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Abstract: We study the attacking behavior of possible worms in WieBsnsor Network (WSNSs). Using epidemic theory, we propose
a susceptible-infectious-quarantine-recovered (SIQ&Jehto describe dynamics of worms propagation with quararih the wireless
sensor network. Mathematical analysis shows that dynaaifittse spread of worms are determined by the thresRgldf Ry < 1, the
worm-free equilibrium is globally asymptotically stabkend if Ry > 1, the worm-endemic equilibrium is globally asymptotigall
stable. Lyapunov functional method as well as geometriccgah are used for proving the global stability of equibr\ numerical
investigation is carried out to confirm the analytical résul\s a result of parameter analysis, some effective gliegdor eliminating
worms are suggested.

Keywords: Wireless sensor networks, basic reproduction number, wiggenequilibrium, worm-endemic equilibrium, global siléip

1 Introduction guarantee sensor nodes against malware is one of great
interest to the wireless sensor network community.

Wireless sensor networks (WSNs) have attracted much
attention and have a wide variety of military and civil
applications, such as military target tracking, battlefiel Inernet
surveillance, intrusion detection, disaster recovery, Vi e Rk
biological detection, ambient assisted living, personal @
care, seismic sensing, ett; ]. Wireless sensor networks /
are composed of small-sized, cheap, energy-limited, and \
multi-functional devices called sensors that are deployed gﬂ P é
to collect data from an environment or monitor a
phenomenon d]. Each wireless sensor, which is also Yar Swicnoe
called sensor node, can sense, measure, and gather Sensorbiode  Taryet Note
information from the environment and, based on some
local decision process, it can transmit the sensed data to Fig. 1: Sensor network communication structure.
the user. Since the sensor nodes have limited memory and
are typically deployed in difficult-to-access locations, a
radio is implemented for wireless communication to  One way to control the spread of worms for the nodes
transfer the data to a base station (likes a personalhich are highly infected is to be kept in isolation for
handheld device or an access point to a fixedsome time. The word quarantine means to say about the
infrastructure) #]. Because sensor nodes are resourceorced isolation or stoppage of interaction with others.
constrained, they generally have weak defense capabilityVhen a node is found to be effected, it can immediately
and are attractive targets of malware (e.g., virus, worm otbe quarantined by the worm detection program. Then we
trojan). Worms are self-replicating computer virus which monitor it for a period of time corresponding to the erratic
can spread through computer networks without anybehavior shown by the process. If the node does not show
human intervention. Thus, security mechanism that carany behavior during the time it's monitored, it is released.
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If it shows the same behavior again and again, it is labeled® The model and its basic properties
as a worm-node and will be blocked.

. . . .. 2.1 The structure of the model
The analysis of malicious objects propagation in

networks has been the subject of interest in the field of  \\e study a quarantine model of worms transmission
computer science, mainly following approaches borrowed, 5 wireless sensor network. In the network, all nodes are

from  biological epidemiology. Models for the 555umed to be in one of four possible states during the
transmission of computer viruses based on ep'dem"bropagation:

models started to be studied by Kephdit He used the ) ]

epidemic models to find out the rule in computer viruses —Susceptible state (S)the nodes in (S) have not been
and paid attention on the topological properties of the infected by any worm in a WSNs and these nodes are
network on the spread of viruses. Many authors used the Vulnerable to worms. _ _

SIR and SEIR model to analyze the behavior of dynamics —Infectious state (1):the nodes in (I) have been infected

of computer virus §-10]. An SAIR model for computer by worms in a WSNs and they may infect some nodes
virus, that includes an antidotal population compartment N (S). ) ]

is proposed by Robertol]]. Moreover, the impact of ~ —Quarantine state (Q): the nodes in (Q) are
connection mode in the computer network for the  quarantinedfromnodesin (I).

propagation of computer virus is studied iA2f14]. —Recovered state (R)the nodes in (R) are cleaned of

Quarantine is one of the important remedial processes for Worms, and are temporarily immune and there after
malware attack in network. Several researches take again become susceptible towards the possible attack

quarantine as one of important components in the ©Of worms.
epidemic models 15, 16]. Much attention has recently Let S(t), I(t), Q(t) and R(t) denote the number of
been study mathematical model on the transmission o&ysceptible, infectious, quarantine and recovered nddes a

worm in wireless sensor network,[17]. In [18], Wan et timet, respectively.
al. studied a iSIRS model of worm propagation in
wireless sensor networks with the working state and
sleeping state of nodes. Mishra et &, 19] present the
model of worms in wireless sensor network with £
guarantine and maintenance mechanism in the sleep
nodes. ¢

In this paper, we co.nsid('ar a proposed model depict.ing A v v a
a worm propagation in wireless sensor network with —>—>C]—> Q Cl_]
quarantine and I-type infection function, which is w \ *p

. . U 3

real-world mode for malware propagation. The model is
given by a system of four differential equations B
depending on parameters. By using the method of next
generation matrixJ0], we found a thresholdR, called Fig. 2: Schematic diagram for the flow of nodes in the model.
basic reproduction number. In general, wHen< 1, the
spread dies out and whe®y > 1, the spread persists in
the network. If we suppose that the worm-endemic ~ The force of infectiony(t) = ASI(t), is the essential
equilibrium also exists foRy < 1, although it is not true, rate at which susceptible nodes become infected which is
then the bifurcation occurring in the model can be determined by the virus infection mode. The results based
explained as a transcritical bifurcation. We concentrateon real-world-network structure show that our network is
our study on the globally stable stability of equilibria. close to P2G infection mode network, the functigt) is
This is obtained by Lyapunov functional method as well expected to be I-type infection function, that is
as and geometric approach. A numerical investigation isv(t) = Al(t) [12 13]. Since homogenous models are
carried out by Mathematica software and AUTO softwareWwidely used in the study of worm infection, parameters
package21] confirming theoretical results. will be considered as constants.

The paper is organized as follows. In the next section,areli:r?]r the dmodelmg pu'rpose, the following hypotheses

) - posed (see Fig. 2):
we introduce the structure of the transmission model,
equilibria and the basic reproduction number. Section 3(H1) Nodes out side the network enters the wireless
deals with the local stability of equilibria. In section 4ew network at raté. Every node in the state (S), (1), (Q)
prove the global stability of equilibria by using Lyapunov or (R) leaves the network, without connecting with
functional approach and geometric approach. Some others node, with ratg.

numerical simulations are given in section 5. Finally, (H2) Every susceptible node in the network is transferred
section 6 summarizes this work. to infectious node with probability(t) = Al (t).

(@© 2016 NSP
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(H3) Due to the detection program, every infectious node2.3 Basic reproduction number
is isolated to be a quarantined node with probabifity ) . .
a quarantine node is released to recovered node with a  Using the method proposed ia(], we determine the
ratea, and a recovered node becomes susceptible nod@asic reproduction numbeR,, that is the number of
with a ratee. secondary cases which one case would produce in a
(H4) Every quarantine node is released to susceptible statéomplétely susceptible population. The modl glways
by reinstall the system and other means, with a ratdas a worm-free equilibrium ¢07,0,0,0). Let
w. Every infectious node becomes recovered node, by = (I,Q,S,R)". Then the modell) can be written as

using antivirus program, with a rafz dx
R _
The model obtained from these hypotheses is d FX =7,
formulated as a system of differential equations: where
. AS (B+y+u)l
g =A—-AS(t)I(t) + wQ(t) + eR(t) — uS(t) . 0 o Y+ (a4 p+w)Q
gt? =ASOI) = (B+y+u)I(t) ) o | “A+AS — wQ— eR+ US

T = V() —(a+p+w)Q(t)
drR _ _
& = BI() +aQ) — (e+ WR), We can get
Let N(t) be the total number of nodes in WSNs, that is ( dﬁfl
F prm—
F.

—Bl—aQ+(e+u)R

9. AA
F2
3 /g 00

535

N(t) = S(t) +1(t) + Q(t) + R(t) Vt. o

It follows from the systemX) that o
(S+14+Q+R) =A—puN. v B (Btytu 0
Then lmsup,.(S+1+Q+R) < £. Therefore, the o2 %2 B -y a+tp+tw
feasible region for system)is giving
Q={(S1,QR): SI,QR>0,S+1+Q+R< A}, vl FyTE 0
y 1 :
(B+y+u)(a+p+w) o+p+w
2.2 Equilibria The next generation matrix for the mod#) (s
To find equilibria, we set the right-hand side of the Fv-l_ “(Bﬁ\ﬁﬂo (,3+g+“)
system {) equals zero. Then we get two equilibria in the - 0 0 '
coordinate §,1,Q,R):

The spectral radius of matrix FV~1 s

Worm-free equilibrium B(ﬁ,0,0,0). p(FV™1) = 7#(51/;%)' According to the Theorem 2

Worm-endemic equilibrium RS',1*,Q*,R*) where  in[20], the basic reproduction number of the systeiig

S>0,1">0,Q">0,R >0and _ AA
Ro=p(FV 1) = —"——.
S = — Note that wherRy > 1thenG=AA— u(B+y+u) >
. (E+1)(a+H+w)G 0 and the worm-endemic equilibrium BXxists.
B AF ’
Q= % 3 Local stability and bifurcation of equilibria
R — (“B“L“V“L)\i““LB“’)G, 3.1 Local stability of the worm-free equilibrium
€
with Theorem 1.Py islocally asymptotically stable if Ry < 1.
G=AA—p(B+y+pu), ) Whereas, Py isunstableif Ry > 1.
Proof. The Jacobian matrix atHs given by:
F=pla(B+e+y+u)+B(H+w)+(e+H)(y+H+w)] —u _AA W £
3 H
0 2A_ 0 0
It is seen that the equilibriumgRalways exists. When Jgp) = H (Bry+u)
Ry = m > 1, we haveG > 0. This implies the 0 y —(@+p+w) 0
equilibrium R exists forRy > 1. 0 B o —(e+ 1)
© 2016 NSP
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Eigenvalues of the above matrix are

AM=—H, Ap=—(e+), A3=—(a+H+w),
_ AA-U(Bry+H)

G
E

Eigenvalued\1, A, andAz are always negative. Ry <
1, thenG < 0. It impliesA4 < 0. Therefore, Ris locally
asymptotically stable. Whereas, f&§ > 1 thenA, > 0 and
Ppis unstable. W

3.2 Local stability of the worm-endemic
equilibrium

The local stability of the worm-endemic equilibrium B
proved by the Routh-Hurwitz criterion.

Theorem 2. The worm-endemic equilibrium P; of the
system (1) is locally asymptotically stable in Q for
Ro > 1.

Proof. The Jacobian matrix atRs given by:

—Al*—u —AS w £
Al 3, 0 0
Jp, = :
0 y —(a+u+w) 0
0 B a —(e4 )

wheredl, =AS — (B+y+ ).
The characteristic equation is

AMtagA3+ar2+aA +ag=0,
with

a=HE+H)(a+H+w[a(B+e+y+u)+B(H+
W)+ (e+ u)(y+ u+ w)]L,

= (e+u)(a+u+w)[u+3uL+2u(a+B+e+
y+wlL+(ey+a(B+e+y)+(B+e)wL],

a = a(e+2u) +&(2u + w) + (3K + 2w) + (£ +
p)(a+p+w)(a+B+e+y+3u+w)l,

a3=0+¢&+3U+w+(e+p)(a+p+wl,
wherelL = % andG, F are given by equationg) and Q).

From the Routh-Hurwitz criterion, the worm-endemic
equilibrium R is locally stable when

ap >0, a; >0,a >0 and ajayaz — a2 — apa3 > 0.

It is easy to see thady > 0, a; > 0 andag > 0. By
using the Mathematica software, the conditi@pasas —
a2 —aga3 > 0 is satisfied foRy > 1. W

3.3 Bifurcation of equilibria

The change of local stability of the equilibriag Bnd
P; can be explained by a transcritical bifurcation. In

theory bifurcation, transcritical bifurcation is a local
bifurcation in which an equilibrium having an eigenvalue
whose real part passes through zero. In transcritical
bifurcation, an equilibrium exists for all values of a
parameter and is never destroyed. Such an equilibrium
interchanges its stability with another equilibrium at
bifurcation value, where they collide. In our system, the
worm-free equilibrium B always exists. It is stable for
Ry < 1 and unstable folRy > 1. The worm-endemic
equilibrium R exists forR; > 1 and it is unstable. If we
suppose that Palso exists folRy < 1, although it is not
real, then bifurcation in the model)( can be seen as a
form of transcritical bifurcation @Ry = 1.

4 Global stability of equilibria

This section represents the global stability of equilitimia
the model.

4.1 Global stability of the worm-free
equilibrium

We use Lyapunov function metho&4, 23] to prove
the global stability of the worm-free equilibrium.

Theorem 3.If Ry < 1, then the worm-free equilibrium Py
of the systemis globally asymptotically stablein Q.

Proof. We define the global Lyapunov function:

W(t) = (s—so—so|n§)+| +aQ+aR

_ A _ _(a+p+w)AA(1-Ry)
where $ = 4 & = ZRyayparmey = O and
2 MIR)

~ 2uRo(ay+B(a+HF @) —
The derivative ofV/(t) along the solution curves of)
in Ri is given by the expression:

!

W (t)

(1—%)S'+I’+a1Q'+a2R’
_ (1_%) (A—AS + wQ+ eR— uS)

+AS = (B+y+ml+alvl — (a+p+w)]Q
+a[fl +aQ—(e+ )R]

(1—%) (A+ wQ+eR— uS)
+(%\—(B+v+u)+val+ﬁaz)l

+[-(a+pu+w)ar+ aa]Q—ax(e+ u)R

Since—(y+ U+ w)a; + aaz = 0 we have

!

W (1)

( — HAS) (A+wQ+eR—puS)
+ (A—A— (B+v+u)+va1+ﬁaz) '

u
—a(e+u)R

© 2016 NSP
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Moreover, we have Define a quantity, as
. 1/t
ya1 + Baz = —3 44 (Ro— 1), 0, = limsupsup = / U(B(X(s,%0)))ds.
t—o xoek T J0

Bry+u= ik,

US<A.
This implies

AR (B+y+u)+yan+Bag= A (Ro—1) <0,
and

(1- A)(A+ wQ+eR—uS) <0.

us

Therefore,W'(t) is negative ifRy < 1. Note that,
W'(t) =0 if and only if S= £, 1 = Q = R= 0. Hence,
the invariant set{(S,1,Q,R) € Q : W/(t) = 0} is the
singleton{Py}, where B is the worm-free equilibrium
point. Therefore, by the LaSalle’s Invariance
Principle 4], Po is globally stable in the se@ when
Rp < 1. This completes the proof. W

4.2 Global stability of the worm-endemic
equilibrium

In the following, we will discuss the global stability of the
worm-endemic equilibrium Pas Ry > 1 by using the

We will apply the following:

Theorem 4.(see[25]) Assumethat D issimply connected,
and
(H1) There exists a compact absorbing set K C D,

(H2) The system (4) has a unique equilibriumXin D,

then the unique equilibrium X of (4) is globally
asymptotically stablein D if g, < 0.

Theorem 5. For Ry > 1, system admits an unique
worm-endemic  equilibrium Py which  globally
asymptotically stable, provided that 2e < 3+ .

Proof. BecauseR(t) = N — S(t) — I(t) — Q(t), it is
sufficient to consider the three-dimensional system:
&S — A+eN—-ASH)I(t) — (e+p)S(t) — el (t)
+(w—€)Q(t)
= ASI) = (B+y+)I(t)
=yi(t) - (a+p+w)Q(t).

The Jacobian matrix of the systeB) (s

(5)

di
dt
dQ
dt

geometric approach. Firstly, we present some Al —(e+p) _AS_¢ W—¢
preliminaries on the geometric approach to globalj_ Al AS—(B+y+ ) 0 .
dynamics P5]. 0 y —(a+H+ w)
Consider the autonomous dynamical system: The associated second compound matrix is given by
x= f(x), 4) 20 e-w
wheref : D — R", D ¢ R" open set and simply connected = y 32, -AS—¢ |,
andf € CY(D). 0 Al 32
Let Q(x) be an(3) x (3) matrix value function thatis oo %
C! onD and consider
B 5.5l 51261 J1=AS— Al —(B+e+y+2u),
=QIQT+ QIR 35, = Al —(a+e+2u+w),
where the matrixQs is 32 =AS— (0 +B+y+2u+ w).
(@i ()t = (9aij(x)/9x) " - f(x) = Ogj - F(x), We set the matrix functio® by
and J is the second additive compound matrix of the O - diagl1 o
Jacobian matrixd, i.e. J(x) = Df(x). In general, for a 'Q'QJ°
nx nmatrixJ = (Jj), J@ is a(}) x (3) matrix and in the _ _ " o1l o _
casen = 3, we have (2) (2) Then Qs Q_:L =diag} O, T %, T % . We obtain
Jiutd s —Ji3 B— G014 QUG-
32 = J2 Juutdsz Ji2 - o
~ D1 Jopt Jus AS—Al—(B+e+y+2u) 0 (e—-w)y
. - . = yg—' b22 —-AS—¢ s
Consider the Lozinskimeasureu of B with respect to Q
a vector norn - | in R() (see pA), that is 0 Al bss
where
B)— i [ +hB|—1 ;g
H( )_erBL h ' bro=T —F —Al—(a+e+2u+w),
@© 2016 NSP
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bss=r — & +AS—(a+B+y+2u+w).

The matrixB can be written in block form

B:1 B
g [ BB
Bo1 Boo

where

Bu=AS—Al—(B+e+y+20),Bio=(0(e— w)®),

L by —AS—¢
Bo1 = Yo , Boo= H ,
0 Al boo

where ) )
bii=F—%-Al—(a+e+2u+w),
by = — G +AS—(a+B+y+2u+w).

The vector norm - | in R3 can be chosen as
[(u,vw)| = max{ [ul, [V]+w| }.

Let u denote the Lozinskimeasure with respect to this

norm. Then we can obtain

H(B) < sup{g1,92},
with

01 = H1(B11) + |B12],
02 = H1(B22) + |B21],

where|By2|, |Bz1| are matrix norms with respect to thé
vector norm andu; denotes the Lozenskineasure with

respect to th&! norm. Specifically,
H1(B11) =AS—Al — (B+ €&+ y+2u),

B = max{ 0 [fe B[} = e -

|
|Bo1| = Y=

Q,
Ha(Bzo)
:max{'l——%—/\l—(G+£+2u+a))+|)\||,
=G HAS—(a+B+Yy+2U+w) +|-AS—¢l}.
- 'l——%—(a+£+2u+w)+max{o,2)\8+2£—
(B+y)}
We have

It follows from that!- = AS— (B -+ y+ ), then

I
glzl——(e+u)—)\l+|s—w|(|—g.

Moreover,
|/ Q/
%=1 e} —(a+e+2u+w)

+ max{0,2AS+2e— (B+Yy)} + y('—g.

Based on the equation

%:yla—(a—i—u—i—w),
we obtain
o= ' (e+U)+max0,2AS+2s— (B+Vy)}.

Since @) is uniformly persistent, there exisig > 0
such thatS(t) < % fort > T;. Moreover, there also
existsT, such tha(t) < —2—12(t) fort > T,. Therefore,

= Je—d]
fort > T =max{T;, T2} we have-Al + | — w||9 <0and
2AS+2¢— (B +y) <0. This implies

!’

|
glﬁl—_(g‘FU)-

and

/

|
%<y —(e+H)

Therefore )
[
p(B) < T (e+H).

Thus, fort > T we have
1t 1, 'ty 1T t—T
— < — — — — N
t/Ou(B)ds_tlogl(t) +t/0 H(B)ds— (e+ ) —

which impliest, < 0. This complete the proof. W

5 Numerical simulation

In this section, we realize a numerical investigation
for the system1) to illustrate the analytic results obtained
above. Numerical results are represented in the following
figures.

Figure 3 shows time series of solutions of the model
asRy < 1. ForA=3, a =0.005,8 =0.25,¢ = 0.02,
y=0.001,A =0.25, u = 0.75 andw = 0.01, we have
Rp = 0.8138< 1. In this case, the worm-free equilibrium
Py is globally asymptotically stable. With the initial
condition
(5(0),1(0),Q(0),R(0)) = (1.5,2.75,1.15,0.01), the
infectious component(t) of solution tends to 0 a$
approaches tg-«. This implies that the spread dies out.

Figure 4 indicates time series of solutions of the
model aRy > 1. ForA=2,a =0.075, =0.1,e = 0.1,
y=0.75,A = 0.32, u = 0.35 andw = 0.005, we have
Ry = 1.5238 > 1. In this case, the worm-endemic
equilibrium is globally asymptotically stable. With the
initial condition
(5(0),1(0),Q(0),R(0)) = (25,3.75,0.0254.0), the
infectious component(t) approaches to positive value
0.957 ast tends to+ow. This means that the spread
remains in the population.

(© 2016 NSP
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S LQR

Fig. 3: Time series of solutions of the model and the vector field

asRy < 1.
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o = 0.35,8 =0.015,¢ = 0.025,y = 0.025, u = 0.19,

w = 0.75 letA vary then we get a transcritical bifurcation
occurring at the valug = 0.874. The bifurcation diagram
for this case is given in Fig. 5 (above figure). Foe 1,

o =0.35,8 =0.025, ¢ = 0.025, y = 0.15, A = 0.35,

w = 0.75, let u vary then a transcritical bifurcation
occurs atu = 0.003. The bifurcation diagram is given in
Fig. 5 (below figure). In the figure 5, the line passing
through the solution 1, 2 and 3 is the curve of worm-free
equilibrium, and the line containing the solution 4, 2 and
5 is the curve of the worm-endemic equilibrium. The
solid line is for stable equilibria and the dashed line is for
unstable equilibria. A transcritical bifurcation occurs a
the solution 2, corresponding t& = 1. The same
bifurcation is also obtained for other variable parameters

‘Lambda

~1800 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Fig. 5: Bifurcation of the model a2 varies (above figure) and
varies (below figure).

6 Conclusions

In this paper, a proposed model for propagation of
worms in the wireless sensor network, that closing to P2G
infection mode network and containing quarantine, is

Fig. 4: Time series of solutions of the model and the vector field introduced and studied. Theoretical analysis indicates th

asRp > 1.

Using AUTO software package?]], we can detect
the transcritical bifurcation in the model. Fax = 1,

global stability of equilibria. The basic reproduction
numberRy is the threshold condition that determines the
propagation dynamics. Whd®y < 1, the system has only
a worm-free equilibrium By which is globally
asymptotically stable. It implies that the spread is extinc

(© 2016 NSP
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eventually. WhenRy > 1, the system has a unique [13]H. Yuan, J. Wu and G. Chen, Infection function for
worm-endemic equilibrium Py, which is globally virus propagation in computer network: An empirical study,
asymptotically stable. This shows that the transmission Tsingchua science and technolay (5), 669-676 (2009).
persists in the network and tends to a positive steady staté14] C. Ma, Y. Yang and X. Guo, Improved SEIR viruses
The local bifurcation, occurring &y = 1, is explained by propagation model and the patch’s impact on the propagation
the transcritical bifurcation. As results indicate that Of the virus, Journal of Computational Information Systems
spread of worms is very sensitive to contact paramefer 9 (8), 3243-3251 (2013). _ o
and transform parametefs y and . The propagation [15] T. Chep, N.Jamll, Effectlveness‘ of quarantine in
will slow down if the value ofA is decreasing, ang, y worm epidemics, in: IEEE International Conference on

. - - Communications 2006, IEEE, 2142-2147 (2006).
and u are increasing (see Fig. 5). Therefore, we need t0[16] Bimal K. Mishra, P. K. Nayak and NF Jha? Effect of

develop eff.ectlve. firewall network SYStemS that can guarantine nodes in SEIQAmMS model for the transmission of
prevent .the infection of worms (dearesing. Moreover, . malicious objects in computer network, International jalr
new antivirus programs and advanced network quarantineé ¢ nathematical modeling, simulation and applicatiar(4),
systems should be constructed from the field of artificial 192113 (2009).

intelligence, allow us to detect, quarantine and removg17] F.G. Wang, Y.K. Zhang, C.G. Wang, F.F. Ma and S.J.

worms in quickest way (decreasifgy, ). Moon, Stability analysis of a SEIQV epidemic model for
rapid spreading worms, Computer and secl&i9), 410-418
(2010).
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