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See the editorial comment for this article ‘A novel urinary proteomic classifier predicts the risk of coronary artery disease’, by P. Mone et al., 
https://doi.org/10.1093/eurjpc/zwad123.

Aims Coronary artery disease (CAD) is multifactorial, caused by complex pathophysiology, and contributes to a high burden of 
mortality worldwide. Urinary proteomic analyses may help to identify predictive biomarkers and provide insights into the 
pathogenesis of CAD.

Methods 
and results

Urinary proteome was analysed in 965 participants using capillary electrophoresis coupled with mass spectrometry. A prote
omic classifier was developed in a discovery cohort with 36 individuals with CAD and 36 matched controls using the support 
vector machine. The classifier was tested in a validation cohort with 115 individuals who progressed to CAD and 778 controls 
and compared with two previously developed CAD-associated classifiers, CAD238 and ACSP75. The Framingham and 
SCORE2 risk scores were available in 737 participants. Bioinformatic analysis was performed based on the CAD-associated 
peptides. The novel proteomic classifier was comprised of 160 urinary peptides, mainly related to collagen turnover, lipid 
metabolism, and inflammation. In the validation cohort, the classifier provided an area under the receiver operating charac
teristic curve (AUC) of 0.82 [95% confidence interval (CI): 0.78–0.87] for the CAD prediction in 8 years, superior to CAD238 
(AUC: 0.71, 95% CI: 0.66–0.77) and ACSP75 (AUC: 0.53 and 95% CI: 0.47–0.60). On top of CAD238 and ACSP75, the add
ition of the novel classifier improved the AUC to 0.84 (95% CI: 0.80–0.89). In a multivariable Cox model, a 1-SD increment in 
the novel classifier was associated with a higher risk of CAD (HR: 1.54, 95% CI: 1.26–1.89, P < 0.0001). The new classifier 
further improved the risk reclassification of CAD on top of the Framingham or SCORE2 risk scores (net reclassification index: 
0.61, 95% CI: 0.25–0.95, P = 0.001; 0.64, 95% CI: 0.28–0.98, P = 0.001, correspondingly).

Conclusion A novel urinary proteomic classifier related to collagen metabolism, lipids, and inflammation showed potential for the risk 
prediction of CAD. Urinary proteome provides an alternative approach to personalized prevention.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Lay summary • A biomarker that can predict coronary artery disease (CAD) is urgently in need.
• We developed and validated a urinary proteomic classifier for the prediction of CAD.
• The proteomic classifier involved in atherosclerosis improved the risk reclassification on top of the clinical risk score.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Introduction
Coronary artery disease (CAD) is the most common heart disease af
fecting 126.5 million people and a leading cause of mortality, respon
sible for an estimated 8.9 million deaths worldwide in 2017.1 Despite 

the advances in the management of modifiable risk factors, residual 
risk remains.2 Given the considerable number of patients with CAD 
and the growing economic burden it causes,1 the need for targeted 
intervention strategies is urgent. The development of targeted treat
ments requires insightful inputs into the mechanisms and biomarkers 
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for CAD. Coronary artery disease can progress asymptomatically; thus, 
biomarkers that can detect the insidious ongoing pathophysiological 
process prior to clinical events and provide prognostic value are par
ticularly in great demand.

Although blood is a common source of biomarker discovery for car
diovascular diseases,3 urine, which can be collected noninvasively and 
easily, is another reservoir of biomarkers.4 Proteins leaking or being se
creted from multiple organs, including the cardiovascular system, can 
enter into the circulation and filter through the kidneys into the urine.4,5

Therefore, a comprehensive urinary proteomics analysis can reflect sys
tematic disease-associated changes, holds the promise to identify pre
dictive biomarkers and uncover the mechanisms for cardiovascular 
diseases. We have previously reported urinary proteomic biomarkers 
for arterial stiffness,6 vascular calcification,7 and heart failure.8,9

Previous multidimensional urinary proteomic biomarkers have also 
shown the potential for the detection and prediction of CAD.10–13

For instance, a panel of 238 urinary peptides, CAD238, provided an 
area under the receiver operating characteristic curve (AUC) of 0.87 
for the detection of CAD in 138 samples from 71 CAD patients and 
67 healthy controls.10,11 ACSP75 was developed for the prediction 

of acute coronary syndrome with an AUC of 0.66 in 42 cases and 42 
controls.13 Given the potential of urinary proteome analysis, there 
might be room for improvement of the classifier because the perform
ance of a classifier may not be maintained when generalizing to a large 
cohort. Thus, this study aimed to develop a new urinary proteomic clas
sifier for the prediction of CAD endpoints and validate its prognostic 
value in 893 individuals. Moreover, we hypothesized that urinary pep
tides discriminating CAD could provide insights into the pathological 
processes of CAD at an early stage; thus, we comprehensively de
scribed the pathways reflected by the identified urinary proteomic bio
markers with bioinformatic approaches.

Methods
Study design and participants
The study was a prospective study, comprised of a discovery cohort and a 
validation cohort (Figure 1). The discovery cohort consisted of 36 cases and 
36 matched controls from a population-based study, the Flemish Study on 
Environment, Genes, and Health Outcomes (FLEMENGHO).7 Cases were 

Figure 1 The schematic diagram of study design. In the biomarker discovery phase, urinary proteome analysis was performed on 36 patients who 
progressed to coronary artery disease and 36 matched controls. A total of 160 urinary peptides were identified to be significantly different between 
cases and controls, and their biological function was elucidated by bioinformatic analysis. Simultaneously, 160 peptides were used to construct a clas
sifier for the discrimination of coronary artery disease by the supervised machine learning method, and the predictive performance and prognostic value 
were evaluated by an independent validation cohort. CAD, coronary artery disease.

1538                                                                                                                                                                                             D. Wei et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/article/30/14/1537/7082480 by Journals C
ustom

er Service user on 27 O
ctober 2023



individuals asymptomatic for CAD at baseline but progressed to CAD dur
ing a median of 8.3-year [interquartile (IQR): 5.5–9.8] follow-up. Coronary 
artery disease was defined as myocardial infarction, acute coronary syn
drome, coronary artery bypass graft, percutaneous transluminal coronary 
angioplasty, and any fatal ischaemic heart disease. Cases and controls 
with an averaged estimated glomerular filtration rate (eGFR) of 80.5 
(IQR: 71.0–89.3) mL/min/1.73 m2 were matched for sex, age, history of 
hypertension, antihypertensive treatment, and total cholesterol. The valid
ation cohort was comprised of 893 individuals (115 with and 778 without 
CAD) from the FLEMENGHO study (35 with and 702 without CAD) or 
extracted from the Human Urinary Proteome Database (80 with and 76 
without CAD), consisting of more than 85 000 samples from various clinical 
and research centres.14

The enrollment of the FLEMENGHO study (Belgium) started from 1985 
to 2004, and the information on coronary events was collected until 
December 2016.7 Participants extracted from the Human Urinary 
Proteome Database were part of four prospective studies with diverse clin
ical settings.13,15–19 There were 34 participants (18 progressed to CAD and 
16 did not) enroled in the Coronary Artery Calcification in Type I Diabetes 
(CACTI) study between 2000 and 2002 and followed up for over 2.4 
years.15,16 A total of 64 patients (32 progressed to CAD and 32 did not) 
with chronic kidney disease were from the outpatient clinic of the 
Nephrology section of the Ghent University Hospital (Belgium). They 
were recruited between 2011 and 2014 and followed up until June 
2017.17 Additionally, there were 28 participants (14 progressed to CAD 
and 14 did not) enroled in the Australian Diabetes, Obesity and Lifestyle 
Study (AusDiab) during 1999–2000 with a follow-up of 5 years.13,18

Moreover, 30 patients with type 2 diabetes (16 progressed to CAD and 
14 did not) were recruited from the outpatient clinic for diabetes and neph
rology in Zwolle (The Netherlands) in 1998 and 2001 with a follow-up of 
3.7 years.19 All the latter data sets were fully anonymized and previously 
published, with respective references provided below. Demographic and 
clinical characteristics from extracted data sets included sex, age, hyperten
sion, diabetes, office blood pressure, and eGFR. The second use 
of FLEMENGHO study data (B32220083510) was approved by the 
University of Leuven Ethics Committee and participants provided written 
informed consent. Data sets extracted from the Human Urinary 
Proteome Database were previously published, and relevant studies 
were conducted in compliance with the Helsinki declaration for research 
in humans and received an approval from the responsible review 
boards.13,15–19 Coronary artery disease endpoint was defined as myocardial 
infarction, acute coronary syndrome, new-onset angina pectoris, ischaemic 
cardiomyopathy, and coronary revascularization. In the validation, 115 indi
viduals experienced CAD endpoints, including 57 with new myocardial 
infarctions.

Urinary proteome analysis
Urinary proteome analysis was performed with a P/ACE MDQ capillary 
electrophoresis system (Beckman Coulter, Fullerton, CA) coupled to a 
micrOTOF MS (Bruker Daltonics, Bremen, Germany). MosaFinder soft
ware was used to process mass spectral data and to generate a raw list 
of peptides or small proteins before being annotated according to prior se
quenced peptides from the Human Urinary Proteome Database.14 Peptide 
intensities were normalized using 29 collagen peptides, serving as an internal 
standards, being in general not affected by the disease, to assure compar
ability between different data sets.20 Further information on sample prep
aration, data processing, and sequencing of the peptides was described 
elsewhere.9,21,22

Classifier construction
Distinct peptides between individuals who progressed to reach a CAD end
point and controls were identified in the discovery cohort. Urinary se
quenced peptides identified in ≥30% of either cases or controls were 
analysed. Peptide abundances were compared using the nonparametric 
Wilcoxon test, followed by adjustment for multiple testing. Peptides 
were considered statistically significant when the P-value was less than 
0.05 after adjustment for multiple testing by Benjamini–Hochberg correc
tion. The statistical validity of significant peptides was further confirmed 
by permutation analysis that randomly excluded 30% of the samples with 
10 times repetition. Peptides with a nominal P-value of <0.05 in more 

than 50% of the permutation analyses were considered for further analysis. 
The support vector machine (SVM), a supervised machine learning algo
rithm, was applied to construct a classifier for the discrimination of CAD 
using the significant peptides. Model construction and parameter tuning 
were performed with the MosaCluster software.23 The model’s generaliza
tion was examined by take-one-out cross-validation.

Statistical analysis
Statistical analysis was conducted with SAS software, version 9.4 (SAS 
Institute, Cary, NC, USA). Means and percentages were compared using 
a t-test or analysis of variance (ANOVA) test or Fisher’s test as appropriate. 
Statistical significance was considered as a two-sided P-value of 0.05. 
Time-dependent receiver operating characteristic (ROC) curves and the 
AUC were used to estimate the predictive capacity of the new classifier 
for incident CAD at 3, 5, and 8 years. The predictive capacity of previously 
developed classifiers, CAD238 and ACSP75, were assessed as compari
sons.10–13 The AUC estimate and 95% confidence interval (CI) for each 
classifier were calculated using the PHREG procedure to fit the Cox regres
sion model in SAS. Moreover, whether the addition of the urinary prote
omic classifier could improve risk reclassification for CAD on top of the 
Framingham or SCORE2 risk score was further evaluated. The 
Framingham risk score was calculated based on common clinical risk factors, 
including sex, age, systolic blood pressure, smoking, diabetes, treatment of 
hypertension, total cholesterol, and high-density lipoprotein cholesterol.24

The improvement in risk reclassification was evaluated by net reclassifica
tion index (NRI) and integrated discrimination index (IDI). P-value and 
95% CI of NRI and IDI were estimated by 500 times bootstrap. The prog
nostic value of the new classifier was assessed by multivariable Cox propor
tional hazard models. Model 1 was adjusted for covariates, including sex, 
age, mean arterial blood pressure, and diabetes. Model 2 was additionally 
adjusted for eGFR. Hazard ratio (HR) and 95% CI was estimated for per 
SD increment in a classifier score or using the bottom quartile of a classifier 
score as a reference.

Bioinformatic analysis
To better interpret the underlying mechanisms between identified urinary 
peptides and CAD, the proteolysis processes that produced the polypep
tides were considered. The potential proteases were predicted based on 
the N- and C-terminal cleavage sites of peptides by the Proteasix 
Knowledge Base (http://www.proteasix.org).25 With the observed predic
tion mode, the cleavage sites were matched based on the literature. 
Subsequently, the parental proteins of the peptides, together with the 
predicted proteases, were submitted for pathway enrichment analysis 
to elucidate their biological functions. The pathway analysis was per
formed via the ClueGO plug-in (v 2.5.7) of Cytoscape v 3.7.2 using the 
Reactome pathway database (updated on 8 May 2020).26,27 The minimum 
number of proteins to enrich a pathway was three and the minimum 
enrichment ratio was 4%. The significant threshold of P-values corrected 
by the Bonferroni step-down was 0.05. The clusters were based on path
way connectivity assessed by the predefined kappa score threshold of 0.4. 
And the cluster name was represented by the most significant pathway in 
a cluster.

Results
Participant characteristics
In the discovery cohort, the mean age was 58.4 [standard deviation 
(SD): 12.2] years and 27.8% were female. The baseline characteristics 
between individuals with and without CAD endpoints were similar in 
the discovery set (P ≥ 0.078), except for eGFR (mean: 75.1 ± 17.0 vs. 
83.1 ± 14.1, P = 0.038, Table 1). Of 893 participants in the validation co
hort, the mean age was 52.7 (16.3) years, and 446 (49.9%) were wo
men. Individuals who progressed to CAD endpoints tended to be 
male, older, having a history of hypertension, diabetes, chronic kidney 
disease, and on antihypertensive medication and aspirin compared 
with those without CAD endpoints (P ≤ 0.014, Table 2).
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Urinary proteomic classifiers and the 
prediction of coronary artery disease
In the discovery cohort, a total of 518 sequenced peptides significantly 
differed between individuals with and without CAD after multiple test
ing corrections and permutation tests.

Subsequently, a urinary proteomic classifier integrating 160 significant 
peptides was developed in the discovery cohort using the SVM (regular
ization parameter: 64, kernel coefficient: 0.000256, epsilon: 0.001). 
When generalizing the new classifier to the independent validation co
hort, this new classifier provided an AUC of 0.77 (95% CI: 0.70–0.84), 
0.83 (95% CI: 0.76–0.86), and 0.82 (95% CI: 0.78–0.87) for the predic
tion of CAD endpoints at 3, 5, and 8 years, consistently outperforming 
to prior classifiers, CAD238 and ACSP75 (Table 3). Moreover, the add
ition of the new classifier significantly improved AUC on top of CAD238 
(from 0.65–0.71 to 0.79–0.85) and ACSP75 (from 0.53–0.61 to 0.77– 
0.84). The combination of three classifiers yielded an increased AUC 
of 0.79 (0.73–0.85), 0.85 (0.78–0.87), and 0.84 (0.80–0.89) for the pre
diction of 3-, 5-, and 8-year CAD. Furthermore, the risk reclassification 
was improved by the addition of the new classifier on top of the 
Framingham risk score in 737 individuals from the FLEMENGHO study, 
as suggested by an NRI of 0.61 (95% CI: 0.25–0.95, P = 0.001) and IDI of 
0.02 (95% CI: 0.02–0.05, P = 0.39). The risk reclassification improve
ment derived by the new classifier was also observed for the SCORE2 
risk score with an NRI of 0.64 (95% CI: 0.28–0.98, P = 0.001) and IDI 
of 0.03 (95% CI: −0.003 to 0.06, P = 0.097).

Association between urinary proteomic 
classifier with coronary artery disease
The association between the new classifier and the risk of CAD is pre
sented in Table 4. In the multivariable-adjusted model, a 1-SD increment 
in the new classifier was associated with a 1.62-fold (95% CI: 1.34–1.96) 
higher risk of incident CAD at 8-year follow-up. As shown in Figure 2, 
individuals with a higher new classifier score were at an increased risk 
of CAD. Compared with individuals in the bottom quartile of the new 
classifier, those in the highest quartile had a significantly higher risk of 

CAD (HR: 3.55, 95% CI: 1.84–6.85) after adjustment. When additionally 
adjusting for eGFR, slightly weakened associations that remained signifi
cant (HR: 1.54, 95% CI: 1.26–1.89 for 1-SD increment) were observed 
for the new classifier. After further adjusting for body mass index 
and smoking status (former/current/never), the new classifier was 
significantly associated with CAD (HR: 1.67, 95% CI: 1.11–2.53 for 
1-SD increment) in 737 individuals from the FLEMENGHO study. 
Kaplan–Meier curves in Figure 2 demonstrated that individuals at the 
top quartile of CAD238 or ACSP75 were at the highest risk of CAD 
compared with other quartiles. However, neither CAD238 nor 
ACSP75 was significantly associated with CAD after adjustment. 
Moreover, for 737 individuals from the FLEMENGHO study, the new clas
sifier was positively associated with CAD, independent of the Framingham 
risk score (adjusted HR: 1.44, 95% CI: 1.01–2.95 for 1-SD increment) or 
the SCORE2 risk score (adjusted HR: 1.67, 95% CI: 1.14–2.45 for 1-SD 
increment).

Urinary peptides associated with coronary 
artery disease
These 160 urinary peptides were fragments of 58 parental proteins, 
mainly derived from collagens, such as collagen type I alpha I chain 
(36 peptides, 22.5%), collagen type III alpha chain (22 peptides, 
13.8%), and collagen type I alpha II chain (9 peptides, 5.6%). Of 160 urin
ary peptides, most peptides were higher in individuals with CAD, ex
cept for 27 peptides from collagen type I alpha I chain (7 peptides), 
collagen type III alpha chain (5 peptides), uromodulin (6 peptides), apo
lipoprotein C-II (1 peptide), sarcalumenin (1 peptide), collagen type 1 
alpha I (1 peptide), collagen type III alpha 1 (2 peptides), and collagen 
V alpha 2 (1 peptide). Supplementary material online, Table S1 in the 
Supplementary material displays the list of 160 peptides, fold change 
in individuals with CAD, and their parental proteins. The elevated ex
cretion of most collagen I and III fragments in individuals with CAD 
might suggest an upregulated collagen degradation. In addition to 
collagens, the excretions of other prominent proteins, including fibrino
gen (10 peptides), uromodulin (7 peptides), polymeric immunoglobulin 
receptor (3 peptides), CD99 antigen (2 peptides), and insulin 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Participant characteristics in the discovery cohort

Characteristics Discovery cohort

All (n = 72) Controls (n = 36) Case (n = 36) P-value

Number with characteristic (%)

Female 20 (27.8) 10 (27.8) 10 (27.8) >0.99

Current smoking 17 (23.6) 6 (16.7) 11 (30.6) 0.27
Hypertension 46 (63.9) 23 (63.9) 23 (63.9) >0.99

Treatment of hypertension 34 (47.2) 17 (47.2) 17 (47.2) >0.99

Mean of characteristic (±SD)
Age, years 58.4 ± 12.2 58.3 ± 12.2 58.6 ± 12.4 0.87

Body mass index, kg/m2 27.4 ± 2.9 27.1 ± 3.0 27.7 ± 2.8 0.68

Systolic blood pressure, mmHg 133.1 ± 18.3 132.3 ± 17.5 133.8 ± 19.2 0.75
Diastolic blood pressure, mmHg 79.6 ± 10.4 79.3 ± 9.9 80.0 ± 11.1 0.96

Serum total cholesterol, mmol/L 5.54 ± 0.90 5.49 ± 0.86 5.58 ± 0.94 0.64

HDL cholesterol, mmol/L 1.26 ± 0.36 1.35 ± 0.39 1.18 ± 0.30 0.078
LDL cholesterol, mmol/L 3.44 ± 0.79 3.56 ± 0.67 3.33 ± 0.89 0.19

Blood glucose, mmol/L 5.36 ± 1.03 5.10 ± 0.58 5.62 ± 1.30 0.10

eGFR, mL/min/1.73m2 79.1 ± 16.0 83.1 ± 14.1 75.1 ± 17.0 0.038

Current smoking refers to inhaling tobacco daily; hypertension was an office blood pressure of ≥140 mmHg systolic or ≥90 mmHg diastolic, or use of antihypertensive drugs. 
eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, high-density lipoprotein; SD, standard deviation.
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(2 peptides), and insulin-like growth factors II were upregulated in par
ticipants with CAD. The remaining parental proteins functioned di
versely, including lipid metabolism (apolipoprotein C-II, 
apolipoprotein C-III, apolipoprotein L1, and clusterin), proliferation 
(thymosin beta-4), tissue remodelling (clusterin), immune response 
(complement C4-A and complement factor B), and inflammation 
(interleukin-1 receptor antagonist protein).

Bioinformatics was performed to obtain a comprehensive overview 
of the proteases that could lead to the generation of peptides asso
ciated with CAD. According to the cleavage sites, 11 proteases were 
predicted to participate in the fragmentation of proteins associated 
with CAD. Peptides that were higher in individuals with CAD predicted 
11 upregulated matrix metalloproteinases (MMPs) that mainly involve 
in collagen degradation, including MMP 1, 2, 8, 9, 13, 14, cathepsin K, 
and neuroendocrine convertase 1. Downregulated peptides predicted 
lower activity of MMP 2 and 9 as well (see Supplementary material 
online, Table S2 in the Supplementary material).

The parental proteins of urinary peptides and their upstream pro
teases might be involved in the pathogenesis of CAD. Pathway enrich
ment analysis mapped 8 clusters consisting of 41 pathways (Figure 3 and 
Supplementary material online, Table S3 in the Supplementary 
material). The major pathways enriched were extracellular matrix turn
over and signalling, cell surface interactions, plasma lipoprotein 

metabolism, activation of MMP, complement cascade, proliferation, 
and insulin processing.

Discussion
In the present study, we developed a novel urinary proteomic classifier 
associated with CAD using a machine learning approach and validated 
its predictive performance in an independent prospective cohort of 893 
individuals. Specifically, the novel proteomic classifier outperformed 
previously developed CAD-related classifiers in terms of the prediction 
of CAD endpoints, and the addition of the novel proteomic classifier to 
previous classifiers significantly improved its predictive performance, 
with the highest AUC of 0.87. Moreover, using multivariable Cox re
gression models, the novel proteomic classifier was significantly asso
ciated with the risk of reaching an ischaemic endpoint at 8-year 
follow up. The novel proteomic classifier was comprised of 160 urinary 
polypeptides that may provide mechanistic insights into CAD and sug
gest targeted interventions to halt or reverse the development and pro
gression of ischaemic heart disease.

It is challenging to diagnose and intervene in CAD at an early stage, as 
CAD is characterized by coronary artery atherosclerosis that can pro
gress asymptomatically for extended periods of time. Therefore, 
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Table 2 Participant characteristics in the validation cohort

Characteristics Validation set (n = 893)

All (n = 893) Controls (n = 778) Case (n = 115) P-value

Number with characteristic (%)

Female 446 (49.9) 412 (53.0) 34 (29.6) <0.0001

Current smokingb 161 (20.3) 145 (19.9) 16 (24.2) 0.42
Past smokinga 263 (35.7) 247 (35.2) 16 (45.7) 0.21

Hypertension 362 (40.5) 303 (39.0) 59 (51.3) 0.014

History of diabetes 117 (13.1) 65 (8.4) 52 (45.2) <0.0001
Chronic kidney disease 129 (14.5) 77 (9.9) 52 (45.2) <0.0001

Obesityb 166 (20.7) 146 (20.0) 20 (29.0) 0.087

Treatment of hypertensiona 177 (24.0) 162 (23.1) 15 (42.9) 0.013
Aspirina 68 (9.2) 55 (7.8) 13 (37.1) <0.0001

Statinsa 94 (12.8) 87 (12.4) 7 (20.0) 0.19

Mean of characteristic (±SD)
Age, years 52.7 ± 16.3 50.8 ± 15.9 65.6 ± 12.9 <0.0001

BMI, kg/m2b 26.7 ± 4.5 26.6 ± 4.5 28.3 ± 4.2 0.001

SBP, mmHg 130.4 ± 18.1 129.2 ± 17.5 138.4 ± 20.0 <0.0001
DBP, mmHg 79.2 ± 9.7 79.4 ± 9.6 77.9 ± 10.7 0.31

MAP, mmHg 109.8 ± 14.5 110.6 ± 14.0 104.2 ± 16.9 <0.0001

Total cholesterol, mmol/Lb 5.17 (4.55–5.77) 5.17 (4.55–5.79) 5.20 (4.55–5.69) 0.83
HDL cholesterol, mmol/Lb 1.40 (1.19–1.63) 1.42 (1.19–1.66) 1.23 (0.93–1.51) <0.0001

LDL cholesterol, mmol/Lb 3.08 (2.56–3.65) 3.08 (2.59–3.67) 3.13 (2.38–3.52) 0.23

Blood glucose, mmol/La 4.90 ± 0.76 4.86 ± 0.60 5.72 ± 2.11 <0.0001
SCORE2 risk scorea 2.64 (1.02–5.46) 2.49 (0.95–4.93) 9.06 (5.64–13.88) <0.0001

Framingham risk scorea 7.10 (2.42–14.91) 6.50 (2.24–13.96) 26.42 (16.05–47.37) <0.0001

eGFR, mL/min/1.73 m2 81.1 ± 22.6 83.9 ± 20.8 62.1 ± 25.3 <0.0001

Hypertension was an office blood pressure of ≥140 mmHg systolic or ≥90 mmHg diastolic, or use of antihypertensive drugs. Chronic kidney disease was defined as eGFR <60 mL/min/ 
1.73 m2. 
BMI, body mass index; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, high-density lipoprotein; MAP, mean arterial blood 
pressure; SBP, systolic blood pressure; SD, standard deviation. 
aClinical variables were available for 737 participants from the FLEMENGHO study. 
bAvailable clinical variables: current smoking (n = 795), obesity (n = 801), BMI (n = 801), total cholesterol (n = 765), HDL cholesterol (n = 791), and LDL cholesterol (n = 786).
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prognostic biomarkers are important to stratify CAD risk and identify 
individuals with high risk who might benefit from early interventions. 
Evidence-based CAD risk prediction algorithms and intervention strat
egies have been established and recommended by the European 
Society of Cardiology and the American Heart Association.28,29

However, the high morbidity and mortality caused by CAD persist. 

Therefore, identifying potential markers and incorporating them into 
the current risk prediction model is advocated by the European 
Society of Cardiology.28 Previous studies have shown that urinary pro
teomics is a promising tool to detect CAD. Two urinary proteomic pa
nels were successively developed, and they presented good 
performance (sensitivity and specificity > 80%) for the screening of 
CAD in limited samples.30,31 However, these two proteomic panels 
failed to maintain their performance after generalizing to a cohort 
with 138 individuals.10 Following this, a urinary proteomic pattern 
with 238 polypeptides, called CAD238, was developed using a machine 
learning approach, and its diagnostic performance and association with 
CAD risk were subsequently verified.10,11 Moreover, a urinary prote
omic classifier, ACSP75, was constructed specifically for the prediction 
of acute coronary syndromes, although its performance (AUC = 0.64) 
needs to be improved.13

While these previous findings clearly support the concept and utiliza
tion of urinary proteome analysis for CAD-specific biomarker discov
ery, we set out to further improve its predictive performance in a 
relatively large and well-characterized cohort. Compared with previous 
studies on urinary proteomics, there were several distinct features of 
the present study. Given the asymptomatic nature of early CAD, we 
designed a prospective study, which was more likely to detect subtle 
pathological biomarkers before proven CAD. To comprehensively 
examine the generalizability of developed biomarkers, individuals with 
various clinical contexts in the validation cohort hence were at diverse 
risk profiles, including the general population (low risk) and patients 
with diabetes (high risk). Specifically, integrating the new classifier 
into conventional cardiovascular risk prediction algorithms (the 
Framingham and SCORE2 risk scores) can further improve risk reclas
sification, which implies that the new proteomic classifier might be a 
promising tool for CAD risk prediction.

Despite the advances in urinary proteomic biomarker research in the 
context of CAD, several hurdles remain. First, it is unclear whether the 
novel urinary proteomic classifier could distinguish the subtypes of 
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Table 4 Risk of CAD by baseline urinary proteomic classifier

Events/at risk Multivariable model 1 Multivariable model 2

HR (95% CI) P-value HR (95% CI) P-value

160-marker
Per 1-SD increment 115/893 1.62 (1.34–1.96) <0.0001 1.54 (1.26–1.89) <0.0001

Quartile 1 11/223 Reference Reference

Quartile 2 9/223 0.89 (0.37–2.17) 0.80 0.88 (0.36–2.14) 0.78
Quartile 3 26/225 2.27 (1.11–4.62) 0.024 2.14 (1.05–4.38) 0.037

Quartile 4 69/222 3.55 (1.84–6.85) 0.0002 3.19 (1.63–6.27) 0.0007

CAD238
Per 1-SD increment 115/893 1.03 (0.86–1.22) 0.78 1.01 (0.85–1.21) 0.90

Quartile 1 13/223 Reference Reference

Quartile 2 27/224 2.35 (1.21–4.57) 0.012 2.25 (1.16–4.39) 0.017
Quartile 3 25/222 1.35 (0.68–2.66) 0.39 1.19 (0.60–2.38) 0.61

Quartile 4 50/224 1.64 (0.85–3.15) 0.14 1.47 (0.76–2.84) 0.25

ACSP75
Per 1-SD increment 115/893 1.05 (0.87–1.28) 0.61 1.09 (0.90–1.32) 0.38

Quartile 1 29/223 Reference Reference

Quartile 2 20/223 0.51 (0.29–0.90) 0.021 0.55 (0.31–0.97) 0.040
Quartile 3 26/224 0.76 (0.44–1.29) 0.30 0.79 (0.46–1.35) 0.39

Quartile 4 40/223 0.98 (0.61–1.59) 0.94 1.09 (0.67–1.77) 0.74

Model 1 was adjusted for sex, age, mean arterial blood pressure, and history of diabetes. Model 2 was adjusted as for model 1 and for eGFR.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3 Predictive performance of urinary proteomic 
markers for CAD

Time-dependent AUC (95% CI)

3-year 5-year 8-year
No. of  
events/at  
risk

69/784 102/716 111/478

160-marker 0.77 (0.70–0.84) 0.83 (0.76–0.86) 0.82 (0.78–0.87)
CAD238 0.65 (0.58–0.72) 0.66 (0.61–0.73) 0.71 (0.66–0.77)

ACSP75 0.53 (0.45–0.61) 0.61 (0.48–0.64) 0.53 (0.47–0.60)

160-marker +  
CAD238

0.79 (0.72–0.86)a 0.84 (0.77–0.88)a 0.85 (0.80–0.89)a

160-marker +  

ACSP75

0.77 (0.71–0.84)b 0.84 (0.77–0.86)b 0.82 (0.78–0.86)b

160-marker +  

CAD238 +  

ACSP75

0.79 (0.73–0.85) 0.85 (0.78–0.87) 0.84 (0.80–0.89)c

aAUC was significantly improved (P < 0.05) compared with the model with CAD238. 
bAUC was significantly improved (P < 0.05) compared with the model with ACSP75. 
cAUC was significantly improved (P < 0.05) compared with the model with 
160-marker.
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CAD, such as acute myocardial infarction, angina, and cardiac arrest. 
The risk assessment of CAD subtypes would stimulate individualized 
prevention and treatment strategies that would be more effective 
than a one-size-fits-all strategy. The existing biomarkers were specific
ally developed to detect composite CAD endpoints or a single subtype, 
such as ACSP75. Second, the developed CAD-specific biomarkers re
quire external validation, especially in cohorts with distinct comorbid
ities. Oellgaard et al.32 reported that ACSP75 was associated with 
cardiovascular events, but CAD238 did not present a significant prog
nostic association in patients with diabetes. Although this novel prote
omic classifier showed prognostic potential for individuals, including 
diabetes patients, large, multicentre prospective studies may help to re
solve these challenges.

Progress in genetic ‘omics’ techniques coupled with advanced ma
chine learning provides opportunities to identify novel biomarkers 
that can enhance CAD prediction beyond conventional risk algo
rithms.33–36 In the past decades, polygenic risk scores integrating 

various genetic variants have been extensively investigated to predict 
the genetic risk of CAD that is responsible for approximately 30– 
40% of the heritability of CAD.33,34 Unlike clinical risk scores that are 
more applicable for CAD prediction in adulthood, polygenic risk scores 
can estimate the lifelong risk at an early age.33,34,36 In comparison with 
polygenic risk scores, proteomics is influenced by various factors such 
as genetics, behaviours, and environmental factors, thereby reflecting 
comprehensive changes in CAD risk. Prior studies have demonstrated 
that plasma protein–based risk scores can improve CAD prediction on 
top of clinical risk factors, for both primary and secondary prevention 
scenarios.37–39 Similarly, the plasma proteins that contributed to the 
risk prediction scores also underscored the importance of matrix deg
radation, apoptosis, and inflammation in the development of athero
sclerosis.37,38 The advances in genetic and proteomic approaches for 
cardiovascular risk prediction are noteworthy, yet it is imperative 
that future studies evaluate their utilization in the management of 
CAD and cost-effectiveness to facilitate clinical implementation.

Figure 2 Kaplan–Meier curves for coronary artery disease according to the quartiles of urinary proteomic classifiers. The top quartile (Quartile 4) of 
the urinary proteomic classifiers was associated with an increased risk of coronary artery disease. (A) 160-marker. (B) CAD238. (C) ACSP75. (D) 
P-values for strata comparison. CAD, coronary artery disease.
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Endogenous peptides and small proteins in urine provide clues to 
the status of their larger precursor proteins, including the degradation 
process and posttranslational modifications.6 These subtle clues can 
help to puzzle out complex pathological mechanisms. The pathogen
esis of CAD is complex and multifactorial, caused by diverse mechan
isms. The complex nature of CAD that is hardly reflected by a single 
molecule requires a comprehensive search and integration of biomar
kers. Previous urinary proteomic panels proposed by Zimmerli et al.30

and von Zur Muhlen et al.31 are comprised mainly of collagen I and col
lagen type III fragments. The constitution of CAD238 and ACSP75 is 
more diverse, involving collagen, fibrinogen, and mucin.10,13 It appears 
that collagen turnover in the extracellular matrix is disproportionally 
regulated in individuals prior to their CAD events. Collagen type I con
tributes to 60% of protein contents in the atherosclerotic plaque and is 
an essential component of the fibrous cap.40 Upregulated degradation 
of collagen type I can lead to a thinner fibrous cap, a trigger for athero
sclerotic plaque rupture.41 Circulating MMP-mediated collagen type I 

biomarker has been suggested to be positively associated with a high
er risk of cardiovascular events.40 Our study suggests that the major
ity of collagen type I and III fragments was more abundantly excreted 
in urine, prior to future CAD events, indicating an upregulated colla
gen degradation in extracellular matrix. This was consistent with 
the predicted upregulated MMPs, such as MMP 1, 2, 8, 9, 13, 14, 
and cathepsin K.

The overlap between our proteomic characterization, CAD238, and 
ACSP75 also included uromodulin. Uromodulin, produced by renal epi
thelial cells, is considered the most abundant glycoprotein in urine and 
can be found in the blood as well.42 Uromodulin is frequently associated 
with the risk of chronic kidney disease and hypertension.42,43 Recent 
evidence demonstrated a reverse association of serum uromodulin 
with coronary artery events and coronary artery calcification, even 
though the mechanism is unclear.44,45 Similarly, we also observed that 
the level of urinary uromodulin peptides was lower in individuals who 
progressed to CAD.

Figure 3 Pathway enrichment analysis based on the parental proteins and predicted proteases of 160 urinary peptides. Enriched pathways involved in 
seven clusters: extracellular matrix turnover and signalling (cluster 1), cell surface interactions at the vascular wall (cluster 2), plasma lipoprotein assem
bly, remodelling, and clearance (cluster 3), activation of matrix metalloproteinases (cluster 4), complement cascade (cluster 5), regulation of insulin-like 
growth factor transport and uptake by insulin-like growth factor binding proteins (cluster 6), and insulin processing (cluster 7). All displayed pathways 
had P < 0.05. Enrichment ratio represents the number of submitted proteins in a particular pathway to the total number of proteins in the pathway. 
ECM, extracellular matrix; LPL, lipoprotein lipase; LIPC, hepatic lipase; MET, receptor tyrosine kinase; NCAM1, neural cell adhesion molecule; NGF, 
nerve growth factor; PDGF, platelet-derived growth factor; PTK, protein tyrosine kinase; IGF, insulin-like growth factor; IGFBP, insulin-like growth fac
tor binding protein.
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There were several unique proteins included in the novel proteomic 
classifier. For instance, clusterin is a glycoprotein, also known as apoli
poprotein J that plays an essential role in inflammation, lipid metabol
ism, and atherosclerosis.46 High serum clusterin is suggested to be 
associated with premature CAD.47 Consistent with this finding, we 
also observed a higher urinary clusterin peptide for individuals with 
CAD endpoints. Clusterin can stimulate vascular smooth muscle cell 
proliferation and migration and the expression of TNF-α and early 
growth response 1 in the atherosclerotic lesion, which further contri
butes to the pathogenesis of atherosclerosis.48 On the other hand, a 
previous study suggested that upregulated clusterin can be antiathero
genic by reducing the production of reactive oxygen species (ROS) and 
proinflammatory factors.46 Carbonic anhydrase I is an enzyme that cat
alyses the reversible hydration of carbon dioxide, and it links to athero
sclerotic calcification and the progression of atherosclerosis.49 In 
addition to calcium carbonate formation, it regulates the carboxylation 
of matrix Gla protein which is an essential inhibitor of vascular calcifica
tion contributing to the typical pattern of atherosclerosis.50 Carbonic 
anhydrase stimulates primary metabolic processes, such as carbon di
oxide and acid base balance, that involve in the initiation of atheroscler
osis formation.51 Folate receptor alpha CD99 is another significantly 
downregulated protein in our study. CD99, a cell adhesion molecule, 
is expressed by endothelial cells and engages in the recruitment of 
monocytes and lymphocytes. The recruited inflammatory cells can mi
grate to atherosclerotic regions, bind oxidated lipoprotein particles, 
and become arterial foam cells, secrete proinflammatory cytokines, ini
tial inflammation, and stimulate the production of ROS.52 Vaccination 
against CD99 can effectively attenuate the progression of atheroscler
otic plaques by lowering leukocytes in atherosclerotic lesions.53

Strengths and limitations
Our study has several strengths, including systematic urinary proteome 
analyses with good reproducibility, validation of the urinary proteomic 
in an independent, relatively large cohort, and assessment of the prognos
tic value. There are several limitations of our study. First, the association 
between the urinary proteomic classifier and the severity or subtypes of 
coronary events was not investigated, which requires a large, prospective 
study. Second, future studies are warranted to further evaluate whether 
the urinary proteomic classifier can identify plaque volume and compos
ition measured by ultrasound or computerized tomography. Correlating 
urinary biomarkers with subclinical lesions could help to determine when 
interventions, such as statin therapy, should be initiated. Last, pathway 
analysis of these peptides relied on existing studies; thus, their roles in 
the development of CAD might be different, which needs to be deter
mined in preclinical experimental and epidemiological studies.

Conclusions
This study developed and validated a urinary proteomic classifier for the 
prediction of ischaemic CAD endpoint with good performance. The 
peptides constituting the proteomic classifier were involved in diverse 
pathways associated with atherosclerosis, including collagen turnovers, 
lipid metabolism, and inflammation.
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Supplementary material is available at European Journal of Preventive 
Cardiology.
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