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Abstract. 

 
In this work, we evaluate the energy usage of fully embedded medical diagnosis aids 
based on both segmentation and classification of medical images implemented on Edge 
TPU and embedded GPU processors. We use glaucoma diagnosis based on color fundus 
images as an example to show the possibility of performing segmentation and 
classification in real time on embedded boards and to highlight the different energy 
requirements of the studied implementations. 
 
Several other works develop the use of segmentation and feature extraction techniques 
to detect glaucoma, among many other pathologies, with deep neural networks. 
Memory limitations and low processing capabilities of embedded accelerated systems 
(EAS) limit their use for deep network-based system training. However, including 
specific acceleration hardware, such as NVIDIA’s Maxwell GPU or Google’s Edge 

TPU, enables them to perform inferences using complex pre-trained networks in very 
reasonable times.  
 
In this study, we evaluate the timing and energy performance of two EAS equipped with 
Machine Learning (ML) accelerators executing an example diagnostic tool developed in 
a previous work. For optic disc (OD) and cup (OC) segmentation, the obtained 
prediction times per image are under 29 and 43 ms using Edge TPUs and Maxwell 
GPUs respectively. Prediction times for the classification subsystem are lower than 10 
and 14 ms for Edge TPUs and Maxwell GPUs respectively. Regarding energy usage, in 
approximate terms, for OD segmentation Edge TPUs and Maxwell GPUs use 38 and 
190 mJ per image respectively. For fundus classification, Edge TPUs and Maxwell 
GPUs use 45 and 70 mJ respectively. 
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1. Introduction. 
 
Artificial Intelligence (AI) and Machine Learning (ML) are present in many devices and 
services used in our everyday life, Health care related devices are not an exception, 
since the application of Deep Learning techniques to the medical image analysis has 
significantly increased in recent years (Litjens et al., 2017; Teikari et al., 2019; Chen et 
al., 2020; Prabhu and Verma, 2021). Two important Deep Learning uses in medical 
imaging are classification and segmentation. 
 
In image or exam classification (Litjens et al., 2017), one or several images (i.e., an 
exam) are used as input, and a small set of diagnostic variable values - for example, 
disease present or not, or a numeric level of disease severity - are provided as output. 
Transfer learning based on adapting pre-trained networks is widely used in this process. 
As an example, Prabhu and Verma (2021) propose a model for skin classification as 
either healthy or affected by Diabetic Foot Ulcer from plantar thermogram images. 
 
Image classification can be performed, among other possible alternatives, by using 
Convolutional Neural Networks (Hesamian et al., 2019; Chen et al., 2020; Chollet, 
2021). More specifically, CNNs pre-trained using large datasets of natural images, 
usually ImageNet (Deng et al., 2009), have provided very good results that are 
comparable with those achieved by medical experts in some tasks. 
 
A standard CNN consists of an input layer, an output layer, and a set of functional 
layers between the input and the output layers. These functional layers often contain 
convolutional, pooling and fully connected layers. The input layer is directly connected 
to the system input image. The network output is a vector where each element is an 
estimated probability for each category in an image classification, or a real value for a 
regression task, such as the estimation of the volume of an organ (Chen et al., 2020). 
 
On the other hand, segmentation is related to the detection of object boundaries within 
an image, performed either automatically or semi-automatically. In this sense, the 
segmentation of substructures allows, for example, the study of parameters related to 
shape and volume in brain (Niepceron et al., 2020) or cardiac analysis (Chen et al., 
2020), for example. 
 
Many networks with widely different structures have been used for medical image 
segmentation (Hesamian et al., 2019; Litjens et al., 2017). An U-Net (Fig. 1) is a 
specific type of fully convolutional network (FCN) that was initially proposed by 
Ronneberger et al. (2015) and has been used with different medical image types, such as 
Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), X-Ray and 
Ultrasound (US). Currently they are widely used, both in published research and in 
commercial systems, and have proved to be very effective in a wide range of practical 
problems. 
 
Considering now our example problem, glaucoma is a retinal disease that encompasses 
a set of progressive neuropathies that causes damage to the optic nerve head in the back 
of the eye, leading to loss of the visual field and, finally, blindness (Weinreb et al., 
2014). 
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Fig. 1. Basic three-layer U-Net. 
 
The exam of the optic nerve head, where cell axons leave the eye forming the optic disc 
(Bourne, 2006; Diaz Pinto et al., 2019), is critical for to the detection of this disease. In 
a retina fundus images, the optic disc (Fig. 2) can be divided into two zones: a central 
one known as the optic cup and a peripheral part, called neuro-retinal rim. This is a 
region consisting mainly of nerve fibers. 
 
Ophthalmologists perform Glaucoma diagnosis using, among other data, several 
indicators obtained from fundus images. A widely used metric is the cup-to disc-ratio 
(Patel and Patel, 2018; Zulfira et al., 2021). The CDR is defined as the relation between 
the optic cup (OC) and the optic disc (OD) diameters. CDR values for a healthy eye are 
between 0.3 and 0.5, but measurements above 0.5 can denote the presence of glaucoma. 
For values higher than 0.8, the patient suffers from a neuro-retinal degradation that will 
lead to a complete loss of vision. 
 
Another widely used criteria for glaucoma assessment is the ISNT rule (Bourne, 2006; 
Das et al., 2016) which is based on the shape of the neuro-retinal rim. This rim can be 
divided into four quadrants: inferior, superior, nasal and temporal. The rule states that 
for a healthy eye, the inferior (I) rim is usually thicker than the superior (S) rim, that is 
thicker than the nasal (N) one, while the temporal (T) rim is the thinnest: (I) > (S) > (N) 
> (T). When this is not the case, there is a significant probability of glaucoma. 
 
Correct segmentation of both OC and OD is essential to calculate the CDR (Barros et 
al., 2020; Patel and Patel, 2018) and also for the application of the ISNT rule (Barros et 
al., 2020; Nath and Dandapat, 2012). For OD and OC detection in fundus images, 
specific U-Net models were implemented on cloud-based GPU and TPU (Google, 
2021a) architectures in Civit-Masot et al. (2020, 2021).  
 
Also, a classification subsystem was proposed in Civit-Masot et al. (2020) by the 
application of transfer learning techniques to a pre-trained CNN, in order to directly 
detect glaucoma from the analysis of a complete fundus image. The results provided by 
this subsystem were combined with the ones obtained from the segmentation subsystem 
to improve glaucoma detection and provide better diagnostic data to the clinician. 
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Fig. 2. OD and OC in eye fundus image. 

 
Single-board computers (SBCs) are small low-cost computers where processor and 
memory are integrated into a system on chip (SoC). These devices are very widely used 
and allow developers to interact with sensors and actuators in applications that include 
computing, IoT (Hassan et al., 2017) and robotics among others (Ariza and Baez, 2021). 
At present, some SBCs, that we call embedded accelerated systems (EAS), are equipped 
with ML hardware, which makes them ideal targets for Edge computing based Artificial 
Intelligence (EdgeAI) applications (Baller et al., 2021). 
 
The Coral Dev Board is specifically developed for ML inferencing (Google LLC, 
2020a, 2020b). This EAS includes an ASIC that encapsulates a fast and power-efficient 
simplified tensor processing unit (Edge TPU). In a similar vein, the Asus Tinker Edge T 
EAS also incorporates a Google Edge TPU as ML accelerator. 
 
The Jetson Nano 2GB Developer Kit (NVIDIA Corp., 2021a) is an interesting 
alternative to the previous device for ML inferencing. It is equipped with a 128-core 
Maxwell GPU, which can execute the CUDA-X AI data processing library and provides 
high AI performance at an affordable price. Operating at maximum capacity, the power 
consumption of this EAS is under10 watts. 
 
Moreover, in Baller et al. (2021), the performance in terms of power consumption and 
inference time of four SBCs and one microcontroller are compared on different Deep 
Learning frameworks and models. Except for Raspberry Pi 4, the other three SoCs are 
EAS equipped with ML hardware. 
 
Excluding more powerful models of the Jetson Nano series (e.g., NVIDIA Jetson AGX 
Xavier and Jetson AGX Orin Developer Kits), it is technically inviable to train 
relatively complex deep neural networks using EAS, because of their constrained 
resources in terms of main memory size and processing capacity. However, ML 
accelerators enables them to perform real time inferencing using complex pre-trained 
networks, as inferencing is computationally a much less demanding task. 
 
In this vein, this work aims to evaluate and compare the performance of two EAS based 
on completely different approaches to ML hardware acceleration: Coral Dev Board and 
Jetson Nano 2GB Developer Kit. These widely different systems are both used to 
implement, as a good example of the tasks needed for an image-based diagnosis tool, 
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the generalized U-Net models for segmentation of OD and OC, and the MobileNet V2 
based-model for fundus classification proposed in Civit-Masot et al. (2020, 2021).  
 
More specifically, the aim of this study is not just to prove the practical viability of 
embedding these models in the two EAS, but also testing if they can perform inferences 
in reasonable times. In this regard, we also want to compare the inference times 
provided by both EAS with those obtained on non-embedded cloud-based GPUs and 
TPUs. 
 
The U-Nets for OD and OC segmentation selected to be used in this example study are 
the ones used in Civit-Masot et al. (2021). The implementation of the classification 
network is the one used in Civit-Masot (2020), which is based on MobileNet V2 CNN 
(Sandler et al., 2018). With less than 2.5M parameters, this network is light enough to 
make an embedded implementation feasible. The top layers of the original MobileNet 
V2 were replaced by custom layers to obtain a probability for a patient of suffering 
glaucoma.  
 
Although in this work specific CNN and U-Net examples are used to prove that EAS 
can perform segmentation and classification in very reasonable times, deep neural 
networks (DNNs) have been widely used for the segmentation and classification of 
other medical image types (Litjens et al., 2017; Chen et al., 2020). Therefore, the results 
achieved in this study can be applied to the classification made by EAS of brain tumors, 
chest nodules, or retinal vessels (Litjens et al., 2017), for example, as well as to the 
segmentation of organs and other substructures in brain, cardiac or thyroid analysis 
(Wunderling et al., 2017), or to multi-organ segmentation (Hesamian et al., 2019). 
 
The use in everyday medical practice of EAS to perform medical image classification 
and segmentation tasks in assumable times is very convenient, since ML accelerators 
can be integrated in a broad range of lightweight medical instruments to perform 
segmentation and classification tasks autonomously, without requiring an external PC. 
Moreover, the use of EAS for medical image analysis protects the privacy of patients’ 

health data, since their private information is used locally by the embedded systems 
instead of being processed by remote servers. 
 
In this sense, it is important to measure the energy efficiency of ML accelerators when 
performing inferences as they can be embedded in devices that operate autonomously 
using batteries. Therefore, in this work we measure the energy usage of the two EAS - 
Coral Dev Board and Jetson Nano 2GB - when performing OD and OC segmentation as 
well as fundus classification. The obtained results are shown and discussed in the 
corresponding sections. 
 
The rest of the document is organized in the following way: Section 2 presents the 
background and a set of related works. Section 3 describes the methodological aspects. 
The obtained results are presented and discussed in Sections 4 and 5 respectively. The 
conclusions of this study are presented in Section 6, and several future lines of work are 
proposed. 
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2. Background. 

 
In Civit-Masot et al. (2020), a diagnostic aid tool to detect glaucoma using fundus 
images built around a segmentation and a classification subsystem was proposed. These 
two subsystems were independently trained and tested, and their results were combined 
to improve glaucoma diagnosis. The first subsystem applies ML techniques to segment 
optic disc and cup independently and extract their positional and physical features. The 
second one applies transfer learning techniques to a pre-trained CNN to detect glaucoma 
through the analysis of the complete fundus images. The results showed that this system 
achieves a higher classification rate than those used in previous works. A practical 
implementation of the segmentation subsystem on an Edge TPU device was discussed 
in Civit-Masot et al. (2021). 
 
As for the use of EAS for medical image classification, in Rehman et al., (2020) the 
authors developed an image processing method for melanoma skin lesion detection at 
the initial stage using an NVIDIA Jetson Nano Developer Kit, consisting of five phases: 
load of a skin lesion dermoscopic image on the device, grayscale conversion of the 
color image, segmentation of the region of interest, noise removal and classification. In 
the last phase, the lesion features were extracted and classified into three categories: 
benign, suspicious, and malignant. The experiments were performed on PH2 and ISIC 
publicly available skin lesion datasets. In comparison with other published works on 
skin cancer identification, the proposed approach provided better results, such as 
average accuracies of 93.5% and 91.45% for PH2 and ISIC datasets respectively. 
 
Moreover, the work presented in Prabhu and Verma, (2021) proposes a model to 
classify a healthy skin and one affected by Diabetic Foot Ulcer (DFU) from plantar 
thermograms using Deep Learning algorithms. The implementation of the model on a 
Jetson Nano Developer Kit shows the suitability of the solution for deployment on 
embedded devices. The implementation performance was compared with that of 
existing CNNs. As a result, the trained model (a modified version of DenseNet) 
achieved a maximum accuracy of 97.9%, making it suitable for automatic DFU 
classification in order to aid clinicians in their diagnosis. 
 
More specifically, in relation to the use of mobile devices, single-board computers and 
embedded systems to perform segmentation and classification of fundus images, 
Martins et al., (2020) propose an interpretable computer-aided diagnosis (CAD) pipeline 
to diagnose glaucoma from fundus images that executes in mobile devices. The authors 
mixed various publicly available datasets and used them to train CNNs in order to 
perform classifications and segmentations. 
 
These segmentation and classification models were then used to make a pipeline that, in 
addition to the segmentation of key structures and the calculation of various 
morphological features, showed a glaucoma confidence level, resulting in an 
interpretable CAD in a similar way to that implemented in the cloud in Civit-Masot et 
al. (2020). To test the performance of the developed system in a resource constrained 
device, the processing chain was tested in a smartphone (Samsung Galaxy S8) using a 
mobile application developed for this purpose, where memory requirements as well as 
CPU and GPU execution times were evaluated. Comparable or slightly better metrics 
than current CAD systems for glaucoma assessment were achieved. 
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Also, a Deep Learning approach to assess the quality of eye fundus images was 
presented in Pérez et al. (2020). The proposed model (MFQ-Net) is sufficiently small to 
be deployed in a smartphone and was validated using a public fundus dataset with two 
sets of annotations providing good accuracy results: 0.911 in the binary classification 
task (accepted and rejected), and 0.856 in a three-class classification task (good, usable 
and bad). 
 
The authors also measured the memory requirements and the classification average time 
for the binary (MFQ-Net Binary) and the three-class (MFQ-Net Three-class) models on 
an Android 9.0 smartphone. The number of parameters of the eye fundus quality 
classification system proposed by the authors is smaller compared with other state-of-
the-art models, making this approach interesting for execution on a mobile device. 
 
Moreover, a methodology is proposed in Washburn et al., (2021) for hardware-based 
detection of exudates (i.e., proteins and lipids filtered from abnormal blood vessels), 
which are one of the main signs that identifies the diabetic retinopathy, along with 
micro-aneurysms and hemorrhages. In the proposed method, retinal images were 
selected from the DRIVE and STARE public databases. 
 
After being preprocessed, the images were segmented using the Fuzzy C-Means 
Clustering segmentation algorithm. This algorithm was implemented on a Jetson Nano 
Developer Kit using the RAPIDS CUDA Machine Learning Libraries, and executed 
completely on its GPU, achieving a sensitivity of 98.3% and a specificity of 98.9%. 
Finally, the results showed an improvement in terms of execution time and power 
consumption compared to other implementations. 
 
Finally, in relation to the performance evaluation of EAS, and how deep neural 
networks performs on these devices, in Baller et al., (2021) the efficiency in terms of 
power consumption and inference time of four SBCs - Raspberry Pi 4, NVIDIA Jetson 
Nano, Google Coral Dev Board and Asus Tinker Edge R - and the Arduino Nano 33 
BLE microcontroller, was compared on different deep learning frameworks - 
TensorFlow, TensorRT, TensorFlow Lite and RKNN-Toolkit - and models such as 
MobileNet V1 and MobileNet V2. 
 
The authors also provided a method to measure accuracy, inference time and power 
consumption for the devices used, that can be easily extended to other architectures. The 
results showed that, for TensorFlow-based quantized models, Coral Dev Board 
provided the best performance for power consumption and Edge TPU inference time. 
However, considering that Jetson Nano does not include specific ML hardware to 
perform inferences using quantized models, since it integrates a Maxwell GPU instead 
of an Edge TPU, this EAS outperformed the other devices when performing GPU 
inferences with the non-quantized version of MobileNet V2 using the TensorRT 
framework. 
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3. Materials and methods. 

 
In this section we will briefly describe the hardware resources, the datasets used and the 
classification network implementation. Finally, we will specify the parameters of the 
chosen generalized U-Nets, and we will outline the methodology used to perform the 
experimental tests. 
 
3.1. Hardware. 
 
The Jetson Nano 2GB Developer Kit (NVIDIA Corp., 2021a) is equipped with a 128-
core NVIDIA Maxwell architecture-based GPU for delivering high AI performance at a 
low price, a Quad-core ARM A57 @ 1.43 GHz and 2 GB 64-bit LPDDR4 SDRAM 
(Fig. 3). 
 
The board provides various USB 2.0/3.0 ports, a Gigabit Ethernet port, an HDMI 
display interface, a 40 I/O pin header and a CSI-2 camera interface among other 
connectors and uses a microSD card as storage system. This kit is intended for 
introducing anyone interested in learning embedded AI fundamentals. It is supported by 
a series of comprehensive tutorials and an active developer community that make ready-
to-build open-source projects. 
 
NVIDIA JetPack SDK (NVIDIA Corp., 2021b) bundles Jetson platform software 
including TensorRT (NVIDIA Corp., 2021c, 2021d), cuDNN (NVIDIA Corp., 2021e) 
and CUDA Toolkit (NVIDIA Corp., 2021f) among other tools, all built on top of L4T - 
a Linux based system software distribution by NVIDIA for the Tegra processor series - 
with LTS Linux kernel (NVIDIA Corp., 2021g). 
 

 
 

Fig. 3. Jetson Nano 2GB. 
 
The Coral Dev Board (Google LLC, 2020a, 2020b) includes a small ASIC (Google 
TPU coprocessor) which delivers high performance ML inferencing for TensorFlow 
Lite models (Google LLC, 2020c). The board (Fig. 4) is equipped with a System-on-
module (SoM), an integrated system that can be included in a custom board for 
purposes of production and can be bought separately. 
 
The SoM incorporates a NXP’s IMX 8M system on chip, 1 or 4 GB LPDDR4 SDRAM, 

8 GB eMMC memory, a Google Edge TPU coprocessor and Bluetooth 4.2 and Wi-Fi 
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802.11a/b/g/n/ac connection capabilities. The SoC integrates a Quad-core ARM Cortex-
A53 @ 1.5 GHz processor, an Arm Cortex-M4F processor and a Vivante GC7000Lite 
GPU. 
 

 
Fig. 4. Coral Dev Board. 

 
This EAS runs a lightweight operating system based on Debian Linux named Mendel. 
The board provides various USB 2.0/3.0 ports, a Gigabit Ethernet port, a 40 I/O pin 
header, a DSI display interface and a CSI-2 camera interface. 
 
3.2. Datasets. 
 
In this work, we use the same publicly available and very widely used eye fundus 
datasets as in Civit-Masot et al. (2020, 2021): DRISHTI-GS (Sivaswamy et al., 2014) 
and RIM-ONE-v3 (Fumero et al., 2011). Both provide human expert segmentation data 
for OD and OC, as well as labels that indicate if the images come from glaucoma 
patients or healthy ones. 
 
From the eye fundus images, several augmented datasets with different sizes have been 
generated to be used in the experimental tests (section 4) and thus obtain the 
corresponding prediction times. 
 
3.3. Network architecture. 
 
In this subsection, we will address those aspects relating to the structure of the system 
and the design of the experimental tests. Regarding the U-Nets, we have selected the 
same ones used in Civit-Masot et al. (2021). First, a U-Net with 6 levels, 40 filters in the 
initial layer, a layer-to-layer increment ratio (IR) of 1.1 and 0.9 million trainable 
parameters (MTP) has been chosen for segmentation of OD. And a U-Net with 6 levels, 
64 filters in the initial layer, an IR of 1.1 and 2.4 MTP has been chosen for 
segmentation of OC. 
 
The classification network (Civit-Masot et al., 2020), is based in MobileNet V2. This 
network is light (less than 2.5M parameters) and thus an embedded implementation is 
feasible. Its accuracy on the ImageNet challenge (Russakovsky et al., 2015) is very 
similar to that of VGG16 (Simonyan and Zisserman, 2015), a network successfully used 
by other research (Diaz-Pinto et al., 2019) for fundus image classification. 
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However, that network is significantly larger (about 15M parameters) and makes an 
embedded implementation more difficult. Finally, the MobileNet V2 accuracy density - 
the accuracy divided by the number of parameters - is an order of magnitude higher than 
that of VGG16 (Bianco et al., 2018). 
 

 
Fig. 5. Classification subsystem. 

 
In order to implement the classification subsystem (Fig. 5), the top layers of the original 
MobileNet V2 were removed and replaced by an average polling layer whose output is 
flattened and sent to a dense layer with 80 nodes, a dropout stage and a final two-node 
dense layer to discriminate between the required classes (“glaucoma” or “healthy”). 
 
Fig. 6 presents the implementation of the full system. Finally, we provide a brief 
description of the methodology used to perform the experimental tests: 
 
· Load of image dataset. 
· Definition and compilation of TensorFlow model, and load of weights to perform 

the experimental tests using the iPython notebooks. 
· Export of TensorFlow model to Open Neural Network Exchange format (ONNX), 

generation of CUDA inference engine from the ONNX model (Abbasian et al., 
2021; NVIDIA Corp., 2021c), and load of the engine to perform the experimental 
tests using the Jetson Nano 2GB EAS. 

· Conversion and load of TensorFlow Lite model to perform the experimental tests 
using the Coral Dev Board. 

· Execution of inferences with time measurement. 
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Fig. 6. Full system implementation. 
 
 
4. Results. 

 
Firstly, as a performance measure of the proposed segmentation system, the Dice 
coefficients achieved by our implementation in comparison with other Deep Learning 
based options using the same datasets (subsection 3.2). are shown in Table 1 The Dice 
coefficient is defined, as usual, as twice the number of active pixels in the intersection 
of the true and the predicted masks divided by the sum of the active pixels in both 
masks (Sørensen, 1948). 
 
These results are comparable with other research works, as we can see. While in Civit-
Masot et al. (2020) the same U-Net was used to segment the OD and OC, in this study, 
as in Civit-Masot et al. (2021), smaller networks have been used for OD and OC 
segmentation, which are suitable for embedded implementation. Doing so decreases the 
number of trainable parameters and obviously has a certain impact on the segmentation 
performance. 
 
In order to obtain a measure of the difference between the predictions performed by the 
optic disc and cup models implemented in Google Cloud using GPU and TPU, and 
those ones generated by Coral Dev Board and Jetson Nano 2GB EAS, the Dice 
coefficient has also been used as a comparison criterion. 
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Author  Disc DRISHTI Disc RIM-ONE Cup DRISHTI Cup RIM-ONE 
Sevastopolsky 
(2017) 

- .94 - .82 
 

Shankaranarayana 
et al. (2017) 

- .98 - .94 
 

Zilly et al. (2017) .97 - .87 - 
 

Al-Bander et al. 
(2018) 

.95 .90  .83  .69  
 

Civit-Masot et al. 
(2020) 

.93 .92  .89  .84 
 

Cloud GPU/TPU 
(this work) 

.91 .86 .87 .81 

Table 1. Dice coefficients for segmentation of OD and OC. 
 
Table 2 shows the mean values of the Dice coefficients ratios along with their standard 
deviations obtained from the comparison image by image between the predictions 
performed by the segmentation models on the combination of DRISHTI-GS and RIM-
ONE datasets using the resources of Google Cloud, and Coral Dev Board and Jetson 
Nano 2GB EAS. For each comparison, the images corresponding to predictions 
performed by the specific U-Net - OD or OC - using the resources of Google Cloud - 
GPU and TPU - and TensorFlow are taken as reference values. 
 

 Google Colab and 
Jetson Nano 2GB 

Google Colab and 
Coral Dev Board 

Optic disc 0.999 ± 0.001 0.976 ± 0.024 
Optic cup 0.999 ± 0.001 0.969 ± 0.029 

Table 2. Dice coefficient ratios for predictions (images). 
 
From the results obtained, we can conclude that the images obtained from the 
predictions performed by Google Cloud resources are very similar to the ones generated 
by Jetson Nano 2GB. This result is logical considering that CUDA inference engines 
generated for optic disc and cup segmentation use the same 32-bit floating point 
precision (NVIDIA Corp., 2021d) as used in the cloud implementation. 
 

 
 

Fig. 7. Images of OD, segmentation, and inferences performed by Jetson Nano 2GB and 
Coral Dev Board. 
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Fig. 8. Images of OC, segmentation, and inferences performed by Jetson Nano 2GB and 
Coral Dev Board. 

 
However, the values for the Dice coefficient ratios obtained from the comparisons 
between the images generated by the inferences performed by Google Cloud resources 
and by Coral Dev Board are a bit smaller than the previous ones, but not excessively. In 
fact, the mean values for optic disc and cup remain close to one. This result can be 
explained using 8-bit integer precision in the quantized models used by Coral Dev 
Board (Google, 2021b; Google LLC, 2020d, 2020e). 
 
Figs. 7 and 8 show images of the OD and OC respectively along with the segmentation 
performed by human experts, and the inferences made by Jetson Nano 2GB and Coral 
Dev Board EAS. 
 
Concerning the classification network, since the CNN is the same one proposed in 
Civit-Masot et al. (2020), the normalized confusion matrices from that work for 
segmentation by expert ophthalmologists and for the classifier based on MobileNet V2 
(Tables 3 and 4) are included here only for completeness. 
 

 Glaucoma Healthy 
Glaucoma 0.67 0.33 
Healthy 0.13 0.87 

Table 3. Confusion matrix based on human segmentation. 
 

 Glaucoma Healthy 
Glaucoma 0.81 0.19 
Healthy 0.17 0.83 

Table 4. Confusion matrix based on MobileNet V2. 
 
In order to compare the predictions performed by the classification model implemented 
in Google Cloud using GPU and TPU with those ones generated by Coral Dev Board 
and Jetson Nano 2GB EAS, the mean error has been used as a measure of similarity. 
Since there are two probability results for each prediction - one for glaucomatous eye 
class and one for healthy eye class - the error for a specific prediction is taken as the 
maximum of the two differences in absolute values. 
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For each difference, the probability results corresponding to the prediction performed by 
the classification network using Google Cloud resources and TensorFlow are 
considered as the reference values, whereas the second term of the comparison is the 
result of the classification performed by Jetson Nano 2GB or Coral Dev Board. Table 5 
shows the mean errors calculated as the sum of the differences - in absolute values - for 
the predictions on the combination of the DRISHTI-GS and RIM-ONE datasets, divided 
by the total number of predictions (i.e., the size of the combined datasets). 
 

 Google Colab and 
Jetson Nano 2GB 

Google Colab and 
Coral Dev Board 

Eye fundus image 0. 001 ± 0.001 0.046 ± 0.089 

Table 5. Mean errors for predictions (classifications). 
 
As with the Dice coefficients calculated in order to compare the predictions for the optic 
disc and cup, the predictions performed by Google Cloud resources are very similar to 
the ones generated by Jetson Nano 2GB, since the CUDA inference engine for eye 
fundus classification also uses 32-bit floating point precision (NVIDIA Corp., 2021d). 
 
However, the value for the mean error obtained from the comparisons between the 
classifications (i.e., probability results) performed by Google Cloud resources and by 
Coral Dev Board is greater than the previous one but remain close to zero. Again, the 8-
bit integer precision of the quantized models used by Coral Dev Board (Google, 2021b; 
Google LLC, 2020d, 2020e) clearly affects the accuracy of predictions. 
 
In practice, these errors do not change the predicted result for any image in both EAS. 
 
In the rest of the document, we will only show results regarding inference times since, 
after showing that there is no significant difference in the quality of the predictions, this 
is the primary aim of this study. Firstly, a set of times has been obtained using the two 
U-Nets implemented for segmentation of OD and OC, as well as using the CNN 
implemented for eye fundus classification. These results have been obtained for Google 
Cloud GPU and TPU, and will be considered as reference times, so that we can compare 
them with inference times obtained for Jetson Nano 2GB and Coral Dev Board EAS. 
 
A TPU device has four chips and two TPU cores in each chip (Google, 2021a). A TPU 
core consists of one Matrix Multiply Unit (MXU), a Vector Processing Unit (VPU) and 
a Scalar Unit. The VPU is used for general computations, and the scalar unit for control 
flow and calculating memory addresses among other operations. The virtual machines 
where Colab notebooks execute communicate with Cloud TPUs over a gRPC1 network. 
To perform inferences using Cloud GPUs, an NVIDIA Tesla K80 has been used. 
 
As indicated in subsection 3.2, from the images of RIM-ONE-v3 and DRISHTI-GS 
datasets, several new datasets with different sizes have been generated to be used in the 
experimental tests and thus obtain the corresponding prediction times. 
 
The first two columns of results of Tables 6 and 7 are the prediction times per image 
obtained using the Colaboratory iPython notebook development environment2 for 

                                                           
1 https://grpc.io/ 
2 https://colab.research.google.com 
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segmentation of OD and OC respectively, whereas the first two columns of results of 
Table 8 show the prediction times per image for fundus classification. 2.7.0 version of 
TensorFlow and Keras (Chollet, 2021) has been used. Given that TensorFlow performs 
predictions on complete datasets, the inference time per image has been calculated as 
the prediction time for a dataset divided by its number of elements. 
 

Dataset (shape) Colab GPU Colab TPU Edge TPU Maxwell 
GPU (5W) 

Maxwell 
GPU (10W) 

(10, 128, 128, 3) 12.92 ± 3.41 73.61 ± 3.11 8.80 ± 1.10 34.34 ± 0.00 28.32 ± 0.00 
(20, 128, 128, 3) 7.91 ± 0.73 39.09 ± 4.02 8.75 ± 1.22 34.31 ± 0.01 25.37 ± 0.01 
(30, 128, 128, 3) 6.44 ± 0.19 27.22 ± 0.47 8.30 ± 0.96 34.32 ± 0.00 25.40 ± 0.06 
(40, 128, 128, 3) 6.71 ± 1.49 22.61 ± 2.47 8.67 ± 1.15 34.31 ± 0.03 25.34 ± 0.06 
(50, 128, 128, 3) 6.44 ± 0.72 18.55 ± 0.29 8.54 ± 1.08 34.29 ± 0.01 25.41 ± 0.10 
(60, 128, 128, 3) 5.75 ± 0.26 16.87 ± 1.64 8.27 ± 1.12 34.30 ± 0.02 25.43 ± 0.07 
(70, 128, 128, 3) 6.68 ± 2.03 14.72 ± 0.16 8.61 ± 1.12 34.32 ± 0.08 25.31 ± 0.12 
(80, 128, 128, 3) 6.91 ± 1.66 14.31 ± 1.15 8.00 ± 1.01 34.29 ± 0.04 25.43 ± 0.06 
(90, 128, 128, 3) 6.38 ± 1.20 13.21 ± 0.13 8.08 ± 1.07 34.29 ± 0.03 25.38 ± 0.09 
(100, 128, 128, 3) 6.00 ± 0.83 12.35 ± 0.16 8.18 ± 1.06 34.30 ± 0.02 25.40 ± 0.08 
(110, 128, 128, 3) 6.35 ± 0.98 12.04 ± 0.83 8.15 ± 1.15 34.30 ± 0.04 25.38 ± 0.08 
(120, 128, 128, 3) 5.56 ± 0.30 11.31 ± 0.12 8.19 ± 1.16 34.29 ± 0.03 25.38 ± 0.09 
(130, 128, 128, 3) 5.27 ± 0.24 10.97 ± 0.12 7.97 ± 1.04 34.30 ± 0.04 25.37 ± 0.08 
(140, 128, 128, 3) 6.52 ± 2.27 10.48 ± 0.09 8.03 ± 1.03 34.29 ± 0.03 25.36 ± 0.08 
(150, 128, 128, 3) 5.81 ± 1.51 10.12 ± 0.68 7.92 ± 1.00 34.29 ± 0.02 25.42 ± 0.10 
(160, 128, 128, 3) 7.33 ± 1.47 9.95 ± 0.16 8.06 ± 1.25 34.30 ± 0.04 25.40 ± 0.09 
(170, 128, 128, 3) 6.40 ± 1.42 9.60 ± 0.15 7.95 ± 1.06 34.29 ± 0.03 25.40 ± 0.09 
(180, 128, 128, 3) 5.94 ± 1.23 11.32 ± 1.71 8.15 ± 1.09 34.32 ± 0.05 25.45 ± 0.09 
(190, 128, 128, 3) 5.57 ± 0.96 9.20 ± 0.10 8.43 ± 1.12 34.29 ± 0.02 25.44 ± 0.08 
(200, 128, 128, 3) 5.47 ± 0.80 9.12 ± 0.53 7.94 ± 1.02 34.30 ± 0.03 25.44 ± 0.08 
(300, 128, 128, 3) 6.03 ± 1.82 7.97 ± 0.11 8.38 ± 1.06 34.31 ± 0.03 25.46 ± 0.10 
(400, 128, 128, 3) 5.77 ± 0.93 7.54 ± 0.67 7.94 ± 1.05 34.32 ± 0.05 25.46 ± 0.09 
(500, 128, 128, 3) 4.93 ± 0.23 7.04 ± 0.05 8.13 ± 1.06 34.31 ± 0.04 25.40 ± 0.09 
(600, 128, 128, 3) 6.35 ± 1.93 6.83 ± 0.03 8.47 ± 1.06 34.32 ± 0.03 25.47 ± 0.11 
(700, 128, 128, 3) 6.94 ± 1.08 6.73 ± 0.18 8.26 ± 1.06 34.32 ± 0.04 25.39 ± 0.09 
(800, 128, 128, 3) 6.19 ± 0.74 6.59 ± 0.03 8.24 ± 1.10 34.32 ± 0.03 25.39 ± 0.09 
(900, 128, 128, 3) 5.41 ± 0.52 6.52 ± 0.03 7.84 ± 1.01 34.32 ± 0.04 25.43 ± 0.13 

(1000, 128, 128, 3) 5.07 ± 0.25 6.44 ± 0.02 8.27 ± 1.11 34.32 ± 0.04 25.50 ± 0.41 
(1100, 128, 128, 3) 5.25 ± 1.39 6.38 ± 0.03 8.23 ± 1.06 34.31 ± 0.03 25.44 ± 0.17 
(1200, 128, 128, 3) 7.08 ± 1.91 6.32 ± 0.02 8.48 ± 1.09 34.31 ± 0.04 25.39 ± 0.15 
(1300, 128, 128, 3) 6.70 ± 1.60 6.29 ± 0.04 8.36 ± 1.08 34.32 ± 0.04 25.44 ± 0.09 
(1400, 128, 128, 3) 6.38 ± 1.35 6.25 ± 0.02 8.42 ± 1.08 34.32 ± 0.04 25.43 ± 0.09 
(1500, 128, 128, 3) 5.85 ± 1.11 6.26 ± 0.05 8.44 ± 1.09 34.31 ± 0.04 25.36 ± 0.08 

Table 6. Image prediction times for segmentation of OD (in milliseconds). 
 
The first prediction on a dataset using Cloud TPU also involves sending the model data 
through the network in order to copy them into the TPU memory. Moreover, when 
using Cloud GPU, the first prediction also takes more time due to the need to perform 
memory initializations and allocations. Therefore, for each dataset, the image prediction 
time has been calculated from the next ten predictions on the dataset after discarding the 
initial one. Thus, the mean prediction time per image and the standard deviation are 
shown in the two first columns of results of Tables 6, 7 and 8. 
 
After obtaining the first set of results, the next step is to perform predictions and 
measure the times using the Coral Dev Board and Jetson Nano 2GB EAS. As for Coral 
Dev Board, the procedure to follow consists of quantizing the Keras models (Google, 
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2021b) and obtaining the prediction times using the Edge TPU (Google LLC, 2020d, 
2020f) for optic disc and cup segmentation, and eye fundus classification. The results 
obtained are presented in the third column of results of Tables 6, 7 and 8. 
 

Dataset (shape) Colab GPU Colab TPU Edge TPU Maxwell 
GPU (5W) 

Maxwell 
GPU (10W) 

(10, 128, 128, 3) 13.73 ± 3.32 99.69 ± 23.03 28.66 ± 0.15 56.68 ± 0.00 42.33 ± 0.00 
(20, 128, 128, 3) 9.43 ± 0.31 39.73 ± 1.53 27.71 ± 1.29 56.71 ± 0.06 42.54 ± 0.08 
(30, 128, 128, 3) 10.38 ± 1.54 27.51 ± 0.59 28.34 ± 0.76 56.74 ± 0.09 42.31 ± 0.01 
(40, 128, 128, 3) 8.51 ± 0.29 23.07 ± 2.12 28.03 ± 1.12 56.77 ± 0.08 42.48 ± 0.21 
(50, 128, 128, 3) 10.29 ± 2.59 19.03 ± 0.80 28.08 ± 1.08 56.72 ± 0.05 42.47 ± 0.13 
(60, 128, 128, 3) 9.17 ± 1.65 27.52 ± 2.64 27.93 ± 1.29 56.75 ± 0.05 42.46 ± 0.13 
(70, 128, 128, 3) 9.05 ± 0.88 15.93 ± 1.36 28.18 ± 0.91 56.74 ± 0.08 42.38 ± 0.13 
(80, 128, 128, 3) 8.17 ± 0.37 16.13 ± 3.21 28.26 ± 0.91 56.74 ± 0.05 42.42 ± 0.09 
(90, 128, 128, 3) 8.40 ± 2.11 13.53 ± 0.56 28.11 ± 1.13 56.73 ± 0.08 42.39 ± 0.16 
(100, 128, 128, 3) 10.99 ± 2.70 12.74 ± 0.24 28.04 ± 1.19 56.73 ± 0.05 42.45 ± 0.18 
(110, 128, 128, 3) 10.70 ± 2.02 12.44 ± 1.15 28.14 ± 0.99 56.72 ± 0.08 42.35 ± 0.14 
(120, 128, 128, 3) 9.34 ± 1.68 11.76 ± 0.50 28.01 ± 1.15 56.72 ± 0.06 42.29 ± 0.16 
(130, 128, 128, 3) 9.12 ± 1.28 12.11 ± 1.50 27.94 ± 1.28 56.72 ± 0.09 42.25 ± 0.16 
(140, 128, 128, 3) 8.30 ± 0.92 10.56 ± 0.15 27.97 ± 1.24 56.72 ± 0.06 42.44 ± 0.19 
(150, 128, 128, 3) 8.18 ± 0.63 10.33 ± 0.13 28.12 ± 1.06 56.73 ± 0.10 42.37 ± 0.13 
(160, 128, 128, 3) 8.05 ± 0.40 10.04 ± 0.12 28.16 ± 0.95 56.70 ± 0.09 42.34 ± 0.19 
(170, 128, 128, 3) 7.71 ± 0.16 9.89 ± 0.62 28.10 ± 1.10 56.71 ± 0.09 42.27 ± 0.18 
(180, 128, 128, 3) 8.20 ± 2.09 9.64 ± 0.15 28.08 ± 1.07 56.69 ± 0.06 42.31 ± 0.17 
(190, 128, 128, 3) 10.61 ± 3.14 9.69 ± 0.59 27.98 ± 1.19 56.73 ± 0.06 42.28 ± 0.15 
(200, 128, 128, 3) 10.27 ± 2.82 9.19 ± 0.15 28.09 ± 1.08 56.70 ± 0.06 42.33 ± 0.18 
(300, 128, 128, 3) 7.95 ± 0.68 8.24 ± 0.36 27.99 ± 1.16 56.70 ± 0.08 42.23 ± 0.11 
(400, 128, 128, 3) 9.62 ± 2.77 7.59 ± 0.12 27.98 ± 1.20 56.69 ± 0.05 42.25 ± 0.18 
(500, 128, 128, 3) 8.30 ± 1.49 7.23 ± 0.09 28.06 ± 1.17 56.71 ± 0.13 42.20 ± 0.17 
(600, 128, 128, 3) 7.85 ± 0.72 7.11 ± 0.19 28.05 ± 1.09 56.71 ± 0.07 42.24 ± 0.17 
(700, 128, 128, 3) 7.39 ± 0.13 6.84 ± 0.05 28.01 ± 1.16 56.70 ± 0.08 42.23 ± 0.15 
(800, 128, 128, 3) 10.12 ± 2.86 6.81 ± 0.17 27.99 ± 1.20 56.71 ± 0.07 42.15 ± 0.17 
(900, 128, 128, 3) 9.00 ± 2.07 6.69 ± 0.11 28.01 ± 1.19 56.73 ± 0.08 42.16 ± 0.15 

(1000, 128, 128, 3) 8.86 ± 1.54 6.54 ± 0.04 28.00 ± 1.21 56.71 ± 0.07 42.16 ± 0.17 
(1100, 128, 128, 3) 8.38 ± 1.09 6.55 ± 0.06 28.01 ± 1.19 56.70 ± 0.08 42.25 ± 0.15 
(1200, 128, 128, 3) 7.85 ± 0.66 6.41 ± 0.04 27.98 ± 1.20 56.70 ± 0.07 42.18 ± 0.15 
(1300, 128, 128, 3) 7.73 ± 0.36 6.42 ± 0.13 27.99 ± 1.12 56.70 ± 0.07 42.20 ± 0.13 
(1400, 128, 128, 3) 7.33 ± 0.13 6.34 ± 0.04 27.99 ± 1.06 56.71 ± 0.07 42.20 ± 0.17 
(1500, 128, 128, 3) 11.19 ± 3.23 6.33 ± 0.04 27.99 ± 1.08 56.72 ± 0.08 42.29 ± 0.15 

Table 7. Image prediction times for segmentation of OC (in milliseconds). 
 
Since TensorFlow Lite is used to perform inferences on the Edge TPU (Google LLC, 
2020d), the post-training quantization technique (Google, 2021b; Google LLC, 2020e) 
has been applied to adapt the original TensorFlow models for the CNN based on 
MobileNet V2 and for the two U-Nets to the TensorFlow Lite format. The framework 
version used in this work is 2.5.0. The Edge TPU Compiler (Google LLC, 2020f) 
generates versions of the TensorFlow Lite models compatible with the Edge TPU 
(Google LLC, 2020d). 
 
Unlike TensorFlow programs, TensorFlow Lite programs perform inferences on 
individual elements of a dataset, and not on a complete one. Therefore, when 
performing predictions on a dataset, a loop must be used to iterate over its elements. 
The third column of results of Tables 6, 7 and 8 shows the image prediction times for 
Coral Dev Board. 
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Dataset (shape) Colab GPU Colab TPU Edge TPU Maxwell 
GPU (5W) 

Maxwell 
GPU (10W) 

(10, 224, 224, 3) 25.84 ± 5.87 83.52 ± 2.77 8.75 ± 1.24 16.19 ± 0.00 13.60 ± 0.00 
(20, 224, 224, 3) 17.92 ± 3.40 44.38 ± 0.92 9.24 ± 1.15 16.21 ± 0.01 11.55 ± 0.03 
(30, 224, 224, 3) 15.00 ± 2.94 34.98 ± 9.18 8.67 ± 1.42 16.22 ± 0.02 11.53 ± 0.01 
(40, 224, 224, 3) 9.33 ± 2.84 26.17 ± 0.66 8.77 ± 1.28 16.20 ± 0.02 11.55 ± 0.03 
(50, 224, 224, 3) 5.92 ± 1.11 23.01 ± 3.73 8.90 ± 1.36 16.21 ± 0.02 11.57 ± 0.04 
(60, 224, 224, 3) 5.31 ± 0.62 20.09 ± 1.82 8.67 ± 1.35 16.21 ± 0.02 11.55 ± 0.04 
(70, 224, 224, 3) 4.90 ± 0.37 17.91 ± 0.41 8.77 ± 1.34 16.21 ± 0.02 11.73 ± 0.52 
(80, 224, 224, 3) 4.60 ± 0.17 16.40 ± 0.25 8.86 ± 1.33 16.22 ± 0.03 11.95 ± 0.67 
(90, 128, 128, 3) 4.76 ± 0.97 15.84 ± 1.38 9.02 ± 1.39 16.20 ± 0.04 11.54 ± 0.03 
(100, 224, 224, 3) 5.43 ± 1.25 14.51 ± 0.24 8.79 ± 1.37 16.19 ± 0.02 11.52 ± 0.04 
(110, 224, 224, 3) 5.72 ± 0.92 13.80 ± 0.16 8.99 ± 1.34 16.21 ± 0.04 11.86 ± 0.75 
(120, 224, 224, 3) 5.38 ± 0.72 13.49 ± 0.28 8.84 ± 1.32 16.21 ± 0.04 11.52 ± 0.03 
(130, 224, 224, 3) 4.95 ± 0.58 13.03 ± 0.22 8.74 ± 1.35 16.20 ± 0.04 11.88 ± 0.39 
(140, 224, 224, 3) 4.57 ± 0.37 12.55 ± 0.22 8.91 ± 1.36 16.20 ± 0.03 11.53 ± 0.02 
(150, 224, 224, 3) 5.30 ± 1.39 12.37 ± 0.20 8.77 ± 1.32 16.21 ± 0.05 11.55 ± 0.09 
(160, 224, 224, 3) 4.30 ± 0.12 12.64 ± 0.66 8.82 ± 1.32 16.24 ± 0.09 11.53 ± 0.03 
(170, 224, 224, 3) 5.13 ± 1.43 12.36 ± 1.00 8.84 ± 1.36 16.20 ± 0.03 11.53 ± 0.04 
(180, 224, 224, 3) 5.54 ± 1.62 11.75 ± 0.20 8.70 ± 1.34 16.22 ± 0.04 11.55 ± 0.09 
(190, 224, 224, 3) 6.26 ± 1.35 11.50 ± 0.17 9.02 ± 1.37 16.21 ± 0.03 11.53 ± 0.02 
(200, 224, 224, 3) 5.59 ± 1.17 11.80 ± 0.81 8.86 ± 1.33 16.21 ± 0.03 11.95 ± 0.89 
(300, 224, 224, 3) 4.59 ± 0.35 10.43 ± 0.19 8.95 ± 1.35 16.23 ± 0.03 11.74 ± 0.53 
(400, 224, 224, 3) 5.47 ± 1.37 9.74 ± 0.06 8.88 ± 1.32 16.23 ± 0.04 11.75 ± 0.50 
(500, 224, 224, 3) 4.85 ± 0.72 9.63 ± 0.38 8.94 ± 1.34 16.23 ± 0.06 11.53 ± 0.03 
(600, 224, 224, 3) 4.22 ± 0.29 9.32 ± 0.09 8.78 ± 1.33 16.23 ± 0.03 12.08 ± 2.44 
(700, 224, 224, 3) 4.73 ± 1.55 9.05 ± 0.08 8.95 ± 1.34 16.25 ± 0.06 11.88 ± 1.73 
(800, 224, 224, 3) 5.66 ± 1.35 8.99 ± 0.11 8.92 ± 1.33 16.25 ± 0.07 11.56 ± 0.10 
(900, 224, 224, 3) 5.04 ± 1.07 8.98 ± 0.06 8.87 ± 1.33 16.24 ± 0.06 11.58 ± 0.04 

(1000, 224, 224, 3) 4.91 ± 0.66 9.39 ± 0.29 8.82 ± 1.34 16.26 ± 0.07 11.60 ± 0.05 
(1100, 224, 224, 3) 4.54 ± 0.50 9.40 ± 0.07 8.79 ± 1.33 16.26 ± 0.07 11.59 ± 0.06 
(1200, 224, 224, 3) 4.39 ± 0.25 9.72 ± 0.24 8.91 ± 1.32 16.26 ± 0.07 11.63 ± 0.11 
(1300, 224, 224, 3) 4.19 ± 0.30 8.64 ± 0.11 104.4 ± 41.01 16.28 ± 0.11 11.66 ± 0.32 
(1400, 224, 224, 3) 5.58 ± 1.71 9.06 ± 0.19 memory error 16.30 ± 0.12 11.63 ± 0.08 
(1500, 224, 224, 3) 4.77 ± 1.32 9.40 ± 0.06 memory error 19.24 ± 29.75 15.62 ± 26.59 

Table 8. Image prediction times for eye fundus classification (in milliseconds). 
 
Finally, it is important to note that the first prediction on the Edge TPU is slower than 
the next ones, since it includes the load of the TensorFlow Lite model into the device 
memory (Google LLC, 2020a). Thus, after discarding the first prediction, the inference 
loop starts iterating over the first dataset element, and the prediction is made twice. 
 
In order to perform inferences for GPU using Jetson Nano 2GB EAS, TensorRT 7.1.3.0 
has been used. TensorRT is an SDK for high-performance Deep Learning inference that 
includes an inference optimizer and runtime providing high throughput and low latency 
for inference applications (NVIDIA Corp., 2021c, 2021d). It comes included as a 
Debian Package in the image to install in the microSD card (NVIDIA Corp., 2021b). 
 
First, three iPython notebooks have been used to save the OD and OC segmentation and 
eye fundus classification models using the SavedModel format. Then, the three 
SavedModel models are exported to ONNX3 (Open Neural Network Exchange) format 
using a conversion utility. Finally, the process followed consists of using the Jetson 

                                                           
3 https://onnx.ai 



18 

 

Nano 2GB EAS to generate the CUDA inference engines from the three ONNX models 
(NVIDIA Corp., 2021c). Then, each inference engine is serialized and saved in a 
“.plan” file. As a last step, each engine file is read and de-serialized by a program in 
order to perform predictions. 
 
When performing inferences with TensorRT, it is possible - and also recommendable - 
to use tensors of various images, since the batch size can have an important effect on the 
optimizations that TensorRT performs on the models: “Larger batches take longer to 

process but reduce the average time spent on each sample” (NVIDIA Corp., 2021d). 
 
However, the number of images of the input tensor (i.e., the batch size) is conditioned 
by the amount of available memory in a Jetson Nano 2GB EAS when generating a 
CUDA inference engine. Therefore, the compromise solution adopted in this study 
consists of splitting an input tensor into batches of ten images, in order to achieve a 
performance improvement compared to making predictions on individual images. 
 
For each dataset, the image prediction time has been calculated as the mean of the ones 
for all the batches in which the dataset is split. For each batch, the image prediction time 
is calculated as the batch prediction time divided by the batch size (i.e., ten images). 
Thus, for all the datasets used in the experimental tests, the mean prediction time per 
image and the standard deviation are presented in the fourth and the fifth column of 
results of Tables 6, 7 and 8. 
 
Moreover, as with Cloud GPU, the first prediction when using Jetson Nano 2GB 
Maxwell GPU is slower than the next ones because of some necessary memory 
initializations and allocations. Thus, after the first prediction, the inference loop starts 
iterating over the first batch of the dataset, so that this prediction is made twice but 
discarded the first time. 
 
Jetson Nano devices are designed to optimize power efficiency (NVIDIA Corp., 
2021h). They support two power modes: 5W (5 watts) and MaxN (10 watts). These two 
modes allow various configurations with several CPU frequencies and numbers of cores 
online. 
 
For each power mode, NVIDIA provides a predefined configuration by setting the 
number of CPU cores online and the CPU, GPU, and memory frequencies to 
preselected values. The current power mode can be toggled between MaxN (mode ID 0) 
and 5W (mode ID 1) using a specific command or a GUI front end. The default power 
mode for Jetson Nano 2GB is MaxN. 
 
Finally, it is important to note that the batch size used to perform inferences using Colab 
notebooks when obtaining the Cloud GPU and TPU image prediction times have also 
been set to ten images, in order to make fairer comparisons with the results obtained for 
Jetson Nano 2GB. 
 
Regarding the energy efficiency of the proposed implementations, in order to obtain the 
consumption values for the two EAS when performing inferences, an Innovateking-EU 
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TC66C type C USB tester4 has been connected between the power adapter and the EAS 
used. 
 
The minimum period between measures is one second. Voltage and current values are 
transmitted in real time to a PC connected to the tester through a micro USB port. Using 
the tester program for Windows, these values can be exported to an Excel sheet to be 
processed. 
 
In order to perform the experimental tests, ten datasets have been selected from those 
previously used to obtain the image prediction times (shown in Tables 6, 7 and 8). 
When measuring the current and voltage values for each inference type - OD and OC 
segmentation, and fundus classification - and each EAS - Coral Dev Board (Edge TPU), 
and Jetson Nano 2GB (Maxwell GPU) operating in 5W (5 watts) and MAXN (10 watts) 
power modes - a period of ten seconds before the load of each dataset, and a period of 
five seconds between a dataset load and the set of predictions have been left in order to 
identify correctly the power values that effectively correspond to the inferences. 
 
From the Excel sheets generated by the PC program connected to the USB tester, the 
voltage and current values obtained in each measure, expressed in volts and amperes 
respectively, have been used to calculate the corresponding power values in watts. 
 
Figs. 9 to 17 show the power values obtained for each inference type and each EAS. It 
can be observed that, for each of the ten datasets, there is a first set of power values 
higher than the minimum ones, that correspond to a dataset load, followed by a second 
set of power values, higher than the first ones, that correspond to the performance of the 
inferences. 
 
In these figures, it is possible to identify the period of ten seconds before each dataset 
load, as well as the period of five seconds between a dataset load and the set of 
predictions. Moreover, in the figures corresponding to predictions performed by Jetson 
Nano 2GB (Figs. 10, 11, 13, 14, 16 and 17) it can be observed the existence of a first set 
of power values higher than the minimum ones, that correspond to the load of the 
CUDA inference engines. 
 
Tables 9, 10 and 11 show the mean prediction power for each dataset size, EAS and 
inference type. For each set of inferences, each power value has been calculated as the 
sum of the products of the current and voltage values measured by the USB tester 
during the performance of the predictions, divided by the number of measures. Each 
mean value has been calculated considering only stable power values, thus discarding 
those obtained at the beginning and at the end of the set of predictions. 
 
The prediction consumption per image for each inference type, EAS and dataset size, 
has been calculated as the product of the mean power value for the corresponding set of 
predictions by the image prediction time for the dataset size. These times were 
previously obtained, and shown in Tables 6, 7 and 8. 
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Fig. 9. Power values for optic disc segmentation using Edge TPU. 

 

 
Fig. 10. Power values for optic disc segmentation using Maxwell GPU (5W). 

 

 
Fig. 11. Power values for optic disc segmentation using Maxwell GPU (10W). 

 
Dataset (shape) Edge TPU Maxwell GPU (5W) Maxwell GPU (10W) 

(100, 128, 128, 3) 4.2 ± 0.1 34 5.2 ± 0.1 178 7.4±0.2 188 
(200, 128, 128, 3) 4.5 ± 0.4 36 5.2 ± 0.1 178 7.5±0.1 191 
(300, 128, 128, 3) 4.6 ± 0.3 39 5.1 ± 0.1 175 7.4±0.2 188 
(400, 128, 128, 3) 4.6 ± 0.2 37 5.1 ± 0.1 175 7.5±0.2 191 
(500, 128, 128, 3) 4.6 ± 0.1 37 5.1 ± 0.1 175 7.5±0.2 191 
(600, 128, 128, 3) 4.7 ± 0.2 40 5.2 ± 0.1 178 7.5±0.2 191 
(700, 128, 128, 3) 5.1 ± 0.4 42 5.2 ± 0.1 178 7.5±0.2 190 
(800, 128, 128, 3) 4.7 ± 0.3 39 5.2 ± 0.1 178 7.5±0.1 190 
(900, 128, 128, 3) 4.7 ± 0.3 37 5.1 ± 0.1 175 7.5±0.2 191 

(1000, 128, 128, 3) 4.7 ± 0.4 39 5.2 ± 0.1 178 7.4±0.2 189 

Table 9. Mean power and image prediction energy use for optic disc segmentation (in 
watts and millijoules). 
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Fig. 12. Power values for optic cup segmentation using Edge TPU. 

 

 
Fig. 13. Power values for optic cup segmentation using Maxwell GPU (5W). 

 

 
Fig. 14. Power values for optic cup segmentation using Maxwell GPU (10W). 

 
Dataset (shape) Edge TPU Maxwell GPU (5W) Maxwell GPU (10W) 

(100, 128, 128, 3) 4.5 ± 0.2 126 5.2 ± 0.2 295 8.2 ± 0.1 348 
(200, 128, 128, 3) 4.8 ± 0.3 135 5.4 ± 0.2 306 8.0 ± 0.3 339 
(300, 128, 128, 3) 4.5 ± 0.2 126 5.5 ± 0.2 312 8.1 ± 0.2 342 
(400, 128, 128, 3) 4.7 ± 0.3 132 5.4 ± 0.2 306 8.2 ± 0.3 346 
(500, 128, 128, 3) 4.6 ± 0.2 129 5.5 ± 0.1 312 8.2 ± 0.3 346 
(600, 128, 128, 3) 4.7 ± 0.2 132 5.5 ± 0.2 312 8.2 ± 0.3 346 
(700, 128, 128, 3) 4.7 ± 0.2 132 5.5 ± 0.2 312 8.2 ± 0.3 346 
(800, 128, 128, 3) 4.9 ± 0.3 137 5.6 ± 0.1 318 8.3 ± 0.4 350 
(900, 128, 128, 3) 5.1 ± 0.2 143 5.6 ± 0.1 318 8.2 ± 0.3 346 

(1000, 128, 128, 3) 4.6 ± 0.2 129 5.6 ± 0.1 318 8.0 ± 0.3 337 

Table 10. Mean power and image prediction energy use for optic cup segmentation (in 
watts and millijoules). 
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Fig. 15. Power values for eye fundus classification using Edge TPU. 

 

 
Fig. 16. Power values for eye fundus classification using Maxwell GPU (5W). 

 

 
Fig. 17. Power values for eye fundus classification using Maxwell GPU (10W). 

 
Dataset (shape) Edge TPU Maxwell GPU (5W) Maxwell GPU (10W) 

(100, 224, 224, 3) 5.0 ± 0.0 44 4.0 ± 0.3 65 6.2 ± 0.0 71 
(200, 224, 224, 3) 5.0 ± 0.0 44 4.2 ± 0.2 68 5.8 ± 0.2 69 
(300, 224, 224, 3) 5.0 ± 0.1 45 4.3 ± 0.1 70 5.8 ± 0.3 68 
(400, 224, 224, 3) 5.0 ± 0.1 44 4.3 ± 0.2 70 6.0 ± 0.2 71 
(500, 224, 224, 3) 4.9 ± 0.1 44 4.2 ± 0.2 68 5.7 ± 0.6 66 
(600, 224, 224, 3) 5.0 ± 0.1 44 4.3 ± 0.1 70 5.7 ± 0.3 69 
(700, 224, 224, 3) 5.6 ± 0.1 50 4.4 ± 0.1 72 5.7 ± 0.2 68 
(800, 224, 224, 3) 5.5 ± 0.2 49 4.3 ± 0.1 70 5.9 ± 0.4 68 
(900, 224, 224, 3) 4.8 ± 0.1 43 4.3 ± 0.1 70 5.9 ± 0.4 68 

(1000, 224, 224, 3) 5.1 ± 0.1 45 4.3 ± 0.2 70 5.9 ± 0.5 68 

Table 11. Mean power and image prediction energy use for eye fundus classification (in 
watts and millijoules). 
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5. Discussion. 

 
Once it has been proved that predictions made by the two EAS chosen for our study are 
sufficiently similar to those performed by Google Cloud GPUs and TPUs and, 
therefore, both devices - Coral Dev Board and Jetson Nano 2GB - are suitable for 
segmentation and classification of fundus images, it is necessary to assess their 
performance. Figs. 18, 19 and 20 show the respective graphical representations from the 
image prediction times presented in Tables 6, 7 and 8. 
 

 
Fig. 18. Image prediction times for segmentation of OD. 

 

 
Fig. 19. Image prediction times for segmentation of OC. 
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Fig. 20. Image prediction times for eye fundus classification. 

 
First, for optic disc and cup segmentation (Figs. 18 and 19), image prediction times 
remain practically stable for Coral Dev Board and Jetson Nano 2GB, and could be 
considered approximately as constant values. However, for eye fundus classification, 
image prediction times also remain stable for both EAS until anomalous results are 
obtained from a dataset size that is specific for each device. 
 
This fact can be explained considering that the image resolution accepted by the 
classification CNN is 224x224 pixels with three color channels, which is greater than 
the image resolution accepted by the segmentation U-Nets, consisting of 128x128 pixels 
with three color channels. 
 
For Coral Dev Board, a very high prediction time is obtained when processing the 
dataset with 1300 images. Also, a memory error arises when the program tries to load 
the dataset with 1400 images into the EAS RAM. However, since the memory size of 
Jetson Nano 2GB is twice the one for Coral Dev Board (i.e., 1 GB), the EAS only 
provides an anomalous result when processing the dataset with 1500 images. These 
results are written in bold in Table 8. 
 
However, it can be expected that more normal classification times for eye fundus 
datasets with large sizes can be obtained when using higher performance models of both 
EAS families. In particular, Coral provides a version of its development board with 
4GB of RAM, which has the same specifications of the original product but is equipped 
with the quadruple amount of memory5. Also, Jetson Nano Developer Kit6 has the same 
specifications for CPU and GPU than Jetson Nano 2GB but doubles the RAM size. 
 
As expected, image prediction times for Jetson Nano 2GB operating in 5W mode are 
higher than those obtained in MaxN mode for segmentation of OD and OC, and for eye 

                                                           
5 https://coral.ai/products 
6 https://www.nvidia.com/en-us/autonomous-machines/jetson-store/ 
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fundus classification. These results are logical considering that the number of CPU 
cores online as well as the CPU and GPU maximal frequencies are lower in the 
predefined configuration for 5W power mode than for MaxN (10 watts) power mode 
(NVIDIA Corp., 2021h). 
 
As for image prediction times using Coral Dev Board, they are lower than the ones 
obtained for Jetson Nano 2GB in MaxN power mode. This result is also expected, since 
quantized models for the Edge TPU are smaller and faster (Google, 2021b), and this 
device is designed to perform extremely fast and power-efficient ML inferencing. An 
Edge TPU can execute up to four trillion operations per second using only two watts of 
power7. 
 
Table 12 shows the minimum speed-ups (SUs) in the three scenarios - optic disc (Table 
6) and cup (Table 7) segmentation, and eye fundus classification (Table 8) - for Coral 
Dev Board (Edge TPU) compared with Jetson Nano 2GB (Maxwell GPU) operating in 
MaxN power mode (Eq. (1)), and for Jetson Nano 2GB in MaxN mode compared with 
the same EAS in 5W mode (Eq. (2)). The anomalous results obtained for eye fundus 
classification have been discarded for the calculation of the speed-ups. 
 
ET PT: Image prediction time for Edge TPU. 
MG MaxN PT: Image prediction time for Maxwell GPU in MaxN power mode. 
MG 5W PT: Image prediction time for Maxwell GPU in 5W power mode. 
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 Edge TPU vs. Maxwell 
GPU MaxN mode  

Maxwell GPU MaxN 
mode vs. 5W mode 

Optic disc 2.88 1.21 
Optic cup 1.47 1.33 

Eye fundus image 1.25 1.19 

Table 12. Minimum speed-ups for Edge TPU and Maxwell GPU. 
 
Moreover, in general terms the corresponding results for Google Cloud GPU produce a 
delimited and relative narrow interval of values, so that they can be considered as stable 
in the three scenarios: optic disc and cup segmentation, and eye fundus classification 
(Figs. 18, 19 and 20). 
 
On the other hand, from the obtained results for Cloud TPU prediction times (Tables 6, 
7 and 8), their graphical representations as the dataset size (i.e., the number of images) 
increases can be approximated to a hyperbola plus a constant component (Figs. 18, 19 
and 20). Thus, in order to explain the obtained results, we propose the following 
equation for Cloud TPU prediction times. 
 
 

                                                           
7 https://coral.ai/docs/edgetpu/faq#what-is-the-edge-tpus-processing-speed 
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n: Dataset size (number of images). 
CT PT (n): Image prediction time for Cloud TPU. 
CT PT (OT): Image prediction time for Cloud TPU (overload term). 
CT PT (IT): Image prediction time for Cloud TPU (independent term). 
 

�� �� (�) =
�  !  (" )

#
+ �� �� ($�)                                                                                        (3) 

 
The function proposed (Eq. (3)) has two summands: The first one is inversely 
proportional to the dataset size, whereas the second one is independent of this size, and 
it is the value to which the function tends as the dataset size increases. 
 
For optic disc and cup segmentation, and eye fundus classification, we can observe that 
for small dataset sizes, image prediction times are far greater for Cloud TPU than for 
Cloud GPU (Figs. 18, 19 and 20). This result can be explained considering the delays 
due to the transmission of information through a network (Díaz-del-Río et al., 2016). 
 
It must be noted that the communication between the CPU and the TPU (Google, 
2021a) is not local. Consequently, we must consider the existence of a data transmission 
time, that can be considered as bounded unless a technical incidence occurs. Cloud 
TPUs are more helpful for training networks8 than for performing inferences on small 
datasets. This is logical as they were designed for this purpose. 
 
Finally, when comparing TPU prediction times (Figs. 18, 19 and 20), we can observe 
that for small datasets, image prediction times are smaller for the Edge TPU compared 
with those ones for the Cloud TPU. 
 
However, as the size of the dataset (n) on which inferences are performed increases, the 
network data transmission time - which we can identify with the overload term denoted 
CT PT (OT) in Eq. (3) - becomes less important compared with the total prediction time 
for the complete dataset, so that the image prediction time, denoted as CT PT (n) in Eq. 
(3), tends to the independent term, denoted CT PT (IT), which we can be identify with 
the effective image prediction time by the Cloud TPU. 
 
It is important to note that the Cloud TPU performance is much greater than that of the 
Edge TPU, since the latter has been designed for model inferencing8 and not for training 
of complex and large ML models. 
 
Eq. (4) expresses the ideal speed-up in the Cloud TPU performance versus that of the 
Edge TPU for a sufficiently large dataset. The term ET PT denotes the Edge TPU image 
prediction time. Since the Cloud TPU performance is much greater than that of Edge 
TPU coprocessor, for a sufficiently large dataset size (n), the total prediction time using 
the Cloud TPU plus the data transmission time will end up being smaller than the total 
time for the inferences on this dataset using the Edge TPU. 
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8 https://coral.ai/docs/edgetpu/faq#how-is-the-edge-tpu-different-from-cloud-tpus 
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In relation to the energy usage of the proposed implementations, from the data presented 
in Tables 9, 10 and 11 (section 4), a summary table of results has been obtained in order 
to show the mean power and the image prediction consumptions for each type of 
inference and EAS. The results of this last table are analyzed in this section. 
 

 Edge TPU Maxwell GPU (5W) Maxwell GPU (10W) 
OD segmentation 4.6 ± 0.2 38.0 ± 2.1 5.2 ± 0.0 176.8 ± 1.5 7.5 ± 0.0 190.0 ± 1.2 
OC segmentation 4.7 ± 0.2 132.1 ± 4.9 5.5 ± 0.1 310.9 ± 6.8 8.2 ± 0.1 344.6 ± 3,8 

Fundus classification 5.1 ± 0.2 45.2 ± 2.2 4.3 ± 0.1 69.3 ± 1.8 5.9 ± 0.1 68.6 ± 1.4 

Table 13. Mean power and image prediction consumptions (in watts and millijoules). 
 
From the obtained results, it can be observed that Coral Dev Board (Edge TPU) is the 
EAS with the lowest consumption value for OD and OC segmentation, and also for 
fundus classification, and is also the device that takes less time to perform inferences. 
This last fact was already known since image prediction times were previously obtained 
(see Tables 6, 7 and 8). 
 
As for Jetson Nano 2GB (Maxwell GPU), the EAS uses less power when operating in 
5W mode than in MAXN mode. Power values for 5W mode do not reach 6 watts for 
any dataset size when performing OC and OD segmentation, and even less for fundus 
classification (around 4.3 watts). 
 
However, for the three inference types and all the dataset sizes, image prediction times 
are higher for 5W mode than for MAXN mode, as shown is Tables 6, 7 and 8. For this 
reason, consumption values are not very different between both power modes. 
Moreover, for fundus classification (Table 11), most of the consumption values are 
slightly higher when Jetson Nano 2GB operates in 5W mode. 
 
Therefore, when performing resource demanding tasks, operating in 5W mode does not 
improve the energy usage for Jetson Nano 2GB, at least in our study cases. Even though 
power values (around 5 watts) are lower for 5W mode, consumption values increase due 
to the higher image prediction times for that mode. There could be a difference between 
both power modes in favor of the 5W mode if the EAS were used to perform lighter 
tasks regarding the use of resources, but that is not our case. 
 
 
6. Conclusions. 

 
In this study, the practical viability of using embedded accelerated systems (EAS) 
equipped with ML hardware to perform inferences for medical image segmentation and 
classification has been demonstrated. More specifically, Coral Dev Board and NVIDIA 
Jetson Nano 2GB EAS have been used to implement a segmentation and a classification 
subsystem for eye fundus images, and have been tested experimentally. The first EAS 
incorporates a Google Edge TPU, whereas the second one is equipped with a Maxwell 
GPU. 
 
For the worst case (OC segmentation), inference times are less than 29 ms per image 
using Coral Dev Board and less than 43 ms per image using Jetson Nano 2GB in MaxN 
(10 watts) power mode. For the best case, prediction times less than 9 ms per image 
using Coral Dev Board for OD segmentation, and less than 14 ms per image using 
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Jetson Nano 2GB in MaxN power mode for fundus classification have been achieved. 
Thus, integrating specific ML hardware on embedded devices allows many complex 
segmentation and classification tasks to be performed in real time using these devices. 
In this sense, it would be convenient to integrate ML hardware in medical image 
acquisition instruments, in order to enable them to analyze the captured images. 
 
Both devices perform inferences in very reasonable times of a few milliseconds with an 
acceptable accuracy. However, due to the ML accelerator architecture of each EAS, the 
Coral Dev Board Edge TPU delivers prediction times per image smaller than those ones 
provided by the Jetson Nano 2GB Maxwell GPU. Nevertheless, the GPU of this last 
device allows it to make predictions with a greater accuracy. Therefore, the choice of 
using one SBC or the other will depend on the nature of the specific problem, in which 
the accuracy can be more important than inference times or vice versa. 
 
A similar conclusion regarding the performance of Coral Dev Board compared with that 
of other EAS - NVIDIA Jetson Nano and Asus Tinker Edge R - was obtained in Baller 
et al. (2021). From the achieved results, each device obviously performed significantly 
better when making inferences with a model optimized for its respective API. Thus, in 
that work Coral Dev Board delivered the best performance for both inference time and 
power consumption when using a quantized TensorFlow Lite model for MobileNet V2. 
The inference time achieved by this device was the best one compared with those 
provided by the other two EAS when performing inferencing using a non-quantized 
model for MobileNet V2. 
 
Finally, as stated in the introduction, it is important to consider the energy efficiency of 
ML accelerators, since they can be embedded in battery powered devices. Therefore, in 
this work the corresponding measures have been taken in order to quantify the energy 
usage by Coral Dev Board (Edge TPU) and Jetson Nano 2GB (Maxwell GPU) when 
performing OD and OC segmentation, and fundus classification. 
 
From the obtained results, it can be clearly observed that Coral Dev Board is the EAS 
with smaller energy usage values per image, compared with those of Jetson Nano 2GB, 
for the three types of inferences: OD segmentation (around 38 mJ vs. 177 mJ in 5W 
mode and 190 mJ in 10W mode), OC segmentation (around 132 mJ vs. 311 mJ in 5W 
mode and 345 mJ in 10W mode), and fundus classification (around 45 mJ  vs. 69 mJ in 
both modes). This very significant energy reduction can be explained considering that 
the Edge TPU is specifically designed for fast and power-efficient ML inferencing8. 
Moreover, the Edge TPU runs a quantized integer version of the problem, while the 
GPU runs the 32-bit floating point version. We have shown that this quantization has 
little effect on the problem results. 
 
We also show that the energy usage, at least in our study cases, does not improve 
significantly with low power GPU modes, as with Jetson Nano 2GB in 5W mode. We 
can see that, although the power usage for the 5W mode is reduced by a factor of about 
0.7 compared with the MAXN mode, the time to solve the problems - OD and OC 
segmentation, and fundus classification - is augmented by approximately 1.35. Thus, the 
energy reduction in the low power mode for these problems is less than 10% in the best 
case (OC segmentation). 
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As future work, we intend to continue this study by using other devices of the NVIDIA 
Jetson series with higher specifications6 in order to perform alternative experimental 
tests on the models used in this work, and compare the new results with the already 
obtained for Jetson Nano 2GB. We also intend to use Coral accelerator devices5 to 
implement the proposed models and perform the experimental tests. Such devices are 
based on an Edge TPU in order to enable existing systems to perform ML inferencing. 
 
Higher models of NVIDIA Jetson developer kits, such as Jetson Xavier NX with a 384-
core Volta GPU, a 6-core ARM 64-bit CPU and 8 GB of RAM, or Jetson AGX Xavier 
with a 512-core Volta GPU, an 8-core ARM 64-bit CPU and 32 GB of RAM, are 
interesting options to test the models implemented in this work. Moreover, Jetson Nano 
is a developer kit with the same specifications for CPU and GPU as Jetson Nano 2GB, 
but with 4 GB of RAM as well as other enhancements related to connectivity. Also, a 
version of Coral Dev Board with 4 GB of RAM is commercially available. 
 
Moreover, Coral USB Accelerator supports Debian Linux, macOS and Windows. This 
device is compatible with Raspberry Pi and supports TensorFlow Lite framework. In 
addition, M.2 Accelerators with one or two Edge TPUs, and Mini PCIe Accelerators 
support Debian Linux and TensorFlow Lite, and also allow to integrate the Edge TPU 
into existing systems. The results achieved using Coral accelerators and higher models 
of NVIDIA Jetson series will enable us to continue this work and study the performance 
in both cases. 
 
Finally, Teikari et al. (2019) proposes integrating ML technology in medical devices in 
order to perform high quality image acquisition without the intervention of a properly 
qualified operator, and suggests various scenarios where embedded Deep Learning 
could be used in routine eye examination. For example, patients could be screened in 
remote areas by a mobile general healthcare practitioner, or could be imaged by a 
technician in a waiting room before an ophthalmologist appointment. 
 
In this vein, considering the possibility of using the TPU integrated in the Google 
Tensor SoC9,10 - used by Pixel 6 and Pixel 6 Pro smartphones - for medical image 
analysis, ophthalmologists could capture patients’ eye fundus images and analyze them 

in their smartphones. In this sense, the models proposed in this work could be 
implemented on these ML accelerated smartphones to test the performance achieved. 
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