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SUMMARY

The Blue Economy encompasses an interdisciplinary field of study aimed at achieving
sustainable utilization of ocean resources while preserving the environment’s health. The
importance of this concept lies in its role in achieving the Sustainable Development
Goals defined by the United Nations. Nevertheless, the pursuit of economic development
can often conflict with the principles of sustainability, underscoring the necessity of
leveraging adequate tools to address these challenges.

Data science, and particularly Machine Learning, has become a valuable tool
for addressing the challenges of the Blue Economy. For example, in the field of
sustainable fishing, monitoring fish populations is highly relevant and can be achieved
through Machine Learning models. In another area, such as maritime transport, the
implementation of weather routing tools can optimize sea routes, improving fuel
efficiency and ensuring a reduction in greenhouse gas emissions.

This thesis will delve into the study of sustainable fishing and weather routing in the
context of the Blue Economy, applying data science techniques to improve efficiency and
sustainability in both fields.

Keywords: Data Science, Machine Learning, Blue Economy, Sustainable fishing,
Echo-sounder buoys, Weather routing.



RESUMEN

La Economía Azul ha surgido como un campo de estudio interdisciplinario que busca
aprovechar los recursos del océano de manera sostenible y preservar su salud ambiental.
Este concepto se ha vuelto cada vez más importante para alcanzar los Objetivos de
Desarrollo Sostenible de las Naciones Unidas. Sin embargo, el desarrollo económico y
la sostenibilidad pueden entrar en conflicto, lo que destaca la necesidad de abordar estos
desafíos con herramientas adecuadas.

La ciencia de datos, y en particular el aprendizaje automático (Machine Learning), se
ha convertido en una herramienta valiosa para abordar los desafíos de la Economía Azul.
Por ejemplo, en el ámbito de la pesca sostenible, es muy relevante la monitorización de
poblaciones de peces, que se puede realizar mediante modelos de Machine Learning.
En otro ámbito, como es el transporte marítimo, la implementación de herramientas
de “weather routing” puede optimizar las rutas por mar, mejorando la eficiencia en el
consumo de combustible y garantizando una reducción en las emisiones de gases de efecto
invernadero.

En esta tesis se profundizará en el estudio de la pesca sostenible y el weather routing
en el contexto de la Economía Azul, aplicando técnicas de ciencia de datos para mejorar
la eficiencia y sostenibilidad en ambos campos.

Palabras clave: Ciencia de Datos, Machine Learning,Economía Azul, Pesca sostenible,
Boyas con ecosonda, Weather routing.



PUBLISHED AND SUBMITTED CONTENT

The following published articles have been (co)authored by me:

• D. Precioso and D. Gómez-Ullate, ‘Sustainable Fishing: applying Data Science
to the Ecological Trap Hypothesis,’ Actas de las Jornadas de Investigación
Predoctoral en Ingeniería Informática, p. 21, 2021

– This work, presented during the first predoctoral consortium in Computer
Science (JIPII 2021) organized by the University on Cádiz, was the introduction
to my research on sustainable fishing.

– As part of my industrial Phd, the study was supported by Komorebi AI,
Satlink, OPAGAC and the Spanish Institute of Oceanography.

– Chapter 2 expands on this work.

• D. Precioso, M. Navarro-García, K. Gavira-O’Neill et al., ‘TUN-AI: Tuna biomass
estimation with Machine Learning models trained on oceanography and echosounder
FAD data,’ Fisheries Research, vol. 250, no. February, p. 106 263, 2022. doi:
10.1016/j.fishres.2022.106263

– This study was done in collaboration with Komorebi AI and Satlink.

– In this work we combine oceanographic data, echo-sounder buoy data and
logs from fishing boats to evaluate different Machine Learning models and
establish a pipeline, named Tun-AI , for processing echo-sounder buoy data
and estimating tuna biomass.

– My role was to analyse and preprocess the raw data provided by Satlink. I
also contributed in building the pipeline to train the Machine Learning models
with the aforementioned data.

– Chapter 2 is based on this article. The material from this source included in
this thesis is not singled out with typographic means and references.

• D. Gómez-Ullate, F. Amor, J. J. de la Jara et al., ‘Smart Shipping: Optimización
de rutas marítimas en tiempo real,’ 61 Congreso de Ingeniería Naval e Industria
Marítima, 2022

– This work presented a weather routing system that uses real time data and
forecasts into the future of navigation conditions to find the best possible route
between two ports.

– Data on ocean currents, wind and waves are obtained from prediction models
from data providers like National Oceanic and Atmospheric Administration
(NOAA) and Copernicus. The optimization algorithm was based on graph
search, and used simple fuel consumption models as cost function.

https://doi.org/10.1016/j.fishres.2022.106263


– My role was to preprocess the oceanography data and assist in the developing
of the graph search algorithms.

– Chapter 4 is based partially on this article. The material from this source
included in this thesis is not singled out with typographic means and
references.

The following articles have been also (co)authored by me and have been submitted
for publication:

• M. Navarro-García, D. Precioso, K. Gavira-O’Neill et al., ‘How do tuna schools
associate to dFADs? A study using echo-sounder buoys to identify global patterns,’
arXiv preprint arXiv:2207.07049, 2022

– This study was done in collaboration with Komorebi AI and Satlink.

– The work is a continuation of the first article mentioned in this section
[2]. Here we used Tun-AI to examine the temporal trends of tuna schools’
association to drifting objects.

– My role was to preprocess echo-sounder buoy data and apply Machine
Learning models to predict tuna presence under those buoys. I then use these
predictions to derive specific metrics that characterized tuna behaviour, and
studied the difference of these metrics between oceans.

– Chapter 3 is based on this article. The material from this source included in
this thesis is not singled out with typographic means and references.

• D. Precioso, R. Milson, L. Bu et al., ‘Hybrid Search method for Zermelo’s
navigation problem,’ 2023

– This study was conducted during my research internship at Dalhousie
University, Canada.

– In this work we apply mathematical variational methods to solve the Zermelo
navigation problem, both in synthetic vector fields and on real data (ocean
currents).

– My role was to adapt the mathematical equations to Python, and develop
the benchmarks by building synthetic vector fields and preprocessing the real
oceanography data.

– Chapter 4 is based partially on this article. The material from this source
included in this thesis is not singled out with typographic means and
references.

viii



OTHER RESEARCH MERITS

During my four years of research on Data Science and Machine Learning, I was
involved in some other projects, unrelated to the Blue Economy but relevant to other
industries. Below I list the articles produced during those researches:

• D. Precioso and D. Gómez-Ullate, ‘Thresholding Methods in Non-Intrusive Load
Monitoring,’ The Journal of Supercomputing, 2023

– Non-Intrusive Load Monitoring (NILM) aims to predict the consumption or
status of domestic appliances in a household only by knowing the aggregated
power load. NILM can be formulated as regression problem or most often as a
classification problem. Most datasets gathered by smart meters allow to define
naturally a regression problem, but the corresponding classification problem
is a derived one, since it requires a conversion from the power signal to the
status of each device by a thresholding method.

– In this study we treated three different thresholding methods to perform
NILM. We analysed the performance of Deep Learning state-of-the-art
architectures on both the regression and classification problems, introducing
criteria to select the most convenient thresholding method.

– We concluded that a discussion of what is the most appropriate method should
not be based on the performance achieved by estimation models alone, but
include also some objective way to judge the interpretability of the results.
We suggested as an objective criterion to use the intrinsic error, i.e. Mean
Average Error between the original power series and the reconstructed binary
series from the Deep Learning model.

– This study was conducted fully by my Phd supervisor, David Gómez-Ullate,
and I. My roles involved preprocessing the data, building the Machine
Learning models, designing the scores to evaluate their predictions, and
finally training those models and evaluating them.

• D. Precioso and D. Gómez-Ullate, ‘Non-Intrusive Load Monitoring using Multi-
Output CNNs,’ in 2021 IEEE Madrid PowerTech, 2021, pp. 1–6. doi: 10.1109/
PowerTech46648.2021.9494943

– This article also derived from our research on NILM, and was presented to the
PowerTech conference, hosted in Madrid by IEEE.

– In this paper we propose a modification of a state-of-the-art convolutional
neural network architecture to allow for multi-output channels, solving the
regression and classification problems with relative weights simultaneously.

https://doi.org/10.1109/PowerTech46648.2021.9494943
https://doi.org/10.1109/PowerTech46648.2021.9494943


As a reminder, the problems involve estimating the appliance power load and
detecting ON/OFF states, respectively. We analyze the performance of this
multi-output model and study the interplay between the two approaches on
NILM.

• I. Barbeito, D. Precioso, M. J. Sierra et al., ‘Effectiveness of non-pharmaceutical
interventions in nine fields of activity to decrease SARS-CoV-2 transmission
(Spain, September 2020-May 2021),’ Frontiers in Public Health, 2023

– The project was a collaboration between University of A Coruña, Universidad
de Cádiz and the Study Group for Non-Pharmaceutical Interventions (NPI) in
Spain.

– We estimated the association between the level of restriction in nine different
fields of activity and SARS-CoV-2 transmissibility in Spain, dating from 15th
September 2020 to 9th May 2021.

– A stringency index was created for mobility, social distancing, commerce,
indoor and outdoor bars and restaurants, culture and leisure, worship and
ceremonies, indoor and outdoor sports, for each Spanish province daily. The
logarithmic return of the weekly percentage variation of the 7-days COVID-
19 cumulative incidence was used to measure COVID-19 transmission, lagged
12 days behind the stringency index. A hierarchical multiplicative model was
fitted, and the median of coefficients across provinces was used to quantify
the effect of increasing one standard deviation in the stringency index in each
field.

– Our results showed that highest levels of restriction were seen in mobility,
sports and restaurants, particularly indoors. The increase in restrictions overall
reduced SARS-CoV-2 transmission by 22% in one week.

– My role in this study was to preprocess the data from NPI and compute the
stringency index for each field of activity.

• A. Ruiz-Zafra, D. Precioso, B. Salvador et al., ‘NeoCam: An edge-cloud platform
for non-invasive real-time monitoring in neonatal intensive care units,’ IEEE
Journal of Biomedical and Health Informatics, pp. 1–12, 2023. doi: 10.1109/
JBHI.2023.3240245

– NeoCam project was born at Universidad de Cádiz, in collaboration with
Hospital Universitario Puerta del Mar (Cádiz, Spain).

– We used an specialized device (the Luxonis OAK-D smart camera) to build a
contactless monitoring system for newborn babies, specifically the ones at
Intensive Care Units (NICUs). The NeoCam system was able to monitor
pain and emotional stress, breathing rhythm, physical activity and sleep-wake
cycles purely using Computer Vision and Machine Learning (ML) algorithms,
which were developed specifically for this project.

x

https://doi.org/10.1109/JBHI.2023.3240245
https://doi.org/10.1109/JBHI.2023.3240245


– All the vitals monitored by NeoCam are sent on real time to a server, and can
be accessed by the personal at NICUs. The system also send alerts when it
detects anomalies.

– My role was to develop, train and implement the aforementioned ML
algorithms.

Additionally, some of the projects I was involved in won international competitions:

• OpenCV AI Competition 2021.

– OpenCV AI competition is focused on solutions solving real world problems
using spatial AI. Teams use the new OpenCV AI Kit D (OAK-D) to solve
their challenge areas. The OAK-D is a smart camera with neural inference
and depth processing capability on board.

– My team “Caleta”, from Universidad de Cádiz, presented the project NeoCam.
Refer to the paper described previously in this section.

– Out of the 1400 submissions, NeoCam earned 2nd place in the International
Final, and 1st place in the Europe + Russia + Australasia region.

– Link to the official page of the competition: https://opencv.org/openc
v-ai-competition-2021/

• Ocean Hackathon 2021.

– Ocean Hackathon is an international event, organized by Campus Mondiale
de la Mer. More than a hundred teams from 15 different cities presented
their projects in this edition. The best projects of each participating city were
invited to compete in the grand finale, hosted in Brest (France).

– I was part of the project Smart Shipping. We represented the city of Cádiz
during the international final and earned second place. This project later
motivated the study shown in Chapter 4.

– Link to the news kit: https://www.campusmer.fr/files/4189/OH6_-_
press_kit_-_2022-02.pdf

xi

https://opencv.org/opencv-ai-competition-2021/
https://opencv.org/opencv-ai-competition-2021/
https://www.campusmer.fr/files/4189/OH6_-_press_kit_-_2022-02.pdf
https://www.campusmer.fr/files/4189/OH6_-_press_kit_-_2022-02.pdf


CONTENTS

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Data Science and Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Sustainable fishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Tuna biomass estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2. Tuna dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Weather routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1. Objective 1. Tuna estimation using several sources of data . . . . . . . . . 9

1.4.2. Objective 2. Study tuna dynamics using ML models . . . . . . . . . . . . . 9

1.4.3. Objective 3. Test weather routing algorithms . . . . . . . . . . . . . . . . . 10

1.5. Thesis structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. TUN-AI: TUNA BIOMASS ESTIMATION . . . . . . . . . . . . . . . . . . . . . 12

2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. Classification models for tuna presence . . . . . . . . . . . . . . . . . . . . 12

2.2.2. Regression models for tuna biomass . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1. Database description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2. Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3. Model selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4. Best model performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1. Echo-sounder window selection . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2. Classification models comparison . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3. Regression models comparison . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4. Best models results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5. Feature importance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xii



2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.A. Classification metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.B. Regression metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.C. Echo-sounder buoys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.D. Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3. TUNA DYNAMICS WITH TUN-AI . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3. Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1. Data processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1. General aggregation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2. Aggregation and disaggregation times . . . . . . . . . . . . . . . . . . . . . 55

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.A. Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. WEATHER ROUTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1. Meteorology and oceanography. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2. Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3. Consumption models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4. Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1. Variational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2. Graph Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3. Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



4.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1. Synthetic benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2. Real benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.3. Seasonal differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.A. Derivation of Zermelo’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.A.1. Zermelo’s Navigation Problem on the plane . . . . . . . . . . . . . . . . . 94

4.A.2. Zermelo’s Navigation Problem on the sphere . . . . . . . . . . . . . . . . . 95

4.B. Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.B.1. Continuous Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . 96

4.B.2. Discrete Euler-Lagrange equations. . . . . . . . . . . . . . . . . . . . . . . 97

4.C. Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.D. Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1. Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1. Tuna biomass estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.2. Tuna dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.3. Weather routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2. Crossover applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1. Applications of sustainable fishing to weather routing . . . . . . . . . . . . 105

5.2.2. Applications of weather routing to sustainable fishing . . . . . . . . . . . . 106

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiv



LIST OF FIGURES

1.1 Scheme of how to develop a supervised learning algorithm. . . . . . . . . 3

1.2 Fish tag placement. An unique ID is shown on each tag, that helps identify
the individual. After a tag is placed, the fish is registered in a database
and released into the ocean. When the fish is caught again, fishermen are
encouraged to register where and when the fish was found, using the ID.
Image source: grayfishtagresearch.org . . . . . . . . . . . . . . . 4

1.3 Man-made Fish Aggregating Device (FAD) anchored to the sea floor.
Ropes and lines encourage the settlement of marine plants and small
crustaceans and molluscs, which in turn attract small fish. Fish finders
may be attached to a FAD allowing fishermen to electronically “connect”
to the FAD and see how many and at what depth the fish are located.
Image from NOAA [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The structure of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Tonnage distribution of tuna captured from a total of 5202 sets. . . . . . . 18

2.2 Left: Depth layer configuration and Satlink echo-sounder buoy setup.
Right: An example of the biomass estimates (in metric tonnes) and
echo-gram display that buoy users can access. Using the manufacturer’s
algorithms, raw acoustic backscatter is converted into biomass estimates
based on the target strength of skipjack tuna (Katsuwonus pelamis). . . . 19

2.3 An example of a 72-hour “echo-sounder window” (yellow box) in relation
to the recorded set time in the FAD logbook (green line). The day of
the event (24 hours) is referred to as the “event window” (red box). It
is worth noting that the yellow and red boxes do not overlap. The sun’s
inclination throughout the day is depicted above the graph, with day hours
represented by yellow circles and night hours represented by black circles.
The echo-sounder buoy biomass estimates for each hour are represented
by columns of coloured squares, while rows are depth bins. This figure
clearly shows the circadian patterns in tuna activity under the Drifting
Fish Aggregating Device (DFAD). . . . . . . . . . . . . . . . . . . . . . 21

2.4 An illustration of how biomass measurements are aggregated. . . . . . . 23

xv

grayfishtagresearch.org


2.5 A visual representation of how the biomass readings were aggregated.
Columns of coloured squares represent the echo-sounder buoy biomass
estimates for each hour, while rows represent depth bins or layers. The
value of the estimated biomass is represented by the square colour. First,
the maximum value for each layer is calculated, yielding a vector of
size 10. (in green). Second, depending on the size of the echo-sounder
window, the maximum value for each hour is calculated, resulting in a
vector of size{24, 48, 72}. (in red). Finally, the baseline model (in blue)
was fed into the ML models as an input. . . . . . . . . . . . . . . . . . . 25

2.6 Confusion matrices with the best classification model performance on
the test set. True label refers to the actual biomass category, whereas
predicted label is the category inferred by the model. . . . . . . . . . . . 31

2.7 Scatter plot of the observed against estimated tuna biomass in set events
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1. INTRODUCTION

The United Nations (UN) first used the term “Blue Economy” in 2012 [10], to describe
the sustainable use of ocean resources [11] for economic growth, improved livelihoods,
and jobs, while preserving the health of ocean ecosystem. It encompasses a wide range
of activities, including fisheries, tourism, marine renewable energy, and transportation,
among others.

The Blue Economy is closely linked to the concept of sustainable development , and
specifically to the UN Sustainable Development Goals (SDG), which are a set of 17 global
goals adopted by the UN General Assembly in 2015 to end poverty, protect the planet,
and ensure peace and prosperity for all [12]. One of the key SDGs is SDG 14, which
is specifically focused on conserving and sustainably using the oceans, seas, and marine
resources for sustainable development [13]. This goal aims to prevent and significantly
reduce marine pollution of all kinds, in particular from land-based activities, including
marine debris and nutrient pollution. It also aims to protect and restore marine and
coastal ecosystems, enhance their contributions to carbon sequestration and storage. By
promoting the sustainable use of ocean resources, the Blue Economy can help countries
achieve SDG 14 and other related SDGs, such as those on climate action, sustainable
cities and communities, responsible consumption and production.

However, promoting the maritime industry while ensuring a sustainable use of the
ocean resources is a complex task to achieve. It requires a deep understanding of the
industrial activities to make them more efficient and environmentally friendly [14], [15].
One way to reach this goal is through Data Science (DS) implementations. The focus
of DS is to extract knowledge from specific fields, then apply those insights to solve
problems related to the field. ML is a specific application of DS, where complex models
are trained with huge amounts of data to optimize specific tasks. In recent years, many
successful applications of DS and ML to the Blue Economy have spurred [16]–[18].

This thesis presents two projects, both related to different fields inside the Blue
Economy. In these projects ML and DS had been applied to improve the efficiency
of maritime industrial tasks while also ensuring a sustainable development. The focus
of this research is on practical applications, with a particular emphasis on addressing
industry needs and challenges. By demonstrating the value of Data Science and Machine
Learning for the Blue Economy, this thesis aims to contribute to the development of a
more sustainable and inclusive ocean economy.

This chapter will briefly describe the basics of DS and ML, then introduce the core
concepts related to each project: sustainable fishing and weather routing. In addition, it
will outline the objectives pursued in this thesis and explain the general structure of the
manuscript.
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1.1. Data Science and Machine Learning

Data Science (DS) is a field of study that focuses on extracting knowledge from vast
amounts of data [19]. It is an interdisciplinary field that combines elements of Computer
Science, Statistics, and Mathematics to uncover patterns and insights in data.

The concept of DS originated in the early 1960s as a new discipline that would
support the understanding and interpretation of the large amounts of data that were being
generated at the time [20]. The first description of the field is attributed to Tukey [21]
“(...) as I have watched mathematical statistics evolve, I have had cause to wonder and to
doubt (...) I have come to feel that my central interest is in data analysis (...)”, referring to
the merging of statistics and computers. The term “Data Science” was coined in the 1970s
as an alternative name for Computer Science [22]. In the years since, DS has evolved to
include Statistics and Mathematics, in addition to Computer Science.

Today, DS is an important part of business and academic research [23]. Data scientists
use modern tools and techniques to find hidden patterns in data, derive meaningful
insights, optimize tasks, and make business decisions. They work with large datasets
and use advanced algorithms and Machine Learning techniques to uncover insights that
would not be possible using traditional methods.

DS has become increasingly important as businesses and organizations generate more
and more data. The ability to extract insights from this data can provide a significant
competitive advantage, enabling organizations to make better decisions and improve their
operations. As a result, demand for data scientists with the skills and expertise to analyze
and interpret data has grown rapidly in recent years.

As previously mentioned, one of the tools applied in Data Science is Machine
Learning (ML). The term “Machine Learning” was coined prior to DS, in the late 1950s
[24] along with the synonym “self-teaching computers” [25]. It describes any computer
algorithm that tries to emulate human behaviour in a specific task, using data and some
evaluation method to improve its performance.

There are three major components of a ML system: data, models, and learning [26].
The data used by a ML system must be in numerical format, as computer programs
work with tensors. Real data sets contain information in varied formats (such as text and
images) and is usually the role of DS to preprocess these data and deliver it to the model
in numeric format. A ML model learns from the data set and should be able to perform
well on unseen data [27]. Learning can be understood as a way to automatically find
patterns and structure in data by optimizing the parameters of the model [28]. Machine
Learning is a broad field of study with many branches. This thesis will show applications
of Supervised Learning and Deep Learning. Both categories are described below.

Supervised Learning (SL) is a subcategory of ML where each data point in the
data set is labelled [29], meaning that the data includes both input and output examples.
This allows the model to learn to map the input data to the corresponding output labels
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[30]. In other words, the model is trained on a labelled dataset, and it learns to make
predictions based on the relationships between the input data and the corresponding
labels, see Figure 1.1. The two projects present in this manuscript, Tun-AI and weather
routing, involve supervised tasks.

Figure 1.1: Scheme of how to develop a supervised learning algorithm.

Deep Learning (DL) is another subfield of ML that focuses on building dense models
that are able to discover intricate structures in high-dimensional data and solve complex
problems [31]. These models are often implemented using neural networks, which are
composed of many interconnected processing nodes that are able to learn from data and
make predictions or decisions based on the information they have learned. DL models
are typically able to handle large datasets, and are able to learn complex patterns and
relationships within the data.

1.2. Sustainable fishing

A conventional idea of a sustainable fishery is that it is one that is harvested at a
sustainable rate, where the fish population does not decline over time because of fishing
practices [32], [33]. This not only involves avoiding over-fishing but also ensuring
that the methods used to locate and attract fish schools are not harmful for the overall
fish population. Sustainability in fisheries requires a deep understanding of the fish’s
population dynamics in order to perform a correct stock assessment, which can be
achieved by two different approaches: individual fish tagging and school detection.

Individual tagging involves attaching a device, such as a tag (see Figure 1.2), to
a single fish and monitoring it over time through recaptures by the fishery. The goal
of these studies is to create a group of tagged individuals that can be used to estimate
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mortality rates and population size, provided certain assumptions are met [34]. These
assumptions include: that tagged fish experience the same processes and behave in the
same way as untagged fish; that the probability of capturing a tagged fish is the same as
that for an untagged fish in the specific area and time period being studied; and that tag
losses due to shedding, tagging-induced mortality, and non-reporting of recaptured tagged
fish are minimal or can be separately calculated [35], [36]. To meet these assumptions,
experimental designs and/or analytical corrections may be used, such as releasing tags
widely in the area being studied. Size-structured (or age-structured as a proxy for size)
modelling approaches [36] can also be employed to address any discrepancies in the size
distribution of tagged fish compared to the catch of the fishery. When these assumptions
are satisfied, tagging data can provide valuable information for stock assessment, either
through stand-alone analyses [37] or by being incorporated into the stock assessment
model with other data [38].

Figure 1.2: Fish tag placement. An unique ID is shown on each tag, that helps identify
the individual. After a tag is placed, the fish is registered in a database and released into
the ocean. When the fish is caught again, fishermen are encouraged to register where and
when the fish was found, using the ID. Image source: grayfishtagresearch.org

The second approach for stock assessment is to identify fish schools, which requires
the use of more sophisticated tools, such as acoustic detection devices (e.g. echo-sounder
buoys). These instruments can cover a large area and provide real-time information on
the distribution and behaviour of fish schools [39]. One advantage of using echo-sounder
buoys is that they do not require the physical handling or tagging of individual fish, which
can be time-consuming and potentially harmful to the specimen. This makes them a more
humane and less invasive method for studying fish populations. Echo-sounder buoys are
also relatively low-cost and easy to deploy [40]. However, studying the data collected by
these devices requires sophisticated techniques. In this thesis, we study the possibility of
applying DS, which is done in two steps. First, ML models are developed to estimate the
size of fish schools (i.e. their biomass) in real time, using data from the detection devices
and any other available sources (e.g. oceanography). Once the models are ready, they
can be applied to estimate the size of fish populations across different regions, study their
dynamics and ultimately give a stock assessment. It is important to note that, in order for
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the ML models to perform well, it is better to train them to identify a particular species.
This thesis will focus on tuna.

To better understand the practices on tuna fishing and how echo-sounder buoys are
used, it is necessary to introduce the concept of Fish Aggregating Device (FAD). These
floating objects are designed and strategically placed to attract pelagic fish such as tuna
[41], see Figure 1.3. This technique has been used by fishermen for centuries to aggregate
fish species, throughout tropical and sub-tropical oceans [42]–[45]. When deployed in
open ocean, a FAD is often called Drifting Fish Aggregating Device (DFAD) because
it is not anchored to the seafloor. In tuna purse-seine fisheries, DFADs are commonly
used to locate schools of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus
albacares) and bigeye tuna (T. obesus), and are essential for increasing fishing efficiency.
Today, more than 55% of tropical tuna caught by industrial purse-seine vessels in the
Indian, Atlantic and Pacific oceans is caught using DFADs, accounting for 36% of the
world’s total tropical tuna catch [46]–[48].

Figure 1.3: Man-made FAD anchored to the sea floor. Ropes and lines encourage the
settlement of marine plants and small crustaceans and molluscs, which in turn attract
small fish. Fish finders may be attached to a FAD allowing fishermen to electronically
“connect” to the FAD and see how many and at what depth the fish are located. Image
from NOAA [41].

The first observations that floating objects attract a variety of fishes were very early
[49]. As long ago as 200AD, the Roman author Oppian, writing about fishing in the
Mediterranean, recorded [50]: “The fishermen gather reeds and tie them together in
bundles which they let down into the waves and underneath they tie a heavy stone by
way of ballast. All this they let sway gently in the water; and straight-way the shade-
loving tribes of the Hippurus gather in shoals and linger about delightedly rubbing their
backs against the reeds. Then the fishers row to them to find a ready prey, and bait their
hooks and cast them, and the fish seize them, hastening therewith their own destruction.”

Initially, DFADs were of natural origin [51], such as wooden debris or mammal
carcasses, that fishermen would come across while searching for free-swimming schools

5



of tuna. There were also DFADs unintentionally produced by human activities, such as
the pieces of fishing nets [52]. In the 1960s, purse seine fishing boats began to fish on
schools associated with natural floating objects [53].

In the mid-1980s, tools were developed to track DFADs using radar reflectors or
radio. Later, GPS buoys were added to allow for remote location of the DFADs
[40], [54]. The use of tracking buoys has been considered a significant technological
development for increasing the efficiency of DFAD tuna fishing [55]. Most DFADs today
are equipped with satellite-linked instrumented buoys, which include GPS and an echo-
sounder, providing fishermen with accurate geolocation information and an estimate of
the associated tuna biomass. This allows fishing crews to monitor their DFADs and the
size of tuna aggregations in real-time, allowing them to target those with larger aggregated
schools and increase their catch while reducing search effort [40], [56].

1.2.1. Tuna biomass estimation

The introduction of DFADs has resulted in major modifications in industrial purse-seine
fishing fleets targeting tropical tunas, including adjustments to traditional measures used
to determine Catch Per Unit Effort (CPUE), such as search-time and time-at-sea, [43].
Some studies have stressed the need of fishery-independent abundancy indices and the
use of non-traditional data sources to track tuna stock health and the consequences of
fishing pressure over time [57]–[59]. Echo-sounder buoys tied to DFADs across the world
provide geo-referenced biomass estimations on a regular basis. Given the abundance and
global dispersion of DFADs, the data supplied by these echo-sounder buoys might be
useful. One example is the Buoy-Derived Abundance Index (BAI) for tropical tunas,
which was reported by Santiago, Lopez, Moreno et al. [58] and is based on biomass
estimations provided by three echo-sounder buoy brands in the Atlantic, Indian, and
Pacific Oceans.

However, multiple studies have observed cases in which the biomass estimations
produced by echo-sounder buoys varied considerably from the actual tuna tonnage
collected by boats [60]–[62]. This might be attributed to the fluctuating nature of
DFADs fish aggregations, which are frequently formed up of pelagic species other than
tuna [44] and hence not included in vessel capture statistics, but would be counted in
biomass estimates generated by echo-sounder buoys. Furthermore, oceanic conditions
can influence fish distribution and behaviour, resulting in tuna aggregation patterns near
DFADs [63]–[65]. It is critical to evaluate and understand the influence of these factors
on the biomass estimates produced by these buoys in order to create a representative
index of abundance using echo-sounder buoy data.
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1.2.2. Tuna dynamics

Because of the extensive use of DFADs in fishing operations, a greater knowledge of the
possible ecological consequences of DFADs on tuna ecology and the marine environment
is required. The mechanics of how and why tuna connect with DFADs are currently
unknown. Several hypotheses have been proposed to explain tuna aggregation to DFADs
[44], [66], [67], including the “meeting point” hypothesis, which proposes that DFADs
facilitates the encounter between individuals or schools, resulting in larger aggregations
that may benefit survival rates [44], and the “indicator log” hypothesis, which proposes
that tunas may use drifting objects as indicators of areas with abundant plankton and
food to ensure the survival of their eggs, larvae, and juveniles [68]. Some author have
proposed that man-made DFADs might form an “ecological trap”, causing tuna to remain
linked with DFADs even as they migrate into locations that could severely effect tuna
behaviour and biology [69], [70]. However, there is currently insufficient data to validate
or refute this idea (see Dagorn, Holland, Restrepo et al. [71] and related references).

Today, DFADs utilised by tropical tuna purse-seine fisheries is frequently deployed
with satellite-linked instrumented buoys fitted with one or more echo-sounders, which
offer precise DFAD placement and estimates of aggregated tuna biomass [46], [54]. The
data acquired by these buoys is useful to fishermen, but it has also piqued the interest
of scientists, who have recognised their potential to give insights on tuna migration
and behaviour on a worldwide scale [57], [58], [60], [62]. Recent research works have
employed echo-sounder data from these buoys to remotely map tuna distribution or
explore trends in tuna aggregation around DFADs sites [57], [62], [72]. According to
some authors [73], DFAD data may be utilised to evaluate the ecological trap hypothesis.

1.3. Weather routing

Ship weather routing is defined as [74] “determining the optimum route of a ship that
utilizes the optimum engine speed and power for the ocean voyage based on weather
forecasts, sea conditions and the individual characteristics of the ship”. The term
“optimum” has multiple meanings, such as maximizing ship safety and crew comfort,
reducing fuel consumption, Green House Gases (GHG) emissions and duration of the
voyage, or any combination of these goals. Ship weather routing is an interdisciplinary
problem and has attracted the attention of ocean and naval engineers, computer scientists,
data scientists, maritime economists and transportation and logistics engineers [75]. In
fact, in recent years both academia and industry had shown an increasing interest on
this topic. Two main factors are responsible for the recent explosion of optimization
algorithms for marine routes with weather and ocean information:

• The recent availability of very fine grained information on waves and oceanic
currents, at a resolution of 0.08◦ for ocean data (and even finer scales at specific
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regions), based on Ocean General Circulation Model (OGCM), publicly available
at data repositories provided by Copernicus Marine Environment Monitoring
Service (CMEMS), Hybrid Coordinate Ocean Model (HyCOM) or NOAA. These
data are updated daily and include a reliable forecast into the future.

• The increasing amount of data on ship consumption allows finer models for a
specific vessel under different cruising speeds, sea and weather conditions.

Aside from these technical improvements, a main driving force is the regulatory
pressure from the International Maritime Organization (IMO) via the recent adoption
of the Energy Efficiency Design Index (EEDI) to reduce emissions related to sea
transportation by 40% in 2030 [76]. In order to compute their EEDI, from 2018 all
IMO vessels are obliged to record their fuel consumption [77]. Despite being the most
efficient way to transport freight [78], maritime transport is still responsible for almost 3%
of global Green House Gases (GHG) emissions, and this number is bound to increase if
no actions are taken [79], [80]. This pressure is triggering much research into alternative
fuels for the shipping industry [81], and the current regulation entails that some of the
older tankers in the fleet will no longer be allowed to operate. Weather routing is proposed
as another mean to reduce emissions, by increasing the performance of the ship [82].

The economic factor is another reason why weather routing research has spurred.
Nowadays, over 78% of international good exchanges are done through maritime
transport [83]. Around 60% of the total operating costs of sea transportation is the
cost of fuel, for a total bill of 120 billion EUR per year for the whole merchant fleet [84].
The estimated savings of 3-5% thanks to better routing [75] would have a huge economic
impact. In addition, ship weather routing also addresses safety issues. Around 48% of
the accidents at sea involve human casualties or loss of cargo are due to sailing under
adverse weather conditions [85].

One last factor worth mentioning is the emergence of slow steaming during 2009
crisis [86]. This concept revolves around the non-linear relation between speed and
consumption: reducing a vessel’s speed by 10% decreases emissions and fuel consumption
by at least 10–15% [87]. With slower ship speeds, ocean currents, wind and waves
become even more relevant making weather routing systems a necessary tool for marine
transportation. In particular, slow steaming can take a big advantage of wind [88] by
installing Wind Assisted Ship Propulsion System (WASP) - such as sails, wing-sails,
e-sails or Flettner rotors - on ships. A reliable weather routing algorithm is necessary for
correctly assessing the impact of retrofitting working cargo ships to install WASP. The
viability analysis of WASP is still carried out considering a single fixed route, namely the
actual route that the captain chose when sailing on fuel power alone [89], even though
anyone who has sailed on wind energy alone knows that the optimal route for a sailboat
depends strongly on the wind’s direction. The implication of this observation is that if
WASP are combined with weather routing, there is a lot of room for further savings.

Even with the rising interest on ship weather routing and all the benefits involved,
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developing a state of the art weather routing system remains a challenging task. There are
several factors to take into account to ensure accurate savings on fuel and GHG emissions
[90]. First, the models for fluid-structure interaction and fuel consumption have high
complexity, and depend heavily on the type of ship. Second, there is the multi-scale
and time varying weather and ocean patterns. Last, the computational requirements to
handle effectively all the necessary data are huge, and the complexity of the mathematical
optimization problem makes it even more challenging.

1.4. Objectives

The introductions of sustainable fishing and weather routing done in Sections 1.2-1.3,
have led us to enumerate the following three major challenges, object of study in this
thesis.

1.4.1. Objective 1. Tuna estimation using several sources of data

In Section 1.2.1 we commented on how fisheries often use DFADs to attract tuna schools,
and echo-sounder buoys attached to those DFADs can estimate the amount of tuna.
However, we also mentioned that these estimations often do not correlate well with the
real amount of tuna caught by the fishing vessels. Some studies have tried to improve
these estimations by using the echo-sounder data, while others used oceanography, but
we found no study that combined both sources. Thus, the first challenge in this thesis is to
establish a well defined pipeline for estimating tuna biomass under DFAD echo-sounder
buoys, combining catch data, oceanography and echo-sounder buoy data.

Addressing this challenge first requires the application of DS methods to study and
preprocess the data from all sources mentioned previously. It also involves building and
training different ML models and defining relevant metrics to compare them against each
other, in order to find the algorithm that best estimates the tuna biomass under a DFAD
using the available information.

1.4.2. Objective 2. Study tuna dynamics using ML models

Once Objective 1 is achieved, we will have a ML pipeline specialized in measuring the
tonnage of tuna associated to any DFAD. We could then apply that pipeline to perform
biomass estimations in large scale and for long periods of time across all oceans, and
characterize the temporal patterns of tuna associations to DFADs. These analysis would
allow us to test the hypothesis mentioned in Section 1.2.2: how long does tuna associate
to DFADs and whether this aggregations remain over time or rather disaggregate.

9



1.4.3. Objective 3. Test weather routing algorithms

In Section 1.3 we explained the concept of weather routing, why it is relevant and how it
can be addressed through a DS approach, thanks to the huge amounts of oceanographic
data available today. The last challenge in this thesis is to test different weather
routing algorithms, that must be able to provide optimum routes under varying weather
conditions.

Meeting this challenge is a complex task and must be divided into smaller goals. First,
a DS study should be conducted to collect and process the weather data, and implement
a consumption model. Then, we must find one or more optimization algorithms able
to compute routes that minimize travel time or fuel consumption, using weather data.
There exists several optimization methods, that will be explained on Chapter 4. Finally,
we should test these optimization algorithms in both synthetic benchmarks and real-life
scenarios, comparing its results against some reference routes.

1.5. Thesis structure

Chapters 2 and 3 elaborate into the concept of sustainable fishing applied to tuna,
addressing Objectives 1 and 2 respectively. These chapters describe a project carried in
collaboration with Komorebi AI and Satlink. As no official name was given to the project,
both chapters are named after the ML pipeline developed to study tuna dynamics: Tun-AI
. Chapter 4 addresses Objective 3 and presents the second study. It is an application of
weather routing to reduce emissions and save fuel during cargo boat operations. Finally,
Chapter 5 gathers concluding remarks and outlines open research problems for both
fields. Figure 1.4 shows how this thesis is structured.
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Figure 1.4: The structure of this thesis.
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2. TUN-AI: TUNA BIOMASS ESTIMATION

2.1. Introduction

Tuna purse-seine fisheries often use Drifting Fish Aggregating Devices (DFADs)
equipped with echo-sounder buoys to estimate the biomass of tuna aggregated around
the devices. While this information can provide valuable insights into tuna behavior
and abundance, it can be challenging to analyse and utilize. The study described in this
chapter aims to develop a pipeline, called Tun-AI , that utilizes DFAD logbook data, echo-
sounder buoy data and oceanographic data, to evaluate various Machine Learning (ML)
models for processing these data sources and estimating tuna biomass in metric tons (t).
The models include binary classification, ternary classification, and regression, and the
goal is to establish a method for accurately predicting tuna biomass at different levels of
complexity.

The structure of this chapter is as follows. First, the state of the art in tuna biomass
estimation is introduced in section 2.2. Then, section 2.3 describes the data sources
available for this study and the design of Tun-AI pipeline, including how the information
was processed and the ML models used to estimate tuna biomass and presence. Results
are shown in section 2.4 and compared with the state of the art in section 2.5.

2.2. State of the art

There are not many studies that estimate tuna presence or biomass, and even less than
do so by applying ML. One reason is that studying tuna populations often requires
specialized equipment and expertise, which can be expensive and difficult to obtain.
In addition to this challenge, each study often uses different metrics to measure tuna
populations. This lack of consistency makes it difficult to compare the results of different
studies and to draw meaningful conclusions about the overall state of the art.

This section reviews the few works found on tuna estimation, and groups them into
two categories: studies done to predict tuna presence, that apply classification models,
and works that estimate the tons of tuna by applying regression models.

2.2.1. Classification models for tuna presence

Studies that apply classification models focus on predicting whether tuna is present or
absent, with no estimation on the school size. Tuna is considered present under the
DFAD when there is a relevant amount of tuna biomass (typically, more than 1t), and
is considered absent otherwise.
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Based on tuna presence and absence data observed by scientists, Uranga, Arrizabalaga,
Boyra et al. [91] created a reference dataset of sonar images with known categories of
“tuna” or “no tuna”. They used these images to validate their classification and analysis
procedure. The sonar’s searching range varies depending on sea conditions and skipper
preferences, but in general, a range of 100-300 metres was used when looking for tuna.
The images were taken during two scientific tuna surveys in 2009 and 2011. The authors
extracted 22 501 blobs from the 1397 presence and 1398 absence images collected to
create the training dataset: 1497 were positive examples (presence) and 21 004 were
negative examples (absence). They used five different classification models on the
dataset: Random Forest (RF) [92], Support Vector Machine (SVM) [93], Multi-Layered
Perceptron (MLP) [94], Iterative Dichotomiser 3 (ID3) [95] and Instance Based learner
with fixed neighbourhood (IBK) [96]. The classification models’ results were validated
using 10-fold cross-validation for 30 different runs, and the results are shown in Table
2.1.

Baidai, Dagorn, Amande et al. [57] uses RF classification to convert acoustic
backscatter from echo-sounder buoys into tuna presence metrics. Training datasets were
created by combining acoustic data with logbook and observer data from the Atlantic and
Indian Oceans that reported DFAD activities (tuna catches, new deployments, and DFAD
visits) from 2013 to 2018. Under the DFAD, tuna was considered present if at least 1t
was caught nearby. Table 2.1 displays their results.

Up to this point, we have only reviewed works that use the echo-sounder information
derived from the DFAD to perform the estimations. However, oceanography data is
another motivator for some studies attempting to model tuna behaviour. Druon, Chassot,
Murua et al. [64], for example, used Chlorophyll-a fronts as a proxy for food availability
and described tuna environmental preferences using a combination of other oceanography
features. Using this data, the authors developed an Ecological Niche model that predicts
favourable habitat zones for skipjack tuna (Katsuwonus pelamis). The researchers
compared these predictions to presence data collected by the European purse seine fleet
around DFADs over a 15-year period. They discovered that fishing sets occurred 34%
(45%) of the time inside the estimated favourable habitats in the Atlantic (Indian) Ocean.
Their scores are shown in Table 2.1.

Another study worth mentioning is Mannocci, Baidai, Forget et al. [97], who also
explored the possibility of applying ML on echo-sounder buoys attached to DFADs.
In this case, rather than predicting tuna presence, the authors trained RF algorithms
to differentiate between high and low by-catch occurrence (i.e. incidentally capturing
species that are not tuna). Their models were based on matched echo-sounder and onboard
observer data for the same DFADs. This study was conducted in the Atlantic and the
Indian Ocean, with sample sizes of 838 and 2144 respectively. Algorithms showed a better
performance in the Atlantic Ocean (see Table 2.1) and were best at detecting the “high
by-catch” occurrence class. This study proves that it is possible to use the same sources
of data (in this case, acoustic records for echo-sounder buoys) and ML architectures to
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Ocean Model N Accuracy Recall Specificity F1-score

Atlantic EN [64] 3159 0.34 - - -
RF [91] 22 501 - 0.79 0.99 -
SVM [91] 22 501 - 0.79 0.99 -
MLP [91] 22 501 - 0.77 0.99 -
ID3 [91] 22 501 - 0.73 0.99 -
IBK [91] 22 501 - 0.75 0.98 -
RF [57] 1856 0.76 0.83 0.67 0.78
RF [97] a 838 0.66 0.74 0.59 0.67

Indian EN [64] 26 143 0.47 - - -
RF [57] 13 671 0.85 0.81 0.90 0.84
RF [97] a 2144 0.58 0.63 0.53 0.60

a Predicts by-catch presence during fishing sets for tuna.

Table 2.1: Several approaches to predict tuna presence seen in the literature. Their
predictions were compared against real fishing set data. For each model, it is shown
the available scores and the number of samples (N) it was compared against. Each sample
is a single binary value: whether a substantial amount of tuna was there or not. Metrics
are explained in Appendix 2.A.

predict different targets (for instance, by-catch presence instead of tuna abundance).

2.2.2. Regression models for tuna biomass

Some works apply regression models to estimate the amount of tuna under the DFAD.
These predictions are often done in tons of tuna, and compared against real fishing set
data from fishing vessels.

Lopez, Moreno, Boyra et al. [60] developed a behaviour based approach to provide
relative biomass estimates of fish aggregations at DFADs in the Atlantic Ocean. Their
model uses data from Satlink, one of the most common brands of echo-sounder buoys. For
this study, the acoustic samples were collected at sunrise, because according to the belief
of fishermen it is the time when fish are more concentrated under the DFAD. Acoustic
information, divided by layer depths, was used to derive rough biomass estimations
following the target strength of tuna species and their studied vertical distribution (i.e.
what depths are they expected to habit). The rough biomass estimations were later
corrected through different regression models, namely Generalized Linear Model (GLM)
[98], polynomial of order 2 and 3 (POL2, POL3 respectively) and Generalized Additive
Model (GAM) [98]. These regression models were fitted by using 21 real fishing sets, and
the final estimations were also compared against those catches. All their scores are shown
in Table 2.2. For comparison, the authors also provided the biomass estimates from the
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buoys’ manufacturer (Satlink), whose models were calibrated for the target strength of
skipjack tuna (Katsuwonus pelamis).

Following Lopez, Moreno, Boyra et al. [60] proposed models, Orue, Lopez, Moreno
et al. [99] replicated a similar study at the Indian Ocean. Their models were once again
build based on existing knowledge of the vertical distribution of non-tuna and tuna at
DFADs and mixed species target strengths and weights. This study used information
from 287 fishing sets and their corresponding acoustic samples from echo-sounder buoys
prior to the fishing set. Results showed that manufacturer’s biomass estimates generally
improve. However, the authors observed that the results obtained by Lopez, Moreno,
Boyra et al. [60] in the Atlantic Ocean were significantly better than theirs, albeit the
number of samples used for the analysis was much lower in that case (21 samples against
their 287). Refer to Table 2.2 for a comparison of scores between both studies. The
authors also commented that the improvement of the biomass estimates was not as large
as they expected, indicating that the large spatial temporal variability in the Indian Ocean
is not easily considered with a linear model.

Ocean Model N R2 MAE

Atlantic Manufacturer [60] 21 0.25 21.29
GLM [60] 21 0.73 -
POL2 [60] 21 0.81 -
POL3 [60] 21 0.83 10.25
GAM [60] 21 0.82 -

Indian Manufacturer [99] 287 0.02 -
GLM [99] 287 0.02 -
POL2 [99] 287 0.02 -
POL3 [99] 287 0.03 -
GAM [99] 287 0.03 -

Pacific SEAPODYM [100] 300 0.85 -

Table 2.2: Several approaches to estimate tuna biomass seen in the literature. Their
predictions were compared against real fishing set data. For each model, it is shown
the available scores and the number of samples (N) it was compared against. Each sample
is a single value, usually the tons of tuna reported from a fishing set. Metrics are explained
in Appendix 2.B.

Studies on regression models mentioned until this point only use the acoustic
data from echo-sounder buoys. However, tuna dynamics is known to be affected
by oceanography conditions (such as temperature and dissolved oxygen) and there
exists works that model tuna behaviour from oceanography data. Lehodey, Senina
and Murtugudde [100] proposed a spatial ecosystem and population dynamics model
(SEAPODYM), based on advection - diffusion - reaction equations. The model was tuned
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using empirical data from commercial fisheries at Western and Central Pacific Ocean, and
applied to two tuna species: skipjack (Katsuwonus pelamis) and bigeye (Thunnus obesus).
By taking into account the climate variability, SEAPODYM predicts both temporal
and spatial distribution of tuna populations over 1◦ grid-boxes at monthly resolution.
Validation of the model against observed catch (from the same commercial fisheries,
accumulated by month) showed an R2 of 0.85 [101], see Table 2.2. However, it must be
noted that setting the value of each parameter in SEAPODYM was performed mostly
by ad hoc manual “tuning”, using independent models estimates and by application of
parameter values gleaned from the scientific literature. Thus, SEAPODYM application is
limited, as it needs to be manually tuned in order to use it at other ocean regions or for
different tuna species.

2.2.3. Contribution

This chapter presents a new approach for estimating tuna biomass using ML models
that incorporate oceanographic data as predictor variables, in addition to catch data and
echo-sounder buoy information. This approach, referred to as Tun-AI , aims to accurately
estimate tuna biomass in metric tons (t) under DFADs equipped with echo-sounder buoys
at any given time. The study evaluates the performance of various models, including
binary classification models that distinguish between tuna biomass less than 10t and
greater than or equal to 10t; three-level classification models that differentiate between
tuna aggregations less than 10t, between 10t and 30t, and over 30t; and regression
models that estimate the exact tuna biomass in tons. We also examine the influence of
different data sources and methods for processing echo-sounder buoy data to identify
the most accurate methodology. This research represents an improvement on previous
studies that have only compared biomass estimates from buoys to catch data [57], [60],
[97], combined oceanographic variables and catch data without using echo-sounder buoy
information [64], [100], or considered the effects of oceanographic conditions on buoy
biomass estimates without directly comparing them to catch data [59], [63].

2.3. Material and methods

2.3.1. Database description

Our study draws from three sources of information: FAD logbook data, echo-sounder
buoy data, and oceanography data.

FAD logbook data

The first database contains data on the activities of the Spanish tropical tuna purse seine
fleet on DFADs in the Atlantic, Indian, and Pacific Oceans. These figures were provided
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by the shipowners’ association, Asociación de Grandes Atuneros Congeladores (AGAC),
and cover a time period from 11th April 2017 to 1st January 2021. In total, 120 707 events
have been recorded in the database, with 35 813 occurring in the Atlantic, 55 819 in the
Indian Ocean, and 29 075 in the Pacific. Each database entry includes information about
the type of interaction with the DFAD, the identification number and model of the echo-
sounder buoy attached to the DFAD, the timestamp and location of the activity, and other
pertinent information. See Ramos, Báez, Grande et al. [102] for more information on the
various types of interactions.

We used the identification number for the buoy attached to the DFAD to match the
human interactions recorded in our database to the echo-sounder acoustic measurements
(as described in Section 2.3.1). We only considered interactions labelled “Set” and
“Deployment” in our analysis and compared them to data from the echo-sounder buoy.
The “Set” data included catch information for skipjack, yellowfin, and bigeye tuna, which
we used to represent the actual tuna biomass at the DFAD. This assumption is based on
the belief that fishing vessels captures the entire tuna aggregation at the DFAD during a
set and record the total catch accurately. While this assumption is strong, it is necessary
when working with large-scale data sets like ours. We did not incorporate by-catch data
in our analysis, despite the fact that it is recorded in the logbook.

It should be noted that purse seine vessels only deploy their nets when they receive
information about the presence of large tuna biomass, resulting in low catch rates (less
than 10t) being uncommon (representing less than 8% of all interactions). This indicates
that the dataset from “Set” events may not precisely reflect the genuine data distribution,
potentially leading to models that overstate true tuna biomass and have limited real
application. Table 2.1 depicts the distribution of catch quantities. To remedy this issue,
we included “Deployment” interactions, which represented new DFADs that were not
previously present in the water [102]. We assumed that no tuna (0t) were present under
the buoy throughout these interactions.

Misreported positions (either latitude or longitude), inaccurate echo-sounder buoy
IDs, dates and times, and incorrect interaction types can all occur during the manual
transcription procedure for the FAD logbook. To lessen the impact of these inaccuracies,
we used the buoy ID and timestamp to cross-reference the information in the FAD logbook
to the echo-sounder data to identify any differences (see Section 2.3.2).

Echo-sounder buoy data

The data for the echo-sounder buoys came from 16 419 Satlink buoys that had documented
interactions in the FAD logbook. This database includes approximately 70 million
records for DFAD buoys in the Atlantic, Indian, and Pacific Oceans. From 2018 to 2020,
each record is associated with a specific buoy ID and timestamp and includes biomass
estimates based on echo-sounder measurements as well as GPS coordinates for the buoy’s
last known location at the time of measurement.
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Figure 2.1: Tonnage distribution of tuna captured from a total of 5202 sets.

The echo-sounder observation range for all buoys in the study is 3 to 115 metres
in depth, separated into ten layers or depth bins with a resolution of 11.2 metres (see
Figure 2.2). Estimated biomass in metric tonnes is generated from acoustic samples taken
at regular intervals throughout the day and converted into estimated tonnage based on
skipjack tuna target strength. Appendix 2.C and Boyra, Moreno, Sobradillo et al. [103]
contain additional information about the buoy’s process and the target strength value,
respectively.

All of the buoy models employed in the study (ISL+, SLX+, and ISD+) use the
same technique for translating acoustic response to estimated tonnage, however there are
minor changes between them, particularly in terms of sampling rate (i.e., the frequency
of echo-sounder measurements; see Table 2.3). Each buoy has an echo-sounder that takes
multiple measurements every hour, but in order to reduce the amount of data sent via
satellite, only the measurement that corresponds to the highest estimated tonnage per
hour is transmitted by the buoy and stored in central databases. If the total estimated
tonnage for all measurements collected during an hour is less than 1t, no measurement
is transmitted and the reading is regarded zero. Similarly, due to echo-sounder signal
saturation, the total estimated tonnage for a single depth bin is limited to 63t. As a result,
the final temporal resolution of the echo-sounder records in the current dataset is 1 hour.

Oceanography data

Oceanographic data from the European Union’s CMEMS [104] was utilized in this study
(products GLOBAL ANALYSIS FORECAST PHY-001-024 and GLOBAL-ANALYSIS-
FORECAST-BIO-001-028, both with a resolution of 1/12◦ and 1/4◦, respectively). The
following variables were extracted for each position record in the echo-sounder buoy data
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Buoy model ES model Frequency Beam angle Sampling rate

ISL+ ES12 190.5kHz 20◦ Every 15min
SLX+ ES16 200kHz 23◦ Sunrise to sunset:

every 5min
Sunset to sunrise:
every 60 min

ISD+ ES16x2 200kHz
and 38kHz a

23◦

and 33◦
Sunrise to sunset:
every 5min
Sunset to sunrise:
every 60min

a Data can be compared across all buoy models because biomass estimations are based on the acoustic
response captured by the 200kHz echo-sounder.

Table 2.3: Models and characteristics of buoys. ES is abbreviation of “Echo-sounder”.

Figure 2.2: Left: Depth layer configuration and Satlink echo-sounder buoy setup. Right:
An example of the biomass estimates (in metric tonnes) and echo-gram display that
buoy users can access. Using the manufacturer’s algorithms, raw acoustic backscatter
is converted into biomass estimates based on the target strength of skipjack tuna
(Katsuwonus pelamis).

(see Section 2.3.1): temperature (◦C), chlorophyll-a concentration (mg/m3), dissolved
oxygen concentration (mmol/m3), salinity (psu), thermocline depth (calculated as the
depth where the water temperature is 2◦C lower than the surface temperature, in m),
current velocity (m/s), and Sea Surface Height anomaly (SSHa) (deviation of the sea
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surface height from the long-term mean, in m). All variables, except for thermocline and
SSHa, were obtained at the surface level (depth = 0.494m).

It should be noted that the aforementioned variables are derived from oceanographic
models, which provide approximate values on a fixed grid rather than actual observations
at the exact position of the buoy. However, because the accuracy of these models has
improved in recent years, we believe that these values are sufficiently representative of
the oceanographic conditions for the purposes of the current study (see, for example,
Lellouche, Greiner, Le Galloudec et al. [105]).

2.3.2. Data preprocessing

Data merging

Using the buoy ID and timestamp, the sets and deployments registered in the FAD
logbook data were cross-referenced with each specific buoy’s biomass estimates. After
that, oceanographic data was collected for each position recorded in the echo-sounder
buoy database. Oceanographic data is available on a grid with 0.08◦ or 0.25◦ resolution,
so we incorporated data from the point on the grid closest to the buoy’s position. We
assume that oceanographic variables change on a larger spatial scale than grid spacing
and buoy hourly movement, so this approximation has no significant errors.

Echo-sounder window

Tuna schools exhibit well-known circadian behavior near the DFADs, arriving at or near
sunrise and departing around sunset, staying close to the DFAD for several days in a row
[106], [107]. We include a large enough window of echo-sounder measurements with
hourly frequency as an input to the model to capture these patterns. We investigated
how the inclusion of time windows of varying lengths (24, 48, or 72 hours) affected the
model’s ability to correctly estimate daily tuna biomass. The echo-sounder window length
that produced the best results was used in all subsequent analyses.

For set events, the selected window ends at sunset the day before the event and begins
24, 48, or 72 hours before that (see Figure 2.3 for an example). Starting at sunset aligns
all observations with solar time regardless of time zone, and ensures that all echo-sounder
measurements in the window are taken before the set event, regardless of when it occurred
during the day.

For deployment events, because the buoy is not yet in the water, we cannot take echo-
sounder measurements prior to the event. As a result, the echo-sounder window is chosen
after the deployment, again in accordance with solar time. As stated in Section 2.3.1, we
assume that no tuna is aggregated during the first 1-5 days after deployment, based on
findings from Orue, Lopez, Moreno et al. [62].
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Figure 2.3: An example of a 72-hour “echo-sounder window” (yellow box) in relation to
the recorded set time in the FAD logbook (green line). The day of the event (24 hours)
is referred to as the “event window” (red box). It is worth noting that the yellow and
red boxes do not overlap. The sun’s inclination throughout the day is depicted above
the graph, with day hours represented by yellow circles and night hours represented by
black circles. The echo-sounder buoy biomass estimates for each hour are represented by
columns of coloured squares, while rows are depth bins. This figure clearly shows the
circadian patterns in tuna activity under the DFAD.

Data cleaning

As previously stated, the data used in this study may contain errors, particularly in the case
of FAD logbook data, which is recorded manually. To reduce the possibility of errors, the
following conditions had to be met in order for an event (set or deployment) to be included
in the final dataset:

• The buoy ID in the FAD logbook data must match the buoy ID in the acoustic
database, ensuring that echo-sounder data are available for the DFAD on which the
event occurred. This avoids issues where the buoy ID is misreported in the FAD
logbook, unless the faulty ID happens to match the one from another buoy.

• The windows described in Section 2.3.2 from one event cannot overlap with the
windows from another event. For example, we exclude from our analysis sets events
that occurred within a few hours of each other. This requirement is in place to
ensure that there is no human intervention on the DFAD during the window of
echo-sounder measurements used for estimation.

• Events with invalid positions (for example, buoys on land) were removed from the
dataset using the same criteria as Escalle, Heuvel, Clarke et al. [61].

• Events or measurements recorded at locations with less than 200m of water depth
were eliminated. This avoids incorporating echo-sounder measurements that could
be impacted by the seabed.

• We estimated buoy speed for each position using the last known location of the
buoys, and deleted occurrences and measurements where the buoy speed was
greater than 3 knots, because surface currents in the tropical oceans rarely reach
this speed [62]. This avoids including measurements collected on a ship that are
not indicative of a DFAD.
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The final dataset, after merging and filtering, contains over 12 000 events. These
interactions occurred on 10 063 buoys, for which over 665 000 echo-sounder records were
collected. Table 2.4 clearly shows that events were more or less uniformly distributed by
ocean, allowing for subsequent analyses stratified by ocean basin. However, for the buoy
model, where the majority of interactions happened on ISL+ buoys, similar experiments
could not be undertaken with the available data.

Ocean basin Buoy model

Atlantic Indian Pacific ISL+ SLX+ ISD+ Total

Set 1500 2727 974 4877 192 132 5201
Deployment 1369 2199 3426 6443 297 254 6994

Total 2869 4926 4400 11 320 489 386 12 195

Table 2.4: Number of Set and Deployment events remaining after integrating echo-
sounder and FAD logbook data, per ocean, each buoy model, and in total.

2.3.3. Model selection

We tested multiple models with varying feature sets to determine the relative contribution
of different features to model accuracy as well as the overall performance of various
modelling strategies.

Baseline model

As a baseline, we created a model utilising solely the biomass estimations from the echo-
sounder window (see Section 2.3.2). However, because the model’s output (i.e., the total
biomass estimation) would be a single number, a series of aggregation criteria had to be
applied to the 72×10 = 720 echo-sounder window matrix. These values can be aggregated
in two ways (see Figure 2.4): by rows (layers) or by columns (hours), with various
aggregation criteria. We decided to test all conceivable combinations of aggregation rules
(mean, maximum, and sum) and aggregation directions (by hour and depth bin or layer),
selecting the one with the lowest Mean absolute error (MAE), that is, the one that can best
estimate the tonnes of tuna taken under the DFAD.

It is relevant to notice that some combinations must result in the same MAE, and only
one of them is reported in these circumstances. For example, if the aggregation function
by layers and hours is the same, the sequence in which these aggregations are conducted
is meaningless. The same is true for aggregations that simply contain the total and the
mean, because they are both linear functions.

Table 2.5 contains the results for all eligible combinations. As an example of how to
read this table, consider the best performing aggregation: layer, max, mean. To acquire
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Figure 2.4: An illustration of how biomass measurements are aggregated.

First
aggregation

direction

First
aggregation

function

Second
aggregation

function

MAE

layer max mean 13.86
layer mean sum 13.98
hour mean max 15.64
hour max mean 15.69
layer max max 16.47
layer mean max 16.64
layer mean mean 17.59
hour sum max 28.42
layer sum mean 37.67
layer max sum 59.91
layer sum max 143.78
hour max sum 243.02
layer sum sum 483.00

Table 2.5: Different data aggregations for the regression baseline model.

the final forecasts for this aggregation, first take the maximum value of the 72 hours for
each layer. This yields ten numbers, one for each layer. Then we combine these ten values
by computing the average, yielding a single number. The baseline for the classification
models is immediately computed from the preceding estimate, just by comparing the
output to the defined thresholds.
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Feature engineering

We considered the variables in Table 2.6 as features to be included in each model based
on the merged dataset (see Section 2.3.2). Depending on the size of the echo-sounder
window, the original biomass measurements form a 10×{24, 48, 72}matrix. These values
were not directly fed into the models, but were aggregated using the rules shown in Figure
2.5:

• Using the maximum by row (layer). This yields a vector of size 10.

• Using the maximum by column (hour). Depending on the size of the echo-sounder
window, this produces a vector of size 24, 48, or 72.

• By layer and by hour, computing the maximum of the 24, 48, or 72 hours, followed
by the mean by layer. This yields a single value. The maximum and then the mean
is chosen because that combination was the best performing baseline model (see
Section 2.3.3).

These vectors (along with the baseline model) were then used directly as features in
the various models. Depending on the size of the echo-sounder window, the total number
of echo-sounder variables was then {24, 48, 72} + 10 + 1. The previous feature vector
generation procedure is applied to both set and deployment events.

Task description

Models were trained to perform four different tasks, which are described below in order
of increasing complexity:

1. A binary classification problem in which the target variable y (tuna biomass) might
be either y < 10t or y ≥ 10t.

2. A ternary classification task in which the target variable y (tuna biomass) might
have values of y < 10t, 10t ≤ y < 30t or y ≥ 30t.

3. A threshold regression task in which we directly estimated tuna biomass y in metric
tonnes up to a threshold of 100t. Estimates equal to or higher than 100t were
clipped.

4. A regression task in which we directly estimated the tuna biomass y in metric
tonnes.

The thresholds used to determine the categories were chosen using a variety of criteria.
In all classification tasks, the lower threshold was based on best-practice standards for
reducing shark by-catch, which include avoiding sets on tuna schools weighing less than
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Figure 2.5: A visual representation of how the biomass readings were aggregated.
Columns of coloured squares represent the echo-sounder buoy biomass estimates for each
hour, while rows represent depth bins or layers. The value of the estimated biomass is
represented by the square colour. First, the maximum value for each layer is calculated,
yielding a vector of size 10. (in green). Second, depending on the size of the echo-sounder
window, the maximum value for each hour is calculated, resulting in a vector of size{24,
48, 72}. (in red). Finally, the baseline model (in blue) was fed into the ML models as an
input.

10t [71]. The second class in the ternary classification task was further split by the
dataset’s median catch (30t). In the threshold regression task, we chose 100t because
sets above that were quite infrequent (315 occurrences, 8.1%). Table 2.1 shows the entire
distribution of the tonnes of tuna caught in the specified events.

Machine Learning models

We partition the dataset training (75%, 9152 events, 3893 sets and 5259 deployments) and
test (25%, 3051 events, 1309 sets and 1742 deployments) as is customary in supervised
ML, while keeping the whole class distribution. Because the number of observations was
comparable across oceans (see Table 2.4), we did not stratify these divisions by ocean.
In the classification and regression tasks, we compared the performance of a baseline
rule-based model (see Section 2.3.3) versus five distinct ML models:

• Logistic Regression (LR) classifier [108]: a linear model for the classification task.

• Elastic Net (ENet) regressor [109]: for the regression task, with three regularization
techniques, namely L1 penalization, L2 penalization and elastic net.

• Random Forest (RF) algorithm [92].

• Gradient Boosting (GB) algorithm [110].
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Echo Echo + Ocean All

Biomass measurements ✓ ✓ ✓

Number of zero-readings ✓ ✓ ✓

Buoy model ✓ ✓ ✓

Chlorophyll-a ✓ ✓

Dissolved oxygen ✓ ✓

Salinity ✓ ✓

Thermocline depth ✓ ✓

Temperature ✓ ✓

Current velocity ✓ ✓

SSHa ✓ ✓

Day and month ✓

Year ✓

Latitude ✓

Longitude ✓

Ocean basin ✓

Sunrise hour ✓

Sunset hour ✓

Table 2.6: Grouped features used for the models. “Echo” contained only data from the
echo-sounder buoy database relating to echo-sounder measurements (in blue). “Echo +
Ocean” included oceanographic data for each record in the echo-sounder buoy database’s
position and date (in green). “All” contained additional data derived from each record in
the echo-sounder buoy database, such as position and time (in red).

• XGBoost (XGB) algorithm [111].

For training and evaluating the models, we used the corresponding algorithms
implemented in the Python scikit-learn [112] and XGBoost [111] libraries. Each
model was trained on three different sets of predictor variables, listed in Table 2.6.

We utilised the relevant techniques implemented in the Python scikit-learn [112]
and XGBoost [111] libraries to train and evaluate the models. Table 2.6 shows the three
separate sets of predictor variables where each model was trained on.

Hyper-parameter tuning and model comparison

To discover the optimum hyper-parameters for each model, a grid search with 5-fold
cross-validation was performed, maximising the Area Under the Curve (AUC) for
classification tasks and the MAE for regression tasks. The AUC is calculated by plotting
the Receiver Operating Characteristic (ROC) curve (graphing the real positive rate versus
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the false negative rate at various thresholds) and calculating the area below the curve.
When comparing actual and predicted values, the MAE score is defined as the average of
the absolute values of the errors.

Tables 2.7, 2.8 and 2.9 present the hyper-parameter grid for all models utilising the
entire set of features in each of the four tasks. A grid search was performed for Logistic
Regression (LR) and Elastic Net (ENet) using the standard classes LogisticRegressionCV
and ElasticNetCV, with a l1_ratio grid of [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] and [0.1, 0.5,
0.9, 1.0] respectively. The final values selected by cross-validation were 1 and 0.9. The
names of the hyper-parameters correspond to their names in the scikit-learn library
[112]. All of the parameters not displayed here were left at their default settings (see the
documentation for more details). Finally, Tables 2.10, 2.11 and 2.12 present the set of
optimal hyper-parameters for each of the models.

Parameter Classification Regression

n estimators [200, 500, 1000] [100, 200, 500]
max samples [None, 0.8] [None, 0.8]
max depth [None, 2, 4] [None, 4, 8]
min samples split [2, 8, 32] [2, 8, 32]
min samples leaf [1, 4, 16] [1, 4, 16]
max features [None, sqrt, log2] [None, sqrt, log2]

Table 2.7: Grid of hyper-parameters employed in the RF models.

Parameter Classification Regression

n estimators [50, 100, 200] [400]
learning rate [0.01, 0.1, 0.2] [0.01, 0.1, 0.2]
max depth [None, 3, 6] [None, 3, 6]
min samples split [2, 4, 8] [2, 4, 8]
min samples leaf [1, 2, 4] [1, 2, 4]
max features [None, sqrt, log2] [None, sqrt, log2]

Table 2.8: Grid of hyper-parameters employed in the GB models.

Parameter Classification Regression

n estimators [50] [50, 100, 200]
learning rate [0.2] [0.01, 0.1, 0.2]
max depth [2, 4] [2, 4, 6]
subsample [1.0] [0.7, 1.0]
colsample bytree [1.0] [0.5, 1.0]

Table 2.9: Grid of hyper-parameters employed in the XGBoost models.
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Classification Regression

Parameter Binary Three class Standard Threshold

n estimators 1000 500 100 200
max samples None None None None
max depth None None None None
min samples split 2 8 8 2
min samples leaf 1 1 4 4
max features sqrt sqrt None None

Table 2.10: Best hyper-parameters for the RF models, using all features.

Classification Regression

Parameter Binary Three class Standard Threshold

n estimators 200 200 400 400
learning rate 0.2 0.1 0.01 0.01
max depth 6 6 None None
min samples split 8 2 2 4
min samples leaf 4 2 4 8
max features log2 log2 auto auto

Table 2.11: Best hyper-parameters for the GB models, using all features.

Classification Regression

Parameter Binary Three class Standard Threshold

n estimators 50 50 200 100
learning rate 0.2 0.2 0.01 0.1
max depth 4 4 6 6
subsample 1.0 1.0 0.7 1.0
colsample bytree 1.0 1.0 0.5 0.5

Table 2.12: Best hyper-parameters for the XGBoost models, using all features.

We report the F1-score for binary classification as the harmonic mean of precision and
recall assuming that the positive class is y ≥ 10t. For multi-class problem, we report the
average F1-score weighted by the proportion of observations in each class.

2.3.4. Best model performance

Finally, we conducted a thorough examination of the best models for each task. In
addition to the metrics stated above, we estimated the confusion matrix for the binary
and multi-class classification problems in these analyses.
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We also present the errors stratified by event type (set or deployment) and ocean
basin to help evaluate whether the models are doing badly in particular subsets of
the data. We confined these studies to binary classification and regression problems.
Additional measures were produced, including F1-score and accuracy for classification
(see Appendix 2.A); and MAE and Symmetric mean absolute percentage error (SMAPE)
for regression (see Appendix 2.B).

2.4. Results

2.4.1. Echo-sounder window selection

Classification (F1-score) Regression (MAE)

Hours Binary Three class Standard Threshold

24 0.911 0.811 10.16 8.70
48 0.919 0.813 10.05 8.63
72 0.925 0.824 10.03 8.54

Table 2.13: Model score for GB regression and classification models based on echo-
sounder window size.

All GB models, regardless of task, displayed improved scores when using larger
echo-sounder windows. The binary classification model (F1-score = 0.925, Table 2.13)
produced the best overall results throughout the classification tasks while employing the
72h echo-sounder window. Similar findings are exhibited for the regression tasks, with
the 72h echo-sounder window producing the lowest MAE (Table 2.13). The threshold
regression model performed better than the standard one, with a MAE almost 1.5t lower
(Table 2.13). Because echo-sounder windows spanning 72 hours produced the best results
across all models, this was the echo-sounder window used in the subsequent studies.

2.4.2. Classification models comparison

Binary Three class

Models Echo Echo + Ocean All Echo Echo + Ocean All

Baseline 0.754 - - 0.648 - -
LR 0.885 0.889 0.895 0.773 0.788 0.799
RF 0.893 0.911 0.918 0.794 0.799 0.807
XGB 0.900 0.913 0.922 0.798 0.805 0.813
GB 0.907 0.924 0.925 0.791 0.812 0.824

Table 2.14: Classification on test events, F1-score.

29



Table 2.14 shows the performance of all classification models evaluated for the 72h
echo-sounder window. GB was the top performing model in both classification tests.
Every model’s performance improved as the number of features included in the training
rose, i.e. as the models could learn from a bigger collection of features. Thus, the binary
classification GB model trained with all features earned the greatest overall accuracy score
(F1-score = 0.925, Table 2.14). The ternary classification baseline model produced the
least accurate results, being about 20% less accurate than the highest performing model
for this test, the GB model with all characteristics. It is worth noting that the F1-score
increased between each ML model and the baseline.

2.4.3. Regression models comparison

Regression Regression (Threshold)

Models Echo Echo + Ocean All Echo Echo + Ocean All

Baseline 12.85 - - 11.40 - -
ENet 13.99 13.70 13.52 12.18 11.84 11.60
RF 10.74 10.30 10.20 9.42 8.93 8.84
XGB 11.37 10.86 10.76 9.60 9.13 9.02
GB 10.51 10.10 10.03 9.18 8.74 8.54

Table 2.15: Regression on test events, MAE (t).

In Table 2.15, the results achieved by all the models trained on the various sets
of predictor variables during the 72h echo-sounder window are displayed. The GB
model outperformed all other models in the classification tasks. More particular, the
threshold regression GB model was the most accurate, with an MAE almost 3t lower
than the baseline model for the identical task, and 1.49t lower than the regular regression
GB model. It is also worth noting that, in terms of classification tasks, all models
profited from the addition of location and oceanographic data, and were able to use this
knowledge to enhance their predictions over models that were simply given echo-sounder
data. Although some of these differences were minor and maybe insignificant, it was
evident that the ML models enhanced the baseline (which was the best of multiple feasible
aggregations, Section 2.3.3) and benefited from adding all variables.

2.4.4. Best models results

When we examine the confusion matrix for the test set of both classification tasks (Figure
2.6), we notice that the GB model had a good success rate in classifying whether tuna
biomass was < 10t or ≥ 10t, with just 6.03% of instances misclassifying. The ternary
classification GB model, on the other hand, found it more difficult to distinguish between
10t ≤ y < 30t and y ≥ 30t biomass predictions, misclassifying results in these two classes
in 11.14% of cases.
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Sets Deployments All

Ocean F1-score Accuracy F1-score Accuracy F1-score Accuracy

Atlantic 0.876 0.787 0.991 0.982 0.869 0.878
Indian 0.953 0.911 0.982 0.965 0.939 0.935
Pacific 0.964 0.930 0.997 0.994 0.953 0.980

All 0.934 0.878 0.991 0.983 0.925 0.938

Table 2.16: Errors for the binary classification task using the best model (GB), by ocean
and event type.
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Figure 2.6: Confusion matrices with the best classification model performance on the
test set. True label refers to the actual biomass category, whereas predicted label is the
category inferred by the model.

The findings of the binary classification model are shown in Table 2.16 by ocean
basin and event type. Here, we can observe that the model performed better when tested
on deployments (Accuracy = 0.983) than on sets (Accuracy = 0.878), i.e., it performed
better when tuna biomass was < 10t rather than ≥ 10t. It is also worth mentioning that the
Atlantic Ocean saw a significant decline in accuracy when compared to the rest, especially
when tested on sets.

Sets Deployments All

Ocean MAE (t) SMAPE (%) MAE (t) SMAPE (%) MAE (t) SMAPE (%)

Atlantic 14.40 30.05 2.95 92.92 9.07 59.33
Indian 23.57 29.55 1.72 52.25 13.84 40.99
Pacific 27.96 28.52 0.36 32.09 6.44 31.31

All 21.66 29.51 1.29 51.15 10.03 41.86

Table 2.17: Regression task errors when using the best model (GB) by ocean and event
type.
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The MAE shown in Table 2.15 hides an important fact: the errors were very different
for the two events included in the test data. Indeed, deployment events have by definition
an observed biomass of zero: when tested over deployment events, the GB model had a
MAE of 1.29t, while the MAE for set events was 21.66t (see Table 2.17). The reported
overall MAE of 10.03t is thus the weighted average of these different populations.

The MAE in Table 2.15 reveals a key fact: the errors for the two events included in
the test data were considerably different. Indeed, deployment events had an observed
biomass of zero by definition: when evaluated across deployment events, the GB model
had an MAE of 1.29t, but the MAE for set events was 21.66t (see Table 2.17). Thus, the
stated total MAE of 10.03t is the weighted average of these different populations.
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Figure 2.7: Scatter plot of the observed against estimated tuna biomass in set events by
ocean. The red line represents ŷ = y and is shown for reference.

When looking more closely at the predictions of the best regression model, as
shown in Figure 2.7a, it becomes clear that the model systematically underestimates
cases of extremely high tuna biomass (y ≥ 100t). This finding is consistent with the
previously indicated improvement of the threshold regression task in comparison to
standard regression. The MAE over set events was reduced to 18.33t for this model, and
it was similarly decreased over deployments to 1.18t. Even with this threshold, however,
the model tended to underestimate when observed tuna biomass was large (Figure 2.8b).
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(a) Density distributions (set events) of observed and
estimated tuna biomass for the standard regression
task.
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(b) Two-dimensional histogram of
observed and estimated tuna biomass for
the regression threshold task plot.

Figure 2.8: Error distribution of the two regression tasks

Some possible explanations for this underestimate are discussed in Chapter 5 (Section
5.1.1). There were no significant variations in performance between ocean basins (see
2.7). Figure 2.8a depicts the marginal distributions for observed and estimated tuna
biomass on set events.

2.4.5. Feature importance

The interpretability of ML models is a difficult task: understanding which features the
model deems most important in its computations. There are numerous techniques to
assessing feature significance, and in this study we use permutation importance [92],
which measures the significance of a particular feature as the loss in model performance
when the values of that column are randomly shuffled in the training set.

We rate the ten most essential features for each task in Table 2.18 for the best model
(GB). We next explain what each feature means:

• Baseline is the tons of tuna estimated by the baseline model, which aggregates
the values of the 72 × 10 echo-sounder window.

• N_Zero is the number of zero-readings in the echo-sounder window, which can
range between 0 and 72. If the overall biomass estimation is less than 1t, the buoy
does not communicate an hourly biomass estimate to the satellite.

• Max.LY is calculated by taking the greatest of the 72 values for each layer Y, with
layer 1 being the closest to the surface.

• Max.HX is calculated by taking the greatest of the 10 values for each hour X, with
hour 0 being the closest to the event.
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• O2.DX and SSHa.DX are the dissolved oxygen and SSHa, respectively, for each day
X, with 0 being the closest to the event.

• Latitude and Longitude are the buoy locations closest in time to the event.

• Ocean is a category variable indicating the ocean basin where the event occurred.

Classification Regression

Rank Binary Ternary Standard Threshold

1 Max.L5 Max.L5 Baseline Baseline

2 Longitude Longitude Max.L5 Max.L5

3 Ocean Ocean Longitude Longitude

4 N_Zero Max.L2 Latitude Max.L2

5 Latitude Max.H10 Max.H32 SSHa.D0

6 Max.L7 SSHa.D0 Max.L2 Latitude

7 Max.L1 Latitude SSHa.D0 Max.L6

8 Max.L6 SSHa.D3 Max.H35 SSHa.D1

9 Baseline O2.D1 SSHa.D1 SSHa.D3

10 Max.L2 O2.D0 SSHa.D3 Max.H10

Table 2.18: For each of the four tasks, we display the top ten most significant features
for the GB model. These variables are coloured according to the feature group to which
they belong. Blue represents echo-sounder features, green is for oceanic variables, and
red represents geographical coordinates (or features derived from them).

The interpretation of feature importance must be done with caution because there are
definitely correlation between the variables, which must be taken into consideration when
assessing permutation importance. However, we may briefly analyse the presence of
some of them in Table 2.18, albeit more research is needed to confirm their veracity.
For example, in both regression tasks, the feature Baseline emerges as the most
important explanatory variable, which is understandable given that it is a first-stage
biomass estimator. N_Zero, on the other hand, appears as a meaningful predictor solely
in the binary classification task, because a reading of < 1t presumably means that there
is no tuna beneath the DFAD. Furthermore, the geographical coordinates Latitude
and Longitude show as important covariates for each task, emphasising the value of
including this information source in the models. We also see that Max.L5 consistently
appears as one of the most relevant features for every job, which might be proof of the
common depth at which tuna are present. Finally, several oceanographic factors, such
as SSHa and SSHa, appear as important features in the three most demanding tasks,
indicating that they assist the models estimate tuna tonnes more correctly.
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2.5. Discussion

The Tun-AI pipeline was presented in this chapter, which uses echo-sounder buoy, FAD
logbook, and oceanographic data to generate ML models that can reliably estimate tuna
biomass aggregated at DFADs. The efficiency of several classification and regression
models, as well as the impact of diverse data sources on model performance, were
investigated. In this section, we will compare our findings to earlier research on estimating
tuna biomass at DFADs, which was introduced in Section 2.2.

The methodology we presented varies from earlier studies in key respects. Although
Baidai, Dagorn, Amande et al. [57] approach is comparable to ours (see Section 2.2.1),
they only address the classification problem and hence cannot directly estimate the metric
tonnes of tuna under the DFAD. They also have a lesser sample size in terms of sets (albeit
similar) that only span the Atlantic and Indian seas. Finally, we evaluated various models
for each task to see which one provided the highest overall performance. Despite the
differences in technique and dataset utilised in the current study and the studies provided
in Table 2.1, we believe it is important to incorporate Tun-AI results in the new enlarged
Table 2.19 for context.

Ocean Model N Accuracy Recall Specificity F1-score

Atlantic EN [64] 3159 0.34 - - -
RF [91] 22 501 - 0.79 0.99 -
SVM [91] 22 501 - 0.79 0.99 -
MLP [91] 22 501 - 0.77 0.99 -
ID3 [91] 22 501 - 0.73 0.99 -
IBK [91] 22 501 - 0.75 0.98 -
RF [57] 1856 0.76 0.83 0.67 0.78
RF [97] a 838 0.66 0.74 0.59 0.67
Tun-AI 2869 0.88 0.88 0.88 0.87

Indian EN [64] 26 143 0.47 - - -
RF [57] 13 671 0.85 0.81 0.90 0.84
RF [97] a 2144 0.58 0.63 0.53 0.60
Tun-AI 4926 0.94 0.96 0.90 0.94

Pacific Tun-AI 4400 0.98 0.98 0.98 0.95
a Predicts by-catch presence during fishing sets for tuna.

Table 2.19: Table 2.1 (approaches to predict tuna presence seen in the literature), with our
results included.

Other studies that address the regression problem, such as Lopez, Moreno, Boyra et al.
[60] and Orue, Lopez, Moreno et al. [99] (see Section 2.2.2), cannot be directly compared
with this study for a variety of reasons. To begin with, their sample sizes are orders of
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magnitude less (21 and 287 sets, respectively). Second, they only have information from
one ocean (Atlantic and Indian, respectively). Finally, they fit a statistical model, whereas
our work uses an ML approach with a train-test split and a significantly bigger dataset.
This means that Tun-AI is expected to have the stated performance on new, unknown data,
however there is no assurance that the models in Lopez, Moreno, Boyra et al. [60] and
Orue, Lopez, Moreno et al. [99] will generalise as well, given they use the same dataset
for model fit and error assessment.

Furthermore, other work’s assumptions and data-processing methods may not be
exactly comparable to the approach detailed here. Lopez, Moreno, Boyra et al. [60]
and Orue, Lopez, Moreno et al. [99], for example, assume that tuna exclusively inhabit
levels deeper than 25m, eliminating biomass estimates from shallower layers out of their
calculations. In our situation, all layers were taken into account since skipjack tuna
prefer warmer surface waters where the thermocline is shallow [113]. In fact, subsequent
research that used the same method as Lopez, Moreno, Boyra et al. [60] did not obtain
substantial improvements in biomass estimations [99]. Baidai, Dagorn, Amande et al.
[57] decided to use all layers in their studies while constructing tuna presence/absence
and classification models, which utilised data from a different brand of echo-sounder
buoys in the Atlantic and Indian seas but did not consider oceanographic characteristics
in their models. To offer a full summary of the present level of tuna biomass estimation,
we believe it is still necessary to incorporate Tun-AI results in Table 2.20.

Ocean Model N R2 MAE

Atlantic Manufacturer [60] 21 0.25 21.29
GLM [60] 21 0.73 -
POL2 [60] 21 0.81 -
POL3 [60] 21 0.83 10.25
GAM [60] 21 0.82 -
Tun-AI 2869 0.31 9.07

Indian Manufacturer [99] 287 0.02 -
GLM [99] 287 0.02 -
POL2 [99] 287 0.02 -
POL3 [99] 287 0.03 -
GAM [99] 287 0.03 -
Tun-AI 4926 0.38 13.84

Pacific SEAPODYM [100] 300 0.85 -
Tun-AI 4400 0.53 6.44

Table 2.20: Table 2.2 (approaches to estimate tuna biomass seen in the literature), with
our results included.

Our study also looked at how oceanographic conditions and position-derived factors
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affected model performance. When compared to the model that just employed echo-
sounder data, the incorporation of extra features dramatically improved across all tasks
and models. This emphasises the significance of including contextual information
into biomass estimations when utilising data from echo-sounder buoys attached to
DFADs. Although this appears to be a laborious job at first glance, the current pipeline
relies on automated processes for extracting oceanographic data and relating it to other
available datasets, so the added complexity translated to only a few minutes of additional
computation time on standard equipment. Given the increase in model accuracy when
this information is included, as well as the potential benefits of having reliable techniques
for estimating tuna biomass at DFADs, we believe it is desirable to utilise all available
information. Previous research has looked at the association between tropical tuna
distribution and oceanographic conditions using both catch data from observer logbooks
and DFAD data. Skipjack tuna, for example, has been seen to congregate near upwelling
systems, where feeding environment is favourable, and factors such as sea surface
temperature or SSH have been demonstrated to have a substantial relationship with tuna
distribution [63], [64]. Furthermore, Spanish fishermen that use echo-sounder buoys on
DFADs believe that the oceanographic context of the DFAD, as well as the features of
each ocean, impact the accuracy of biomass estimations produced by buoys [40].

Readers wanting to read further on the discussion of Tun-AI results are encouraged
to skip to Chapter 2 (section 5.1.1). There we address any remaining questions that may
remain after this chapter and suggest possible directions for future research to address
these issues. Next chapter will show an application of Tun-AI pipeline to study tuna
dynamics, with a focus on estimating how much time do tuna schools spend associated to
DFADs.
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APPENDICES

2.A. Classification metrics

We will explain the most common metrics used for classification problems, and particularly
in tuna presence studies. One data sample is defined as “positive” in there was tuna present
for that observation, and “negative” when tuna was considered to be absent. Thus, the
predictions of the model will belong to one of these four categories:

• True Positive (TP): when the model correctly predicts tuna presence.

• False Positive (FP): when the model predicts tuna presence, but tuna was absent.

• False Negative (FN): when the model predicts tuna absence, but tuna was present.

• True Negative (TN): when the model correctly predicts tuna absence.

Accuracy refers to the fraction of predictions made by the model that are correct. The
closer its value is to 1, the better the model is.

Accuracy =
T P + T N

T P + FP + FN + T N

Recall or sensitivity is another metric used to evaluate the performance of a
classification model. It measures the proportion of positive cases (presence) that the
model correctly identified as such.

Recall =
T P

T P + FN

In contrast, the specificity is the proportion of negative cases (absence) that the model
correctly identified as such.

Specificity =
T N

FP + T N

Finally, F1-score is calculated as the harmonic mean of precision and recall, where
precision is the proportion of positive cases that the model correctly identified as such.
The F1-score is a single value that represents the overall performance of the model.

F1-score =
2T P

2T P + FP + FN
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2.B. Regression metrics

The following metrics are typically used to quantify the efficiency of regression algorithms.
First is the coefficient of determination (R2), a measure of the goodness of fit of a
regression model. In this context, R2 describes the extent to which the variance of the
dependent variable (tuna biomass) can be explained by the independent variable(s) in a
regression model - i.e. the acoustic signal or the oceanography data. It is calculated as:

R2 = 1 −
∑︁N

i=1(yi − ŷi)2∑︁N
i=1(yi − ȳ)2

,

where i represents a sample in the data set, N is the number of samples, and ȳ is the
average catch of the whole data set. For each i, yi is its associated real catch and ŷi is the
predicted biomass for that sample (in the same units as yi). R2 ranges from 0 (bad fit) to 1
(good fit).

Next metric is the Mean absolute error (MAE), a measure of prediction error in a
set of predictions. It is computed as:

MAE =
1
N

N∑︂
i=1

|yi − ŷi|

Our study also computes the SMAPE, defined as follows,

SMAPE(%) =
100%

n
∗

n∑︂
i=1

|ˆ︁yi − yi|

|yi| + |ˆ︁yi|

where yi is the actual value andˆ︁yi the estimated value. The main reason for reporting the
SMAPE instead of the more common Mean Absolute Percentage Error (MAPE) is that
the latter is undefined when yi = 0, which happens with all the deployments. Besides, the
SMAPE definition ranges between 0% and 100%, which makes it easier to interpret.

2.C. Echo-sounder buoys

The present study was made feasible by data received from Satlink’s echo-sounder buoys,
which were designed and deployed. Figure 2.9 depicts the look of these buoys. The
following technical data was obtained from Lopez, Moreno, Boyra et al. [60]. The buoy
is equipped with a Simrad ES12 echo-sounder, which runs at 190.5 kHz with a power of
140 W (beam angle at -3dB: 20◦). The sounder is set to operate for 40 seconds. During
this time, the transducer sends 32 pings, and an average of the back-scattered acoustic
response is computed and saved in the memory of the buoy’s software programme
(hereinafter referred to as a “acoustic sample”). Volume back-scattering strength [114]
values less than -45 dB are automatically deleted by the buoy’s internal module as a
precautionary step to exclude signals that are likely to belong to animals smaller than
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tuna [115], [116]. The observation depth range is 3 to 115 metres, with a blanking zone of
0 to 3 m. To reduce the transducer’s near-field influence, data from this zone is eliminated
[117]. Each observation is made up of ten homogenous layers with a resolution of 11.2
m. Because the echo-sounder buoys belonged to fishing crews, they were calibrated in
tanks before to delivery rather than at the deployment location.

(a) SLX+ (b) ISD+

Figure 2.9: Two models of Satlink echo-sounder buoys used in this study. Images taken
from their official webpage: www.satlink.es

Raw acoustic data are provided for each depth layer and were originally converted
to biomass (in metric tons, t) by using an experimental algorithm developed by the
manufacturer, which is based on the target strength of skipjack tuna, the main target
species of the fleet fishing around DFADs. This conversion is automatically executed
in the internal module of the buoy for each integrated layer by means of a depth layer
echo-integration procedure [117], with the assumption that there was the presence of only
individuals of skipjack tuna of identical weight.

Satlink’s echo-sounder buoy takes one acoustic sample every five minutes, and
sends one of this samples per hour to the database, that can be accessed by the fishing
companies. An algorithm developed by Satlink chooses the acoustic sample to send,
ensuring that the most relevant one is stored. Sampling frequency is lower at night for
two reason. First, tuna is known to be less active at night. Second, the buoy is battery-free
and stores solar energy in super capacitors. Doing less samplings at night ensures the
buoy’s stored energy lasts until the next day. On the other hand, sampling frequency
increases at sunrise, as it is believed that tuna are more active around that time [60].
Satlink buoys also have an attached GPS, and stores their last known position in the
database on a daily basis. Fishing vessels can increase the frequency of both acoustic
samples and position data for a specific buoy on demand.
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2.D. Code

The research presented in this chapter on sustainable fishing was developed using the
Python programming language. Figure 2.10 provides a simplified representation of the
flow diagram that was employed to process the data utilized in this study, highlighting
the general behavior of the data processing pipeline. Furthermore, Figure 2.11 outlines
the basic framework utilized for model training, providing a straightforward visual
representation of the methodology employed.
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Figure 2.10: Basic representation of the flow diagram for the Tun-AI data processing,
implemented in Python.
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Figure 2.11: Basic representation of the flow diagram for the Tun-AI model training,
implemented in the Python scikit-learn [112] and XGBoost [111] libraries.
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3. TUNA DYNAMICS WITH TUN-AI

3.1. Introduction

The use of Drifting Fish Aggregating Devices (DFADs) in tropical tuna purse-seine
fishing has sparked concern owing to the possible biological effects on tuna and the
marine environment. As a result, there is a growing interest in understanding tuna
dynamics and how they are influenced by DFADs. One solution is to employ the very
own DFADs, which is equipped with echo-sounders that provide data on positioning and
aggregated tuna biomass. In the previous Chapter 2 we presented Tun-AI , a Machine
Learning (ML) pipeline that uses echo-sounder and oceanography data to estimate the
biomass and presence of tuna under DFADs across tropical oceans. This chapter shows
how Tun-AI can be applied to examine the temporal trends of tuna schools’ association
to drifting objects.

The structure of this chapter is as follows. First, the state of the art in tuna dynamics
is introduced in section 3.2. Then, section 3.3 describes the data processing pipeline,
particularly how biomass estimates are generated with Tun-AI and how these predictions
are smoothed into time series. Results are shown in section 3.4. Using a binary output,
metrics typically used in the literature are adapted to account for the fact that the entire
tuna aggregation under the DFAD is considered. Using a regression output, two novel
metrics, namely AT and DT, are estimated to obtain further insight into the symmetry of
the aggregation process. These results are compared with the state of the art in section
3.5, where we conclude by addressing the “ecological trap” hypothesis.

3.2. State of the art

Given the concerns around the widespread use of DFADs in tuna fisheries today, it is not
surprising that a considerable amount of research has been devoted to characterizing the
dynamics at play when tunas aggregate to DFADs. However, results appear to be highly
variable. One explanations lies in the inherent difficulties of conducting experiments in the
open ocean. Most research on this subject is based on small-scale studies using electronic
or acoustic tags to monitor individual tunas at a small number of DFADs. For these kind
of studies, a small number of tuna individuals are caught close to a DFAD and surgically
implanted a tag (see Figure 1.2), then released in the same area [118], [119]. DFADs
used in these studies are equipped with special tools that detect the presence of tagged
individuals nearby. Thus, researchers are able to compute the Continuous Residence Time
(CRT) of tunas at DFADs, defined as the duration for which tuna was present at the FAD
without day-scale absences [120]. The results for individual tagging studies are shown in
Table 3.1.
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Ocean Study Species N CRT (days)

Atlantic Robert, Dagorn, Deneubourg et al. [121] YFTa 24 4.05
YFTb 16 1.65

Tolotti, Forget, Capello et al. [119] SKJ 7 9.19
BET 23 25.31
YFT 20 19.15

Indian Dagorn, Pincock, Girard et al. [118] SKJ 10 0.91
BET 3 1.43
YFT 55 1.04

Govinden, Dagorn, Filmalter et al. [122] SKJ 12 4.47
BET 4 3.89
YFT 13 9.98

Pacific Matsumoto, Satoh and Toyonaga [123] SKJ 15 2.30
Matsumoto, Satoh, Semba et al. [124] SKJ 30 1.30

BET 32 3.80
YFT 43 4.10

Scutt Phillips, Peatman, Escalle et al. [125] SKJ 13 1.00
BET 97 10.00
YFT 45 2.00

a Small individuals (30-39 cm).
b Large individuals (63-83 cm).

Table 3.1: Summary of main findings from previous studies on Continuous Residence
Time (CRT) of individual tunas at DFADs. Species are: skipjack (SKJ), bigeye (BET)
and yellowfin (YFT). “N” denotes the number of individuals tagged.

In Section 1.2, it was stated that certain assumptions need to be made in individual
tagging studies, mainly that tagged fish experience the same processes and behave the
same as untagged fish [34]. These assumptions are strong and should be addressed by
tagging a substantial number of individuals, which is complex, expensive and potentially
harmful for the tunas. An alternative to this is using the data collected from echo-sounder
buoys to do study the aggregated population of tunas under the DFADs. As of today,
this has the limitation of not distinguishing between tuna species, but the advantages out-
weight this shortcoming. Echo-sounder buoys are relatively cheap to deploy [40], can
cover larger areas and are less invasive for fishes, as they do not require manual handling
the individuals.

Studies on tuna dynamics using acoustic data are relatively new. Diallo, Baidai,
Manocci et al. [126] computed CRT using echo-sounder data from two different buoy
models (M3I and M3I+) drifting on the Indian Ocean in the period 2016-2018. They
used a total of 5748 M3I buoys and 1368 M3I+ buoys. We show their computed CRT
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in Table 3.2, named Aggregation’s Continuous Residence Time (aCRT) as it refers to
groups of tuna rather than individuals. They also computed the Aggregation’s Continuous
Absence Time (aCAT), defined as the time between two consecutive associations to
DFADs [121]; and the Colonization Time (CT), which is the time elapsed since the
DFAD was deployed until tuna aggregated under it. All these metrics that characterize
tuna aggregations will be explained further in Section 3.3.1.

Baidai, Dagorn, Amandé et al. [127] did a similar study to the previous one. Their
research took place on the Atlantic and Indian Ocean from 2016 to 2018, and included
9118 trajectories of newly deployed DFADs. Along with providing the same metrics
as Diallo, Baidai, Manocci et al. [126], these new study also computed the Soak Time
(ST), which is the total number of consecutive days that the DFAD spend at sea; the
Colonization Time (CT) of tuna on DFADs, i.e. the amount of time that takes for tuna to
aggregate under a newly deployed DFAD; and the Occupancy Rate (OR), defined as the
percentage of time that the buoy had aggregations under it. Refer to Section 3.3.1 for a
broader explanation of these metrics.

Another study that uses echo-sounder data is Orue, Lopez, Moreno et al. [62]. In
particular, their data comes from 962 echo-sounder buoys attached to DFADs, during
three years of operations (2015-2018) in the Indian Ocean. The CT was computed, and
the authors concluded that tuna takes on average 13.5 days to arrive at DFADs.

Summarizing all the previous studies, CRT has been found in the literature to range
from less than a day to 55 days. Likewise, the values of Continuous Absence Time (CAT)
ranges from 2 days to over 100 days.

3.2.1. Contribution

In this context, the current study applies the ML Learning based models from Tun-AI
(described in Chapter 2) to provide accurate biomass estimates below DFADs across the
Atlantic, Indian and Pacific Oceans, with the aim of characterizing the temporal patterns
of tuna associations to DFADs. To do this, we adapt metrics already present in the
literature to account for the fact that our study focuses on the entire tuna aggregation
around the DFAD, as opposed to individual fish. Given that Tun-AI can deliver
estimated amounts of tuna biomass aggregated to the DFAD, we examine the processes
of aggregation and disaggregation in more detail. We check whether there could be a
potential “ecological trap” [69], [70] effect on the tuna schools, by testing whether the
time it takes for the tuna school to depart from the DFAD is significantly longer than the
time it takes for the aggregation to form in the first place.
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Metric Ocean Study Mean SD Median

ST (days) Atlantic Baidai, Dagorn, Amandé et al. [127] 63.28 65.08 44
Indian Baidai, Dagorn, Amandé et al. [127] a 54.24 45.52 43

CT (days) Atlantic Baidai, Dagorn, Amandé et al. [127] 16.10 9.66 -
Indian Baidai, Dagorn, Amandé et al. [127] 40.46 17.31 -

Diallo, Baidai, Manocci et al. [126] a 23.00 22.00 -
Diallo, Baidai, Manocci et al. [126] b 17.70 18.00 -
Orue, Lopez, Moreno et al. [62] 13.50 - -

aCRT (days) Atlantic Baidai, Dagorn, Amandé et al. [127] 8.96 11.52 4
Indian Baidai, Dagorn, Amandé et al. [127] 6.20 6.86 4

Diallo, Baidai, Manocci et al. [126] a 6.00 6.60 -
Diallo, Baidai, Manocci et al. [126] b 8.40 10.90 -

aCAT (days) Atlantic Baidai, Dagorn, Amandé et al. [127] 5.38 6.01 4
Indian Baidai, Dagorn, Amandé et al. [127] 8.84 10.93 5

Diallo, Baidai, Manocci et al. [126] a 9.70 12.00 -
Diallo, Baidai, Manocci et al. [126] b 8.30 9.90 -

OR (%) Atlantic Baidai, Dagorn, Amandé et al. [127] 63.27 19.86 60.49
Indian Baidai, Dagorn, Amandé et al. [127] 45.45 46.16 21.73

a With buoy model M3I.
b With buoy model M3I+.

Table 3.2: Summary statistics, per ocean, for tuna aggregation metrics calculated in the
literature. SD refers to the Standard Deviation.

3.3. Material and methods

3.3.1. Data processing

Data cleaning

Prior to analysis, the data must be cleaned of any records that may contaminate or obscure
our study. To do this, a series of processes has been developed to eliminate potential
errors:

• Duplicate rows and samples with missing buoy identification numbers are removed
from the activity and echo-sounder databases, respectively.

• Echo-sounder data for sites less than 200m deep are eliminated because the echo-
sounder signal may be influenced by the seafloor. This filter also excludes any
land-based acoustic data.

• Acoustic measurements from buoys on board are removed by computing the mean
buoy velocity over a day and deleting rows where the buoy speed exceeds 3 knots,
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using the same criterion as Orue, Lopez, Moreno et al. [62].

Tun-AI estimates

A straightforward method for determining tuna biomass is to use solely raw acoustic data,
as specified in Section 2.3.3. This baseline model uses the 72-hour echo-sounder window
before the date of the prediction. The window takes one acoustic record each hour, and
each acoustic record is made up of one value for each of the ten layer depths, resulting in
a 72×10 matrix. Because the model’s output (i.e. the total biomass estimation) is a single
number, a set of aggregation criteria must be applied to the echo-sounder window matrix.
The most accurate baseline model was the sum of all hours for each layer, followed by the
mean of all layers. However, as we will see later, there are models that can outperform
this baseline.

The biomass estimates provided by the echo-sounder may present variations when
compared to real tuna tonnage under the DFAD [60]–[62]. This could be due to
multiple causes, including the influence of oceanographic conditions or the diverse
species composition under the DFAD. To mitigate this issue, we estimate tuna biomass
using Tun-AI which has proven to be more accurate than simply considering the raw
acoustic signal provided by the echo-sounder (i.e. the baseline model). Tun-AI , based
on a GB algorithm [110] and trained using set and deployment events from the FAD
logbook, uses information from the acoustic records, buoy location, and oceanographic
variables to estimate the tuna biomass under DFADs. This pipeline includes:

The biomass estimations produced by the echo-sounder may differ from real tuna
tonnage under the DFAD [60]–[62]. This might be attributed to a variety of factors,
such as the impact of oceanographic conditions or the different species diversity beneath
the DFAD. To address this issue, we estimate tuna biomass using Tun-AI , which has
been shown to be more accurate than merely utilising the raw acoustic data supplied
by the echo-sounder (i.e. the baseline model). Tun-AI , based on an GB algorithm
[110] and trained using set and deployment events from the FAD logbook, estimates tuna
biomass under DFADs utilising information from acoustic records, buoy position, and
oceanographic factors. This pipeline is well explained in Chapter 2, but as a summary we
list what Tun-AI includes:

1. a binary classification model trained to estimate whether the tuna biomass under a
DFAD is higher or lower than 10t. Their scores are displayed in Table 2.16.

2. a regression model trained to give a direct estimate of the quantity of tuna biomass
under a DFAD. This model scores are shown in Table 2.17.

Both models need a 72-hour echo-sounder window with one acoustic record per hour,
and we constructed a baseline model that solely utilised aggregations of these raw echo-
sounder estimates to assess the efficacy of our approach. Tun-AI also provides a three-
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class categorization model, which will be ignored in this chapter. One of the differences
between our study and earlier ones is that we can evaluate both the aggregation and
disaggregation processes to DFADs using a regression model, which would not be feasible
with a binary classification model.

When developing these models, two major assumptions are made: first, the total catch
captured by the vessel and later recorded in the FAD logbooks corresponds to the entire
tuna aggregation present at the DFAD; and second, the entire tuna school is sampled by
the echo-sounder beam at any point of the echo-sounder window. Such hypotheses are
unavoidable in large scale research, and we anticipate that no substantial changes in the
relative variation of the biomass will be noticed when the smoothing techniques outlined
in Section 3.3.1 are carried out.

Tun-AI models may produce hourly biomass estimates for each buoy, however this
frequency is insufficient for our investigation because of the noise created by day-night
oscillations in tuna biomass [61]. To avoid this issue, we calculate daily biomass estimates
for each buoy, totalling 3 873 531 outputs once the cleaning method mentioned in Section
3.3.1 is completed.

Generating unaltered segments

To eliminate the impacts of potential human interactions when examining tuna aggregation
dynamics under DFADs, we divided the time series of each buoy into smaller segments
in which such processes were not influenced by any external activity, which we refer to
as unaltered segments.

To produce unaltered segments for every given echo-sounder buoy, we first combine
the Tun-AI estimates (for both the binary classification and regression models) with
the activity database, using the buoy identification number as the primary key. Only
deployments, sets, retrievals at sea, recoveries at port, and losses were regarded to be
“segment generating”, that is, they may directly alter the echo-sounder data and the
biomass dynamics under the FAD. Because visits and modifications were anticipated to
have no influence on aggregated tuna biomass or echo-sounder data, they were excluded
from this research. Finally, a unaltered segment would be generated if the buoy did not
provide any information for longer than 24 hours, as this may suggest that the buoy was
turned off or was otherwise unusable.

We only looked at segments longer than 72 hours because that is the minimum
duration of the window required by Tun-AI to estimate biomass. We also excluded
segments when Tun-AI failed to estimate more than 80% of the overall segment length.
This may occur for extremely short segments (not previously rejected because they are
longer than 72 hours) or if oceanographic data are not accessible (for example, due to
difficulties with the CMEMS platform or data resolution). Otherwise, missing values
from Tun-AI were interpolated in the regression model and propagated based on the most
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recent valid estimate in the binary classification model. Finally, using the preprocessing
indicated in Section 3.3.1 and the processes given here, 43 334 unaltered segments were
created. Figure 3.1 depicts the process of producing unaltered segments.
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(a) The estimated biomass of a sample
buoy over time, together with documented
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displayed as dashed lines.

2019-01
2019-02

2019-03
2019-04

2019-05
2019-06

2019-07
2019-08

2019-09

Date

0

10

20

30

40

50

60

70

Bi
om

as
s (

to
ns

)

Deploy
Set
Empty period

(b) The unaltered segments were created
using the actions recorded in the FAD
logbook and a time with no buoy recordings.
Each colour denotes one of the resultant
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Figure 3.1: The process of producing unaltered segments using biomass estimations and
recording FAD logbook actions on a sample echo-sounder buoy over time.

Smoothing the signal

The output of both the binary and regression Tun-AI models is more indicative of genuine
tuna biomass than the raw buoy values. However, considerable noise remains in the data,
most likely owing to small scale changes in tuna aggregations or the effect of other fish
species around the DFAD. We smoothed the obtained series to capture broad patterns
while removing tiny oscillations since the goal of this chapter is to find general trends in
tuna aggregation processes.

For the binary series, isolated estimates of one class or another are smoothed using the
previous day’s data (Figure 3.2). This smoothing process altered 2.7% of the total binary
data.

Figure 3.2: The smoothing technique for the binary series is depicted schematically:
isolated estimations are adjusted based on neighbouring values.

In the regression model, we applied a constrained P−splines approach developed in
Navarro-García [128], which captures the trend of the data without overestimating the
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signal while forcing the response to be non-negative (as the nature of the data requires).
To smooth the series following this methodology, the open source Python package
cpsplines is used [128]. Figure 3.3 shows the rightmost unaltered segment in Figure
3.1b together with its smoothed version.

We used a restricted P−splines technique established in Navarro-García, Precioso,
Gavira-O’Neill et al. [4] in the regression model, which captures the trend of the data
without overestimating the signal while constraining the response to be non-negative (as
required by the nature of the data). The open source Python package cpsplines is used
to smooth the series using this methods [128]. Figure 3.3 depicts the smoothed version of
the rightmost unaltered section from Figure 3.1b.
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Figure 3.3: The smoothing technique for the regression series is illustrated above: The
non-negative P−splines technique is used to smooth the biomass estimations provided
by the Tun-AI regression model. Tun-AI predictions are in pink, while P−splines series
are in blue. The smoothed curve is less affected by noise in the original data, allowing
it to better capture overall trends while producing coherent estimates that meet the non-
negative condition.

Tuna dynamics characterization

We estimate a variety of metrics utilising Tun-AI binary classification results for unaltered
segments commencing with a deployment (7368 segments) to characterise the temporal
patterns of the tuna school’s aggregation to freshly deployed DFADs:

• Soak Time (ST): represents the length of time a DFAD has been drifting at sea.
Thus, the time elapsed from the first deployment of the DFAD till the end of the
unaltered segment is computed here (Figure 3.4).

• Colonization Time (CT): records the period from the initial deployment of the
DFAD and the first detection of tuna [62]. Here, we quantify it as the duration
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between the first deployment of the DFAD and the first day on which the binary
model of Tun-AI produces a positive prediction, i.e. tuna biomass is larger than 10t
(Figure 3.4).

• Aggregation’s Continuous Residence Time (aCRT): initially described by
Ohta and Kakuma [120] as CRT for individually tagged tunas at DFADs and
extended here to incorporate the complete aggregation, represents how long a tuna
aggregation is continually detected by the echo-sounder buoy on a particular DFAD
without day scale (> 24h) absences. aCRT is computed as the number of days in
which Tun-AI has continually assessed tuna biomass higher than 10t (Figure 3.4).

• Aggregation’s Continuous Absence Time (aCAT): is derived also from Ohta and
Kakuma [120]. This metric represents how long the tuna is missing from a given
DFAD without day scale (> 24h) presences, and is determined here as the number
of days when Tun-AI has consistently assessed tuna biomass that is less than or
equal to 10t (Figure 3.4).

• Occupancy Rate (OR): this variable is defined as the fraction of time that the tuna
school remains at the DFAD following colonisation, and it may be approximated
using the prior metrics.

• Percentage of DFADs that are never colonized: proportion of DFADs where the
presence of tuna has never been observed. This helps to put the colonisation period
statistics into context.

Figure 3.4: Schematic illustration of the results obtained by the Tun-AI binary model for
a given DFAD, and the calculation of aggregation metrics based on unaltered segments
starting with a deployment. Soak Time (ST); Colonization Time (CT); Aggregation’s
Continuous Residence Time (aCRT); Aggregation’s Continuous Absence Time (aCAT).

Given that the current study also uses estimates of total tuna under the DFAD, the
mechanisms of aggregation and disaggregation may be investigated. As a result, we
propose two new metrics: Aggregation Time (AT) and Dissaggregation Time (DT). We
use the daily tuna biomass estimates generated by the Tun-AI regression model after
smoothing (see Section 3.3.1) to compute these. We identified the times when tuna
biomass achieves a local maximum above 10t using these data, because this is the amount
of tuna we consider to be a large aggregation. This was accomplished by modifying
scipy.signal.find_peaks [129], and the peaks were identified by simply comparing
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neighbouring values of tuna biomass estimations. Peaks discovered within the first or
last 5 days of the unaltered segment were deleted as an extra precaution to prevent the
influence of human activity on biomass estimations. As a consequence, all unaltered
segments lasting less than 10 days were removed, yielding a total of 23 326 unaltered
segments. The total number of peaks is 71 644. AT was then computed for each peak as
the time passed between the initial biomass estimate greater than 10t and the day when
maximum biomass was attained. Similarly, DT was computed as the time between the
greatest biomass estimate and the following biomass estimate under 10t. This procedure
is depicted in Figure 3.5.

The binary classification Tun-AI model (see Section 2.4.2) uses a 10t cut-off for
class discrimination, and we also employ this threshold in our investigation for numerous
reasons. First, no major changes are expected because the models were trained across
sets and only 7.6% of them reported less than 10t. Second, because smaller aggregations
cannot be recognised due to model flaws, lowering this cut-off would not increase the
quality of the estimations. Finally, while describing tuna dynamics under DFADs, we are
primarily concerned with how the size of the tuna school evolves over time rather than its
absolute value.

Kruskal-Wallis tests were used to see whether any of the previously described
measures differed substantially among seas, and Dunn tests were used to validate pairwise
differences. Similarly, Mann-Whitney tests were used to compare aCRT and aCAT, as
well as AT and DT.

10 20 30 40 50 60 70 80
Days

0

10

20

30

40

Bi
om

as
s (

to
ns

)

Relevant peak
Peak width
Tonnage threshold
Aggregation time
Disaggregation time

Figure 3.5: For a sample unaltered section, a schematic illustration of the computation
of Aggregation Time (AT) and Dissaggregation Time (DT) using the smoothed biomass
estimations provided by the Tun-AI regression model is shown. The shaded regions reflect
days with no peaks, while the dashed line represents the 10t threshold.
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3.4. Results

3.4.1. General aggregation metrics

A overview of statistical metrics, categorised by ocean basin, is presented in Table 3.3
for the variables calculated from binary Tun-AI biomass estimations and utilising newly
deployed DFAD, and their distributions are illustrated in Figure 3.6 through box plots.

Metric Ocean Count Mean SD Median IQR

ST (days) Atlantic 1015 124 101 103 136
Indian 1591 92 73 70 84
Pacific 4762 202 129 186 177

CT (days) Atlantic 1015 44 43 30 42
Indian 1591 29 25 23 27
Pacific 4762 51 42 40 48

aCRT (days) Atlantic 3201 10 16 5 9
Indian 4389 11 16 6 10
Pacific 24 408 17 25 7 15

aCAT (days) Atlantic 3875 24 33 11 24
Indian 5088 19 23 11 21
Pacific 26 552 21 30 9 21

OR (%) Atlantic 1015 33 32 24 56
Indian 1591 48 35 45 64
Pacific 4762 53 31 55 48

Table 3.3: Summary data for tuna aggregation scores obtained from unaltered segments
beginning with a deployment, per ocean. Includes SD and IQR.

Regarding Soak Time (ST) and Colonization Time (CT), both show similar trends
across oceans, as shown in Figures 3.6a and 3.6b. The Pacific Ocean has the longest
CT and ST, while the Indian Ocean has the shortest, with the Atlantic Ocean falling
somewhere in the middle. In fact, the Pacific Ocean’s median ST is more than twice that
of the Indian Ocean, while CT almost doubled it. In terms of variability, the Indian Ocean
has the lowest standard deviation, whereas the findings for the other two oceans are more
varied. The fraction of DFADs that were not colonised throughout their ST also varied
significantly (27% in the Atlantic, 16% in the Indian, and 11% percent in the Pacific).

Looking at Figures 3.6c and 3.6d, we see that consistent patterns are apparent
across seas for the Aggregation’s Continuous Residence Time (aCRT), Aggregation’s
Continuous Absence Time (aCAT), and Occupancy Rate (OR), however trends diverge
for the ST and CT. In this scenario, the Indian Ocean had aCRT, aCAT, and OR values
that were between the Atlantic and Pacific Oceans. The Atlantic Ocean had the shortest
times and the Pacific Ocean had the longest for the aCRT, whereas the converse was true
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Figure 3.6: Box plots of the binary model’s estimated variables. The inter-quartile rule of
thumb with parameter 1.5 was used to eliminate outliers from the figure.

for the aCAT (Figure 3.6c). Hypothesis testing revealed significant differences across
oceans for both aCRT and aCAT (Kruskal-Wallis test, p < 0.01), and these differences
were verified in pairwise comparisons between oceans (Dunn test, p < 0.01). aCRT and
aCAT median values throughout seas were typically comparable, ranging from 5 to 7
days or 9 to 11 days, respectively (Table 3.3). Overall, global aCRT was considerably
lower than global aCAT (Mann-Whitney test, p ≫ 0.01), and variability for aCAT was
consistently larger than for aCRT. Finally, OR was about 50% globally, with the Atlantic
Ocean having the lowest median OR at 24% (Table 3.3).

3.4.2. Aggregation and disaggregation times

We were able to analyse tuna aggregation dynamics around DFADs in greater depth
using the Tun-AI regression model, calculating both Aggregation Time (AT) and
Dissaggregation Time (DT). In general, AT and DT revealed comparable patterns
throughout oceans, with the Indian Ocean having the shortest median AT and DT, and
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Aggregation time (days) Disaggregation time (days)

Ocean Count Mean SD Median IQR Mean SD Median IQR

Atlantic 19 581 7.60 13.51 3.02 5.64 6.36 10.47 3.00 4.67
Indian 26 806 8.24 13.65 3.63 6.85 7.26 12.48 3.44 5.42
Pacific 25 257 15.45 25.04 5.89 13.99 14.63 25.99 5.49 11.03

Table 3.4: Tuna aggregation metrics summarised for the continuous model and decoupled
by ocean basin.

the Pacific Ocean having the longest (Table 3.4, Figure 3.7). DT was not substantially
longer than AT overall (Mann-Whitney test, p ≫ 0.01). In fact, the first quartile for both
AT and DT was typically identical, whereas the third quartile showed greater fluctuation,
with AT generally longer than DT (Figure 3.7). Significance testing revealed variations
in both AT and DT across oceans (Kruskal-Wallis test, p < 0.01) and across oceans
(Dunn test, p < 0.01). Finally, regardless of the ocean where the DFAD was deployed,
the distributions for AT and DT were positively skewed (the mean was bigger than the
median).
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Figure 3.7: Violin plots illustrating the ocean basin specific aggregation and
disaggregation time distributions. The vertical dashed lines represented the quartile
positions.

3.5. Discussion

The study in this chapter intended to capture the overall trends in tuna aggregation
dynamics at a global scale by employing data collected by echo-sounder buoys linked to
DFADs over the period of many years and throughout all seas. This was accomplished
using Tun-AI , a robust ML pipeline that analyses echo-sounder data to produce estimates
of tuna tonnage beneath each DFAD as a binary output (< 10t or ≥ 10t) or as a direct
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estimate of biomass. To the best of our knowledge, this is the first study to look at
standard tuna aggregation metrics (ST, CT, aCAT, aCRT, and OR) across all oceans and
in such depth, offering insight into both the processes of aggregation and disaggregation
in tuna colonisation.

Baidai, Dagorn, Amandé et al. [127] measured numerous parameters linked to tuna
aggregation in the Atlantic and Indian Oceans using a binary model and a similar
technique with echo-sounder buoys from a different manufacturer. In terms of Soak
Time (ST), their estimations for the same seas are significantly shorter than ours (median
values of 44 and 43 days in the Atlantic and Indian Oceans, respectively), most likely
owing to definitional variations. While Baidai, Dagorn, Amandé et al. [127] defines ST
as the “the number of days between the deployment of an DFAD equipped with a buoy
and the first reported operation on it”, our definition captures the length of the entire
unaltered segment, which would likely be longer for buoys with no activities other than
deployment, which made up 27% of our dataset. Escalle, Muller, Vidal et al. [130]
reported mean drift periods of 118 days for DFADs included in the Parties to the Nauru
Agreement’s (PNA) FAD tracking trial programme in the Pacific Ocean, which is less
than the median 202 days ST in our results. She does, however, point out that, due to data
sharing limits, these timings are likely to be overestimated, as information outside of the
PNA’s Exclusive Economic Zones was not analysed. Fishermen have said that the typical
lifespan of an artificial DFAD is around 5-12 months [63], which is consistent with the
data recorded here.

In terms of Colonization Time (CT), there appears to be no widespread agreement
among fishing masters. Moreno, Dagorn, Sancho et al. [131] interviewed fishing masters
from the Indian Ocean, and around one-third of them believed that it takes at least one
month for a school to aggregate to an DFAD. Although there is significant variety in
the CTs reported in our study for DFADs across all seas, the median values are about
20-40 days, which corresponds to the observations of these fishing masters. However,
approximately 45% of interviewed fishing masters believed that tuna colonisation of an
DFAD was not time dependent [131], an observation that was also reflected in Lopez [63],
where tuna abundance at DFADs was not positively correlated with ST, as evidenced by
the large variability for CT in our data.

Although much research has been done on the time spent by tunas near and far from
floating objects, the majority of work has been done on individually tagged tunas at
a small number of study sites [107], [119], [120], [123], [124], [132]–[135]. These
approaches give a high degree of detail, but they may not be reflective of underlying
themes among all DFADs, or even of the overall patterns of a school of tuna. Robert,
Dagorn, Deneubourg et al. [121], for example, discovered size dependent variations in
the time yellowfin spent around an anchored FAD, with smaller individuals (< 50cm fork
length) spending around four times as much time around the FAD as bigger individuals.
Similarly, disparities in the Continuous Residence Time (CRT) of skipjack, yellowfin, and
bigeye tuna between seas have been found [119], [132], [133].

57



Even while the huge data available from echo-sounder buoys coupled to DFADs may
not give such fine-grained insight, it does show promise for discovering general trends in
how large tuna aggregations behave. Diallo, Baidai, Manocci et al. [126], like us, utilised
echo-sounder data from two DFAD buoy types from a different manufacturer to estimate
Aggregation’s Continuous Residence Time (aCRT) and Aggregation’s Continuous
Absence Time (aCAT) in the Indian Ocean. Both aCRT and aCAT were shorter than ours,
and there were considerable disparities in buoy models (6 − 8 and 8 − 9 days, depending
on buoy model). This is a crucial consideration when comparing the findings of several
research utilising echo-sounder buoys. Diallo, Baidai, Manocci et al. [126] concludes
that the enhanced sensitivity of the newer model may be generating the discrepancies
in aCRT and aCAT, therefore it stands to reason that buoys from various manufacturers
will also report biomass differently. For example, the use of different frequency echo-
sounders is expected to have an effect on the biomass estimations supplied by different
buoy brands [40], [136]. Indeed, fishing masters observe variances in biomass estimates
from different manufacturers [40], thus these differences should be handled with caution.
Fishing technology advances fast, and researchers must keep up with manufacturers when
drawing inferences from technology derived data. Nonetheless, even when comparing
buoy brands and seas, aCRT and aCAT are often fewer than 10 days [126], [127]. This
is consistent with the median and average CRT values discovered by most other authors
when investigating individual tunas around DFADs (see Baidai, Dagorn, Amandé et al.
[127]and references therein).

In a broader perspective, one of the primary concerns about DFAD deployment has
been the prospect that DFAD might act as an “ecological trap”, causing tuna to remain
linked with the DFAD even as it wanders into areas that are not conducive to tuna growth
and development [69], [70]. While other writers have analysed the current literature and
determined that there is insufficient evidence to support or refute this concept [71], further
study is needed. One of the novel aspects in our study was the application of a regression
model to the echo-sounder buoy data, which allowed for direct estimates of tuna biomass
aggregated to the DFAD (see Section 2.4.3), as well as the calculation of two derived
metrics: Aggregation Time (AT) and Dissaggregation Time (DT), which could provide
further insight into the nature of tuna’s association to DFADs. Given that one of the
grounds for an ecological trap is that the tuna’s relationship with the DFAD is “rapid,
strong, and long-lasting” [69], DT should be longer than AT if the DFAD were actually
“catching” the tuna. However, our findings demonstrated that this was not the case, since
DT was not considerably longer than AT. In reality, median AT and DT values did not
reveal differences longer than a day, and when disparities were evident, such as in the
third quartile, the time it took for the tuna aggregation to depart was actually faster than
the time it took for the aggregation to form in the first place. Although these findings
should be investigated further, there does not appear to be evidence of an ecological trap
on a global scale.

In conclusion, Tun-AI proves to be a powerful tool to study population dynamics of
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tuna, and their results are aligned with findings in the literature. There is still further work
that can be done, but we reserve that discussion to Chapter 5 (section 5.1.2). The last
two chapters have focused on sustainable fishing, presenting the Tun-AI pipeline for tuna
biomass estimation, developed in collaboration with Komorebi AI and Satlink. One of the
novelties in this study was that it is the first to combine echo-sounder and oceanography
data. Next chapter switches the focus to weather routing, describing another use for
oceanography data: the optimization of maritime shipping routes.
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APPENDICES

3.A. Code

The present research on tuna dynamics was conducted using the Python programming
language. A simplified flow diagram outlining the data processing pipeline employed
to generate the unaltered segments utilized in this chapter is presented in Figure 3.8.
This diagram provides a high-level overview of the methodology used in this research,
outlining the steps involved in the generation of unaltered segments, which served as the
basis for subsequent analysis.
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Figure 3.8: Basic representation of the flow diagram for the generation of unaltered
segments using Tun-AI and the P−splines approach developed in Navarro-García [128].
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4. WEATHER ROUTING

4.1. Introduction

In recent years, both academics and industry have paid close attention to ship weather
routing. Problems in this field include determining the best sailing course and speed
for a particular maritime journey, taking weather conditions into account. The goals
are often to minimise operational expenses, fuel consumption, or passage danger. This
chapter presents a study on weather routing, developing a system that combines real-time
information with ocean context forecasts to plan the best route between two ports.

The structure of this chapter is as follows. First, the state of the art in weather routing
is introduced in section 4.2. Then, section 4.3 describes the data sources available for
this study and the design of benchmarks. Section 4.4 describes the optimization methods
applied to those benchmarks. Results are shown in section 4.5 and we derive conclusions
from them in section 4.6.

4.2. State of the art

Optimizing maritime routes under varying weather conditions is a complex mathematical
problem. It can be addressed from different approaches by diverse study fields, from
Mathematics to Compute Science. This section provides an overview of weather routing
research, covering the major methodological approaches and disciplines involved.

One of the first approaches was the isochrones method [137], first applied by Hanssen
and James [138] to optimise routes under stationary weather conditions. An isochrone is
a set of connected points that a vessel may reach in a certain amount of time by departing
from one point and travelling in all feasible directions, as shown in Figure 4.1. The
points of an isochrone will depend on the vessel speed and its performance under the
given ocean conditions. In order to reach the goal, one can construct several isochrones,
chaining them so that the points of one isochrone serve as the starting coordinates for the
next one. Several studies have developed and improved the isochrones method [139]–
[141], and is up to this date one of the major used approaches [75]. One shortcoming of
the isochrones method is that it relies on exploration i.e. simulating many possible paths
to follow, and thus is computationally expensive, specially when taking into account time
dependant weather conditions.

Another option for weather routing is utilising variational optimization, using a
Lagrangian that can be optimized on a continuous space with gradient methods. Haltiner,
Hamilton and Arnason [142] first proposed this approach to minimise time in a static
setting where the speed relies on the wave height and direction. Another studies [143],
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Figure 4.1: Overview of the isochrone method, from Roh [140].

[144] applied variational optimization methods on static ocean current vector fields to
find locally optimal routes, reducing travel time. Variational optimization methods are
exploitative: given an initial route, they change it to reduce any given cost function (fuel
or time). As such, they are fast but rely on a good initial guess to obtain a optimal route.

A significant number of studies have utilised dynamic programming to enhance
weather routing [75], [145]. This approach is based on Bellman’s concept of optimality
[146], which states that a problem can be divided into many simpler sub-problems, and
that by finding each optimal sub-solution one gets the optimal solution of the original
problem. In the context of weather routing, dynamic programming finds optimal routes
by optimizing small segments and chaining them. The solution for each segment (sub-
problem) can be done with any other optimization method, or via a custom set of rules
[74], [147].

Graph optimization has also been applied to weather routing, traditionally via
Dijkstra’s search algorithm [148], [149]. This approach consists on building a discrete
graph that defines the possible locations of the vessel on the ocean, named nodes. Each
node is connected to its neighbours via edges, which have a weight associated to them,
that represents the cost of travelling between those two nodes (can be the time that takes
the journey, the fuel consumed, or both). Graph algorithms search for the path between
two non-adjacent nodes that has the minimum total cost. Similarly to the isochrones
method, graph search is computationally expensive, but can be speeded up by the use of
heuristics, as is the case with A⋆ search algorithm [150]–[152].

Finally, some studies have approached weather routing by applying genetic algorithms
[151], [153]–[155]. These methods are based on evolving a set of routes using small
perturbations until they reach an optimal criterion. In contrast to variational optimization,
that modifies the initial route using gradient methods, modifications done by genetic
algorithms are random (with maybe a few rules to follow). This makes genetic algorithms
a highly exploratory approach, but its random nature does not ensure optimality and is
computationally expensive.

Regardless of the optimization approach utilised, most of the research in weather
routing has one of two goals: reduce fuel consumption or sailing time, or occasionally
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both in multi-objective formulations. As some surveys on the field have pointed out [75],
different studies tend to show a wide range of achieved savings when their suggested
methodology is used. This makes a challenging task to compare results across different
approaches. A standardization of what counts as a saving (either on fuel, time, or both)
would be advantageous for the weather routing community. To aid future studies in this
area, some benchmarking examples would be ideal, which are possible thanks to the
increasing amount of weather data available from open sources.

4.2.1. Contribution

Following the observation made previously, the main contribution of this chapter is
to build some reproducible benchmarks for weather routing. Historical meteorology
and oceanography data from open sources will be used to define realistic benchmarks
following commercial trading routes. Additionally, some synthetic vector fields will also
be defined, helping to test the optimization algorithms on a controlled environment. We
will also provide a simple ship model, easy to implement but realistic enough to assert the
efficiency of any weather routing approach. In addition, our study will be one of the few
to test different approaches for the same benchmarks. In particular, we will implement a
variational optimization approach, a graph search method, and a genetic algorithm.

4.3. Material

In order to implement a weather routing system, it is important to know the meteorology
and oceanography during the journey and how it affects the vessel’s fuel consumption.
Data of ocean currents, wind and waves can be obtained from predictive models done
by providers like NOAA and Copernicus. Research on naval engineering should be able
to yield the fuel consumption and emissions for each type of vessel under any shipping
regime.

4.3.1. Meteorology and oceanography

This study uses weather data from two open data sources: Copernicus [156] and NOAA
[157]. Both repositories contain all the required weather data with high resolution, and
are based on the Ocean General Circulation Model (OGCM). Similar to weather forecast
systems, an OGCM provides simulation via a complex system of differential equations
that are run periodically with updated initial conditions based on certain measurements.
Ocean currents are available on a grid of 1/12◦ in the Copernicus Marine Environment
Monitoring Service (CMEMS) “Global Analysis and Forecast” model, which is updated
daily and provides a 10 day forecast. Data on ocean waves can be obtained from the
same CMEMS model, with the same resolution and update frequency, or from NOAA
“Wavewatch III”. Copernicus has APIs and a Python client to ease and automate data
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download, which are usually stored in NetCDF format. Wind data can also be obtained
from a number of providers, such as NOAA or CMEMS. The specific data we used in
this study is described in Table 4.1.

Data Units Resolution Frequency Provider

Current speed at ocean surface m/s 1/12◦ Daily Copernicus
Wave height m 0.50◦ Hourly NOAA
Wave speed m/s 0.50◦ Hourly NOAA
Wind speed at ocean surface m/s 0.25◦ Hourly NOAA

Table 4.1: Meteorology and oceanography data.

4.3.2. Benchmarks

In order to test our optimization approach, we must define a set of benchmarks, containing
as many different scenarios as possible. For instance, presence of land between the two
ports, strong opposing currents, or highly variable vector fields. Different scenarios can
be easily simulated by the use of synthetic benchmarks, which we will comment later.
We want, however, to include some real scenarios within our benchmarks. We do not
know the best possible route for all benchmarks, but a good point of comparison is the
circumnavigation, i.e. the route of minimum distance, also named geodesic when no land
is present between the two points. In most realistic scenarios, the optimal routes are found
around the geodesic, specially for higher vessel speeds.

Synthetic benchmarks

It is important to test algorithms first on synthetic benchmarks for several reasons.
For starters, synthetic benchmarks provide a controlled and consistent environment for
testing, allowing for more accurate and reliable results. This is particularly useful when
evaluating the performance of an algorithm under different conditions, as synthetic
benchmarks can be easily manipulated to simulate a wide range of scenarios. Secondly,
synthetic benchmarks allow for the testing of algorithms without the need for real-world
data, which can be expensive and time-consuming to obtain. This allows for faster and
more cost-effective testing and evaluation of algorithms. Third, synthetic benchmarks
can be used to test the robustness and reliability of algorithms. By introducing challenges
and variations to the synthetic benchmark, it is possible to assess how well an algorithm
can handle different situations and environments. This can provide valuable insights into
the limitations and potential improvements of the algorithm.

A very simple benchmark we can define is a circular vector field, centred in (a, b).
The currents spin clock-wise and have an increasing intensity (defined by s) the further
one strays from the centre. This is summarized in the following equation:
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W(x1, x2) = ⟨s · (x2 − b),−s · (x1 − a)⟩

Where (x1, x2) are local coordinates on a 2-D plane. In this work, we are using (a, b) =
(−3,−1) and a scale factor s = 0.05, small so that a vessel with unitary velocity can
overcome currents near the centre. When testing optimizers we will ask them to develop
a path traversing the centre: from xA = (3, 2) to xB = (−7, 2). Algorithms are expected to
follow the direction of favourable currents.

The next synthetic benchmark we will test is the one appearing in Ferraro, de Diego
and Almagro [144], called “four vortices”. This vector field is defined by the following
equation:

W(x1, x2) = s ·
(︁
−R2,2 − R4,4 − R2,5 + R5,1

)︁
,

where each vortex is expressed as

Ra,b(x1, x2) =
1

3
(︁
(x1 − a)2 + (x2 − b)2)︁ + 1

⎡⎢⎢⎢⎢⎣−(x2 − b)
x1 − a

⎤⎥⎥⎥⎥⎦ .
The authors explained that the scale factor s = 1.7 is chosen so that the maximum

value of |W | is almost 1. As we are testing these synthetic benchmarks using vessel with
unitary velocities, we respect this factor. When testing optimizers we will ask them to
develop a path from xA = (0, 0) to xB = (6, 2).

Real benchmarks

Oceanographic data for real case scenarios was downloaded from Copernicus Marine
Environment Monitoring Service [156]. Copernicus has APIs and a Python client to ease
and automate data download, which are usually stored in NetCDF format.

The first real example is a journey from Charleston (32.7◦N 79.7◦W) to Azores islands
(38.5◦N 29.5◦W), traversing the Atlantic ocean during spring, the data starting specifically
at the 25th of May of 2022. There is virtually no land in the trajectory. Ocean currents
are relatively calm in this part of the Atlantic, but the route crosses the Gulf stream,
a favourable current going north-east just at the departure point, see Figure 4.2a. The
algorithm could take advantage of this current to save some time.

The last example is a journey from Somalia (1.66◦S 42.39◦E) to Myanmar (10.21◦N
98.14◦E), traversing the Indian ocean during summer, the data starting specifically at the
1st of July of 2022. There are several islands in between that the vessel needs to avoid
in order to get to their destination, as shown in Figure 4.2b. Our goal when using this
benchmark is precisely to test the ability of the algorithm to avoid land while also taking
advantage of the vector field.
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(a) Charleston-Azores (b) Somalia-Myanmar

Figure 4.2: Real vector fields: one with only water (a) and one with pieces of land marked
in white (b). Yellow point marks the starting position and red is the goal. The ocean
currents are coloured by intensity, the fastest being represented with brighter (greener)
colours.

4.3.3. Consumption models

The task of implementing a realistic consumption model is complex, because the use of
fuel is affected by many different factors such as the resistance due to wind and waves,
and the speed of ocean currents, among others. An even more difficult task is to adapt
the model to each type of vessel: different kinds of ships will have distinct consumption
models [158]. For this reason, there is a large body of literature involving modelling
ship’s consumption as a function of speed and weather conditions. Some of the main
books include Hagiwara [139] and Barras [159].

The simplest theoretical consumption model is the propeller’s law, which expresses
a cubic relationship between speed and consumption. However, in real scenarios large
deviations from this simple law are observed, and more specific models have been
developed, which include advanced hydrodynamic modelling of the resistance due to
waves, wind and swell and their effect on propulsion as a function of the ship’s hull and
characteristics. A recent review on this matter can be seen in Psaraftis and Kontovas
[160], with an emphasis on slow steaming, a general reduction on vessel speed for marine
transport during the 2009 crisis, which thanks to the non-linear relation between speed
and consumption, was also responsible for considerable reduction in emissions.

The weather routing algorithms implemented in this study are designed to be flexible
enough to use any consumption model. Due to the scarcity of vessel data at the point
of writing this thesis, we were unable to design fine-tuned consumption models, so we
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resort to a general model. Even if it is not highly accurate, this consumption model will
allow us to get a general idea on how effective our optimization algorithms are. In case
we get more detailed vessel data in the future, we will be able to use accurate models that
compute realistic estimations of the fuel consumption.

General models express the fuel consumption of a vessel (F, in grams per hour) as
the product of its engine power (P, in kilowatts) and their Specific Fuel Oil Consumption
(SFOC) (in grams per kilowatt-hour):

F = SFOC · P (4.1)

SFOC can be expressed as a function of the engine load level, which is a percentage of
the Maximum Continuous Rating (MCR) [161]. Most engines can be tuned to modify the
SFOC curve, changing the optimal value where specific consumption is minimal [162].
When no information about the vessel engine is provided (as is our case), we use the
standard SFOC value which is 185g/kWh [161]. Fuel consumption is also affected by
oceanography and weather. The power required by the vessel in presence of wind and
waves can be modelled as the sum of power needed to move in calm water, plus the
power required to overcome wave resistance, plus the force of wind on draught:

P = Pbase + Pwaves + Pwind (4.2)

Ocean currents are easily incorporated into the model, as they only modify the speed
of the vessel with respect to water. Harvald’s model [163] expresses the power necessary
to overcome the resistance of water as a function of the vessel speed over water (vwater, in
meters per second):

Pbase = ∆
2/3 · v3

water/C (4.3)

where ∆ is the water displaced (the vessel’s weight, in tonnes), and C depends on the
vessel speed over water and its longitude (L, in meters):

C = 3.7
(︂√

L + 75/vwater

)︂
(4.4)

In presence of waves, the vessel engine will need to provide extra power [164]. This
is expressed as:

Pwaves =
1
16
· ρwater · g · h2

w ·

√︃
B3

L
· vground (4.5)

where ρwater is the water density (in kilograms per cubic meter), g is the acceleration
due to gravity (in meter per quadratic second), hw is the height of waves (in meters), B
is the vessel’s beam (in meters), and vground is the vessel speed with respect to ground (in
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meters per second). This speed takes into account the velocity of ocean currents, vcurrents

(in meters per second):

vground = vwater + vcurrents (4.6)

The force of wind on the vessel’s air draught offers extra resistance or thrust depending
on the wind direction. A simple model to take into account the wind resistance is:

Pwind =
1
2
· KX · ρair · AX · cos(φ) · v2

wind · vground (4.7)

where vwind is the wind apparent speed in relation to the vessel (in meters per second),
ρair is the air density (in kilograms per cubic meter), AX is the area of the vessel’s
projection across its longitudinal axis (in quadratic meters), and KX is a constant that
depends on the type of vessel, with values usually ranging between −0.8 and −0.5. The
angle of the wind with respect to the vessel, φ, is taken such as φ = 0 means the wind
blows from stern to bow (favourable wind), which makes Pwind take a negative value
because the wind is reducing the power needed by the engine.

If more data about the vessel is available, it is possible to use more accurate model,
such as replacing Harvald’s model for calm water by Holtrop’s [165], or applying Liu’s
model for waves [166]. As we commented at the start of this section, the choice of
one consumption model over the other does not affect the weather routing algorithms
presented here, as the optimization explores the relative differences of consumption
between ocean routes. The goal of this chapter is to prove that we can improve ocean
routes via weather routing, reducing the fuel consumption given by any model.

This general consumption model has been tested against published data, and shows
favourable results. In Figure 4.3 we show the estimations of our model compared to real
data from Bialystocki and Konovessis [167]. The vessel used there was a PCTC (Pure
Cars and Trucks Carrier) sailing through the Pacific Ocean. Our model predicts better
around the design speed when we also consider the extra power due to wave resistance.

4.4. Optimization methods

We use algorithms that apply mathematical optimization, taking as objective function
the model of fuel consumption in conjunction with oceanography and meteorology
data. Different methods have been tested, including genetic algorithms, heuristic graph
optimization, and variational methods with numeric integration.

4.4.1. Variational method

The first algorithm we introduce to perform weather routing is based on variational
methods. We will model the route as a curve in space and time, and formulate the
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Figure 4.3: Fuel consumption curve of our model compared against data obtained during
real operations. Dots: data from Bialystocki and Konovessis [167]; dotted line: second
order interpolation from Bialystocki and Konovessis [167]; continuous line: our model
without waves; dotted-slashed line: our model with waves.

optimization problem as finding the curve that minimizes a certain functional that captures
the effects of the ocean. We are taking several assumptions to simplify the problem. First,
we will only take into account the effects of ocean currents, i.e. the consumption given by
equation (4.3). Second, although it is known that weather conditions change over time,
we are assuming a stationary vector field for the sake of simplicity, though the variational
method proposed is easy to adapt for evolving conditions. Third, we assume the ship
keeps a constant velocity with respect to water. Lastly, real case scenarios have obstacles
present, in the form of land. Our variational method is able to avoid small obstacles but it
is not intended to perform optimal circumnavigation, i.e. bypass significant obstacles in
the way to the goal.

To address the routing problem, we will use the classical formulation from Zermelo’s
Navigation Problem (ZNP). We first introduce its equations both on the plane and on the
sphere, to then explain our variational method, named Hybrid Search (HS).

Zermelo’s Navigation Problem on the plane

This problem was proposed in 1931 by Ernst Zermelo [168], is a classic time-optimal
control problem, where its aim is to find time minimum trajectories under the influence
of a drift vector w⃗(x1, x2) = ⟨w1(x1, x2),w2(x1, x2)⟩ where x1, x2 are local coordinates, and
where w1,w2 are the vector components chosen relative to a local frame. This drift vector
can be interpreted as wind or water current. In small scale simulations, the coordinates
and the vector components can be taken to be Euclidean. Once we pass to larger scale
simulations that take into account the Earths’ curvature, the coordinates (x1, x2) indicate
longitude and latitude delineated in degrees, while the vector components are taken
relative to a local east-north framing and delineated in meters.
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The goal is to navigate from a specified initial point along a path that minimizes time,
under the influence of w⃗, assuming the vessel provides constant thrust V (speed over
water) and has a heading angle (over water) α w.r.t. the x1-axis. Thus, the velocity
components over ground can be expressed as:

dx1

dt
= V cosα + w1(x1, x2)

dx2

dt
= V sinα + w2(x1, x2)

(4.8)

Using the Calculus of Variations, one can show that such a path necessarily obeys the
following differential equation, first derived by Zermelo [168]

dα
dt
= sin2(α) w2,1 + sin(α) cos(α)

(︁
w1,1 − w2,2

)︁
− cos2(α) w1,2 (4.9)

where for the sake of brevity, we write wi, j = ∂wi/∂x j.

Equation (4.9) is known as the Zermelo differential equation. Together with (4.8) it
gives the form for time-optimal trajectories as a dynamical system in the 3-dimensional
space parametrized by (x1, x2, α). For the sake of completeness, the derivation of this last
equation is fully explained in Appendix 4.A.1.

Zermelo’s Navigation Problem on the Sphere

We now modify the above derivations to the case where the ship is travelling on the
surface of the Earth - idealized here as a perfect sphere. To that end, we adopt spherical
coordinates x1 = θ (longitude) and x2 = ϕ (latitude) measured in units of κ radians. In
particular, it may be convenient to take κ = π/180 if we wish to measure things using
degrees. The background current will be given relative to a east-north framing, which we
represent as the following 2 × 2 matrix

F(θ, ϕ) =
⎡⎢⎢⎢⎢⎣K cos θ 0

0 K

⎤⎥⎥⎥⎥⎦
where K is the conversion scale from the units used to measure θ, ϕ and the units used
to measure local velocities. For example, if global position is measured using degrees of
arc, and local velocities are measured in kilometres, then letting R be the earth’s radius in
kilometres (R ≈ 6367 km), we have K = κR = πR/180 ≈ 111.1 kilometres per 1 degree
of arc.

With these conventions in place, the velocity over ground of a vehicle moving at a
speed of V over water is given as

K cos(κϕ)
dθ
dt
= V cos(κα) + w1(θ, ϕ)

K
dϕ
dt
= V sin(κα) + w2(θ, ϕ)

(4.10)
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where α is the ship’s heading measured relative to an East-North framing, where w⃗(θ, ϕ) =
⟨w1(θ, ϕ),w2(θ, ϕ)⟩ with w1 being the component of displacement relative to east, and w2

the component of displacement relative to north.

Using the Calculus of Variations once again, now on the sphere, one can show that
such a path necessarily obeys the following differential equation,

κK
dα
dt
=

[︂
cos(κα) sin(κα)

]︂ ⎡⎢⎢⎢⎢⎣sec(κϕ)w1,1 w1,2

sec(κϕ)w2,1 w2,2

⎤⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎣ sin(κα)
− cos(κα)

⎤⎥⎥⎥⎥⎦
− cos(κα) tan(κϕ)(V + cos(κα)w1 + sin(κα)w2)

(4.11)

Equation (4.11) can be justly considered the analogue of the Zermelo differential
equation for motion on a sphere. For the sake of completeness, the derivation of this
equation is fully explained in Appendix 4.A.2.

The Hybrid Search algorithm

Hybrid Search (HS) is a 3-step variational algorithm for solving the Zermelo-problem in
either Euclidean or Spherical background. The 3 steps are (i) exploration, (ii) refinement,
and (iii) smoothing. The output of the exploration and refinement phases is a piece-wise
optimal trajectory that connects a starting location with a desired destination.

In effect, exploration is a shooting method based on the Zermelo Initial Value Problem
(ZIVP). The exploration algorithm formulates multiple instances of a ZIVP with a given
initial position and a fan of directions aimed towards the target. The trajectories are
then evolved using RK4 numerical solutions to the Zermelo Differential Equation with
dynamic termination conditions. The most obvious termination condition is to select the
trajectory that minimizes the distance to the target. In practice, it turns out that a better
heuristic is to terminate each trajectory when the difference between the heading angle
and the direction to target exceeds a certain pre-set threshold. The algorithm is greedy,
in that a single “winner” trajectory is selected from the list of dynamically terminated
trajectories. This selection is performed on the basis of distance to target.

The refinement phase is just a refined version of the exploration algorithm, but this
time the fan of initial directions is taken as small deviations from the winner trajectory
of the exploration phases. The tightness of the refinement spread is constrained so that
the fan of directions does not exceed the spread between two directions of the exploration
phase. The candidate trajectories are then evolved using the same heuristic as in the
exploration phase and a winner is selected based on proximity to the target. The precise
details of the exploration and refinement sub-algorithms are detailed in the following sub-
sections.

The third phase consists of smoothing the output of the refinement using the Ferrero-
de Diego-Almagro Algorithm (FDA) algorithm. This algorithm is a numerical Boundary
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Value Problem scheme that works by iteratively shifting a given discretized trajectory
towards a time-minimizing route. The approach is based on the discrete Calculus of
Variation and can, in principle, be utilized with any given Lagrangian. In our case,
we select the time-minimizing Lagrangian such that the corresponding Euler-Lagrange
equations are precisely the Zermelo Differential Equation. We then discretize the time-
minimizing Lagrangian using a pre-selected time-step and begin the iteration with the
piece-wise optimal solution generated by the exploration and refinement sub-algorithms.
Because the initial trajectory is piece-wise optimal, the overall effect is that of smoothing
the sharp turns present in the initial trajectory and converting the piece-wise smooth and
piece-wise optimal solution to a smooth, near optimal solution of the Zermelo problem.
The relevant details of the FDA algorithm are specified at the end of this section.

Exploration step

Given a starting point xA = (xA,1, xA,1), and a goal point xB = (xB,1, xB,2), we can first
centre a “search cone” in the direction of ΛA,B, following equation (4.12) (assuming an
euclidean space). The amplitude for this cone is γ. If the vector field was null and we
started a trajectory with heading α = ΛA,B, the vessel would eventually arrive to xB. Thus,
by taking this search cone, we are assuming that the optimal route will always point close
to the destination and that the vector field will have a small effect on the vessel trajectory.
However, this assumption can be relaxed by increasing the amplitude of the cone, γ (up
to 2π, covering all directions).

Λi, j = Λ(xi, x j) = arctan
(︄

x j,2 − xi,2

x j,1 − xi,1

)︄
(4.12)

Equation (4.12) defines the angle Λi, j from point xi to point x j. This equation is
applicable in Euclidean space, and can be generalized to spherical geometry for short
distances. However this does not hold for our study as distances between start and end
points are significant, so when working in spherical space it is better to replace equation
(4.12) by the following:

Λi, j = arctan

⎛⎜⎜⎜⎜⎜⎜⎝ −c j · si + ci · s j

−
(︂
ci · c j + si · s j

)︂
· sin(xi,2) +

(︂
c2

i + s2
i

)︂
· sin(x j,2)

⎞⎟⎟⎟⎟⎟⎟⎠ (4.13)

where c = cos(x1) · cos(x2); and s = sin(x1) · cos(x2).

Next, we generate N initial shooting angles, namely

αn(0) ∈
[︁
ΛA,B − γ/2, ΛA,B + γ/2

]︁
.

To do so we N-sect the “search cone” into α0, . . . , αN , evenly spread across the whole
search cone, and use each of these as an initial condition to solve the system of ODE via

73



the RK4, explained in Appendix 4.C. We will use these shooting angles to generate N
local paths, or trajectories qn(t) = (xn,1(t), xn,2(t), αn(t)), n ∈ [0,N].

The N generated trajectories evolve using RK4, in iterations of time τ > ∆t (where ∆t
is the time step of RK4). That means that, after iteration i, the routes will have evolved
until time t = iτ, and will be defined by the points qn(t), t ∈ [0, iτ]. We name the
first iteration of this exploration step as i0, which will start at i0 = 1 but will be updated in
further optimization steps. After every iteration i, each trajectory n is checked individually
to assert whether it meets any one of three stopping conditions. If it does, trajectory n is
left out of the RK4 loop and will not evolve further. These three rules are:

1. Trajectory n is stopped after iteration i if

D (xn(iτ), xB) ≤ d,

being D(xa, xb) the distance metric between two points, defined according to the
space we are operating on, and d a certain distance threshold. This implies the
vessel has reached its goal.

2. Trajectory n is stopped after iteration i if its heading αn(iτ) deviates too much
from the goal. To assert this, we take point xn(iτ), and compute its angle to xB,
named Λ(xn(iτ), xB), see equations (4.12) and (4.13). Otherwise, the trajectory
keeps evolving while the following condition is met:

(Λ(xn(iτ), xB) − γd/2) ≤ αn(iτ) ≤ (Λ(xn(iτ), xB) + γd/2) ,

where γd is the maximum deviation allowed from the goal, typically equal or lower
than the search cone γd ≤ γ. The higher γd, the more exploratory is this method,
but it will take more iterations to converge.

3. Trajectory n is stopped after iteration i if any of its points xn(t), t ∈ [0, iτ] is located
in land. In addition to stopping the trajectory, the algorithm discards all the way-
points qn(t), t ≥ tland, being xn(tland) the first point located in land. The trajectory
qn(t), t < tland is kept, as it may still be the optimal route and just needs a course
correction, that will be done in a later step.

One can argue that rule 2 is too strict for small γd, as the vessel can be heading
“wrongly” for a negligible amount of time before turning “correctly” again, and that
the resulting route might be optimal. However, when working with real scenarios, the
influence of the vector field is small enough to justify that a vessel going in a “wrong”
direction won’t turn “correctly” on time to compensate this deviation.

Figure 4.4a shows a visualization of this exploration step, highlighting the one which
got closest to the goal. RK4 method ensures that all trajectories are time optimal. After
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(a) (b)

Figure 4.4: First two steps of the Hybrid Search (HS) method: (a) exploration and (b)
refinement. Each trajectory is generated from a different shooting angle (in orange) and
evolves using Fourth order Runge-Kutta method (RK4) method iteratively with τ = 0.1,
until their heading deviates more than γd = π/2 radians from the goal. After all local paths
are computed, the one that got closer to the destination is chosen as best (highlighted in
the graph). The search cone had an amplitude of γ = π radians in the exploration step and
was centred on the direction of the goal. During refinement, the search cone was centred
on the shooting angle of the best route found in the exploration step, and its amplitude is
narrower, γ = π/5.

all N trajectories stop, if none of them reached the goal xB (i.e. none met the 1st stopping
rule), we keep the trajectory

m : D (xm(i1τ), xB) ≤ D (xn(i1τ), xB)∀n ∈ [0,N] (4.14)

where i1 was the last iteration from RK4 method. We named this trajectory m as our “best
trajectory”, then move to the refinement step.

Refinement step

In the exploration step, we assumed that the optimal route should be heading closely
towards the goal xB, and evolved trajectories defined by the points

qn(t), n ∈ [0,N], t ∈ [0, i1τ].

with initial shooting angles αn(0) ∈
[︁
ΛA,B − γ/2, ΛA,B + γ/2

]︁
.

We now generate a narrower search cone, with amplitude γb << γ (for instance,
γb = γ/5) and we centre it on αm, where m is the “best trajectory” from the exploration
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step. Thus, the newly generated initial shooting angles are evenly spread across

αn(0) ∈
[︁
αm − γb/2, αm + γb/2

]︁
, n ∈ [0,N]

We now redo the exploration step, starting at iteration i = i0. The first time we enter the
refinement step, i0 = 1 but that will be updated soon. The trajectories will stop eventually,
at iteration i2. Note that, as there are new trajectories, we now may take a different number
of loops than the exploration step, and thus i2 is not guaranteed to be equal to i1. If no
trajectory reached the goal xB (i.e. no trajectory meets the first stopping criteria), we
regenerate update the “best trajectory” m following equation (4.14). The algorithm goes
back to the exploration step using xm(i2τ) as the starting point, i.e. xA = xm(i2τ); and
starting at iteration i0 = i2.

This loop between exploration-refinement continues until the first stopping rule
happens, i.e. one trajectory gets close enough to the destination xB. Figure 4.5a displays
one possible result of this process. One issue is apparent: the vessel takes sharp turns in
the connections between local paths. This happens because each trajectory (except the
last one) is stopped due to deviating from the goal, so the vessel is forced to correct its
course by turning sharply to reach its destination.

Smoothing step

We see that if we use the paths generated by our approach, it’s not very “smooth”, which is
not realistic for real world situations. So we want to “smooth” it out while still optimizing
the cost. Following Ferraro, de Diego and Almagro [144], we apply the Newton-Jacobi
method to the discretized Euler-Lagrange equation to smooth out the path. Throughout
this thesis we will refer to this algorithm as Ferrero-de Diego-Almagro Algorithm (FDA).
Since each path is already local optimal, the FDA algorithm can converge to an optimal
solution after a suitable number of iterations.

Let us quickly review the Newton-Jacobi iterative procedure for solving non-linear
equations. Consider an equation of the form 0 = f (x) where f (x) is a differentiable
function of 1 variable. Newton’s method proposes that we pick an approximate solution
x = x(0)

1 and then solve the linearized system

f (x(0)
1 ) + f ′(x(0)

1 )(x1 − x(0)
1 ) = 0

to obtain an x1. If x(0)
1 is sufficiently close to a root of f (x) = 0, one can show that

| f (x1)| < | f (x(0)
1 )| and we can iterate to produce a sequence x(0)

1 , x1, x2, . . . by solving, at
each stage the linearized system

f (x1(i)) + f ′(x1(i))(xi+1 − x1(i)) = 0.

The Newton-Jacobi method generalizes Newton’s method to the case of an n×n system
of non-linear equations F(q) = 0 where q is a point in n-dimensional space and F is a
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(a) (b)

Figure 4.5: (a) Optimized route obtained by alternating the first two steps of Hybrid
Search method. The segments are locally optimal (thanks to RK4) but are joined by sharp
turns. (b) The whole route is then smoothed with Ferrero-de Diego-Almagro Algorithm
method for 10 000 iterations.

transformation of n-dimensional space; i.e., F(q) = (F1(q), . . . , Fn(q)) is an n-vector of
functions. As above, we begin with an initial guess q0 and then construct a sequence of
approximate solutions by solving the linearized equations

F(qi) + DF(qi)(qi+1 − qi) = 0

for qi+1. Under suitable assumptions, one can show that the sequence q0, q1, q2, . . .

converges to a zero of F.

The discrete Euler-Lagrange equations (4.36) are a non-linear system of equations
of n × (N − 1) equations. The key idea introduced in Ferraro, de Diego and Almagro
[144] is to apply the Newton-Jacobi method iteratively to primitive 3-point trajectories,
i.e. segments consisting of qk−1, qk, qk+1. For each such trajectory we freeze qk−1, qk+1 and
seek for the optimal placement of qk. This amounts to a solution of the equation

D2Ld(qk−1, q̄k) + D1Ld(q̄k, qk+1) = 0

for an unknown q̄k. We now apply the Newton-Jacobi method by taking

F(q) = D2Ld(qk−1, q) + D1Ld(q, qk+1)

and apply one iteration of the method to solve the linearized system

F(qk) + DF(qk)(q∗k − qk) = 0

for the unknown q∗k. Fully written, the system for q∗k is then

D2Ld(qk−1, qk) + D1Ld(qk, qk+1)+

+ (D22(qk−1, qk) + D11Ld(qk, qk+1)) (q∗k − qk) = 0
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We now apply the same 1-step iteration to all the primitive trajectories

(qk−1, qk, qk+1), k = 1, . . . ,N − 1

to obtain a new trajectory q∗ = (q∗k)N
k=0 with q∗0 = q0 and q∗N = qN . If the initial trajectory

q(0) is well chosen, then the iterated sequence of trajectories q(i), i = 0, 1, . . . where q(i+1) =

q(i)∗ converges to a solution of the discretized Euler-Lagrange equations (4.36).

We will apply the FDA algorithm to the Euclidean Zermelo problem after suitably
transformation (4.18) to a non-constrained optimization problem. It is possible to extend
the FDA methodology to spherical backgrounds and to constrained optimization, but we
do not pursue these directions in the present study.

We begin by combining (4.19) into the single constraint

(ẋ1 − w1ṫ)2 + (ẋ2 − w2ṫ)2 = V2 ṫ2. (4.15)

Setting

X =
√︂

ẋ2
1 + ẋ2

2

W =
√︂

w2
1 + w2

2

we rewrite (4.15) as the following quadratic equation in ṫ:

(V2 −W2)ṫ2
+ 2XW cos β − X2 = 0,

where β is the angle between ẋ and w. The solution gives us the following unconstrained
Lagrangian:

L̂ = ṫ =
X

V2 −W2

(︄
−W cos β +

√︂
V2 −W2 sin2 β

)︄
As given, the above L̂ is not a regular Lagrangian, and the corresponding L̂d will not
give a convergent FDA algorithm. This difficulty can be remedied by observing that L̂

2 is
regular, and so we take L̂

2
d as the discrete Lagrangian for our implementation of the FDA

algorithm.

Figure 4.5b shows the results of FDA after 10 000 iterations, applied to the route
generated at the end of the exploration and refinement loop.

4.4.2. Graph Optimization

Graph optimization is a powerful mathematical technique that is widely used in the field of
weather routing [75]. This type of algorithms represent the ocean as a graph and find the
path that minimizes a specific objective function. The objective function may be designed
to minimize the travel time, fuel consumption, or other operational costs, depending on the
requirements of the application. One advantage of graph search algorithms is their ease
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to implement constraints, such as obstacle avoidance, just by disallowing some nodes in
the graph.

To implement graph optimization, we first have to discretize the whole world map
using a grid. Each node of the grid correspond to a coordinate in latitude-longitude. The
grid avoids points on land and waters where the vessel should not be - due to piracy or
no sail zones. Following the resolution seen on Table 4.1, the distance between points is
0.08◦ (roughly 9 km, depending on the latitude). This gives a grid of size 4500 × 2250,
containing over 10 million nodes. The grid is transformed into an undirected unweighted
graph, where each node is a coordinate and their edges connect adjacent zones.

Figure 4.6: Partition of the Earth into hexagonal grids of different sizes, using H3. Image
from Uber Technologies [169].

Using the square grid described above has its shortcomings. For starters, the spherical
shape of the Earth forces a big distortion in order to fit the square grid. Our solution
was to use instead an hexagonal grid provided by the library H3 [169]. As shown in
Figure 4.6, hexagons are very accurate when covering the round shape of Earth. In
addition, each hexagon has six neighbours, giving more possible directions for the route to
follow, compared to a squared grid that only has four neighbours and thus four orthogonal
directions. This is important as real vessels take smooth turns: we want to give as many
directions possible to each node. In fact, six angles still forces the algorithm to take sharp
turns, as the minimum course correction would be 60◦. To fix this issue, we can connect
each node to its N-order neighbours, effectively giving 6 · (1+

∑︁N−1
k=0 k) possible directions,

as shown in Figure 4.7.

We also have to take into account that the data depends on time, due to the variable
oceanography. This problem can be addressed by adding an extra dimension to the graph.
We end with a 3-dimensional graph, having coordinates across latitude, longitude and
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Figure 4.7: Hexagonal graph. Taking the red node as reference, each other is coloured
according to the number of jumps required to reach them in a graph of 1-order.
Meanwhile, a graph with 3-order connections allows the algorithm to jump from the
red node directly to any green or blue node, giving 36 possible nodes and 24 different
directions.

time. Graph timestamps are evenly spread following a set time delta. This means that time
is also discrete, and we risk losing meteorological events that happen in lapses shorter that
our time delta.

Having built the graph, our goal is to find the minimal path between two nodes
(nstart, nend). We define the minimal path as the one with fewer fuel consumption, following
the equation (4.1). The most popular method used in graph optimization problems is
Dijkstra [170]. This algorithm computes the minimal path between each pair of nodes, so
it must explore all of them. Its order of complexity, using an optimal data structure, is:

O
(︁
|E| log |N |

)︁
where E is the set of edges and N is the set of nodes in the graph. The problem we

face in this case is that we cannot explore the whole graph due to its size (over 10 million
nodes). The alternative is A⋆[171]. Contrary to Dijkstra, A⋆ does not need to explore the
whole graph to find the minimal path between two nodes. The cost function of A⋆ for
node n is:

f (n) = g(n) + h(n) (4.16)

where g(n) is the cost of the path from nstart to n, and h(n) is the heuristic cost of the
path from n to nend. This algorithm takes into account both the path that has been explored
and an approximation of what needs to be traversed. Thus, A⋆ gives an optimal solution
as long as the heuristic is admissible. The heuristic should not overestimate the real cost
from n to nend. On the other hand, better heuristics will reduce the need of the algorithm
to explore nodes. For this reason, the complexity of A⋆ depends on the chosen heuristic.
In the worst case scenario, a bad heuristic will force A⋆ algorithm to explore every node
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of the graph, just like Dijkstra does.

There exists several variations of A⋆ that can help the algorithm to converge faster.
One of then is Weighted A⋆[172], whose cost function is:

f (n) = g(n) + w ∗ h(n) (4.17)

where w is a weight that multiplies the heuristic component. This affects how many
nodes are explored by the algorithm. For instance w = 0 cancels the heuristic component,
making A⋆ behave just like Dijkstra. On the other hand, if we assign a very high value to
w, the path from nstart to n will not be taken into account, and thus the algorithm will turn
into a Greedy Best First Search [173]. Higher values of w will speed up the algorithm but
they do not ensure the optimal result, even when using admissible heuristics.

Figure 4.8: Effect of the weight w on the A⋆ cost function. Blue line is the total cost
function f (n), orange is the cost from the origin to the current node g(n), and green is the
expected cost from the current node to the goal i.e. the heuristic h(n). For reference, red
line is the real cost of the journey.

Figure 4.8 shows, for different values of w, how the cost function f and its components
g, h vary while the route progresses. For w < 1, cost function values fall below the real
consumption, because the heuristic is being underused. For w = 1, the cost function
is very close to the real consumption thanks to the heuristic. For w > 1, the heuristic
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is overused and makes the cost function surpass the real consumption, causing strange
behaviour in the algorithm. This study on the effect of w was done using a vessel with
average speed and following a simple journey: Charleston (USA) to Azores archipelago,
during summer (described in section 4.3.2). Having done this study, we conclude that
the best weight w for our A⋆ must be close to 1. The chosen heuristic with w = 1 is
very accurate for higher vessel speeds, as the ocean currents will have lesser impact on
its trajectory. We want to point out that when land is present between start and goal the
heuristic will underestimate the cost, as it assumes a straight path.

4.4.3. Genetic Algorithm

The Darwinian idea of evolution inspired the Genetic Algorithm (GA), which simulates
the survival of fitter individual and their genes [174], [175]. The GA algorithm is a
population-based algorithm. In the context of weather routing, any route represents an
individual (also named chromosome or solution), and its genes may be, for instance, the
waypoints of that route, or the heading of vessel at each timestamp. GA uses a fitness
(objective) function to assess the suitability of each member in the population. For our
case study, this fitness function computes the fuel consumption of the route. To improve
unsatisfactory solutions, the best chromosomes are picked at random using a selection
operator. This mechanism takes fitness into account, so that the best solutions are more
likely to be selected. However, the possibility of selecting poor routes also enhances the
likelihood of avoiding local optima: if good solutions become stuck in a local solution,
they can be pulled out using other solutions.

The process of keeping the best route in each generation and applying them to enhance
subsequent guesses is what makes GA reliable and able to estimate the global optimum
for a particular journey. As a result, the entire population improves generation after
generation. The crossover between routes results in exploiting the “area” between the
given two parents. Mutation helps this method as well. This operator modifies the genes
on the chromosomes at random, preserving the variety of the population and increasing
GA’s exploratory behaviour.

Applying GA to weather routing requires defining what a chromosome and its genes
are. As we mentioned earlier, this study assumes a chromosome is a route, and each
gene is a waypoint x(t). As such, an individual is defined as a list of length L containing
x(ti), i ∈ [0, L], being x(0) = xA the coordinates from where the vessel departures, x(tL) =
xB the goal. All the other coordinates will be chosen by the GA, and times ti will be
computed based on these coordinates, the vessel speed and the weather conditions.

Allowing the GA to generate random coordinates at any point in the ocean is
extremely inefficient. Its guesses would cover very long distances, as the waypoints
will appear very sparse, and the convergence will take very long time to happen, while
also risking getting stuck on more local minima. For these reasons, limiting the GA
search space is mandatory to accelerate its convergence into optimal results. However,
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we do not want to set very strict limitations, as these would kill the exploratory nature of
the GA, which is one of its advantages.

The process we are going to follow is the following:

1. First, we compute the geodesic between the start (xA) and end (xB) coordinates,
namely g⃗. The geodesic is the line of minimum distance. Thus, optimal solutions
are often found around the geodesic, specially at higher vessel speeds.

2. Next, we define L equidistant waypoints across the geodesic,

q j : q j ∈ g⃗, ∀ j ∈ [0, L].

By definition, q0 = xA and qL = xB.

3. For points q2 to qL−1, we generate lines l⃗ j crossing them, perpendicular to the
geodesic:

l⃗ j : q j ∈ l⃗ j, l⃗ j ⊥ g⃗, ∀ j ∈ [1, L − 1].

The length of these lines is w · D(xA, xB), where w is called the width of the search
space around the geodesic. The middle of these lines intersects the geodesic. Line
l⃗ j will contain the possible values of gene j for the GA. Genes 0 and L are fixed, as
they are the known start and end coordinates.

4. We define sets of equidistant points s j,k across these new lines, having a separation
of ∆s between consecutive values,

s j,k ∈ l⃗ j, ∀k, ∀ j ∈ [1, L − 1].

So that s j,k are the possible values of the gene j.

With this, a grid of possible positions is defined, ensuring that all solutions follow a
“reasonable” path to the goal - in the sense that they will always travel towards the goal.
Figure 4.9 illustrates this grid and shows an example of a route generated with it.

This definition of genes also ensure that any crossing between individuals will
generate another reasonable route: any value of gene j is always a step towards the
goal from gene j − 1. Additionally, by removing the waypoints on land in the grid, we
minimize the chance of generated routes to travel across mainland.

During each generation, two parents are chosen out of all the population, using
tournament selection. This implies splitting the routes into two groups, then picking the
individual with the least fuel consumption within each group. Having chosen the parents,
they generate two children. With a probability p1, the parents recombine by performing
a two-point crossover between them. This implies slicing each parent chromosome into
three segments of variable size (but equal for both individuals), and exchanging the
middle section from one solution with the other. The result will be two children each
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Figure 4.9: Grid defined by the Genetic Algorithm (GA), following the geodesic. Each
set of blue points (perpendicular to the geodesic) are the possible values that a gene can
take. In orange, we show a possible route that can be generated by this algorithm.

having characteristics of both parents. If the parents do not recombine, the children will
just be copies of the parents. Once the children are defined, each of their genes may
mutate with a probability p2, changing into a random value within the allowed (any s j,k

for gene j). Finally, the children routes are evaluated: any child route that consumes
less than the worst member of the population will enter, replacing the previous worst
chromosome.

This process keeps going until a set number of generations have passed. We can also
define more fine-tuned stopping criteria, such as waiting for a number of generations to
pass without any solution improving over the best one.

4.5. Results

In this section we run all the algorithms described in section 4.4 (Hybrid Search, A⋆and
the genetic algorithm) on each benchmark mentioned in section 4.3.2, aiming to find the
route that is optimal under each criteria, which varies over optimization methods. To have
a point of comparison, we also show the time elapsed by the route of minimum distance.
For the synthetic vector fields, operating in Euclidean geometry, the minimum distance
is the straight line. For the real vector fields, the minimum distance is the geodesic in
absence of land, otherwise it is called the circumnavigation route (route of minimum
distance avoiding land).
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Prototypes of the algorithms were implemented using Python, in some cases using
the JAX library [176]. The simulations were run on an Intel Core i7-8700K CPU
(3.7 GHz), and an NVIDIA GeForce GTX 1080 GPU (8 GB). The execution times
provided throughout this section are given only for illustration purposes and transparency.
However, these are strongly dependent on the implementation, which may have been
suboptimal.

4.5.1. Synthetic benchmarks

To solve the synthetic vector fields for a vessel of unitary velocity on Euclidean geometry,
Hybrid Search (HS) (section 4.4.1) was run using a time step of ∆t = 0.01 and checking
the stopping criteria every τ = 0.1. There were twenty one trajectories being tested by
the HS, their initial shootings evenly spread across a cone of amplitude γ = π centred on
the direction to the goal. The trajectories would stop if their heading deviated more than
γd = π/2, or when they got close to the goal (at least d = 0.1). Once the HS guessed
an optimal route, it would be smoothed by Ferrero-de Diego-Almagro Algorithm (FDA)
during 10 000 iterations.

(a) Circular (b) Four vortices

Figure 4.10: Results on the synthetic vector fields using the Hybrid Search (HS)
variational method (blue) and the genetic algorithm (orange), sailing at unitary velocity.
Green dot marks the departure and red dot is the goal.

For the genetic algorithm (section 4.4.3), there were L = 100 genes, distributed along
a width of w = 0.3 and a step of ∆s = 0.2. There were 60 chromosomes on the population
and they evolved through 500 generations, with a recombination probability of p1 = 0.8
and mutation probability of p2 = 0.2.

The travel times obtained by our methods in the two synthetic benchmarks are shown
in Table 4.2. A⋆search could not be applied as it was designed to work on spherical space,
not in the plane. It will be tested later on the real benchmarks. In addition to the table, we
show the optimized routes in Figure 4.10.
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Vector field Method Time Comp. time
(min)

Circular Min. distance 11.93 -
Hybrid Search 11.34 1
Genetic 11.46 2

Four Vortices Min. distance 30.44 -
Hybrid Search 9.72 1
Genetic 10.85 3

Table 4.2: Results on synthetic vector fields with unitary velocity, comparing the route
of minimum distance with the output from our routing methods. Computation time is
provided for illustration purposes.

4.5.2. Real benchmarks

To solve the real vector fields for a vessel of different velocities on spherical geometry
(approximating the Earth’s radius as 6367.449 km), Hybrid Search (HS) was run using a
time step of ∆t = 600 s (10 minutes) and checking the stopping criteria every τ = 7200 s
(2 hours). HS aimed to optimize the time of the journey, not taking the fuel consumption
into account. There were twenty one trajectories being tested by the HS, their initial
shootings evenly spread across a cone of amplitude γ = π/3 (60◦) centred on the direction
to the goal. The trajectories would stop if their heading deviated more than γd = 2π/3
(120◦), or when they got close to the goal (at least d = 10 km). Once the HS guessed
an optimal route, it would be smoothed by Ferrero-de Diego-Almagro Algorithm (FDA)
during 2000 iterations. Figure 4.11 shows its result on the journey from Charleston from
Azores, in comparison with the route of minimum distance.

For the genetic algorithm (section 4.4.3), there were L = 100 genes, distributed along
a width of w = 0.3 and a step of ∆s = 10 km. There were 60 chromosomes on the
population and they evolved through 500 generations, with a recombination probability
of p1 = 0.8 and mutation probability of p2 = 0.2. Fuel consumption was taken as the cost
function for the genetic algorithms, assuming the dimensions of a generic PCTC vessel1:
length L = 297 m and beam B = 46 m. It is relevant to note that the fuel consumed
only considered the effect of currents and waves (equations (4.3) and (4.5) respectively).
Wind was not taken into account as at the time of this study we lack the required vessel
parameters to solve equation (4.7).

Finally, the A⋆search algorithm used the fuel consumption as cost function, just like
the genetic algorithm did (i.e. equations (4.3) and (4.5)). During search, the algorithm
was allowed to jump to neighbouring nodes up to 3rd order, as shown in Figure 4.7. Its
heuristic was given a weight of w = 1.05 (see equation (4.17)), in an attempt to prioritize

1Flex Aurora, IMO 9857365, https://www.shipspotting.com/photos/3073441
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Figure 4.11: Results of the Hybrid Search variational method (yellow) on the journey
from Charleston to Azores, sailing at 6 m/s. The genetic algorithm route (not shown)
follows the minimum distance (red) closely.

Speed Method Travel time Distance Fuel Comp. time
(m/s) (h) (km) (tons) (min)

3 Min. distance 416.4 4392.5 97.9 -
Hybrid Search 389.2 4426.4 83.9 9
A⋆search 395.6 4480.4 73.9 4
Genetic 393.1 4459.6 78.9 7

6 Min. distance 207.9 4392.5 255.4 -
Hybrid Search 202.0 4423.3 238.2 6
A⋆search 203.7 4458.4 229.1 2
Genetic 204.0 4456.5 234.7 7

10 Min. distance 124.9 4392.5 703.6 -
Hybrid Search 123.3 4418.3 683.5 4
A⋆search 123.7 4436.4 674.5 1
Genetic 124.5 4451.5 684.4 7

Table 4.3: Results on the journey Charleston - Azores, departing at the 25th of May of
2022. We compare the route of minimum distance (geodesic) with the output from our
routing methods. Computation time is provided for illustration purposes.

routes that head straight to the goal, speeding the computation at the expense of skipping
some exploration.

Results of all three algorithms are shown on table 4.3 for Charleston to Azores and
table 4.4 for Somalia to Myanmar. Their routes are compared using the time they take to
be traversed, the distance they cover, and the fuel consumed assuming. Algorithms were
also compared by their computation time.
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Speed Method Travel time Distance Fuel Comp. time
(m/s) (h) (km) (tons) (min)

3 Min. distance 552.2 6159.8 50.3 -
Hybrid Search 528.3 6196.9 46.4 10
A⋆search 535.6 6344.6 44.3 3
Genetic 529.3 6243.4 44.9 5

6 Min. distance 280.0 6159.8 263.2 -
Hybrid Search 274.8 6196.9 256.4 8
A⋆search 277.2 6252.2 255.9 3
Genetic 275.3 6193.5 255.3 6

10 Min. distance 169.3 6159.8 872.3 -
Hybrid Search 167.8 6190.4 862.6 6
A⋆search 168.5 6221.4 863.3 2
Genetic 168.0 6183.8 862.2 5

Table 4.4: Results on the journey Somalia - Myanmar, departing at the 1st of July of 2022.
We compare the route of minimum distance (circumnavigation) with the output from our
optimization methods. Computation time is provided for illustration purposes.

4.5.3. Seasonal differences

An intriguing avenue for further investigation involves examining the variation in routes
over the course of a year, taking into account the influence of weather changes on
algorithmic decision-making. This study will focus on the A⋆search method presented
in section 4.4.2, as it has demonstrated consistently favourable results and boasts
considerably greater computational speed than alternative optimization algorithms. The
vessel will be assumed to sail at 10 meters per second, as this is an usual design speed.

Our first seasonal study focuses on the Atlantic Ocean, based on the benchmark from
section 4.3.2. Charleston serves once again as the departure port, but with the destination
relocated from Azores Island to Algeciras. This modification doubles the journey’s length,
affording greater opportunity to alter vessel course and capitalize on varying weather
conditions, particularly the powerful currents of the Gulf and North Atlantic. A total
of 52 routes will be simulated, one for each week between September 1, 2021 and August
31, 2022, providing a comprehensive view across the year.

For each simulation, we first computed the consumption of the shortest route during
each week of the year, which is plotted in figure 4.12. The average consumption of this
geodesic route is 962t of fuel, but significant variations are observed, ranging from -2%
to 4%, which shows that the effect of the weather, without modifying the route, already
have an impact on fuel consumption. It is noteworthy, for instance, that the distribution of
variations is not symmetrical with respect to the mean, i.e. it is not a normal distribution.
In fact, there are some points of consumption well above the mean that are due to the
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Figure 4.12: Variation of fuel consumption for the shortest route at each time of the year
with respect to the average consumption (962 tons of fuel).

presence of specific meteorological events, such as storms that produce areas of high
waves. For the seasonal comparison we have highlighted 10 simulations in successive
weeks during winter (blue colour) and in summer (red colour), observing a lower fuel
consumption in summer due to better sailing conditions in the northern hemisphere.

Figure 4.13: Trajectories generated with A⋆ search method during summer (July and
August, in red) and winter time (January and February, in blue), following the journey
from Charleston (USA) to Algeciras (Spain).

Next, A⋆search algorithm was applied to compute the optimal route for each week.
Figure 4.13 shows some of these optimized journeys, grouped into summer and winter
times. Then, figure 4.14 demonstrates that, over the course of 52 weeks, the optimized
route consistently results in cost savings when compared to the shortest distance route,
despite entailing a longer travel distance.

Building on our previous research conducted on the Atlantic Ocean, we extend our
analysis to the Indian Ocean. The Indian Ocean presents an intriguing feature in the form
of the Somalia current, which changes morphology over the year [177]. In this study,
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Figure 4.14: Fuel saved by A⋆ generated routes at each time of the year, compared to the
shortest route possible.

we follow the benchmark from section 4.3.2, selecting the Somali coast in East Africa as
the departure point and Myanmar in Asia as the destination port. We perform multiple
simulations covering dates between January and July of 2022. Our baseline will be the
circumnavigation route, i.e., the geodesic route that is closest to the ship’s course without
running aground.

Season Avg. fuel consumption
(tons)

Avg. fuel saved Avg. time
reduced

Winter 982.79 0.6% 1.3%
Summer 947.36 1.9% 0.9%

Table 4.5: Fuel consumed by A⋆ generated routes on the Indian Ocean, compared to
circumnavigating.

Table 4.5 presents the results obtained from the comparison between the optimized
routes and the base route, and distinguishes between the winter and summer periods.
Several notable observations emerged from the analysis, including the following findings:
During the winter season, the navigational direction of a boat is often forced to run counter
to the direction of the current, resulting in an elevated average fuel consumption rate of
983t when compared to summer. To mitigate this issue, our optimization algorithm
was utilized to identify alternative routes. Our findings indicate that the employment of
optimized routes yielded an average fuel cost reduction of 0.6%. During the summer
season, the prevailing weather conditions are conducive to optimizing transportation
routes, resulting in lower average fuel consumption (947t). Additionally, our analysis
indicates that the optimizer algorithm identifies greater opportunities for improvement
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during this period, as the optimized routes yield an average fuel savings of 1.9% (with a
maximum savings of 2.5% observed on a specific day).

Figure 4.15: A⋆ generated routes on the Indian Ocean, from Somalia (west) to Myanmar
(east). Routes are coloured by season: summer in orange, winter in blue. The
circumnavigation, used as base route, is shown in black.

To provide a visual representation of the routes, we present a projection of the region
in figure 4.15 for illustrative purposes. The reference path is displayed in black, while the
various routes discovered by the optimizer discussed in section 4.4.2 are represented in
orange and blue, corresponding to each day of the respective seasonal periods.

4.6. Discussion

This study on weather routing explores the effectiveness of three optimization algorithms:
a variational method named Hybrid Search (HS) (section 4.4.1), a genetic algorithm
(section 4.4.3) and an A⋆graph search (section 4.4.2). These algorithms were initially
tested on synthetic benchmarks, and subsequently, on two real case examples. Before
starting the discussion, it is important to note that the study of these algorithms is still in
its early stages, and for this thesis, only a small number of routes were compared. The
results presented here should be viewed as an illustration of how these computational
methods can improve standard shipping routes. It is crucial to note that these results do
not provide conclusive proof that any algorithm is superior to the others. In fact, the
findings suggest that all algorithms perform similarly well and that further development
of any of them can provide effective weather routing.

The results obtained from the synthetic benchmarks show that both the HS method
and the genetic algorithm outperform the minimum distance route in terms of travel
time. The HS method exhibits slight better results over the genetic algorithm, and it
is also faster in computational time. This was to be expected, as variational methods
are meant for continuous vector fields. Notably, the HS method performs exceptionally
well in the four vortices vector field, where the velocity of the currents is similar to that
of the vessel, and hence the currents have a significant impact. Figure 4.10b shows
that the route found by HS is coincidentally one of the fastest routes discovered by
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the benchmark’s original designers [144], validating the HS method’s ability to provide
optimal solutions for synthetic benchmarks. Conversely, the circular vector field has lower
current speeds, resulting in optimized routes that are not substantially different from the
minimum distance route. It is worth noting that the A⋆graph search algorithm was not
used for the synthetic benchmarks since it is designed to work on a spherical plane, while
the benchmarks were Euclidean. Therefore, it was not feasible to apply the graph search
algorithm in this scenario.

In terms of the real benchmarks, we conducted an analysis of two examples situated
in the Atlantic and Indian oceans. Three distinct sailing speeds were tested, including
one at the design speed (ten meters per second) and two lower speeds (three and six
meters per second). The findings in Tables 4.3 and 4.4 show that all optimization methods
resulted in fuel savings, with the A⋆search algorithm demonstrating the most significant
improvements. The HS method, on the other hand, excelled in identifying the shortest
time routes. This different in performance can be attributed to the distinct operating
principles of the two methods: while HS prioritizes time optimal trajectories by following
favourable currents, A⋆search focuses on minimizing the cost function (fuel consumption)
and considers the impact of waves. Meanwhile, the genetic algorithm found a balance
between travel time and fuel consumption, proving to be better at faster sailing speeds.

Our findings from real-life benchmarks provide insight into the impact of Harvald’s
law, shown in equation (4.3), on vessel performance. Harvald’s law suggests that engine
power increases cubically with speed, leading to a quadratic increase in fuel consumption
with vessel velocity (one order less as increasing speed reduces travel time). Tables 4.3
and 4.4 demonstrate this effect, although wave effects also come into play. It is evident
that reducing vessel velocity significantly decreases fuel consumption, specially when
wave height is low. Such is the case in the Indian Ocean, where the mean wave height
is one meter, compared to the Atlantic Ocean, where it is over three meter [178]. In any
case, these results highlight the importance of adopting slow steaming practices, which
will be commented on the conclusion.

Given the success of our weather routing algorithms at saving fuel, and the computational
efficiency of the A⋆graph search method, we conducted a follow-up study to investigate
how seasonal weather changes impact the optimal route. Specifically, we wanted
to determine how variations in ocean currents and wave heights affected the route
recommended by the algorithm, when sailing at the design speed of ten meters per second
(twelve knots). By understanding these seasonal weather patterns, we hoped to identify
opportunities to further optimize shipping operations and reduce fuel consumption.

The results of our seasonal study on the Atlantic ocean demonstrate that weather
routing algorithms can lead to significant cost and environmental savings in the shipping
industry. The fuel savings achievable through optimized routes can reach up to 3.3%,
with an average savings of 1.7% per route, corresponding to a reduction of approximately
16t of fuel consumption per voyage. These savings have substantial economic and
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environmental impacts, with potential fuel savings amounting to €15 000 for a typical
one-week transatlantic route, and the avoidance of approximately 50t of CO2 emissions.
This underscores the importance of implementing route optimization as a viable means
of reducing costs and mitigating the environmental impact of shipping operations.

Further analysis of our results on the Atlantic reveals that the most substantial fuel
savings are achieved in routes where the geodesic route’s energy consumption is higher.
This observation can be attributed to the presence of adverse navigation conditions and
inclement weather, which the optimized routes successfully circumvent to a greater
extent. These findings highlight the importance of accounting for weather and ocean
conditions when optimizing shipping routes, as they can have a significant impact on
fuel consumption and emissions. Additionally, our study shows that optimal routes in
the summer tend to depart from a more northerly position to take advantage of the Gulf
current before turning south to approach the geodesic route. Conversely, in the winter
months, the optimal routes tend to travel further north but benefit from better navigation
conditions. These observations suggest that implementing weather routing algorithms
can lead to more efficient and cost-effective shipping operations throughout the year,
and especially when combined with slow steaming practices, which are becoming more
common in the industry.

The findings of the second seasonal study in the Indian ocean highlight the benefits
of weather routing optimization beyond fuel efficiency. The optimized routes not only
yielded fuel savings but also resulted in shorter travel durations when compared to the
reference path. This result emphasizes the need for further investigation into the multiple
benefits of optimizing travel routes. The study also showed that the optimized routes
varied significantly depending on the seasonal period, indicating the efficacy of the
weather routing optimizer in leveraging external information. The statistically significant
above-average savings observed in both scenarios further support the effectiveness
of the weather routing optimization technique in reducing costs and mitigating the
environmental impact of shipping operations. These findings demonstrate the importance
of considering weather patterns and seasonal variability in the design and optimization of
shipping routes to improve their efficiency and sustainability.

In conclusion, our study on weather routing algorithms has demonstrated that
optimization methods can significantly reduce fuel consumption and emissions in the
shipping industry. This study also highlights the importance of accounting for weather
patterns and ocean conditions when optimizing shipping routes to achieve more cost-
effective and sustainable operations. These findings suggest that the implementation of
weather routing algorithms can lead to substantial economic and environmental benefits,
including fuel savings of up to 3.3% and the reduction of CO2 emissions. Overall, this
chapter underscores the potential of weather routing optimization as a viable means of
improving the efficiency and sustainability of shipping operations. While acknowledging
the existence of further work to be accomplished, the elaboration on this matter is deferred
to Chapter 5.
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APPENDICES

4.A. Derivation of Zermelo’s equations

4.A.1. Zermelo’s Navigation Problem on the plane

We are dealing here with a constrained optimization problem whose Lagrangian function
has the form

L = ṫ + λ1(ẋ1 − (V cosα + w1)ṫ) + λ2(ẋ2 − (V sinα + w2)ṫ). (4.18)

The goal is to find trajectories x(s), ẋ(s) = x′(s), t(s), ṫ(s) = t′(s) > 0, α(s) with fixed
end-points that minimize t(s1) − t(s0) =

∫︁ s1

s0
Lds, and obey constraints

ẋ1 = (V cosα + w1)ṫ

ẋ2 = (V sinα + w2)ṫ
(4.19)

The quantities λ1, λ2 are known as Lagrange multipliers. As we now show, their form
is determined by the Euler-Lagrange equations associated with the above Lagrangian,
namely

dLṫ

ds
= 0 (4.20)

Lxi −
dLẋi

ds
= 0 i = 1, 2 (4.21)

Lα = 0, (4.22)

Equation (4.20) gives

d
ds

(λ1(V cosα + w1) + λ2(V sinα + w2)) = 0

which implies that
λ1(V cosα + w1) + λ2(V sinα + w2) = C (4.23)

where C ≠ 0 is a constant. Equation (4.22) gives

λ1 sinα − λ2 cosα = 0. (4.24)

Together, (4.23) (4.24) determine the form of the Lagrange multipliers, namely:

λ1 =
C cosα

V + w1 cosα + w2 sinα
(4.25)

λ2 =
C sinα

V + w1 cosα + w2 sinα
(4.26)
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Going forward, we re-parametrize all curves with respect to time t so that

d
dt
=

1
ṫ

d
ds
.

E-L equations (4.21) give the dynamics of the Lagrange multipliers, namely

dλ1

dt
= −λ1w1,1 − λ2w2,1 (4.27)

dλ2

dt
= −λ1w1,2 − λ2w2,2 (4.28)

Rewriting (4.24) as

tanα =
λ2

λ1
,

and taking derivatives, gives

sec2(α)
dα
dt
=

d
dt

(︄
λ2

λ1

)︄
(︄
λ2

1 + λ
2
2

λ2
1

)︄
dα
dt
=

1
λ2

1

(︄
−λ2

dλ1

dt
+ λ1

dλ2

dt

)︄
dα
dt
=
λ2

2w2,1 + λ1λ2(w1,1 − w2,2) − λ2
1w1,2

λ2
1 + λ

2
2

dα
dt
= sin2(α) w2,1 + sin(α) cos(α) (w1,1 − w2,2) − cos2(α) w1,2 (4.29)

4.A.2. Zermelo’s Navigation Problem on the sphere

The modified Lagrangian takes the form

L = ṫ + λ1

(︂
θ̇ − K−1 sec(κϕ) (V cos(κα) + w1) ṫ

)︂
+ λ2

(︂
ϕ̇ − K−1 (V sin(κα) + w2) ṫ

)︂
The E-L equations (4.21) now read

K
dλ1

dt
= − sec(κϕ)λ1w1,1 − λ2w2,1 (4.30)

K
dλ2

dt
= −λ1κ sec(κϕ) tan(κϕ)(V cos(κα) + w1) − λ1 sec(κϕ)w1,2 − λ2w2,2 (4.31)

In the current setting (4.22) gives

tan(κα) =
λ2

λ1
cos(κϕ)
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Taking d/dt yields

κ sec2(κα)
dα
dt
=

cos(κϕ)
λ2

1

(︄
−λ2

dλ1

dt
+ λ1

dλ2

dt

)︄
−
κ

K
tan(κα) tan(κϕ)(V sin(κα) + w2)

κK sec2(κα)
dα
dt
=
λ2

λ1
w1,1 +

λ2
2

λ2
1

cos(κϕ)w2,1 − w1,2 −
λ2

λ1
cos(κϕ)w2,2

− κ tan(κϕ)(V cos(κα) + w1)

− κ tan(κα) tan(κϕ)(V sin(κα) + w2)

κK sec2(κα)
dα
dt
= sec(κϕ) tan(κα)w1,1 + sec(κϕ) tan2(κα)w2,1 − w1,2

− tan(κα)w2,2 − tan(κϕ)(V cos(κα) + w1)

− κ tan(κα) tan(κϕ)(V sin(κα) + w2)

κK
dα
dt
=

[︂
cos(κα) sin(κα)

]︂ ⎡⎢⎢⎢⎢⎣sec(κϕ)w1,1 w1,2

sec(κϕ)w2,1 w2,2

⎤⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎣ sin(κα)
− cos(κα)

⎤⎥⎥⎥⎥⎦
− cos(κα) tan(κϕ)(V + cos(κα)w1 + sin(κα)w2) (4.32)

4.B. Euler-Lagrange equations

4.B.1. Continuous Euler-Lagrange equations

Define an action functional along a curve q(t) in n-dimensional space with fixed end points
as follows,

J(q(t)) =
∫︂ b

a
L(t, q(t), q̇(t))dt, q(a) = α, q(b) = β. (4.33)

The function L(t, q(t), q̇(t)) is called the Lagrangian of the optimization problem. The
classical problem in the Calculus of Variations is to to minimize J by subjecting q(t) to
suitable constraints.

A necessary condition for minimization is that the variation δJ vanishes for all
possible variations of the trajectory δq = ϵϕ, where ϕ(t) vanishes at the endpoints, and ϵ
is the variational parameter. From the functional (4.33), define

h(ϵ) = J(q + ϵϕ) =
∫︂ b

a
L(t, q(t) + ϵϕ(t), q̇(t) + ϵϕ̇(t))dt.

Now differentiate and use the smoothness of L to interchange the derivative and the
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integral to get

h′(ϵ) =
d
dϵ

J(q + ϵϕ) =
∫︂ b

a

d
dϵ

L
(︂
t, q(t) + ϵϕ(t), q̇(t) + ϵϕ̇(t)

)︂
dt

=

∫︂ b

a
ϕ(t)

[︄
∂L
∂q

(︂
t, q(t) + ϵϕ(t), q̇(t) + ϵϕ̇(t)

)︂
+ ϕ̇(t)

∂L
∂q̇

(︂
t, q(t) + ϵϕ(t), q̇(t) + ϵϕ̇(t)

)︂ ]︄
dt.

Now setting ϵ = 0 and using our definition of the variational derivative yields

δJ(q)(ϕ) =
∫︂ b

a

[︄
ϕ(t)
∂L
∂q

(t, q, q̇) + ϕ̇(t)
∂L
∂q̇

(t, q, q̇)
]︄

dt. (4.34)

This functional is known as the first variation of J. In order to obtain an explicit formula
for δJ, we need the integral on the right side of the above equation to be linear in ϕ(t). We
can accomplish this via integration by parts.∫︂ b

a
ϕ̇(t)
∂L
∂q̇

(t, q, q̇)dt =
[︄
ϕ(t)
∂L
∂q̇

(t, q(t), q̇(t))
]︄t=b

t=a
−

∫︂ b

a
ϕ(t)

d
dt

(︄
∂L
∂q̇

(t, q, q̇)
)︄

dt

Since ϕ(b) = ϕ(a) = 0, by assumption, we obtain the following formula for the first
variation:

δJ(q)(ϕ) =
∫︂ b

a

[︄
∂L
∂q
−

d
dt
∂L
∂q̇

]︄
ϕ(t)dt.

Therefore, in order for δJ(ϕ) to vanish for all ϕ, the critical trajectory q(t) must satisfy the
Euler-Lagrange equations

∂L
∂q
−

d
dt
∂L
∂q̇
= 0. (4.35)

4.B.2. Discrete Euler-Lagrange equations

Now consider two positions: q0 and q1, and a time step h > 0. We discretize a
continuous Lagrangian L(q, q̇) by assuming that q1, q0 are close together so that q̇ can be
approximated by (q1 − q0)/h. This allows us to define the following discrete Lagrangian

Ld(q0, q1; h) :=
h
2

(︃
L
(︃
q0,

q1 − q0

h

)︃
+ L

(︃
q1,

q1 − q0

h

)︃)︃
,

which approximates the action integral along a straight trajectory from q0 to q1. In the
discrete Calculus of Variations, we replace a continuous curve q(t) with a piece-wise
linear curve determined by a sequence of points {qk}

N
k=0 with h units of time required to go

from qk to qk+1. We will now calculate the discrete action over this sequence by summing
the discrete Lagrangian.

Jd =

N−1∑︂
k=0

Ld(qk, qk+1; h).
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We now vary the trajectory by dq = {dqk}
N
k=0 with dq0 = dqN = 0 in order to fix the

boundary points q0, qN . Note that we use dq rather than ϵϕ to describe the variation
because the discretized system has finite degrees of freedom. The variation of the discrete
action can now be given as

dJd =

N−1∑︂
j=1

∂

∂x j

⎛⎜⎜⎜⎜⎜⎝N−1∑︂
k=0

Ld(qk, qk+1; h)

⎞⎟⎟⎟⎟⎟⎠ dq j

=

N−1∑︂
k=0

[︁
D1Ld(qk, qk+1; h)dqk + D2Ld(qk, qk+1; h)dqk+1

]︁
Recall that each x j = (q j1, . . . , q jn) is a point in n-dimensional space, so that ∂/∂x j,D1,D2

are actually n-vectors of partial derivative operators. Rearranging the above sum (this
corresponds to the integration by parts step in the continuous case) we obtain

dJd =

N−1∑︂
k=1

[︁
D2Ld(qk−1, qk; h) + D1Ld(qk, qk+1; h)

]︁
dqk.

If we require that the variation of the action is 0 for all dqk, then we obtain the discrete
Euler-Lagrange equations

D2Ld(qk−1, qk; h) + D1Ld(qk, qk+1; h) = 0, k = 1, . . . ,N − 1. (4.36)

4.C. Runge-Kutta method

Using the Fourth order Runge-Kutta method (RK4) [179], we can solve equation (4.9)
for Euclidean space or (4.11) for spherical. There are many variations of the fourth order
method, and they all use four approximations to the slope. We will use the following
slope approximations to estimate the slope at some time t, using a time step ∆t.

k1 = f (qt, t) =
dqt

dt

k2 = f
(︄
qt + k1, t +

∆t
2

)︄
k3 = f

(︄
qt + k2

∆t
2
, t +
∆t
2

)︄
k4 = f (qt + k3∆t, t + ∆t)

(4.37)

Each of these slope estimates can be described verbally.

• k1 is the slope at the beginning of the time step.

• If we use the slope k1 to step halfway through the time step, then k2 is an estimate of
the slope at the midpoint. This slope proved to be more accurate than k1 for making
new approximations for qt.
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• If we use the slope k2 to step halfway through the time step, then k3 is another
estimate of the slope at the midpoint.

• Finally, we use the slope, k3, to step all the way across the time step (to t + ∆t), and
k4 is an estimate of the slope at the endpoint.

We then use a weighted sum of these slopes to get our final estimate of q(t + ∆t):

qt+∆t = qt +

(︄
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4

)︄
∆t (4.38)

The lower ∆t, the most accurate this approximation becomes, but it will be more
computationally costly. RK4 method can be iterated until we get a list of coordinates q
with length T , such that qt is the coordinate of the vessel at time t. We are able to see how
the drift affects vessel’s true trajectory by plotting the path after T time steps, as shown in
figure 4.16

Figure 4.16: Example of RK4 application. Here we are using a very simple current,
namely the circular vector field explained in section 4.3.2 with (x1, x2) = (8, 8) (green
dot), and various initial shooting angles α. Red dots are the end points computed with
RK4 at t = 4, and orange dots are the way points generated each ∆t = 0.4.
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4.D. Code

The present research on weather routing was conducted using the Python programming
language. The implementation of the variational method utilized in this study is publicly
available for reference at https://github.com/daniprec/hybrid_ivp. It is
important to emphasize that this research is an ongoing effort, and as such, results may
differ from those presented in this thesis. Figure 4.17 offers a simplified depiction of
the class diagram employed throughout this work, illustrating the general behavior of the
code.

Figure 4.17: Basic representation of the class diagram for the weather routing code,
implemented in Python.
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5. CONCLUSIONS

5.1. Further work

We end up this thesis by summarising results and suggesting a few challenges. Several
avenues are open for further work. Here we discuss only several promising ones,
following our three core chapters.

5.1.1. Tuna biomass estimation

The purpose of Chapter 2 was to present a new pipeline for estimating tuna biomass
aggregated at DFADs, named Tun-AI . The pipeline trains numerous ML models that
handle distinct tasks related to fisheries operations using echo-sounder buoy, FAD
logbook, and oceanographic data. We tested the performance for both classification
and regression tasks, as well as the relative influence of integrating different data sources
on model performance, to discover the most accurate model. The best classification
model uses a 3-day window of echo-sounder data, oceanography, and position/time
derived features. With a F1-score of 0.925, this model can estimate if tuna biomass was
greater than or less than 10t. When predicting tuna biomass directly, the best model (GB)
has an error (MAE) of 21.6t and a relative error (SMAPE) of 29.5% when examined
over sets. When supplemented with oceanographic and position-derived information, all
models results improved, emphasising the usefulness of these variables when employing
echo-sounder buoy data.

In the case of classification models, the confusion matrices in Figure 2.6 revealed
that the majority of situations where the model misclassified the tuna aggregation size
occurred when biomass estimations were medium (10t ≤ y < 30t) or high (y ≥ 30t).
When we examined the regression models, we discovered that as the latter grew, estimated
tuna biomass tended to be lower than observed tuna biomass (Figure 2.8). This might be
attributed to a variety of circumstances, including: first, catches of more than 100t were
relatively rare (315 events in our data, 8.1%), and thus the model did not have enough
examples to properly learn from them; second, buoys can only estimate the biomass of
tuna within the echo-sounder beam, and in tuna aggregations of more than 100t, the entire
school is unlikely to be under the buoy at the same time. Furthermore, in huge schools of
tuna, the echo-sounder signal may saturate, causing the biomass estimations produced by
the echo-sounder buoy to be underestimated. To address this issue, it may be worthwhile
to employ specialised models that can be altered based on whether aggregations are
expected to be small or big. It is also worth mentioning that fisherman do not cast
their nets at random buoys, but rather depending on the biomass assessment supplied
to them, and so may be biassed towards buoys with larger biomass predictions. This
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might be another reason why our ML models overestimated the observed tuna biomass
when its values exceeded 30t in the ternary classification and 100t in the regression tasks.
Future research on the factors that influence fishermen’s decisions to visit a buoy may
shed more light on this topic. This propensity to underestimate should be considered
when utilising information produced from echo-sounder buoys for stock assessments [58],
albeit continuous underestimating should have little influence on patterns existing in the
temporal series.

Tuna’s pelagic and migratory tendencies make it a difficult species to research using
traditional methods, since only a tiny portion of its habitat can be studied in real time
at any given time. DFADs equipped with high-tech echo-sounder buoys, such as those
employed in the current study, can, on the other hand, be utilised as floating open-ocean
sampling stations, acquiring constant and up-to-date information from numerous sensors.
As seen above, and as noted by other authors [62], while the information produced by
the echo-sounder is important on its own, it still requires substantial cleaning and filtering
prior to use. These preliminary processes can minimise inaccuracies caused by buoy
measurements conducted on board or on land, but the ML algorithms utilised here go a
step further in processing the acoustic data to accurately estimate tuna biomass beneath
any particular echo-sounder buoy. In this regard, acoustic signals can offer information
about the presence and behaviour of tuna near DFADs for a fraction of the expense
associated with research expeditions of the same magnitude. As previously stated, this
sort of data might be utilised for fishery-independent abundance indices [59], [180], [181],
enhancing species distribution knowledge, or better understanding the causes driving tuna
aggregation and disaggregation processes at DFADs [58], [60], [136]. The current work is
a significant step in this approach since it is the first to correctly analyse the performance
of several ML models utilising accurate ML methods and vast quantities of data to train
and test each model. This has enabled Tun-AI to perform the most complicated tasks, such
as directly predicting the amount of tuna aggregated to the DFAD with high degrees of
accuracy. As demonstrated here, when the massive data provided by echo-sounder buoys
attached to DFADs is enriched with remote-sensing data on ocean conditions and trained
with reliable ground-truth data, ML proves a powerful tool for uncovering previously
hidden patterns in these datasets, potentially expanding our understanding of pelagic
species.

Lastly, it is worth mentioning that the biomass predictions can also be improved by
designing DL architectures that are able to extract more information from the data. Figure
5.1 shows one architecture that we were designing at the moment of writing this thesis.
We use convolutional neural networks to extract the correlation between different layer
depths, and feed their outputs to recurrent neural networks (LSTM) that can extrapolate
temporal patterns. Thus, the model learns from both spatial and temporal features in the
data.
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Figure 5.1: Proposed Deep Learning (DL) architecture to improve tuna biomass
predictions. It combines convolutional and recurrent neural networks (CNN and LSTM
respectively) to extract the most amount of information from spatial correlations between
layer depths and temporal patterns.

5.1.2. Tuna dynamics

In Chapter 3 we applied the ML pipeline developed in Chapter 2, Tun-AI , to examine the
temporal trends of tuna schools’ association to drifting objects. Metrics commonly used
in the literature were altered to account for the fact that the complete tuna aggregation
under the DFAD was examined, using a binary output (tuna absent or present). The
median time it took tuna to colonise the DFADs for the first time varied between 25 and
43 days, depending on the ocean, with the Pacific Ocean having the longest soak and
colonisation time frames. Continuous Residence Time (CRT) for tuna schools was often
shorter than Continuous Absence Time (CAT) (median values between 5-7 days and 9-11
days, respectively), consistent with earlier research. Two novel metrics, Aggregation’s
Continuous Residence Time (aCRT) and aCAT, were computed using regression output
to get deeper insight into the symmetry of the aggregation process. The time it took for
the tuna school to leave from the DFADs was not considerably longer than the time it took
for the aggregation to develop throughout all oceans.

While the tuna dynamics study in Chapter 3 concentrated on the time patterns of
tuna aggregation to DFADs, future research might focus on the spatial dynamics at
work. Moreno, Dagorn, Sancho et al. [131] interviewed fishing masters who claimed
that the departure of tuna schools from the DFADs was frequently connected to
changes in currents or the FAD drift trajectory, and that variations in the surrounding
environment, such as temperature, might also cause tuna to leave the DFAD. Examining
the oceanographic background around DFADs during aggregation and disaggregation
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processes might help determine whether this is happening. Similarly, determining if
local DFAD density affects CT, aCRT, or aCAT might help determine appropriate DFAD
utilisation for purse-seine fleets. Though there are inherent difficulties in using data from
echo-sounder buoys attached to DFADs, our study of Chapter 3 is an excellent example
of how this information, combined with DS filtering and processing techniques, can give
a low-cost tool for effectively providing insight on tuna biology and behaviour.

5.1.3. Weather routing

Based on the findings presented in Chapter 4, it is clear that weather routing algorithms
can have a significant impact on the shipping industry. The use of these optimization
methods can lead to significant improvements in vessel performance, such as reduced
voyage times and lower operating costs. One strength of weather routing lies in the
availability of a diverse range of optimization techniques. In our research, we have
identified three distinct approaches and discovered unique advantages associated with
each. The employment of the A⋆graph search method results in a reduction in fuel
consumption, whereas the use of the Hybrid Search (HS) algorithm is superior in
identifying routes that take less time, while genetic algorithm shows a good balance
between fuel consumption and travel time. This broad spectrum of options is of significant
benefit to shipping companies, as it enables them to prioritize specific advantages
according to their business objectives.

However, it is important to note that the benefits of weather routing can be further
amplified when combined with other strategies, such as slow steaming practices. Slow
steaming is a technique that involves reducing vessel speed in order to decrease fuel
consumption and emissions [86], [87]. When used in combination with weather routing
algorithms, slow steaming can lead to even greater fuel savings and environmental
benefits. Future research could focus on optimizing the balance between slow steaming
and weather routing in order to maximize the benefits of both strategies.

Another emerging technology that has the potential to improve efficiency in shipping
operations is the use of sails [88]. While traditional sailing vessels have largely been
replaced by motorized ships, recent advancements in sail technology have led to renewed
interest in the use of sails for commercial shipping. By pairing sails with slow steaming,
shipping companies can reduce their reliance on fossil fuels and improve the sustainability
of their operations, while also potentially reducing costs. Weather routing as a significant
application on this scenarios, as algorithms can account for the influence of wind on the
sails.

Furthermore, it is possible to enhance our optimization algorithms by integrating the
safety of the voyage as a target parameter. This can be achieved by considering the
avoidance of frontal waves, which have been demonstrated to result in vessel capsizing.
Such an extension would provide an additional layer of protection to vessels and their
occupants, ultimately leading to safer and more efficient maritime transportation.
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Throughout this study on weather routing, a simple consumption model was utilized,
which may benefit from further refinement. Although complex models tend to be
computationally intensive, the development of lightweight ML models that leverage
consumption data could provide reliable estimations of fuel consumed with reduced
computational cost [182]–[184]. Such models have the potential to enhance the accuracy
of fuel consumption predictions, allowing for more informed decisions to be made with
regards to vessel operations and overall efficiency.

The incorporation of weather routing algorithms into shipping operations has shown
the potential to achieve notable advancements in fuel efficiency and environmental
sustainability. Nevertheless, the shipping industry is confronted with substantial safety
concerns that must be addressed. Notably, weather routing algorithms have the ability to
account for safety considerations as a part of their cost function. The assessment of safety
concerns can be accomplished through various measures, such as monitoring the ship’s
average roll speed, which can result from the impact of waves hitting its sides, or the
intensity of the wind, which can serve as an indicator of hazardous weather conditions.

In conclusion, the findings presented in this thesis demonstrate the significant potential
of weather routing algorithms to improve the efficiency and sustainability of the shipping
industry. By combining these algorithms with other strategies such as slow steaming and
sails, shipping companies can reduce their costs and environmental impact. Continued
research and development in this area is crucial in order to realize these benefits and
ensure a more sustainable future for the shipping industry.

5.2. Crossover applications

This industrial thesis has researched two topics that are integral components of the
blue economy, namely sustainable fishing and weather routing. Both areas have been
approached through the application of Data Science (DS) methods and, in some instances,
Machine Learning (ML) implementations. Furthermore, these two fields of study share
common data sources, with weather routing reliant on oceanographic data, which is also
significant in fish estimation algorithms. The overlap between sustainable fishing and
weather routing extends beyond these areas of commonality. As a conclusion to this
thesis, we have compiled a list of crossover applications that have been proposed and, on
some occasions, implemented to enhance the performance of industrial procedures.

5.2.1. Applications of sustainable fishing to weather routing

The relevance of data obtained from Drifting Fish Aggregating Devices (DFADs)
extends beyond just fish estimation algorithms and is also highly applicable to weather
routing. The deployment of buoys equipped with an accelerometer enables the precise
measurement of wave motion, while the daily GPS reports detailing the position of the
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buoys can provide valuable information on ocean currents in specific regions. This data
can be utilized to generate more accurate weather forecasts [185], which in turn improves
the impact of weather routing algorithms.

5.2.2. Applications of weather routing to sustainable fishing

Route optimization is a concept that already exists in the fishing industry [186], [187],
and it involves using the predicted locations of fish populations to inform the route that a
fishing vessel follows. This journey planning can be improved with weather routing. By
knowing where the largest concentrations of fish are likely to be, a vessel can use weather
routing to efficiently navigate to those areas and maximize their catch, while reducing
operation costs.

Additionally, weather routing can be used to avoid areas with adverse meteorological
conditions that may be harmful to the vessel or interfere with fishing operations.
Optimization algorithms could also avoid areas where fish populations are low or where
overfishing is a concern. By using weather routing to steer clear of these areas, fishing
vessels can reduce their impact on fish populations and help to ensure that they are not
contributing to overfishing.

Overall, the combination of weather routing and tuna biomass predictions can help
fishing vessels to maximize their catch while also operating safely and efficiently.
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