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Abstract: This paper deals with the numerical computation of the smist of nonlinear partial differential equations in three-
dimensional space subjected to boundary and initial cmmdit Specifically, the modified cubic B-spline differehtjaadrature method
is proposed where the cubic B-splines are employed as a d®isis functions in the differential quadrature method. Wiethod
transforms the three-dimensional nonlinear partial déffidial equation into a system of ordinary differential atjons which is solved
by considering an optimal five stage and fourth-order stretadpility preserving Runge-Kutta scheme. The stabilityioe of the
numerical method is investigated and the accuracy andesifigiof the method are shown by means of three test problemshitee-
dimensional space telegraph equation, the Van der Polmearliwave equation and the dissipative wave equation. Budtseshow
that the numerical solution is in good agreement with theesalution. Finally the comparison with the numerical $iolu obtained
with some numerical methods proposed in the pertinentlitee is performed.

Keywords: 3D nonlinear wave equation; modified cubic B-spline difféi@l quadrature method; SSP-RK54 scheme, Thomas
algorithm

1 Introduction three-dimensional space is referred to papdré( 11,
12,13,14,15] and references cited therein. Recentlysh [

The development of numerical methods for the simulation@" €lement-free Galerkin scheme has been proposed for
of mathematical models has gained much attention,the solution of the three-dlme_nsmnal wave equation, and
considering that recently the power of the computersin [16] @ element-free Galerkin method and a meshless
sciences has been increased. Various numerical method@c@! Petrov-Galerkin method have been proposed for the
have been proposed for obtaining numerical solutions of'rée-space-dimensional nonlinear wave equation.

partial differential equations, see, among othet2,B,4, The differential quadrature method (DQM) dates back
5,6]. A highly accurate non-polynomial tension spline to Bellman et al. 17,18]. In DQM the derivative of a
scheme for one-dimensional wave equation has beeftnction is approximated by introducing the weighted
developed inT] and applied to the one-dimensional wave sum of the function values at certain discrete points. After
equation. The numerical solution of the one-dimensionalthe seminal paper of Bellman, various test functions have
hyperbolic telegraph equation by using cubic B-splinebeen proposed, among others, spline functions, sinc
collocation method has been obtained 8; [numerical ~ function, Lagrange interpolation polynomials, radialibas
solutions of the multi-dimensional telegraphic has beenfunctions, see 19,20,21,22,23,24] and the references
investigated in 4]. Singh and Lin P] have proposed a cited therein. In particular Shu and Richard§|[ have
high order variable mesh off-step discretization schemedeveloped one of the most generalized approach to solve
for the one-dimensional nonlinear hyperbolic equation;the incompressible Navier-Stokes equation.

the reader interested to numerical methods for linear and Recently, Arora and Singh2f] have proposed a
nonlinear hyperbolic partial differential equations in modified cubic B-spline differential quadrature method
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(MCB-DQM) for the numerical computation of the 2 The modified cubic B-spline differential
solution of the one-dimensional Burger equation. Thequadrature method

MCB-DQM has been further generalized for the
computational modeling of partial differential equations

in two-dimensional space{] (the reader is referred also [26,27,30,31] for the partial differential equation in three-

to papers28,29). dimensi X -
ensional spacdl). LetDD be the following domain:
This paper is devoted to the development of a new pacel) ¢

MCB-DQM for the numerical simulation of the following D={(xy.2) e R3:a<x<bc<y<d (<z< m}
partial differential equation in three-dimensional space T oo T

This section deals with the description of the MCB-DQM

which is uniformly partitioned in each direction with the

d%u Ju 2 Jdu following k .
_ 1 ollowing knots:
5z T + Bu= vu+ g(u) 3t +f(xy.zt), (1
a=X1 <X < ... <X <...<Xne—1<Xn =D,

subject to the following initial condition (ICs):
C=y1<Y2<...<Yj<...<YN-1<Yn =,

U(Xaya Z, O) = W1(X7y7 2)7 (X7y7 Z) €Q
2 (=< <...<KZ<...<Zy1<Zy, =M,
Hx¥%20) = yo(xY2), (xY2)€Q where
and to the Dirichlet boundary condition (BCs): h b—a h— d-c h m—/
“TN-1 YT N—1T Y N1

u(xy,zt) =§(xy,2), (xy,2)€0Qt>0, (3)
is the discretization step in the y and z directions,

Wherey2 = a_22+a_22+ 5_22 Q= {(xy,2):0<xy,z<1} respectively. Letx,y;,z) be the generic grid point and
T ox¢ | 0yr 0z VT =TT —

is the computational domain add? is the boundary of2. Uijk = Uijk (t) = U(%,Yj, Z.t),
The functionu(x,y,zt) is the unknown function whereas
f, 1, ¢, and¢ are known functions. forieAc={1,2,...,N},jeAy={12...,Ny}andk €

The MCB-DQM is used for computing the spatial A,={1,2,... N,}.
derivatives. Accordingly the partial differential equati  The rth-order partial derivatives ofu(x,y,zt), for
is transformed into a system of first-order ordinary r ¢ {1,2}, with respect tc, y, zand evaluated in the grid
differential equations which is then solved by using the point (%,Yj,2) are approximated as follows:
SSP-RK54 scheme2,29). The stability region of the

numerical method is investigated within the paper and the 'u Ny

accuracy and efficiency of the method are studied by F(Xj,yj,Zk) = z afg)upjk, i €Ay,
means of three test problems: the three-dimensional space X p=1

telegraph equation, the Van der Pol nonlinear wave a'u Ny

equation and the dissipative wave equation. The results S (Y =Y bgrp)uipka jedy, (4
show that the numerical solution is in good agreement ay" p=

with the exact solution. Finally the comparison with the N,
numerical solution obtained with some numerical —0ya) =Y cuijp ke A,
. X ) . Zr ) 9 p 9 9

methods proposed in the pertinent literature is performed. p=1

Specifically the Root Mean Square (RMS) error norm in

the MCB-DQM solutions is compared with the error whereafrr)), bgg andcf(rg, called the weighting functions of

obtained with the MLP(_;:[G] gnd the EFP16]. ) . the rth-order partial derivative, are the unknown time
The paper is organized into five more sections, Wh'Chdependent quantities to be determined.

follow this introduction. Specifically Sectiohdeals with  The cubic B-splines functiog = @; (), in thex direction

the description of the modified cubic B-spline differential 5.4 at the knots. reads: '

guadrature method. Secti@ns devoted to the procedure ’

o'u

for the implementation of method for the probler) ( (x—x%_2)3 X € [Xi—2,%-1)

with the initial conditions 2) and boundary conditions 1| (x=xi-2)® = 4(x—xi-1)% x € [%-1,%)

(3). The stability analysis of the MCB-DQM is discussed ¢; = =24 (X2 — %)% = 4(Xi11—X)° X € [%,%i11) (5)
in Section 4. Section 5 is concerned with three test hy (X2 —X)3 X € [Xi11.%12)
problems with the main aim to establish the accuracy of 0 otherwise

the proposed method in terms of the RMS error norm.
Finally Section6 concludes the paper with reference to The set{@o, #1,P2,...,Pn,. Pn+1} IS @ basis over the set
critical analysis and research perspectives. [a,b]. The values ofp; and its first and second derivatives
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in the grid poinix;, denoted bypij := ¢i(x}), ¢ == ¢{(x;)  and in particular the columns of the matdX read:
andd)i’j/ = ¢/ (x;), respectively, read:

[—6/hyT] [—3/hy]
4, ifi—j=0 e/ﬁxx .
¢ij =1 1, lfr:—J_Z +1 (6) 0 3/hy
0, otherwise o[ = : @2 = 0 .
3/hy, ifi—j=1 :
9 =14 —3/h ifi-j=-1 (7) 0
0, otherwise 0 0
—12/n2, ifi—j=0
¢ =< 6/M2, ifi-j=+1 (8) 0 [0
0 otherwise .
The modified cubic B-splines basis functions are
obtained by modifying the cubic B-spline basis functions ~ @'[Ny — 1] = 0 , and@'[Ny] =
(5) as follows p€@: —3/hy 0
0 —6/hx
@1(x) = ¢1(X) +2¢0(x) | 3/hy | | 6/hy |

@(X) = ¢2(x) — do(x)

Itis worth stressing that the cubic B-splines are modified in
order to have a diagonally dominant coefficient matbix
' ) see Eq.11). The system11) is thus solved by employing
@(x) = ¢j(x), for j=3,4,....Ny—2 (9  the Thomas Algorithm32).
: Similarly, the weighting coefficientbi(g and Ci(;) can
be computed considering the grid in thandz directions.

100 = 10— By 1) puted considering the grid it trenda

(%) = P, (%) + 20n.+1(X) The weighting coefficients;;’, bj,” andc;, forr > 2,
) = O, N+l can be computed by using the following Shu’s recursive

The set{@,®,...,@\} is a basis over the sdg,b. formulae p1]:
Analogously procedure is followed for thg and z

directions.
(r-1)
. N - " @ -1 &j S
2.1 Computation of the weighting coefficients g =r{aya - | # ] €y,
i —Xj
In order to compute the weighting coefficiela{é) of Eq. Ny
(4), we use the modified cubic B-splingg(x), p € Ay. Let ai(ir> =— z ai(jr>7i =], j €A
@i = @p(x) and @y = @(x). Accordingly the i=17#]
approximation of the first-order derivative is obtained as -1
follows: . b =r (bfl%i({l) - y” y_) d#jtijedy
. i —Yj
=3 algw.  pichx (10) (12)
- (1 (0 _ i
Setting @ = [@], A = [ai([,l)] (the unknown weighting by * = o byLi=]ihjedy
coefficient matrix), and?’ = [¢}], then Eq. 10) can be =17
re-written as the following system of linear equations: (r-1)
=r PP itj:ijea
CDAT:(D/. (11) ij ij i 7 ’ ) z
The coefficient matrixp of orderNy can be obtained from N,
(6) and Q): q'=- Y dli=iijea,
61 - i=T7#]
041
141 .
- N 3 The numerical scheme of MCB-DQM
1 41
140 settng 2 = v and thus 2¥ = &' and
i 16] f(x,yj,z.t) = fijk, the numerical scheme transforms
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Egs. ()-(2) into the following problem: 4 Stability Analysis
In what follows, we assume > dg. The systemX4) can
duj _ - be rewritten in compact form as follows:
Tar ik '
du
zam Up]k+ Z bJpU|pk+ zckpU|Jp+K|Jk or t
Uijk(t: ):Lﬂl(xhyja %), d {U} _ [O [ U} [01]
e = + 16
Vijk (t = 0) = (X, Yj, %), dt B (6g—a)l | | v F (10)

(13) where

a)O andO; are null matrices;
b)l is the identity matrix of ordefNy — 2) (Ny — 2)(N, —

wherei € Ay, j € Ay, ke Az and

Kijk = (09(Uijk) — a)Vijk — Buijk + fijk- 2);
c)U = (u,v)T the vector solution at the grid points:
Bearing the boundary conditior8)(in mind, Eq. (L3) is U= (U222, U223, - - - , Upp(N, 1), U232, U233, - - -, U, 1),
rewritten as follows: UM 1) (Ny—1)35 -5 UNX71)<M71>(N271))-
V= (V222,V223; - - - ,sz(er),stz, V233, -5 V23N, 1)
duijk = Vijk "'7V(Nx—1)(Ny—1 S UNg—1 1)(Ny—1)(N—1 )
dt d)F = (F222,Fazs, -- F22 N,-1) F232, F233, - Faging-1),
dvije Nt 1 - P (v -1)3s - FNX )(Ny (N~ )) whereF;
” z a1p Upjk + z bjp Uipk + z Ckp Uijp + Fijk is defined in Eq. 15)
P= €)B = —BI + Bx + By + B, whereBy, By andB; are the
Uijk(t = ) = (%, Y, %)s following matrices (of ordetNy — 2), (Ny —2), (N; —
Vijk (t=0) = (X, Y, Z), (14) 2), respectively) of the weighting coefficierﬂ?, b,(J2>
14 (2.
where 2<i <N¢—1,2< j <Ny~ 1,2< k<N, — 1 and andc:
2 2 2
@ @) @) b gk o A b
Fijk = Kijk:’ail Uljk‘;aiNXUijkz‘F bj7 Uitk (15) o aé22)|x aé23)|x a(;:\lel)lx
+ng)inNyk—FCl((j_)Uijj_—FC'((’,leUisz. X : : . :

i - 2l R2yabe - At
Various numerical schemes have been proposed to solve X X X (17)
initial value problems, among others, the SSP-RK scheme
allows low storage and large region of absolute property
[29,28]. In particular in what follows we consider the My Oy ... Oy Mz Q; ... O;
following SSP-RK54 scheme which is strongly stable for B Oy My ... Oy B _ O; M ... O,
nonlinear hyperbolic differential equations: By = oo S R

Oy Oy ... My 0,0, ... M,
u) = uM40.391752226571890tL (u™) (18)
P 1) where
u® = 0.444370493651238'+ 0.55562950634876% @ @) 2
b3l byl b [
+0.3684105930503 7t L (u'Y) b<222> ’ b<223> i bf(z?rl) Z
| l; ... |
u® = 0.620101851488408"+ 0.379898148511597 M, = 8272 3372 3M-1)'2
+0.251891774271694tL (u?) ' ' - :
b2 Ll b& iy b |
u® = 0.178079954393139"+ 0.821920045606868° (Ny=2)272 B(Ny=2)372 =7 T(Ny=1)(Ny—1) 72
+0.544974750228524tL (u®) and
= 0.51723167197058%2 -+ 0.096059710526147° @ 2 c% "
4) 2 2 2
+00636924686662%)tL( %) +0.386708617503268" . T B
+0.226007483236906tL (u®) z : : :
@ 2 @
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Fig. 1: Eigenvalues 0B (first row), By (second row) and; (third row) for different values of the grid points.

where Oy and O, are null matrices of order and we compute the eigenvalues Bf, By and B, for
(Ny —2)(N; —2) and (N; — 2), respectivelyjx andl,  different grid points: 6x 6 x 6, 11x 11 x 11 and
are the identity matrices of ordéy —2)(N,—2) and 16 x 16 x 16. As Fig1 shows, for different values of the
(N, — 2), respectively. grid points the computed eigenvaluesB{By andB; are
The stability of the numerical scheme proposed for ( real negative numbers. Sing@ > 0, from Eq.@3) we

depends on the stability of the system of ODEs defined inhave
(16). If the system of ODEs1§) is unstable, then the Re(Ag) <0 and Im(Ag) =0, (24)

ggrr:/eerriggl Sscir;]ig]etr:gr ;ir:gorscl)ﬁtiisocnreti;iﬁioge m;¥egt?;whereRQZ) andIm(z) denote the real and the imaginary
. : - art ofz, respectively. Lefa = X+ 1y, then
obtained by means of the eigenvalues method, the’ P y A= XY

stability of (16) depends on the eigenvalues of the A = M(Aa+a — 5g)

coefficient matrixA. Accordingly the systemi) is stable ) (25)
if the real part of each eigenvalue Afis zero or negative. =X —y*+ (a — 8g)x+ 1 (2x+ (a — &) )y.
Let Aa be an eigenvalue oA associated with the _
eigenvector(Xy,X2)T, where each component is a vector According to Eq. 24) and Eg. 25), we have
of order(Nx — 2)(Ny — 2)(N,— 2). Then from Eq. 16) we
have X2 —y?+(a—dg)x< 0 (26)
AlX]_[o | Xl _y %] e (2x+(a—59))y=0
Xo| ~ | B (6g—a)l xz—sz’( )
The possible solutions of EQf) are
which implies that
1)If y+# 0, thenx = —"’T‘Sg,
X2 = AaXq, 20 2 2
2o 0 iy—o, then(x-+ 1529)" < (1a529)",
and
BX;+ (69— )Xo = AaXo. (21)  The proposed scheme is thus stable it dg.
Simplifying Eq. 0) and Eq. 21), we get
BX = Aa(Aa+a — 69)X;. (22) 5 Numerical experiments
This shows that the eigenvalug of B is Ag = Aa(Aa+ ) o ,
a — 5g). We now consider the matrix This section is devoted to the accuracy analysis of the
proposed numerical method. Specifically three test cases
B=—fBI+Bx+By+B;, (23) of (1) are taken into account. The accuracy and

(@© 2016 NSP
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Fig. 2: The contour plot (left panel) and surface plot (right paéihhe absolute error in the three-dimensional telegraptagon of

the Problentl for z=0.5,t = 1, h=0.044, /At = 0.01.

Fig. 3: The contour plot (left panel) and surface plot (right paéthe numerical solution of the three-dimensional telpgraquation

of the Probleml for z=0.5,t = 1,h=0.04, At = 0.01.

consistency of the method is performed by consideringMCB-DQM, the MLPG [L6] and the EFP16]. The Fig.2

the following RMS error norm:

1
Ne Ny N 2

Ui — U |2
i;jZlkZJ ik~ Ui

RMS =
NNy N,

whereu;jx and ui*jk denote the numerical solution and the
exact solution atx;,y;,z), respectively.

Problem 1The first test case deals with the
three-dimensionalinear telegraph hyperbolicequation
[4,16], which corresponds t@&d =0, a = 8 = 2. We
consider as exact solution of the equatidp-(3) the
following function:

u(x,y, z t) = sinh(x) sinh(y) sinh(z)e %, (x,y,2) € Q,t >0,

with g1 (X,Y,2),0r(X,Y,2), &(XY,zt), and f(Xy,zt)
obtained accordingly.

The numerical solution for the problefnis obtained
for At = 0.01 and grid size 1k 11 x 11. Table1
summarizes the RMS error obtained with

shows the RMS for the MCB-DQM solution far= 0.5,
grid size 26x 26 x 26 and at timet = 1.0; the Fig.3
shows the MCB-DQM solution foz = 0.5, grid size
25x 25x 25 and at timég = 1.0. The numerical solution
is in good agreement with the exact solution.

Problem 2.The second test case deals with Yiae der Pol
nonlinear wave equatioi§, 4], which corresponds ta =

d =k, 3 =0 andg(u) = u?. We consider as exact solution
of the equation)-(3) the following function:

u(x,y,z t) = sin(x)sin(y) sin(z)e ", (x,y,2) € Q,t > 0.
(27)

with q”l(xayv Z)! LIJZ(Xaya Z)! E(Xaya Zat) and f(X7y7 Zat)
defined accordingly.

The numerical solution of the Probletnis obtained
for k = 3, At = 0.01 and grid size 1% 11 x 11. Table
2 summarizes the RMS error norm for the MCB-DQM,
the MLPG [16] and the EFP 16]. The Fig.4 shows the
absolute error for the MCB-DQM solution fae= 1.0, grid
size 25x 25x 25 and at timé = 1.0. The contour plot and
the surface plots of the MCB-DQM solution are depicted
in Fig. 5and in Fig 6, respectively. The numerical solution

the is in good agreement with the exact solution.
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Fig. 4: The contour plot (left panel) and surface plot (right paéhe absolute error in the three-dimensional nonlinear der Pol
equation of the Problefafor z=1.0,t = 1, h=0.04, andAt = 0.01.

y

Fig. 5: The contour plot of the exact solution (left panel) and of MEB-DQM solution (right panel) for the three-dimensional
nonlinear Van der Pol equation of the Problrfor z=1.0,t =1, h=0.04, At = 0.01.

Fig. 6: The surface plot of the exact solution (left panel) and nucaésolution (right panel) of the three-dimensional noahr Van
der Pol equation of the Proble®for z=1,t =1, h=0.04, At = 0.01.

Problem 3The third test case is devoted to the contour plot and the surface plot of the MCB-DQM
three-dimensional nonlinear wave equation the  solution are shown in Fig8 and 9, respectively. The
dissipative form which corresponds toa = 8 = 0, numerical solution is in good agreement with the exact
0 = —2 andg(u) = u. We consider as exact solution of solution.

the equation)-(3) the following function:

u(x,y,zt) =sin(t) |_| sin(mx), (x,y,2) € Q,t >0, (28)

XY,z

6 Conclusions

with ¢1(X,Y,2), dp(XY,2), &(XY,zt) and f(Xy,zt) The present paper is concerned with the definition of a
defined accordingly. new numerical method based on the MCB-DQM for the
The numerical solution of the Problegis obtained  derivation of numerical solutions for partial differertia
for At = 0.01 and grid size 1k 11 x 11. Table 3 equations in three-dimensional space. The main aim is to
summarizes the RMS error norm obtained with theimprove the accuracy of the numerical solutions, which
MCB-DQM, the MLPG[L6] and the EFPIL6]. The Fig.7 relies on the strong and efficient implementation of the
depicts the absolute error for the MCB-DQM solution for method. The large computational cost is the main
z= 0.5, grid size 25< 25x 25 and at tim& = 1.0. The  drawback of almost all methods available in the literature
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Table 1: The RMS error norm for the MCB-DQM, the MLPQ €] and the EFP16] (At = 0.01 and grid size 1% 11 x 11) for the

Probleml.

MCB-DQM

MLPG[16]

EFP[16]

CPU time (seconds)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.01409e-006
1.66777e-006
1.72678e-006
1.49946e-006
1.19699e-006
9.06725e-007
7.06686e-007
5.57041e-007
4.76172e-007
4.42082e-007

6.389040e-004
1.621007e-003
2.069397e-003
1.851491e-003
1.406413e-003
1.120239e-003
8.762877e-004
5.762842e-004
7.778958e-004
8.638225e-004

1.361376e-001
1.108673e-001
9.031794e-002
7.555177e-002
6.113317e-002
5.076050e-002
4.276296e-002
3.416178e-002
3.072394e-002
2.562088e-002

0.077
0.140
0.207
0.266
0.326
0.385
0.444
0.505
0.565
0.624

Table 2: The RMS error norm for the MCB-DQM, the MLPQA €] and the EFP16] (At = 0.01 and grid size 1k 11 x 11) for the
Problem2

t MCB-DQM MLPG[16] EFP[L6] CPU time
(seconds)
0.1 5.67101e-006 2.777931e-003 1.653265e+000 0.140
0.2 9.70224e-006 8.477482e-003 1.005632e+000 0.250
0.3 1.23148e-005 1.352534e-002 9.786343e-001 0.370
0.4 1.51181e-005 1.583307e-002 7.456237e-001 0.490
0.5 1.82388e-005 1.550351e-002 6.213675e-001 0.610
0.6 2.22188e-005 1.367202e-002 4.354421e-001 0.730
0.7 2.57046e-005 1.052578e-002 1.345213e-001 0.851
0.8 2.86607e-005 6.216680e-003 9.973233e-002 0.971
0.9 3.11707e-005 5.280951e-003 7.132423e-002 1.091
1.0 3.32916e-005 2.276681e-003 6.124572e-002 1.211

Table 3: The RMS error norm for the MCB-DQM, the MLPQA €] and the EFP16] (At = 0.01 and grid size 1k 11 x 11) for the

Problem3.
t MCB-DQM MLPG[16] EFP[16] CPU time
(seconds)
0.1 2.90131e-007 8.903029e-005 1.435666e-003 0.140
0.2 1.25781e-006 9.910264e-005 3.867576e-003 0.240
0.3 2.94185e-006 1.590358e-004 5.033494e-003 0.360
0.4 5.34148e-006 3.776687e-004 7.655177e-003 0.480
0.5 8.77107e-006 4.781290e-004 9.119769e-003 0.612
0.6 1.35793e-005 6.416380e-004 1.034540e-002 0.732
0.7 2.02462e-005 8.809498e-004 3.279875e-002 0.852
0.8 2.91101e-005 9.279331e-004 5.233178e-002 0.972
0.9 4.03845e-005 1.059260e-004 6.072234e-002 1.082
1.0 5.41878e-005 1.529316e-003 7.545088e-002 1.202

for the solution of three-dimensional partial differehtia square error shows that the MCB-DQM solutions are
equations. more accurate of the numerical solutions obtained with

. . th isti th f th ti t literat
The analysis of the accuracy and effectiveness of the e existing methods of the pertinent literatt€jf

method is performed by considering three test cases: the Research perspectives include the possibility to
three-dimensionalinear telegraphic equation, the Van develop further refinements of the method proposed in the
der Pol type nonlinear wave equation and the dissipativepresent paper for the derivation of numerical solutions for
nonlinear wave equatioriThe analysis of the root mean kinetic equations33] and specifically for thermostatted
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Fig. 7: The contour plot (left panel) and surface plot (right panéthe absolute error in the three-dimensional nonlinearevejuation
in dissipative form of the Proble®for z=0.5,t = 1, h=0.04, andAt = 0.01.

Fig. 8: The contour plot of the exact solution (left panel) and of MEB-DQM solution (right panel) for the three-dimensional
nonlinear wave equation in dissipative form of the Prob&for z= 0.5,t = 1, h=0.04, At = 0.01.

Fig. 9: The surface plot of the exact solution (left panel) and ofrthmerical solution (right panel) of the three-dimensiamatlinear
wave equation in dissipative form of the Probl&for z= 0.5,t = 1, h = 0.04, At = 0.01.

kinetic equations34] that have been recently proposed [4] R. K. Mohanty and V. Gopal, Appl. Math. Model. 37, 2802-
for the modeling of complex systems. 2815 (2013).
[5] Z. Zhang, D. Li, Y. Cheng and K. Liew, Acta Mech. Sin.
28(3), 808-818 (2012).
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