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Abstract— Network slicing empowers service providers to 

deploy diverse network slice architectures within a shared physical 

infrastructure. This technology enables the provision of 

differentiated services that cater for specific Quality of Service 

(QoS) requirements of different use cases which need to be 

adequately supported in 5G networks. By leveraging Network 

Slicing, operators can effectively meet these diverse requirements 

and provide customized services to different tenants in a flexible 

and efficient manner. However, infrastructure providers face a 

challenging dilemma of the slice admission control regarding 

whether to accept or reject slice requests. From one perspective, 

they strive to optimize the utilization of network resources through 

accepting a significant number of network slices. From another 

perspective, the availability of network resources is restricted, and 

it is crucial to fulfil the QoS requirements specified by the network 

slices. In this research, an Admission Control (AC) Algorithm 

founded upon Reinforcement Learning mechanisms, specifically 

Q-Learning (QL), Double Q-Learning (Double-QL), and a 

proposed mechanism based on Double QL is obtained to overcome 

this challenge. This algorithm is applied in order to make informed 

decisions regarding network slice requests. The simulation results 

demonstrate that the AC algorithm, leveraging the suggested 

mechanism, surpasses the Double-QL and QL mechanisms in 

relation to gained profit with average of 8% and 26%, 

respectively. In case of the acceptance ratio of slice requests, it 

achieves average of 13% and 28% higher than Double-QL and QL 

mechanisms, respectively.  Finally, it obtains the maximum 

resource utilization, surpassing Double-QL and QL by 9% and 

20%, respectively. 

Keywords- 5G mobile networks, Admission control 

mechanisms, Reinforcement learning. 

I. INTRODUCTION 

The 5G networks provide extensive support for various 

services, categorized into Ultra-Reliable Low-Latency 

Communications (URLLC), enhanced Mobile Broadband 

(eMBB), and massive Machine-Type Communications 

(mMTC), considering their diverse QoS demands (e.g., latency, 

bandwidth and reliability) as defined by The International 

Telecommunications Union (ITU) [1]. To meet the different 

needs of customers, 5G cellular networks leverage a diversity 

of technologies, including Software Defined Network (SDN), 

Network Function Virtualization (NFV) and Network Slicing.  

Network slicing is regarded as a fundamental technology that 

guarantees the isolation of E2E virtual networks of 5G, which 

are known as network slices (NSL). These NSLs are 

customized to meet distinct QoS needs of various services 

sharing the same physical infrastructure. 

Network slices have the potential to encompass sequences of 

RAN elements and core VNFs. In 5G C-RAN, the arrangement 

of VNFs should integrate both the service category and its 

corresponding Service-Level Agreements (SLAs). 

Infrastructure provider (InP) receives network slices requests 

(SLRs) in order to implement NSLs of different types of 

services [2]. 

The rollout of 5G mobile networks is expected to lead to a 

substantial growth in the volume of customers seeking diverse 

network services. Increasing the network users make extra 

expected slice requests to be ignored. Accepting more slice-

requests (SLR) will raise the revenue of the InP’s due to 

maximizing the usage of network resources. Nevertheless, it is 

difficult to serve all incoming requests due to the limited 

network resources.    

Hence, it is necessary to implement an effective admission 

control mechanism (AC) in order to decide on the acceptance 

or rejection of NSLRs depending on the importance of the 

services, putting both the support of QoS needs and the 

accessibility of physical resources into consideration [3]. The 

decision of AC mechanism must be performed for each 

individual SLR in such a way as to maximize the revenue of 

InPs over the extended term. Since slice-request traffic is 

typically unpredictable in practice, it is necessary to have 

algorithms that are capable of predicting future SLRs traffic 

from data of the past traffic and build slice admission choices 

due to these predictions [4] [21]. 

This paper employs Reinforcement Learning (RL) to 

introduce three admission control mechanisms: QL, Double 

QL, and a proposed mechanism based on Double Q-Learning. 

The aim is to derive an appropriate decision for incoming slice 

requests. 

Reinforcement Learning (RL) falls within the branches of 

artificial intelligence and has the ability to learn how to 

optimize a specified objective, even in the absence of a 

comprehensive system model [6] [20]. RL involves an agent 

interacting with the environment to discover a strategy that 

maximizes the anticipated cumulative reward by suggesting 

actions. The popular offline RL algorithm is Q-learning, which 

can be used to maximize the predicted reward for any Markov 

Decision Processes (MDPs) [7]. This mechanism relies on the 

1

Ibrahim, Mohamed TALAAT FAHIM, Nada Elshennawy: Slice Admission control based on Reinforcement Learning for 5G Ne

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/


                                       Journal of Engineering Research (ERJ) 

                                        Vol. 7 – No. 3, 2023 

                                      ©Tanta University, Faculty of Engineering 

ISSN: 2356-9441                                                                 https://erjeng.journals.ekb.eg/                                                                e ISSN: 2735-4873 

 

Doi: 10.21608/ERJENG.2023.228909.1209 

145 

 

 

principles of Q-learning, formulated to explore the optimal 

action for each state with the aim of maximizing the total 

reward. Nonetheless, because Reinforcement Learning (RL) 

involves a step of maximizing estimated action values that tends 

to favor overestimating rather than underestimating these 

values, it occasionally learns unrealistically high action values. 

Owing to such large overestimations of action values, Q-

learning may have a poor performance [8]. 

The Double Q-learning algorithm employs a double 

estimator technique to overcome the previous issue as it 

occasionally underestimates of the maximum anticipated action 

value instead of overestimating it [9]. The third mechanism is a 

proposed mechanism utilizing the principles of the Double Q-

learning algorithm, incorporating additional parameters to 

calculate the two estimators employed within the framework of 

the Double Q-learning algorithm. In addition, instead of 

updating these estimators randomly, we evaluate the values of 

geometric means for the other Q-values and choose which 

estimator to update based on these values.   

In this research, we investigate the evaluation of the 

Admission Control mechanism using these three algorithms (Q-

learning, Double Q-learning and our proposed algorithm based 

on Double Q-learning) in order to make decisions on accepting 

or rejecting network slice requests and to demonstrate the 

performance of each algorithm. Therefore, we debate the design 

of the network model and the implementation of the three 

mentioned algorithms. 

Our study makes the following primary contributions: 

• First, applying an Admission Control mechanism to the 

SLRs from various tenants using three machine learning 

algorithms: Q-learning, Double Q-learning and our 

proposed algorithm, in order to achieve the aim of 5G 

networks in serving diverse services and enhance the 

overall network performance. 

• Second, proposing an algorithm that defines the double 

estimators of the Double Q-learning algorithm in a more 

precise manner to ensure accurate action selection. 

• Third, enhancing the overall profit for the InP and 

acceptance ratio of the SLRs as a consequence of 

applying the proposed algorithm for the AC mechanism. 

• Finally, comparing the proposed algorithm with Q-

learning and Double Q-learning algorithms in terms of 

gained profit, acceptance ratio and the resource 

utilization. The simulation outcomes illustrate the 

effectiveness of our suggested algorithm. 

The subsequent sections of this paper are organized as 

follows. Section 2 presents the literature review of the previous 

work. Sections 3 describes the system model and outlines the 

Admission Control mechanism based on three algorithms. 

Section 4 shows the performance evaluation and the simulation 

results. Finally, Section 5 provides the paper's conclusion. 

II.LITERATURE REVIEW 

Authors in [2] concentrate on enhancing the revenue of the 

INP through the utilization of reinforcement learning 

techniques. They present an approach that encompasses two 

mechanisms: one for Admission Control; and the other for 

Resource Allocation. For Admission Control, they use RL and 

Deep-RL to optimize the profit of INPs, considering the 5G use 

cases delineated by the International Telecommunications 

Union (ITU). The Resource Allocation mechanism focuses on 

balancing the workload across network nodes and enhancing 

network resource utilization. By employing these mechanisms, 

the approach aims to enhance overall network performance and 

efficiency. 

The objective of the research in [3] is to create and assess an 

algorithm that addresses handover decisions in 5G sliced 

networks. It focuses on the design of a self-optimizing Fuzzy 

Q-learning algorithm to make a decision for slice handover. 

Through this research, an AC method is represented by utilizing 

a supervised learning algorithm. To tackle the challenge of 

elevated complexity, the combination of fuzzy logic and Fuzzy 

Q-learning is utilized for discretizing the state and associated 

action spaces. This approach aims to mitigate complexity and 

enable effective decision-making in the handover process. 

In [4], authors devised an AC mechanism coupled with a 

RAN slicing solution, employing a straightforward multi-tier 

network configuration. They further employed a multi-agent 

Deep Reinforcement Learning (DRL) technique known as 

MADRL. They demonstrate that the proposed MADRL 

solution outperformed its single-agent counterpart in terms of 

performance. However, a limitation of their approach is the 

utilization of multi-layer perceptron (MLP) models for both 

slicing and Admission Control (AC). This choice may restrict 

scalability and hinder the generalizability of the solution when 

applied to diverse network architectures. 

An approach is presented in [5], focusing on an online and 

simplified AC policy derived through reinforcement learning. 

It seeks to maximize revenue for Infrastructure Providers while 

mitigating penalties caused by SLA violations (specifically, 

rejecting slice requests) in diverse network conditions. A 

noteworthy characteristic of this solution is its suitability in 

scenarios involving slice requests for diverse types of services 

(e.g., URLLC, mMTC, and eMBB) are concurrently issued 

over the same infrastructure. It considers three potential 

algorithms (QL, DQL, and Regret Matching) to compute 

optimal admission policies. 

Authors in [16] present an AC mechanism that leverages Big 

Data Analysis to forecast the traffic, with the objective of 

augmenting the profit of the infrastructure providers. This 

mechanism selectively approves slice requests solely under the 

condition that no degradation in service is anticipated. A utility 

model and multi-service solution to network slicing are 

proposed in [17], founded on the principles of Queuing Theory, 

with the objective of maximizing network utility. This approach 

involves separate queues for only two specific types of requests 

and takes into account the presence of impatient customers. A 

policy-based AC mechanism designed specifically for 

allocating intraservice slices is outlined in [18], which operates 
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at adaptable timescales. A Machine Learning algorithm, 

specifically a neural network (NN), is used and trained to 

acquire the most effective admission policies on only (uRLLC) 

services. And at runtime, the NN is employed to deliver nearly 

optimal admission decisions in network conditions where no 

precomputed optimal policy exists. 

Authors in [19] proposes an approach for online slice AC in 

5G/B5G networks which prioritizes fairness considerations. It 

addresses the challenge of efficiently admitting slices while 

ensuring fair resource allocation among multiple network 

slices. This approach dynamically adjusts admission decisions 

based on the current network conditions and the fairness 

requirements of different slices. 

In [21], authors introduce a novel approach to admission 

control, focusing on concurrent slices, and utilizing an 

infrastructure resource reservation methodology. It considers 

the dynamic characteristics of network slice requests while 

proficiently managing uncertainties in the resource demands of 

the slices.  From the standpoint of an Infrastructure Provider 

(InP), the paper suggests reservation schemes intended to 

optimize the allocation of infrastructure resources to maximize 

the number of granted slices, while concurrently minimizing 

costs incurred by the Mobile Network Operators (MNOs). This 

entails addressing a max-min optimization problem that 

encompasses non-linear constraints and a non-linear cost 

function. Moreover, the approach guarantees resilience against 

demand uncertainties and mitigates the influence of 

reservations on the concurrent background services. 

Table 1. Literature Review 

Paper 
Strategy used 

for Slice AC 

Performance 

Metrics 
Domain Objective 

[2] Q-Learning and 

Deep Q-

Learning 

Profit-  

resource 

utilization- 

acceptance 

ratio 

Core 

Network 

Optimizing the 

profit of 

Network 

Slice Providers. 

[3] Self-

optimization 

Fuzzy 

Qlearning 

New Call 

Blocking 

Probability 

(NCBP) - 

Handoff Call 

Blocking 

Probability 

(HCBP) 

Core 

Network 

provide 

effective 

decision-

making in the 

handover 

process. 

[4] Multi-agent 

Deep 

Reinforcement 

Learning 

(MADRL) 

Long-term InP 

revenue. 

RAN 

Network 

Increase the 
performance of  

MADRL 

solution over its 

single-agent 

counterpart. 

[5] Q-Learning, 

Deep Q-

Learning, and 

Regret 

Matching 

InfProv 

reward - 
Percentage of 

rejection the 

slice request  

RAN 

Network 

Maximizing 

the InfProv 

revenue and 

their ability to 

learn offline or 

online. 

[16] Big Data 

Analysis 

 Profit RAN 

Network 

Augmenting 

the profit of the 

infrastructure 

providers 

[17] Queuing 

Theory 

Profit- 

Network 

utility- 

admission rate 

and the 

average 

request 

waiting time 

RAN 

Network 

Maximizing 

network utility 

[18] Neural 

Network (NN) 

Resource 

utilization- 

fairness to the 

service 

providers- 

network 

owners’ 

revenue and 

complexity. 

Core 

Network 

Raise the 

revenue to 

network 

owners and SPs 

with QoS 

guarantees for 

services with 

strict latency 

constraints 

(e.g., uRLLC 

services)  

[19] Heuristic 

Algorithm 

called 

Prioritized 

Slice 

Admission 

Control 

Priority - 

Fairness 

degree and 

Resource 

utilization. 

RAN 

Network 

Dynamically 

adjusts 

admission 

decisions based 

on the current 

network 

conditions and 

the fairness 

requirements of 

different slices. 

From Table 1, we found that most literatures that achieves 

satisfied results were using reinforcement learning to overcome 

the challenge of slice admission control. Hence, our work is 

based on the reinforcement learning, especially Q-Learning, 

Double Q-Learning and a proposed mechanism based on 

Double Q-Learning. 

III.SYSTEM MODEL  

5G mobile networks consist of core nodes and edge nodes. 

For the Control Plane, core nodes are adequate since this plane 

encompasses VNFs that require substantial bandwidth and 

processing capacities. For the User Plane, edge nodes are 

preferable since they include VNFs that need to be positioned 

in proximity to end-users [10]. NSL can comprise VNFs 

positioned on core nodes or edge nodes. 

Each slice request contains information such as the type of 

the slice (e.g., eMBB, URLLC, and MIOT), the requested 

bandwidth of the virtual link, the required processing capacity 

and specific QOS needs as shown in Figure 1. Then, the AC 

mechanism accomplishes the admission of each request in order 

to accept or reject it. In this paper, URLLC use case is given 

higher priority than the other types due to its stringent latency 

requirements, necessitating the deployment of virtual networks 

at the edge nodes to meet these requirements. 

Our system focuses on two primary participants: (i) the 

Infrastructure Provider (InP), who owns the network 

infrastructure and is responsible for generating network slices 

via supplying the necessary network resources on the slices; and 

(ii) the tenants who ask the InP to create a network slice to 

provide services to their clients. 
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Each network has a finite state space that represents all 

possible states that can be experienced. A state indicates to the 

available network resources (e.g., the processing capacity 

available for edge and core nodes, as well as the available 

bandwidth across links) after executing an action by the agent 

in the 5G core network [2]. Core nodes have more abundant and 

less expensive resources compared to edge nodes. Our goal is 

to accept more slice requests with higher priority and optimize 

resource utilization to the greatest degree possible.           

  

Figure 1. Admission Control System. 
 

A. Admission control using QL 

Q-learning belongs to the category of model-free 

reinforcement learning algorithms. A Q-learning agent chooses 

an action (𝑎𝑡) for each state (𝑠𝑡), receives a reward (𝑟𝑡) for this 

action (e.g., the agent chooses the action that maximizes the 

profit), then turns to the next state (𝑠𝑡+1). The aim of this 

algorithm is to recognize the most profitable SLRs. It assigns a 

quality value (Q-value) as in equation (1) for each action in a 

state and these Q-values will be stored in a lookup table called 

(Q-table). This process is referred to as exploring the undefined 

environment. In the initial state, Q-table is set to zero; then after 

each episode, it gets updated with the newly acquired Q-values 

[5]. 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼 . [𝑟𝑡 + 𝛾 . 𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)]           

                                                                                                         (1) 

Where: 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) : The updated Q value of action 𝑎𝑡 𝑖𝑛 state 𝑠𝑡. 

𝑄𝑡(𝑠𝑡 , 𝑎𝑡) : The previous Q value of action 𝑎𝑡 𝑖𝑛 state 𝑠𝑡. 

𝛼 : The learning rate that ranges from 0 to 1. If  𝛼 = 1, the Q-

agent ignores the old Q-values; and if  𝛼 = 0, the Q-agent learns 

anything new. 

𝑟𝑡 : The reward or profit that be received from taking the 

action  

𝑎𝑡 . 
𝛾 : The discount factor that is employed to find a trade-off 

between the immediate reward and the maximum anticipated 

future reward. The value of γ falls within the range of [0, 1]. 

𝑚𝑎𝑥𝑄(𝑠𝑡+1 , 𝑎𝑡) : The expectation of the optimal action in 

the future.   

For each action taken, agent will implicitly accept SLRs with 

different types (e.g., URLLC, eMBB and MIoT) and consume 

network resources that have various costs. Therefore, the profit 

for each action taken will be calculated and is known as reward 

(𝑟𝑡) and is given by: 

 𝑟𝑡 =
∑ 𝑃( 𝑛𝑠𝑙𝑖

𝑛
𝑖=0  )

𝑚𝑎𝑥𝑃𝑟𝑜𝑓𝑖𝑡 (𝑁𝑆𝐿 ,𝑇)
 (2) 

where:  

P(nsli) is the profit gained from accepting of the NSL. 

maxProfit (NSL, T) is the utmost profit achievable by the 

network slice provider when utilizing all available network 

resources over a specific time period (T). 

The QL-agent applies the epsilon-greedy approach [11] in order 

to explore an action for each step.  

The QL-agent generates a random number m ϵ [0, 1]. If m > Ɛ, 

the QL-agent opts the action with the highest Q-value 

(exploiting a previously optimal action).  Conversely, if m ≤ Ɛ 

, it picks a random action (exploring a new action) as follows: 
 

 𝑎 = {
𝑚𝑎𝑥𝑄𝑡(𝑠𝑡 , 𝑎𝑡),    𝑖𝑓 𝑚 >  Ɛ

  𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

After a sequence of episodes, the Q-table settles and serves 

as a guide for the agent to discern the optimal action based on 

the associated Q-values. If the requested resources are properly 

allocated for this action and also support QOS requirements, 

then the AC mechanism will accept the SLR. Otherwise, it will 

reject it as mentioned in Algorithm 1.  

In some environments, the Q-learning algorithm has a poor 

performance caused by the massive overestimation of action 

values. It employs the highest action value as an estimator for 

the maximum expected action value. This denotes that the 

approximated Q values will nearly be strictly higher than the 

associated Q values from the actual action-value function. 

 
 

 

 

Algorithm 1 Admission Control using Q-Learning 
 

1: Initialize 𝑄 , s 
2: for episode → 1 to n do 

3: if all resources are available then the agent will observe 

                      the initial state (𝑠𝑡)  

4:     for next state (𝑠𝑡+1)  do 

5:                 The agent selects (𝑎𝑡) from equation (3).      

6:                 for each SLR do 

7:                      check the available resources for the slice 

8:                      if SLR is mapped then 

9:                               The agent accepts SLR. 

10:                    else 

11:                             The agent rejects SLR.  

12:                    end 

13:               end 

14:               The agent derives the reward (𝑟𝑡) from equation (2).      

15:               The agent also observes the subsequent state (𝑠𝑡+1)  / / 

checks the current available resources. 
16:               The Q-table will be updated using equation (1).  

17:               The current state will be updated  𝑠𝑡+1 → 𝑠𝑡   

18:       end 

19: end 
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B. Admission control using Double QL 
 

Double Q-learning is an algorithm within the field of 

reinforcement learning [9] which employs double estimation in 

order to counteract the overestimation issues with the 

traditional Q-learning mechanism. 

It retains two Q- tables (i.e., Q- estimators for the Q-

functions): Q1 and Q2 from equations (4) and (5), respectively. 

One of the functions is utilized to estimate the maximum value 

of the Q-function and the second one is used for updating, then 

continuously exchanges the roles of these two estimators 

randomly. At each episode, for every action in state (𝑠𝑡), one of 

the two Q function values is updated by employing the value of 

the other Q function estimated on the subsequent state [12]. 
 

Q1(𝑠𝑡 , 𝑎𝑡) = Q1(𝑠𝑡 , 𝑎𝑡) + 𝛼 * [𝑟𝑡 +𝛾 * Q2 (𝑠𝑡+1,𝑎∗) - Q1 (𝑠𝑡 , 𝑎𝑡)]                       

                                                                                (4) 

where :  𝑎∗ =  arg 𝑚𝑎𝑥𝑎 Q1(𝑠𝑡+1 , 𝑎𝑡), which is referred to 

the maximum action value in the next state 𝑠𝑡+1  according to 

the Q1 value.  
 

Q2(𝑠𝑡 , 𝑎𝑡) =Q2(𝑠𝑡 , 𝑎𝑡) + 𝛼 * [𝑟𝑡 +𝛾 * Q1(𝑠𝑡+1,𝑏∗) -Q2(𝑠𝑡 , 𝑎𝑡)]                 

                                                                                (5) 

where : 𝑏∗ =  arg 𝑚𝑎𝑥𝑎 Q2(𝑠𝑡+1 , 𝑎𝑡) , the maximum action 

value in the next state 𝑠𝑡+1  according to the Q2 value. 

Nevertheless, instead of using Q1 (𝑠𝑡+1,𝑎∗) = 

𝑚𝑎𝑥𝑄(𝑠𝑡+1 , 𝑎𝑡) in order to update Q1 in equation (4), as 

mentioned in Q-learning algorithm, the value Q2 (𝑠𝑡+1,𝑎∗) will 

be used. As the value of Q2 was updated, albeits with different 

experience samples, it can be considered as unbiased estimate 

of this action’s value. With reference to Q2, the same concept 

is used to update it, using 𝑏∗ and Q1.  

Although it is crucial for Q1and Q2 functions to learn from 

distinct sets of experiences, both value functions will be utilized 

when selecting the action to be performed. So, for each action, 

the average of both Q values is calculated, then the Ɛ -greedy 

strategy is performed for the resulting average of the Q values 

to select the action to execute [13].  

The AC mechanism based on Double-QL algorithm will 

follow the same structure as described in Algorithm 1. 

However, the steps corresponding to Q-Learning will be 

replaced with the steps of Double Q-Learning steps as 

demonstrated in Algorithm 2.   

C. Admission control using the proposed algorithm based on 

Double QL 

To obtain the values of Q1 and Q2 as mentioned before in 

Double-QL algorithm, we also take into consideration the other 

Q-values in Q-Table1 and Q-Table2 by assigning the Root 

Mean Square error (RMS) [15] for (𝑠𝑡) in each table. RMS is a 

standard statistical metric to determine the average for certain 

values. Accordingly, in our modified algorithm, the value of Q1 

will be obtained as follows: 

 

Q1(𝑠𝑡 , 𝑎𝑡)=Q1(𝑠𝑡  , 𝑎𝑡) + 𝛼 * rms1 * [𝑟𝑡 + 𝛾 *Q2(𝑠𝑡+1,𝑎∗) –Q1(𝑠𝑡  , 𝑎𝑡)] 

                                                                                (6) 

Where: rms1 is the root mean square error for all the Q-values 

of (n) actions for a certain state in Q-Table1 and can be 

calculated as:  

 rms1 = √
1

𝑛
∑ 𝑄1 (𝑠𝑡 , 𝑎

𝑖
)

21=𝑛
𝑖=0  (7) 

 

The value of Q2 will be obtained as follows: 
 

Q2(𝑠𝑡 , 𝑎𝑡)=Q2(𝑠𝑡  , 𝑎𝑡) + 𝛼 * rms2 * [𝑟𝑡 + 𝛾 * Q1(𝑠𝑡+1,𝑎∗) – Q2 (𝑠𝑡  , 𝑎𝑡)] 

                                                                                (8) 

Where: rms2 is the root mean square error for all the Q-values 

of (n) actions for a certain state in Q-Table2 and can be 

calculated as:  

 rms2 = √
1

𝑛
∑ 𝑄2 (𝑠𝑡 , 𝑎𝑖)

21=𝑛
𝑖=0  (9) 

Instead of randomly update the values of Q1 and Q2, we 

consider the geometric mean [14] of the values in Q-Table1 and 

Q-Table2 for the state (𝑠𝑡). Every state is associated with a 

specific set of actions, and each of these actions is characterized 

 

Algorithm 2 Double Q-Learning 
 

1: Initialize Q1, Q2, s 

2: for episode → 1 to n do 

3: select a random number (m) ϵ [0,1] 

4:   if m < Ɛ then 

5:             choose a random action (𝑎𝑡) 

6:       else 

7:             select the 𝐚𝐫𝐠 𝒎𝒂𝒙𝒂 (Q1(𝑠𝑡) + Q2(𝑠𝑡) ) 

8:       end 

9:       Take action (𝑎𝑡) then observe (𝑠𝑡+1) and (𝑟𝑡)   

10:     Choose randomly either to UPDATE(Q1) or 

UPDATE(Q2) with probability of 0.5, respectively.                     

11:     if UPDATE(Q1) then 

12:          Obtain 𝑎∗ =  arg 𝑚𝑎𝑥𝑎 Q1(𝑠𝑡+1 , 𝑎𝑡)    

13:          Q1(𝑠𝑡 , 𝑎𝑡)=Q1(𝑠𝑡 , 𝑎𝑡)+𝛼* [𝑟𝑡+𝛾 *Q2(𝑠𝑡+1,𝑎∗) –

Q1(𝑠𝑡 , 𝑎𝑡)]    

14:     else if UPDATE(Q2) then      

15:          Obtain 𝑏∗ =  arg 𝑚𝑎𝑥𝑎 Q2(𝑠𝑡+1 , 𝑎𝑡)    

16:          Q2(𝑠𝑡 , 𝑎𝑡)=Q2(𝑠𝑡 , 𝑎𝑡)+𝛼* [𝑟𝑡 +𝛾 *Q1(𝑠𝑡+1,𝑏∗)–

Q2(𝑠𝑡 , 𝑎𝑡)] 

17:        end  

18:        The current state will be updated  𝑠𝑡+1 → 𝑠𝑡   

19: end 
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by two Q-values (e.g., Q1 stored in Q-Table1 and Q2 stored in 

Q-Table2). For a certain state (𝑠𝑡), we calculate the geometric-

mean for the Q- values of (n) actions in Q-Table1 (gmean1) 

using the below formula:  
 

gmean1= √𝑄1 (𝑠𝑡 , 𝑎0) ∗  𝑄1 (𝑠𝑡 , 𝑎1) ∗ … … … ∗  𝑄1 (𝑠𝑡 , 𝑎𝑛)
𝑛

 

                                                                                (10) 

 

Similarly, we calculate the geometric-mean for all the Q- values 

of n actions in Q-Table2 (gmean2).  
 

gmean2= √𝑄2 (𝑠𝑡 , 𝑎0) ∗  𝑄2 (𝑠𝑡 , 𝑎1) ∗ … … … ∗  𝑄2 (𝑠𝑡 , 𝑎𝑛)
𝑛

                                       

                                                                                (11) 
 

If gmean1 is higher than gmean2, then we will update 

Q1(𝑠𝑡 , 𝑎𝑡) as in equation (6) and if it’s less than or equal 

gmean2, then we will update Q2(𝑠𝑡 , 𝑎𝑡) as in equation (8). In 

order to take an action, we calculate the RMS of the Q-values 

of Q1-table and Q2-table for actions in (𝑠) as mentioned below: 
 

𝑟𝑚𝑠𝑖 = √
1

2
 ( 𝑄1 (𝑠 , 𝑎𝑖)

2 + 𝑄2 (𝑠 , 𝑎𝑖)
2 (12)                                       

  

Afterwards, we will apply the Ɛ -greedy method for the 

resulting values of (𝑟𝑚𝑠𝑖 )s to determine the action that will be 

performed. The AC mechanism based on this proposed 

algorithm will maintain the same structure outlined in 

Algorithm 1. However, the specific steps related to Q-Learning 

will be substituted with the steps outlined by the proposed 

algorithm introduced in Algorithm 3.  

                                          

IV. PERFORMANCE EVALUATION  

This section provides an overview of the evaluation of our 

proposed algorithm, along with a comparison to the Q-learning 

and Double Q-learning algorithms to achieve the Admission 

Control mechanism. The metrics which are used for estimating 

the performance are presented. After that, the simulation 

variables that were used in the experiment are presented. Then, 

the simulation outcomes are acquired, and the best performance 

among the three mechanisms will be revealed. 

 A. Performance Metrics: 

 

• The profit: is obtained from the acceptance of SLR, (P) is 

the income which an InP receives for constructing the 

network slice (i) minus the cost of bandwidth and 

processing for used resources 

P= (𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖  - 𝑐𝑜𝑠𝑡𝑖) * 𝑇𝑖                                   (13) 

 

 where : 𝑇𝑖 is the slice operational time. 

• The acceptance ratio: is the ratio of accepted SLRs to the 

total number of SLRs.  

Acceptance Ratio = 
𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑆𝐿𝑅

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑆𝐿𝑅 
                     (14) 

• The resource utilization:  

Resource utilization = 

∑ 𝑐𝑝𝑢(𝑁𝑆𝐿𝑖)𝑖
𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈

 + 
∑ 𝑏𝑤(𝑁𝑆𝐿𝑖)𝑖

𝑇𝑜𝑡𝑎𝑙 𝐵𝑊

2
         (15) 

 

 

Algorithm 3 Proposed Modification on Double Q-

Learning 
 

1: Initialize Q1, Q2, s 
2: for episode → 1 to n do 

3: select a random number (m) ϵ [0,1] 

4:    if m < Ɛ then 

5:                choose a random action (𝑎𝑡) 

6:          else 

7:                select the 𝐚𝐫𝐠 𝒎𝒂𝒙
𝒂
 (𝑟𝑚𝑠𝑖 ) 

8:          end 

9:          Take action (𝑎𝑡) then observe (𝑠𝑡+1) and (𝑟𝑡)   

10:        Determine gmean1 and gmean2 from equations (10) 

and (11) respectively.                  

11:        if gmean1 > gmean2 then 

12:               Obtain 𝑎∗ and rms1  

13:               UPDATE(Q1) using equation (6) 

14:        else if UPDATE(Q2) then      

15:               Obtain 𝑏∗ and rms2 

16:               UPDATE(Q1) using equation (8)  

17:        end  

18:        The current state will be updated  𝑠𝑡+1 → 𝑠𝑡   

19: end 
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where: ∑ 𝑐𝑝𝑢(𝑁𝑆𝐿𝑖)𝑖  is the processing capacity used by all 

slice requests launched in the 5g core network and 
∑ 𝑏𝑤(𝑁𝑆𝐿𝑖)𝑖  is the bandwidth employed by all slice requests. 

 B. The Setup of the Experiment: 

The simulation is developed using Python 3.8 executed on Intel 

Core i7-9750H CPU and RAM 16 GB. The network topology 

that are used in the experiments, 16-nodes topology which 

contains 12 edge nodes and 4 core nodes, with a 100, and 300 

processing units, respectively. Moreover, each link has a 

bandwidth capacity of 100. The VNFs have computational 

demand of 5 processing units. The required virtual links 

bandwidth in the MIoT, URLLC, and eMBB graphs are 1, 2 and 

3, respectively. The operational time used for the SLRs is 12 

time units. The three types of SLRs have the same arrival rate. 

The arrival rate was varied from the range of 1 to 100 requests 

for each time unit to assess the performance of our proposed 

algorithm under different load scenarios. The simulation 

parameters and their respective values are detailed in Table 1. 

Table 2. Simulation parameters 

Parameter Value 

Topology 16 nodes 

Bandwidth of Links 100 

Processing (CPU) capacity 

of nodes  

Edge nodes: 100, 

Core nodes: 300 

Time window (time units) 2 

Average operational time 12 

Load (number of requests 

per time unit)  

From 1 to 100 

Learning rate (𝛼) 0.9 

Exploration factor  (Ɛ) 0.1 

Discount factor (𝛾) 0.9 

Number of Episodes 300 

Number of state-action pairs 20 x 106 

(106 states and 20 actions) 

 C. Results and Discussion: 

Figure 1.a shows the acceptance ratio of the AC mechanism 

based on the three algorithms (Q-Learning, Double Q-Learning 

and our proposed algorithm) ) in relation to the arrival rate of 

the slice requests. The proposed algorithm achieves acceptance 

ratios with average of 13% and 28% higher than produced by 

Double Q-Learning and Q-Learning, respectively.  Due to the 

network's limited resources, all the algorithms exhibited low 

acceptance ratios in case of high arrival rate. In case of lower 

arrival rates (e.g., from 1 to 60 request per time unit), the 

proposed algorithm obtains values that somewhat exceed those 

provided by QL and Double-QL. This is because the proposed 

algorithm has a more accurate manner to obtain the Q-values 

that affect the actions to be handled. It is crucial to determine 

the type of the accepted slice requests; Figure 2.b presents the 

acceptance ratio of the proposed algorithm based on the types 

of SLRs. This figure ensures the fact that the proposed approach 

accepts a higher portion of URLLC slice requests compared to 

the other service types. URLLC use case has a higher priority 

than eMBB and MIoT use cases as it requires rigid latency 

requirements. 

 

Figure 2. (a) Acceptance Ratio of the three algorithms vs Arrival Rate. 

 

Figure 2. (b) Acceptance Rate of the Proposed algorithm per SLR Type. 

Figure 3.a obtains the profit of the AC mechanism using the 

three algorithms as a function of the arrival rate. The proposed 

algorithm achieves superior performance compared to the other 

algorithms as it obtains the highest profit for almost all arrival 

rates even though with the highest ones. The profit of the 

proposed algorithm is greater than those achieved by Double Q-

Learning and Q-Learning with average of 8% and 26%, 

respectively. This is because accepting more URLLC requests 

will increase the gained profit. The proposed approach learns to 

accept the appropriate portion of SLR type in order to improve 

profit. Figure 3.b shows how each type of accepted SLR 

contributed to the overall profit made by the proposed algorithm 

with an arrival rate 20 requests for each time unit. It is obvious 

from this figure that URLLC achieves higher profit than eMBB 

and MIoT. 

 

7

Ibrahim, Mohamed TALAAT FAHIM, Nada Elshennawy: Slice Admission control based on Reinforcement Learning for 5G Ne

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/


                                       Journal of Engineering Research (ERJ) 

                                        Vol. 7 – No. 3, 2023 

                                      ©Tanta University, Faculty of Engineering 

ISSN: 2356-9441                                                                 https://erjeng.journals.ekb.eg/                                                                e ISSN: 2735-4873 

 

Doi: 10.21608/ERJENG.2023.228909.1209 

151 

 

 

.  

Figure 3. (a) Profit of the three algorithms vs Arrival Rate. 

      

Figure 3. (b) Profit of the Proposed algorithm per NSLR Type. 

Figure 4.a depicts the utilization of network resource with 

various arrival rates. When the load on the network increases, 

it leads to an increase in resource utilization. The proposed 

algorithm outperforms the other algorithms and this means that 

accepting more requests is essential for the purpose of 

promoting the profit. The proposed algorithm obtains the 

maximum resource utilization, that was 9% and 20% higher 

than those achieved by Double Q-Learning and Q-Learning, 

respectively. 

 The proposed algorithm uses the available resources in such 

a way to enhance the performance of the network. Figure 4.b 

presents the utilization of network resources resulted from 

using the proposed approach in edge nodes, core nodes, and 

links. The proposed algorithm learned to assign high priority to 

URLLC SLRs to increase the profit. URLLC use case utilizes 

more edge than core resources. Resources in core nodes are 

more numerous and less expensive than those for edge nodes. 

Consequently, the utilization in core nodes is higher than that 

in edge nodes in order to make more available edge nodes to 

serve URLLC services. 

 

Figure 4. (a) Resource Utilization of the three Algorithms vs Arrival Rate. 

 

     

Figure 4. (b) Resource Utilization of the Proposed algorithm per Node 

Type. 

Finally, a comparative analysis is conducted between our 

study and a prior piece of literature in [2] based on the 

information presented in Table 3. This comparison involves the 

proposed algorithm, Double QL, QL, Node Ranking algorithm 

(NR), the Always Admit Requests algorithm (AAR). The 

performance of all these algorithms is assessed under an arrival 

rate of 100. 

Table 3. Comparative study with previous literature 

 profit Acceptance Ratio 

Proposed Algorithm 0.5075 0.046 

Double QL 0.4822 0.041 

QL 0.4616 0.034 

NR 0.4780 0.002 

AAR 0.4415 0.002 

V. CONCLUSION 

In this context, the complexity of Admission Control for 5G 

slices requests encompassing URLLC, MIoT, and eMBB in 5G 

core network has been investigated. Numerous pieces of 

literature have successfully employed reinforcement learning to 

address the challenge of slice admission control, yielding 

satisfactory results. Hence, our research is grounded in 

reinforcement learning, specifically focusing on Q-Learning, 

Double Q-Learning, and a novel mechanism derived from 

Double Q-Learning. Unlike optimization-based approaches, 
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these techniques are categorized as model-free, indicating that 

they operate without making assumptions about the underlying 

network structure. 

The proposed algorithm obtains the Q-values in an 

appropriate manner which will enhance the decision of taking 

the most efficient action from the available state space. By 

applying this algorithm, the AC mechanism will achieve its aim 

of taking the most profitable slice requests within the specified 

time windows, as it prioritizes the URLLC use case with the 

strict latency demands and also increases the acceptance ratio 

of all types of the use cases concerning the available network 

resources. The simulation results validate the fact that the 

proposed algorithm outperforms QL and Double-QL 

algorithms in managing the network slices, in case of the gained 

profit, the acceptance ratio of slice requests, and the resource 

utilization. 
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