC 

(GSE36192)24 and UKBEC (GSE46706)44,45. Detailed processing and exclusion criteria for 

both data sets are described elsewhere24,45. In brief, the UKBEC consists of 134 

neuropathologically normal donors from the MRC Sudden Death Brain Bank in Edinburgh 

and Sun Health Research Institute; expression was profiled on the Affymetrix Exon 1.0 ST 

array. The NABEC is comprised of 304 neurologically normal donors from the National 

Institute of Ageing and expression profiled on the Illumina HT12v3 array. The expression 
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values were corrected for gender and batch effects and probes that contained polymorphisms 

(seen > 1% in European 1000G) were excluded from analyses44. Blood expression 

quantitative trait loci (eQTL) data were queried using the Blood eQTL Browser (http://

genenetwork.nl/bloodeqtlbrowser/)26. Brain expression over the lifespan was measured from 

a spatio-temporal atlas of human gene expression and graphed using custom R scripts 

(GSE25219; details given in13).

Fine-grained three-dimensional surface mappings of the putamen were generated using a 

medial surface modelling method46,47 in 1,541 healthy subjects from the IMAGEN study48 

(Fig. 2c and Extended Data Fig. 10a, b). Putamen volume segmentations from either FSL 

(Fig. 2c and Extended Data Fig. 10a) or FreeSurfer (Extended Data Fig. 10b) were first 

converted to three-dimensional meshes and then co-registered to an average template for 

statistical analysis. The medial core distance was used as a measure of shape and was 

calculated as the distance from each point on the surface to the centre of the putamen. At 

each point along the surface of the putamen, an association test was performed using 

multiple linear regression in which the medial core distance at a given point on the surface 

was the outcome measure and the additive dosage value of the top SNP was the predictor of 

interest while including the same covariates that were used for volume including age, sex, 

age2, 4 MDS, ICV and site.

In Extended Data Fig. 3, all tracks were taken from the UCSC Genome Browser Human 

hg19 assembly. SNPs (top 5%) shows the top 5% associated SNPs within the locus and are 

coloured by their correlation to the top SNP. Genes shows the gene models from 

GENCODE version 19. Conservation was defined at each base through the phyloP 

algorithm which assigns scores as −log10 P values under a null hypothesis of neutral 

evolution calculated from pre-computed genomic alignment of 100 vertebrate species49. 

Conserved sites are assigned positive scores, while faster-than-neutral evolving sites are 

given negative scores. TFBS conserved shows computationally predicted transcription factor 

binding sites using the Transfac Matrix Database (v.7.0) found in human, mouse and rat. 

Brain histone (1.3 year) and brain histone (68 year) show maps of histone trimethylation at 

histoneH3 Lys 4 (H3K4me3), an epigenetic mark for transcriptional activation, measured by 

ChIP-seq. These measurements were made in neuronal nuclei (NeuN+) collected from 

prefrontal cortex of post-mortem human brain50. CpG methylation was generated using 

meth-ylated DNA immunoprecipitation and sequencing from postmortem human frontal 

cortex of a 57-year-old male51. DNaseI hypersens displays DNaseI hypersensitivity, 

evidence of open chromatin, which was evaluated in postmortem human frontal cerebrum 

from three donors (age 22–35), through the ENCODE consortium52. Finally, hES Chrom 

State gives the predicted chromatin states based on computational integration of ChIP-seq 

data for nine chromatin marks in H1 human embryonic stem cell lines derived in the 

ENCODE consortium53.
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Extended Data

Extended Data Figure 1. Outline of the genome-wide association meta-analysis
Structural T1-weighted brain MRI and biological specimens for DNA extraction were 

acquired from each individual at each site. Imaging protocols were distributed to and 

completed by each site for standardized automated segmentation of brain structures and 

calculation of the ICV. Volumetric phenotypes were calculated from the segmentations. 

Genome-wide genotyping was completed at each site using commercially available chips. 

Standard imputation protocols to the 1000 Genomes reference panel (phase 1, version 3) 

were also distributed and completed at each site. Each site completed genome-wide 

association for each of the eight volumetric brain phenotypes with the listed covariates. 

Statistical results from GWAS files were uploaded to a central site for quality checking and 

fixed effects meta-analysis.
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Extended Data Figure 2. Ancestry inference via multi-dimensional scaling plots
Multi-dimensional scaling (MDS) plots of the discovery cohorts to HapMap III reference 

panels of known ancestry are displayed. Ancestry is generally homogeneous within each 

group. In all discovery samples any individuals with non-European ancestry were excluded 

before association. The axes have been flipped to the same orientation for each sample for 

ease of comparison. ASW, African ancestry in southwest USA; CEU, Utah residents with 

northern and western European ancestry from the CEPH collection; CHD, Chinese in 

metropolitan Denver, Colorado; GIH, Gujarati Indians in Houston, Texas; LWK, Luhya in 

Webuye, Kenya; MEX, Mexican ancestry in Los Angeles, California; MKK, Maasai in 

Kinyawa, Kenya; TSI, Tuscans in Italy; YRI, Yoruba in Ibadan, Nigeria.
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Extended Data Figure 3. Genomic function is annotated near novel genome-wide significant loci
a–h, For each panel, zoomed-in Manhattan plots (±400 kb from top SNP) are shown with 

gene models below (GENCODE version 19). Plots below are zoomed to highlight the 

genomic region that probably contains the causal variant(s) (r2 > 0.8 from the top SNP). 

Genomic annotations from the UCSC browser and ENCODE are displayed to indicate 

potential functionality (see Methods for detailed track information). SNP coverage is low in 

f owing to a common genetic inversion in the region. Each plot was made using the Locus 

Track software (http://gump.qimr.edu.au/general/gabrieC/LocusTrack/).
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Extended Data Figure 4. Quantile–quantile and forest plots from meta-analysis of discovery 
cohorts
a, Quantile–quantile plots show that the observed P values only deviate from the expected 

null distribution at the most significant values, indicating that population stratification or 

cryptic relatedness are not unduly inflating the results. This is quantified through the 

genomic control parameter (λ; which evaluates whether the median test statistic deviates 

from expected)54. λ values near 1 indicate that the median test statistic is similar to those 

derived from a null distribution. Corresponding meta-analysis Manhattan plots can be found 

in Fig. 1. b, Forest plots show the effect at each of the contributing sites to the meta-

analysis. The size of the dot is proportional to the sample size, the effect is shown by the 

position on the x axis, and the standard error is shown by the line. Sites with an asterisk 

indicate the genotyping of a proxy SNP (in perfect linkage disequilibrium calculated from 

1000 Genomes) for replication.
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Extended Data Figure 5. Influence of patients with neuropsychiatric disease, age and gender on 
association results
a, Scatterplot of effect sizes including and excluding patients with neuropsychiatric 

disorders for nominally significant SNPs. For each of the eight volumetric phenotypes, 

SNPs with P < 1 × 10−5 in the full discovery set meta-analysis were also evaluated 

excluding the patients. The beta values from regression, a measure of effect size, are plotted 

(blue dots) along with a line of equivalence between the two conditions (red line). The 

correlation between effect sizes with and without patients was very high (r > 0.99), showing 

that the SNPs with significant effects on brain structure are unlikely to be driven by the 

diseased individuals. b, Meta-regression comparison of effect size with mean age at each 

site. Each site has a corresponding number and coloured dot in each graph. The size of each 

dot is based on the standard error such that bigger sites with more definitive estimates have 

larger dots (and more influence on the meta-regression). The age range of participants 

covered most of the lifespan (9–97 years), but only one of these eight loci showed a 

significant relationship with the mean age of each cohort (rs608771 affecting putamen 

volume). c, Meta-regression comparison of effect size with the proportion of females at each 

site. No loci showed evidence of moderation by the proportion of females in a given sample. 

However, the proportion of females at each site has a very restricted range, so results should 

be interpreted with caution. Plotted information follows the same convention as described in 

b. The sites are numbered in the following order: (1) AddNeuroMed, (2) ADNI, (3) 
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ADNI2GO, (4) BETULA, (5) BFS, (6) BIG, (7) BIG-Rep, (8) BrainSCALE, (9) 

BRCDECC, (10) CHARGE, (11) EPIGEN, (12) GIG, (13) GSP, (14) HUBIN, (15) 

IMAGEN, (16) IMpACT, (17) LBC1936, (18) Lieber, (19) MAS, (20) MCIC, (21) MooDS, 

(22) MPIP, (23) NCNG, (24) NESDA, (25) neuroIMAGE, (26) neuroIMAGE-Rep, (27) 

NIMH, (28) NTR-Adults, (29) OATS, (30) PAFIP, (31) QTIM, (32) SHIP, (33) SHIP-

TREND, (34) SYS, (35) TCD-NUIG, (36) TOP, (37) UCLA-BP-NL and (38) UMCU.

Extended Data Figure 6. Cross-structure analyses
a, Radial plots of effect sizes from the discovery sample for all genome-wide significant 

SNPs identified in this study. Plots indicate the effect of each genetic variant, quantified as 

percentage variance explained, on the eight volumetric phenotypes studied. As expected, the 

SNPs identified with influence on a phenotype show the highest effect size for that 

phenotype: putamen volume (rs945270, rs62097986, rs608771 and rs683250), hippocampal 

volume (rs77956314 and rs61921502), caudate volume (rs1318862) and ICV (rs17689882). 

In general much smaller effects are observed on other structures. b, Correlation heat map of 
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GWAS test statistics (t-values) and hierarchical clustering55. Independent SNPs were chosen 

within an linkage disequilibrium block based on the highest association in the multivariate 

cross-structure analysis described in Extended Data Fig. 6c. Two heat maps are shown 

taking only independent SNPs with either P < 1 × 10−4 (left) or P < 0.01 (right) in the 

multivariate cross-structure analysis. Different structures are labelled in developmentally 

similar regions by the colour bar on the top and side of the heat map including basal ganglia 

(putamen, pallidum, caudate and accumbens; blue), amygdalo–hippocampal complex 

(hippocampus and amygdala; red), thalamus (turquoise) and ICV (black). Hierarchical 

clustering showed that developmentally similar regions have mostly similar genetic 

influences across the entire genome. The low correlation with the ICV is owing to it being 

used as a covariate in the subcortical structure GWAS associations. c, A multivariate cross-

structure analysis of all volumetric brain traits. A Manhattan plot (left) and corresponding 

quantile–quantile plot (right) of multivariate GWAS analysis of all traits (volumes of the 

accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, and ICV) in the 

discovery data set using the TATES method9 is shown. Multivariate cross-structure analysis 

confirmed the univariate analyses (see Table 1), but did not reveal any additional loci 

achieving cross-structure levels of significance.
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Extended Data Figure 7. Pathway analysis of GWAS results for each brain structure
A pathway analysis was performed on each brain volume GWAS using KGG42 to conduct 

gene-based tests and the Reactome database for pathway definition43. Pathway-wide 

significance was calculated using a Bonferroni correction threshold accounting for the 

number of pathways and traits tested such that Pthresh = 0.05/(671 pathways × 7 independent 

traits) = 1.06 × 10−5 and is shown here as a red line. The number of independent traits was 

calculated by accounting for the non-independence of each of the eight traits examined 

(described in the Methods). Variants that influence the putamen were clustered near genes 

known to be involved in DSCAM interactions, neuronal arborization and axon guidance56. 

Variants that influence intracranial volume are clustered near genes involved in EGFR and 

phosphatidylinositol-3-OH kinase (PI(3)K)/AKT signalling pathways, known to be involved 

in neuronal survival57. All of these represent potential mechanisms by which genetic 

variants influence brain structure. It is important to note that the hybrid set-based test 

(HYST) method for pathway analysis used here can be strongly influenced by a few highly 

significant genes, as was the case for putamen hits in which DCC and BCL2L1 were driving 

the pathway results.
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Extended Data Figure 8. Spatio-temporal maps showing expression of genes near the four 
significant putamen loci over time and throughout regions of the brain
Spatio-temporal gene expression13 was plotted as normalized log2 expression. Different 

areas of the neocortex (A1C, primary auditory cortex; DFC, dorsolateral prefrontal cortex; 

IPC, posterior inferior parietal cortex; ITC, inferior temporal cortex; MFC, medial prefrontal 

cortex; M1C, primary motor cortex; OFC, orbital prefrontal cortex; STC, superior temporal 

cortex; S1C, primary somatosensory cortex; VFC, ventrolateral prefrontal cortex; V1C, 

primary visual cortex) as well as subcortical areas (AMY, amygdala; CBC, cerebellar 

cortex; HIP, hippocampus; MD, mediodorsal nucleus of the thalamus; STR, striatum) are 

plotted from 10 post-conception weeks (PCW) to more than 60 years old. Genes that 

probably influence putamen volume are expressed in the striatum at some point during the 

lifespan. After late fetal development, KTN1 is expressed in the human thalamus, striatum 

and hippocampus and is more highly expressed in the striatum than the cortex. Most genes 

seem to have strong gradients of expression across time, with DCC most highly expressed 

during early prenatal life, and DLG2 most highly expressed at mid-fetal periods and 
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throughout adulthood. BCL2L1, which inhibits programmed cell death, has decreased striatal 

expression at the end of neurogenesis (24–38 PCW), a period marked by increased apoptosis 

in the putamen15.

Extended Data Figure 9. CTCF-binding sites in the vicinity of the putamen locus marked by 
rs945270
CTCF-binding sites from the ENCODE project are displayed from the database CTCFBSDB 

2.0 (ref. 23) from two different cell types: embryonic stem cells (track 

ENCODE_Broad_H1-hESC_99540) and a neuroblastoma cell line differentiated with 

retinoic acid (ENCODE_UW_SK-N-SH_RA_97826). A proxy SNP to the top hit within the 

locus, rs8017172 (r2 = 1.0 to rs945270), lies within a CTCF-binding site called based on 

ChIP-seq data in the embryonic stem cells and near the binding site in neural SK-N-SH 

cells. As this is the lone chromatin mark in the intergenic region (see Extended Data Fig. 3), 

it suggests that the variant may disrupt a CTCF-binding site and thereby influence 

transcription of surrounding genes.
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Extended Data Figure 10. Shape analysis in 1,541 young healthy subjects shows consistent 
deformations of the putamen regardless of segmentation protocol
a, b, The distance from a medial core to surfaces derived from FSL FIRST (a; identical to 

Fig. 2c) or FreeSurfer (b) segmentations was derived in the same 1,541 subjects. Each copy 

of the rs945270-C allele was significantly associated with an increased width in coloured 

areas (false discovery rate corrected at q = 0.05) and the degree of deformation is labelled by 

colour. The orientation is indicated by arrows. A, anterior; I, inferior; P, posterior; S, 

superior. Shape analysis in both software suites gives statistically significant associations in 

the same direction. Although the effects are more widespread in the FSL segmentations, 

FreeSurfer segmentations also show overlapping regions of effect, which appears strongest 

in anterior and superior sections.
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Extended Data Figure 11. The phenotypic variance explained by all common variants in this 
study
a, Twin-based heritability (with 95% confidence intervals), measuring additive genetic 

influences from both common and rare variation, is shown for comparison with common 

variant based heritability (see Methods). b, The median estimated percentage of phenotypic 

variance explained by all SNPs (and 95% confidence interval) is given for each brain 

structure studied41. The full genome-wide association results from common variants explain 

approximately 7–15% of variance depending on the phenotype. c, The median estimated 

variance explained by each chromosome is shown for each phenotype. d, Some 
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chromosomes explain more variance than would be expected by their length, for example 

chromosome 18 in the case of the putamen, which contains the DCC gene.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Common genetic variants associated with subcortical volumes and the ICV
Manhattan plots coloured with a scheme that matches the corresponding structure (middle) 

are shown for each subcortical volume studied. Genome-wide significance is shown for the 

common threshold of P = 5 × 10−8 (grey dotted line) and also for the multiple comparisons-

corrected threshold of P = 7.1 × 10−9 (red dotted line). The most significant SNP within an 

associated locus is labelled.
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Figure 2. Effect of rs945270 on KTN1 expression and putamen shape
a, b, Expression quantitative trait loci study in brain tissue demonstrates the effect of 

rs945270 on KTN1 gene expression in frontal cortex tissue from 304 subjects from the North 

American Brain Expression Cohort (NABEC25) (a) and in an independent sample of 134 

subjects from the UK Brain Expression Cohort (UKBEC) (b), sampled from both frontal 

cortex and putamen. Boxplot dashed bars mark the twenty-fifth and seventy-fifth 

percentiles. c, Surface-based analysis demonstrates that rs945270 has strong effects on the 

shape of superior and lateral portions of the putamen in 1,541 subjects. Each copy of the 

rs945270-C allele was significantly associated with increased width in coloured areas (false 

discovery rate corrected at q = 0.05), and the degree of deformation is labelled by colour, 

with red indicating greater deformation. Orientation is indicated by arrows. A, anterior; I, 

inferior; P, posterior, S, superior.
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