
Implicit Object Pose Estimation on RGB Images

Using Deep Learning Methods

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M. Sc. Timon Höfer

aus Tübingen

Tübingen

2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 29.09.2023

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter/-in: Prof. Dr. Andreas Zell

2. Berichterstatter/-in: Prof. Dr. Hendrik Lensch

Eine Sache vollkommen zu verstehen und dieselbe Sache

vollkommen mißzuverstehen, sind zwei Dinge, die nicht

immer vollständig voneinander getrennt werden können.

Robert Musil

Abstract

With the increasing availability of robotic and camera systems, as well as the success of

deep learning based methods in computer vision, it is of interest to determine not only

the position of objects, but also their exact orientation. This enables, among other things,

automated bin picking where an attached camera sensor uses image data or point clouds

to determine the orientation of the objects at hand, allowing an attendant robotic arm to

use this information to perform a successful grasp. This is certainly not the only reason

to do pose recognition. In autonomous driving, among other things, the orientation of a

car can be used to predict its trajectory, or in the field of virtual reality, virtual objects

have to be transformed depending on the person’s point of view.

The focus of this dissertation is on implicit RGB-based methods. While methods

based on depth data have been common solutions in the past, they have, among other

drawbacks, the high initial cost of a depth camera; moreover, depth data are often not

precise enough for small objects. Developing methods based only on RGB data, how-

ever, is the more difficult problem. In addition to localization, one has to determine

the distance and also the orientation, which seems almost impossible with conventional

methods. In recent years, however, researchers have managed to do just that - using Deep

Learning, it was now possible to predict poses of objects on RGB images. Still, typical

problems get in the way. For example the overlapping of objects by other elements,

different light effects, which have influence on the appearance of the object, or existing

symmetries of the objects.

For this purpose, we introduce two implicit Deep Learning based methods for pose

estimation on RGB images. Among other things, we present a complete process from

data generation to selection of the best poses. The advantage of focusing on implicit

methods can be seen as follows. In explicit methods, it should be noted that conventional

parameterizations of rotations, such as the Euler angles, are not continuous in their rep-

resentation, from which pose regression has to suffer. Furthermore, in case of existing

symmetries, it is typically necessary to perform an additional annotation of these. Such

problems can be elegantly circumvented by an implicitly given pose determination, as

we will see in the following.

vii

Kurzfassung

Mit der zunehmenden Verfügbarkeit an Roboter- und Kamerasystemen, sowie dem Er-

folg Deep Learning basierter Methoden im Bereich Computer Vision ist es von Interes-

se, neben der Position von Objekten auch die genaue Orientierung dieser zu bestimmen.

Dies ermöglicht unter anderem den automatisierten Griff in die Kiste, bei der ein ange-

brachter Kamerasensor über Bilddaten oder Punktwolken die Ausrichtung der vorliegen-

den Objekte bestimmt, sodass ein beistehender Roboterarm mithilfe dieser Information

einen erfolgreichen Griff durchführen kann. Dies ist sicherlich nicht der einzige Grund

um Posenerkennung zu betreiben, im autonomen Fahren kann unter anderem durch die

Ausrichtung eines Autos dessen Trajektorie vorausgesagt werden, oder im Bereich der

virtuellen Realität müssen virtuelle Objekte je nach Blickwinkel der Person umgewan-

delt werden.

Der Fokus dieser Dissertation liegt dabei auf impliziten, RGB-basierenden Methoden.

Während Methoden, die auf Tiefendaten basieren, in der Vergangenheit eine gängige

Lösung darstellten, haben sie unter anderem die Nachteile der hohen Anschaffungs-

kosten einer Tiefenkamera, zudem sind die Tiefendaten bei kleinen Objekten oft nicht

präzise genug. Methoden, die nur auf RGB Daten basieren, zu entwickeln ist das schwie-

rigere Problem. Neben der Lokalisation muss man die Entfernung und auch die Orientie-

rung ermitteln, was mit herkömmlichen Methoden nahezu unmöglich erscheint. In den

letzten Jahren gelang es Forschern aber eben genau dies zu schaffen - unter Gebrauch von

Deep Learning war es nun möglich, Posen von Objekten auf RGB-Bildern vorherzusa-

gen. Trotzdem stellen sich typische Probleme in den Weg. Zum einen, die Überdeckung

von Objekten durch andere Elemente, unterschiedliche Lichteinwirkungen, welche Ein-

fluss auf die Erscheinung des Objektes haben, oder vorhandene Symmetrien der Objekte.

Hierzu führen wir zwei implizite, auf Deep Learning basierende, Methoden für die

Posenerkennung auf RGB Bildern ein. Wir stellen unter anderem einen kompletten Pro-

zess von der Datengenerierung bis hin zur Selektion der besten Posen vor. Der Vorteil,

der sich dadurch ergibt, dass wir uns auf implizite Methoden fokussieren, kann wie folgt

gesehen werden: In expliziten Methoden ist zu beachten, dass herkömmliche parametri-

sierungen der Rotationen, wie zum Beispiel der eulersche Winkel, nicht stetig in ihrer

Repräsentation sind, worunter eine Posenregression leiden muss. Zudem ist es typischer-

weise notwendig, im Falle von vorhandenen Symmetrien eine zusätzliche Annotation

dieser durchzuführen. Durch eine implizit gegebene Posenbestimmung können solche

Probleme elegant umgangen werden, wie wir im Folgenden sehen werden.

ix

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution & Outline . 4

2 Mathematical Theory 7

2.1 Rotation Representation . 7

2.1.1 Three Dimensional Rotations . 7

2.1.2 Parameterizations of the Rotation 10

2.2 General Fourier Theory . 15

2.2.1 The One-Dimenional Fourier transform 15

2.2.2 The Multi-Dimensional Fourier Transform 18

2.3 Fourier Series on the Rotation Manifold . 19

2.3.1 A Basis for L2(SO(3)) . 20

2.3.2 Discrete Fourier Transforms on SO(3) 21

3 Implicit Neural Representations 23

3.1 Introduction . 23

3.2 Related Work . 26

3.3 Seeing Implicit Neural Representations as Fourier Series 27

3.3.1 Method . 31

3.3.2 Experiments . 42

3.3.3 Conclusion . 47

3.4 Automatic Adjustment of Fourier Embeddings 48

3.4.1 Method . 50

3.4.2 Overall Methodology . 50

3.4.3 Experiments . 54

3.4.4 Conclusion . 60

4 From Object Detection to Instance Segmentation 61

4.1 Technical Introduction . 61

4.1.1 Task Definition . 61

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit

Neural Networks . 66

4.2.1 Method . 68

4.2.2 Extended FourierMask - MLP as a Renderer 70

xi

Contents

4.2.3 Experiments . 71

4.2.4 Conclusion . 77

5 Pose Estimation with Augmented Autoencoders 81

5.1 Solutions to Pose Estimation . 82

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly

Cluttered Bin Picking . 85

5.2.1 Introduction . 85

5.2.2 Methodology . 86

5.2.3 Selecting the Best Pose Estimates 91

5.2.4 Experimental Results . 92

5.2.5 Conclusion . 94

5.2.6 Further Qualitative Results . 94

6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural

Representations 101

6.1 Hypernetworks . 101

6.2 Introduction . 102

6.3 Method . 103

6.3.1 Fourier Transform on the Rotation Manifold 103

6.3.2 Fourier Embedding . 105

6.4 Experiments . 106

6.4.1 Datasets . 106

6.4.2 Evaluation Metrics . 108

6.4.3 Experiments on the SYMSOL I Dataset 109

6.4.4 Experiments on the SYMSOL II Dataset 110

6.4.5 Experiments on the Pascal3D+ Dataset 111

6.5 Conclusion . 112

7 Overall Conclusion 117

Abbreviations 119

Bibliography 121

xii

Chapter 1

Introduction

1.1 Motivation

Sight, hearing, smell, taste and touch - these are the 5 senses of a human. ”The human is

an eye animal,” it is often said. In fact, the sense of sight is considered the most important

sense for our conscious perception. This is one of the reasons why it is much easier for us

to describe what we see and put it into words than, for example, a smell. The importance

of the sense of sight in everyday life is obvious: In most daily activities, sighted people

rely in some way on the functioning of their visual system. This starts with reading this

text and applies in a similar way to many activities - from shopping and watching movies

to driving and playing soccer. The sense of sight performs important services when it

comes to perceiving our surroundings and orienting ourselves in space, that is: when it

comes to locating objects and determining their size or their distances from each other,

but also when we perform movements.

With the ubiquity of camera sensors, the question arises whether we are able to give

the robot a visual sense. The camera sensors are supposed to play the role of the eye, and

our neural networks with their thousands of neurons are supposed to play the nervous

system so that the robot is able to process the sensory stimuli it receives. This gives

the robot the ability to communicate with the environment so that it can move in rooms

without bumping into things or grasp things.

In the field of computer vision, visual processing is considered. Problems such as un-

derstanding underlying geometry, distance and position of things, and classifying objects

are analyzed. Object recognition includes the task of object identification in images and

videos. Among others, it includes the task of image classification, object detection and

segmentation.

Especially the task of image classification was a driving force behind the evolution of

Deep Learning in computer vision. Krizhevsky et al. (2012) revolutionized the recog-

nition field and computer vision in general with their deep-learning based AlexNet sub-

mission to the ImageNet Challenge (by Russakovsky et al. (2015)), which took place

from 2012 to 2015. As a result of the improvement in performance of AlexNet, neural

networks, in particular convolutional neural networks (CNNs), have become a part of

most state-of-the-art object recognition algorithms.

1

Chapter 1 Introduction

Specific to robotics applications is the task of object recognition. Here, the task is to

localize and classify objects in images up to pixel-wise segmentation. Knowledge about

the location and presence of objects is essential for the successful execution of robot

control. Notable detectors in this regard are the R-CNN series, which, starting from the

region-based detector R-CNN by Girshick et al. (2014), and improved versions, such

as Fast R-CNN by Girshick (2015) and Faster R-CNN by Ren et al. (2015), and for

simultaneous segmentation Mask R-CNN by He et al. (2017). In contrast, there is the

series of YOLO detectors, whose name ranges from YOLO version 1 by Redmon et al.

(2016) to YOLO version 7, which is convincing in speed as a one-stage method.

In order to actually use such detectors, one needs, in addition to the special hardware,

such as the GPU, large data sets on which one can train and evaluate the models. Gen-

erating such datasets is very laborious, from capturing images in different scenarios to

image-by-image labeling of visible objects on the images. Publicly available datasets,

such as ImageNet by Deng et al. (2009) with several million images or COCO by Lin

et al. (2014) and PascalVOC by Everingham et al. (2010a) enable the application and de-

velopment of deep learning-based methods in computer vision. In the industrial sector,

it is also possible to generate synthetic data with, e.g. BlenderProc by Denninger et al.

(2019) for industrial or household objects with a given CAD model. Through augmen-

tations and a physics engine it is possible to train models in the synthetic world and still

get good results in the real world.

Now suppose the robot recognizes the position and class of an object. It is possible

for it to move to this object. To actually interact with this object, e.g. to pick it up, more

knowledge about the object is necessary. Here, the object pose plays a role, which gives

information about the orientation and position of the object in a three-dimensional space.

Traditionally, pose estimation can be handled by template matching as done, e.g. by

Hinterstoisser et al. (2012). In recent years, however, there has been a rise of deep

learning-based methods that have beaten the classical methods in terms of speed and

precision. Among other things, previously hand-crafted features have now been made

learnable, or pose regression has been applied directly. In particular, the handling of the

difficulties of pose determination, including occlusion, clutter, illumination changes, tex-

tureless objects and symmetries, improved. The BOP challenge by Hodaň et al. (2020)

should be mentioned in this context. Starting in 2019, it took place annually and will look

specifically at pose estimation datasets that contain the above difficulties. It is a challenge

for researchers on 6D pose estimation on multiple well-known 6D datasets, such as YCB

by Xiang et al. (2017), containing textureless and symmetric objects, strong occlusions

and clutter. Over time, RGB-based methods could prove themselves over depth-based

methods. If one gives them the possibility of a pose refinement, for example by the

ICP (iterative closest point) algorithm, they are not only faster but also achieve a higher

precision. Note that the required depth data can be obtained from an RGB-D camera.

However, symmetries and occlusions in particular are still a problem. For example, two

viewpoints can look identical on the image but have different pose labels. Learning the

average of the poses would again be error-prone, so typically, symmetry annotations of

2

1.1 Motivation

Figure 1.1: In the image, a Franka Emika robot arm equipped with a Schmalz cobot

suction gripper is shown in action, moving purposefully towards its target. Upon arrival,

the suction gripper deftly picks up the object of interest with precision guided by our pose

estimation method. This technique leverages the input of the Microsoft Azure Kinect

RGB-D camera, concealed behind a sturdy aluminum mount, which captures a detailed

image of the scene to provide crucial information about the object’s position and rotation.

the objects are included in the training data so that this problem can be partially avoided.

Finding a solution that can handle this problem well is a crucial component of a robot

vision pipeline.

In this dissertation, we will highlight a method for synthetic data generation for indus-

trial objects with a given CAD model based on BlenderProc and will demonstrate that we

can use it for training and testing our detectors and pose estimators. Hereby we bridge

the gap between simulation and reality using further augmentations. Furthermore, we

present two implicit methods on pose estimation that cover the uncertainty, including the

removal of the need for symmetry supervision, in a clever way. The first one is based

on an underlying implicit autoencoder network. Latent representations of a discrete sub-

set from SO(3) will be saved via a codebook, and during inference, it will be evaluated,

which of the rotations matches the image crop of the bounding box the most. In Fig-

ure 1.1 a successful grasp based on our pose estimation framework is shown. The other

method we introduce is based on implicit neural representations, which acts as a proba-

bility distribution on SO(3). We will show that in case of multiple poses due to symmetry,

our method HyperPosePDF is able to capture all of them. The detailed contributions are

listed below.

3

Chapter 1 Introduction

1.2 Contribution & Outline

This thesis contributes to the computer vision and robotics communities with the follow-

ing peer-reviewed works, where * indicates equal contribution:

1. Benbarka, Nuri*, Timon Höfer*, Hamd Ul Moqeet Riaz and Andreas Zell. ”See-

ing implicit neural representations as Fourier series.” In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.

In this work, we focus on the Fourier embedding used for implicit neural

representations. Motivated by a mathematical analysis, we introduce an integer

Fourier mapping that is equivalent to the original Fourier series for a perceptron

and show that it forces periodicity of the network output. Furthermore, we explore

the mathematical connection between Fourier mappings and SIRENs and show

that a Fourier-mapped perceptron is structurally like a one hidden layer SIREN.

Finally, we confirm that the main contributor to the performance is the number of

elements and the standard deviation of the Fourier mapping.

2. Timon Höfer and Andreas Zell. ”Automatic Adjustment of Fourier Embed-

dings.” In Proceedings of the IEEE International Conference on Pattern Recogni-

tion (ICPR) 2022.

In this work, we introduce an iterative adjustment method for the Fourier em-

bedding of implicit neural representations. We compare two pruning techniques in

selecting which elements of the Fourier embedding are the most unimportant and

introduce a replacement technique that is chosen in such a way as to have a posi-

tive influence on the overall standard deviation. We can demonstrate that an initial

poorly chosen Fourier embedding can be adjusted with our iterative replacement

method to yield adequate performance.

3. Riaz, Hamd Ul Moqeet*, Nuri Benbarka*, Timon Höfer, and Andreas Zell. ”Fouri-

erMask: Instance Segmentation using Fourier Mapping in Implicit Neural

Networks.” In Proceedings of the International Conference: Image Analysis and

Processing (ICIAP) 2022.

Here, we focus on the task of object segmentation. We provide a mask repre-

sentation using a Fourier embedding and implicit neural representations to repre-

sent the level set. We show that this mask representation outperforms the widely

spread grid-based masks. While this method uses Mask R-CNN as a baseline, we

are able to keep up a similar speed but produce more accurate output.

4. Timon Höfer, Faranak Shamsafar, Nuri Benbarka and Andreas Zell. ”Object de-

tection and Autoencoder-Based 6D Pose Estimation for Highly Cluttered Bin

Picking.” In Proceedings of the IEEE International Conference on Image Process-

ing (ICIP) 2021.

4

1.2 Contribution & Outline

We present a framework for pose estimation in highly cluttered bin picking

scenarios where we assume the CAD model of the respective objects to be given

and an RGB-D camera installed on top of the bin. We start by creating a synthetic

dataset to remove the need for expensive hand labelling of the pose annotations.

We combine a state-of-the-art object detector with an Autoencoder network to es-

timate the poses. Furthermore, we present a pose filtering scheme to select the best

pose predictions. The usage of a denoising autoencoder isolates pose information

and hence makes symmetry supervision unnecessary.

5. Timon Höfer, Benjamin Kiefer and Andreas Zell. ”HyperPosePDF: Prediciting

the Probability Distribution on SO(3).” In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV) 2023.

We present HyperPosePDF, a method to predict the probability distribution on

SO(3). An initial vision network takes the image as input and outputs the weights

of an MLP, which represents the implicit neural representation of the pose proba-

bility function. This is especially helpful for symmetries, as the network naturally

inherits any present ambiguities.

In addition to the previous works, I contributed to the following works:

6. Benjamin Kiefer, ... , Timon Höfer et al.. ”1st Workshop on Maritime Com-

puter Vision (MaCVi) 2023: Challenge Results.” In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision Workshops (WACVW)

2023.

The 1st MaCVi Workshop 2023 focuses on computer vision in maritime envi-

ronments for UAVs and USVs. The workshop consists of four subchallenges: (i)

UAV-based maritime object detection, (ii) UAV-based maritime object tracking,

(iii) USV-based maritime obstacle segmentation, and (iv) USV-based maritime

obstacle detection, based on SeaDronesSee and MODS benchmarks. The report

summarizes the subchallenges’ main findings and introduces a new benchmark,

SeaDronesSee Object Detection v2, which includes more classes and footage. The

report offers statistical and qualitative analyses and assesses trends in over 130

submissions’ best-performing methodologies.

7. Benjamin Kiefer, Timon Höfer and Andreas Zell. ”Stable Yaw Estimation of

Boats from the Viewpoint of UAVs and USVs.” (Under review)

In this paper, we propose a method for yaw estimation of boats from the per-

spective of UAVs and USVs. Several applications rely on it, such as 3D scene

rendering, trajectory prediction, and navigation. This paper addresses the lack

of literature on the topic and extends HyperPosePDF to handle video-based sce-

narios. As demonstrated in our experimental evaluation, aggregating probability

distributions of pose predictions improves performance. This method has potential

benefits for downstream tasks in marine robotics.

5

Chapter 1 Introduction

As the last two works are unrelated to the main topic, it is not going to be discussed in

this dissertation. The structure of the thesis is as follows:

Chapter 2 In the first chapter, we lay out the fundamentals of the mathematical theory. We in-

troduce rotations and different parameterizations that are commonly used for pose

estimation. After a short discussion on their usability, we proceed with the intro-

duction to the classical Fourier theory. This will be important for the introduction

of Fourier embeddings which are crucial for implicit neural representations. Fur-

thermore, we discuss the Fourier theory on the rotation manifold, as we will intro-

duce in the last chapter an implicit neural representation that models a probability

distribution on SO(3).

Chapter 3 Next, we introduce implicit neural representations, which use multilayer percep-

trons to represent high-frequency functions. We show that utilizing the theory on

the Fourier series does increase the performance significantly. In this chapter, we

present our papers ’Seeing implicit neural representations as Fourier series’ by

Benbarka & Höfer et al. (2022) and ’Automatic adjustment of Fourier embedding

parameterizations’ by Höfer and Zell (2022). Both works focus on the Fourier

embedding, while in this section, we focus on the task of image regression and

novel view synthesis. We will later see how to use them for the task of instance

segmentation and pose estimation.

Chapter 4 This chapter presents the tasks of object detection and object segmentation. We

show how implicit neural representations can be used for the task of object seg-

mentation in our work ’FourierMask: Instance segmentation using Fourier map-

ping in implicit neural networks’ by Riaz et al. (2022).

Chapter 5 In this chapter, we introduce our work ’Object detection and Autoencoder-based

6D pose estimation for highly cluttered industrial bin picking by Höfer et al.

(2021), which presents a full framework for pose estimation in highly cluttered bin

picking scenarios. We combine the task of object detection and instance segmen-

tation with pose estimation, which makes it possible to predict industrial objects in

heavily cluttered scenarios.

Chapter 6 In the second to last chapter, we present our work ’HyperPosePDF: Predicting the

probability distribution on SO(3)’ by Höfer et al. (2023), which predicts a proba-

bility distribution on SO(3) and is especially well suited for modelling uncertain-

ties arising from, e.g. symmetry. This work uses implicit neural representations

as its implicit pose probability function and outputs in the presence of symmetries

multiple or even continuous poses.

Chapter 7 The last chapter gives a short overall conclusion of the work presented in this

thesis.

6

Chapter 2

Mathematical Theory

In this section, we want to derive the essential formulas used in the remainder of the

work. Since our goal is to use machine learning for pose estimation, we first introduce

different rotation parameterizations and then discuss their effect on the pose regression

task. A key element of implicit neural representations is an initial Fourier embedding,

which will be discussed in Section 3. Here we lay out the basics and introduce the Fourier

series for common functions and the Fourier series on SO(3). With that, we have the

fundamentals to introduce a hypernetwork that predicts an implicit neural representation

of a pose probability function on SO(3).

2.1 Rotation Representation

Rotations are used to describe the orientation of objects. For example, in the task of bin

picking, not only the 3D location of an object is needed for a successful grasp, rather

the whole 6D pose is necessary to determine optimal grasping points for the robot arm.

Several rotation representations have been proposed for the task of pose estimation. The

well-known Euler angles representation does not perform well in the regression task,

as it suffers from singularities. Some works make use of the quaternion representation,

which is free of singularities. Still, we introduce the Euler angles as we need them as

the parameterization for the Fourier embedding on SO(3). This gives us the opportunity

to simultaneously discuss the drawbacks and see the advantages of quaternions over the

Euler angle parameterization. We will now continue with introducing rotation matrices.

2.1.1 Three Dimensional Rotations

We start the section with an intuitive definition of three dimensional rotations. We will

mainly follow Murray et al. (2017) and Prestin (2010) for our introduction to rotations.

Definition 2.1.1 A rotation acting on R3 around the origin 0 is a linear map ρ ∶R3→R3,

such that ρ(v) =Rv with the following properties

• R ∈R3x3 is an orthogonal matrix, i.e. RTR = I.

7

Chapter 2 Mathematical Theory

• It holds that det(R) = 1, i.e. the rotation matrix is norm preserving.

We collect basic properties of the so defined rotations in the following Lemma.

Remark 2.1.2 Let ρ1(v) =R1v and ρ2(v) =R2v be two rotations according to the pre-

vious definition. It holds that

1. The composition of two rotations ρ = ρ2 ○ρ1 is the map ρ ∶ v↦R2R1v.

2. The inverse ρ−1 of a rotations is the map ρ−1 ∶ v↦R−1v.

3. The equivalence R1 ≠R2⇔ ρ1 ≠ ρ2 holds.

This remark gives a one-to-one correspondence between a rotation ρ and its associated

rotation matrix R. Hence, we will identify the two from here on and refer to the rotation

matrix R.

Lemma 2.1.3 The set R = {R ∈ R3×3∣det(R) = 1 and RT R = I} associated with matrix

multiplication forms the group (R, ⋅).
Proof: We will prove the validity of the group axioms:

1. We show that R1,R2 ∈R⇒R1R2 ∈R.

• Per definition of the matrix mulitiplication we have that R1R2 ∈R
3×3

• Multiplicativity of the determinant yields det(R1R2) = det(R1)det(R2) = 1.

• The product is orthogonal as can be seen by (R1R2)T (R1R2)=RT
2
(RT

1
R1)R2 =

RT
2

R2 = I.

2. The associativity comes from the fact that the matrix multiplication is associative:(R1R2)R3 =R1(R2R3).
3. The identity element is the identity matrix of the matrix multiplication I for which

it holds that IR =R, ∀R ∈R. As I fulfills the properties of R it follows that I ∈R

which is needed.

4. The existence of the inverse is guaranteed as for R ∈R it holds that det(R−1) =
det(R)−1

= 1 and (R−1)T R−1
= (RRT)−1

= I. Hence it holds that R−1
∈R and as R

is orthogonal we have R−1
=RT .

◻

Definition 2.1.4 We call the group (R, ⋅) the orthogonal group SO(3).

8

2.1 Rotation Representation

Figure 2.1: 3D visualization of a sphere and a rotation about an axis ê by an angle of θ ,

following the axis-angle parameterization 2.1.2 (Malan (2004)).

This definition is well known in the literature, and the group SO(3) is usually called

the (3D-) rotation group. It should be mentioned that the rotation group is non-abelian,

i.e. rotating something 90 degrees along one axis and then 90 degrees along another axis

is not the same as doing them in reverse order. In general, a rotation matrix R has nine

entries but is a constraint with limitations. If we write R = [r1,r2,r3] where ri ∈R
3 for

i = 1,2,3, we can see the following: By definition R is orthogonal and hence we have

ri ⋅r j = δi, j for i, j = 1,2,3. With the inner product being commutative, we end up with six

constraints for the entries of R. This indeed reduces the number of freely eligible entries

from 9 to 3 for the rotation matrix R. The condition to have a determinant of 1 does not

affect the total number of freely eligible entries but only the number of possible choices.

Based on this observation, we will use the expression of having three degrees of freedom

in a rotation to refer to the three freely eligible elements.

For the task of pose estimation, we have nine parameters to be regressed for a single

rotation, which is excessive compared to other parameterizations. When regressing these

parameters with backpropagation, one has to enforce orthogonality such that the nine

parameters actually represent a rotation matrix. Additionally, rotation matrices are not

intuitive. By simply looking at a rotation matrix, it is usually not clear to say what

rotation is represented, which makes other parameterizations more favourable for the

task of pose regression.

9

Chapter 2 Mathematical Theory

2.1.2 Parameterizations of the Rotation

Axis-Angle Parameterization

The axis-angle parameterization is an intuitive way to describe a rotation. The descrip-

tion is given by the rotation angle θ around a rotation axis indicated by a unit vector

e. To define the direction of a unit vector e rooted at the origin, only two numbers are

needed, not three, since the magnitude of e is constrained.

Definition 2.1.5 Let R ∈ SO(3) with R ≠ I be given. Then the axis of rotation is defined

to be the normalized eigenvector e to the eigenvalue λ = 1 of R.

The exclusion of R = I in the definition is due to the fact that I has a three-fold eigenvalue

one and, therefore, no uniquely determined normalized eigenvector to this eigenvalue.

Lemma 2.1.6 Let R = [r1,r2,r3] ∈ SO(3) with R ≠ I and v ∈R3 be given. Then the axis

of rotation is given by

e =
v∣∣v∣∣ with v =

⎛⎜⎝
r2,3− r3,2

r3,1− r1,3

r1,2− r2,1

⎞⎟⎠ .
Proof: The orthogonality of R yields the following equivalence for an eigenvector u to

λ = 1:

Ru = u
orth.
⇔ u =RT u

⇔(R−RT)u = 0

⇔
⎛⎜⎝

0 (r1,2− r2,1) (r1,3− r3,1)(r2,1− r1,2) 0 (r2,3− r3,2)(r3,1− r1,3) (r3,2− r2,3) 0

⎞⎟⎠
⎛⎜⎝

u1

u2

u3

⎞⎟⎠ =
⎛⎜⎝

0

0

0

⎞⎟⎠ .
This is equivalent to the system of equations

u2(r1,2− r2,1)−u3(r3,1− r1,3) = 0,

u3(r2,3− r3,2)−u1(r1,2− r2,1) = 0,

u1(r3,1− r1,3)−u2(r2,3− r3,2) = 0.

The solution of these equations are multiples of u = (r2,3 − r3,2,r3,1 − r1,3,r1,2 − r2,1).
Normalization by dividing through the norm makes the solution unique and proves our

Lemma. ◻

Remark 2.1.7 The two-dimensional unit sphere is defined as

S
2
= {x ∈R3∣ ∣∣x∣∣ = 1}.

10

2.1 Rotation Representation

Figure 2.2: The Euler angles associated with the ZYZ-convention (Definition 2.1.10) are

the consecutive rotations around the (a) z-axis, (b) y-axis and (c) the z-axis. Illustration

taken from Prestin (2010).

Since we normalized the rotation axis e, we have e ∈ S2. Hence, we can transfer knowl-

edge from S2 to the set containing the rotation axes. Specifically, we know that each

element x = (x1,x2,x3)T ∈ S2 can be transformed in spherical coordinates (ϕ,ψ) where

ϕ ∈ [0,2π) denotes the longitude and ψ ∈ [0,π] denotes the latitude of the point on S2. If

x1 = x2 = 0 the longitude is not uniquely determined, but otherwise, it holds that

ϕ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arccos

x1√
x2

1
+x2

2

for x2 ≥ 0,

2π −arccos
x1√
x2

1
+x2

2

for x2 < 0,

ψ = arccosx3.

Given ϕ and θ it is also possible to calculate the Cartesian coordinates:

⎛⎜⎝
x1

x2

x3

⎞⎟⎠ =
⎛⎜⎝

sinψ cosϕ
sinψ sinϕ

cosψ

⎞⎟⎠ .
This remark shows that we need only two parameters to represent the rotation axis and

hence only need three parameters to represent a rotation.

Euler Angle Parameterization

In the previously introduced axis-angle parameterization consisting of a rotation θ and

a rotation axis e, we showed that we only need three parameters, the rotation axis e rep-

resented by the spherical coordinates (ϕ,ψ) and the rotation angle ω . The Euler angle

11

Chapter 2 Mathematical Theory

parameterization uses a different approach to account for the three degrees of freedom.

Specifically, we split the rotation into three rotations around the different axes and use

their absolute value for characterization. We will need to define a convention for the Eu-

ler angles, and we will do so with regard to Section 2.3. In literature, there exist different

conventions on choosing those axes, most commonly the ZXZ- and ZYZ-conventions.

As both representations can be transformed into each other with given angles α,β ,γ , by

RZY Z =RZXZ(α +π/2,β ,γ −π/2),
we introduce the ZYZ-convention.

Definition 2.1.8 For ex = (1,0,0)T , ey = (0,1,0)T and ez = (0,0,1)T we define the sets

X = {X ∈ SO(3)∣Xex = ex},
Y = {Y ∈ SO(3)∣Yey = ey},
Z = {Z ∈ SO(3)∣Zez = ez}.

Note that each set X , Y and Z is a subgroup of SO(3) with the property of being

isomorphic to SO(2).
Remark 2.1.9 Every rotation RX ,RY ,RZ ∈X ,Y ,Z fulfills

RX =

⎛⎜⎝
1 0 0

0 cos(γx) −sin(γx)
0 sin(γx) cos(γx)

⎞⎟⎠ , RY =

⎛⎜⎝
cos(γy) 0 sin(γy)

0 1 0

−sin(γy) 0 cos(γy)
⎞⎟⎠ ,

RZ =

⎛⎜⎝
cos(γz) −sin(γz) 0

sin(γz) cos(γz) 0

0 0 1

⎞⎟⎠
for some γx,γy,γz ∈ [0,2π).
Definition 2.1.10 Let α,γ ∈ [0,2π) and β ∈ [0,π] be given angles, then a rotation matrix

is given by

R(α,β ,γ) =RZ(α)RY (β)RZ(γ).
This representation is called the Euler angle representation, and α,β and γ are called

the Euler angles.

Remark 2.1.11 Given the rotation matrix R = (ri, j)i, j=1,2,3 ∈ SO(3), the corresponding

Euler angles can be calculated as follows.

12

2.1 Rotation Representation

If ∣r3,3∣ ≠ 1, then we can calculate the Euler angles as

β = arccosr3,3

α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arccos

r1,3√
r2

1,3
+r2

2,3

for r2,3 > 0,

2π −arccos
r1,3√

r2
1,3
+r2

2,3

for r2,3 < 0,

γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arccos

−r3,1√
r2

3,1
+r2

3,2

for r3,2 > 0,

2π −arccos
−r3,1√
r2

3,1
+r2

3,2

for r3,2 < 0.

In the case of ∣r3,3∣ = 1 it is

β = 0

α +γ =

⎧⎪⎪⎨⎪⎪⎩
arccosr1,1 for r2,1 ≥ 0,

2π −arccosr1,1 for r2,1 < 0.

In the case of ∣r3,3∣ = −1 it is

β = π

α +γ =

⎧⎪⎪⎨⎪⎪⎩
arccos(−r1,1) for r2,1 ≥ 0,

2π −arccos(−r1,1) for r2,1 < 0.

Note that every rotation matrix R has uniquely determined Euler angles and, therefore,

a unique Euler angle parameterization.

A downside of Euler angles is that we can not rely on distances measured in the repre-

sentation space, due to the GIMBAL LOCK, the loss of one degree of freedom that occurs

when the axes of two of the three gimbals are driven into a parallel configuration, ”lock-

ing” the system into rotation in a degenerate two-dimensional space. For further details

see Figure 2.3 and Hemingway and O’Reilly (2018). Furthermore, rotations can be de-

scribed in many ways with different sets of Euler angles, and hence we can not apply

smoothing or averaging, which are important for animations. These shortcomings can be

overcome with quaternions.

Quaternions to Represent Rotations

Quaternions avoid issues like gimbal lock and give a very seamless way to interpolate

between two three-dimensional orientations, which lacks ambiguities of Euler angles

and avoids the issues of numerical precision and normalization that arise in trying to

13

Chapter 2 Mathematical Theory

Figure 2.3: The occurrence of the gimbal lock as shown by Zeitlhöfler (2019): (a) The

initial situation with three axes perpendicular to each other. (b) After rotating 90 degrees

around the y axis, the x and z axes coincide.

interpolate between two rotation matrices. A quaternion is an expression of the form

q0+q1i+q2 j+q3k,

where q0,q1,q2,q3 ∈R and i, j,k are symbols that can be interpreted as unit-vectors point-

ing along the three spatial axes. They are complex valued and fulfill

i2 = j2
= k2
= i jk = −1,

meaning that they are mutually orthogonal imaginary unit vectors. We denote

q= (q0,q1,q2,q3) to specify a quaternion. We will restrict ourselves to a subset of quater-

nions that we call rotation quaternions. They are closely related to the previously intro-

duced axis-angle representation.

With known axis-angle components (θ ,e) = (θ ,(e0,e1,e2)) it is possible to convert to

rotation quaternions as follows:

q0 = cos(θ

2
) ,

q1 = e0 sin(θ

2
) ,

q2 = e1 sin(θ

2
) ,

q3 = e2 sin(θ

2
) .

14

2.2 General Fourier Theory

This equation shows that the real term (q0) of the quaternion is completely determined

by the rotation angle, while the imaginary terms (q1, q2 and q3) are just the three rotation

axis vectors scaled by a common factor. Therefore, a rotation quaternion’s magnitude

(that is, the sum of its four components squared) is always one.

It is reasonable to ask why we would bother with quaternions at all since axis-angle

and quaternion representations both contain exactly the same information. We must

perform these trigonometric operations anyway to do anything useful with an axis-angle

quantity, such as rotate a set of points making up a 3D object. Performing them ahead of

time allows most quaternion operations to be done with only multiplication/division and

addition/subtraction, saving valuable computer resources.

Unlike the Euler angles, the quaternions are free from the gimbal lock problem, but

they still have an ambiguity caused by their antipodal symmetry: q and −q correspond

to the same rotation, which means that quaternions double cover the SO(3) group. One

could try to avoid this ambiguity and restrict the quaternions to one hemisphere by re-

stricting a scalar component to be positive, but as has been shown, similar orientations

will still be far away in the representation.

Moreover, it was recently shown in Zhou et al. (2019b) that for 3D rotations, all repre-

sentations are discontinuous in the real Euclidean spaces with four or fewer dimensions

and empirical results suggest that continuous representations outperform discontinuous

ones. Therefore, Euler angles, quaternions, exponential maps, and axis-angle represen-

tations might still not be optimal for regression. In our work we focus on implicit pose

estimation algorithms, which considerably reduces the problem of selecting the optimal

representation, as we will see later on.

2.2 General Fourier Theory

A key component of implicit neural representations that we will introduce in section 3

form Fourier embeddings. To understand the mathematics behind them, we will intro-

duce them mathematically and see in the next section how we use them as an embedding

to neural networks. In general, the Fourier transform decomposes functions depending

on space or time into functions that are defined on spatial or temporal frequency. While

the function itself will, in our case, be real-valued, the transform will be complex-valued

to represent the complex sinusoids that comprise the original function.

2.2.1 The One-Dimenional Fourier transform

While there are different ways to define the Fourier transform for a complex-valued func-

tion f ∶R→C, we introduce the integral representation for the definition. Furthermore,

we will focus on real-valued functions f ∶R→R as this is our objective for the remaining

chapters. Still, the results are also valid for complex functions.

15

Chapter 2 Mathematical Theory

Definition 2.2.1 For a real-valued function f ∶ R → R, with f ∈ L1(R) we define the

Fourier transform by

F [f](x) ∶=∫ ∞

−∞

f (t)e−2πixtdt

for x ∈R.

While we are given a way to find the Fourier transform of a function, which we can

conduct analyses on, we are also interested in the way back to the original function

starting from the Fourier transform. A possibility to return to the function is given in the

following theorem. If the conditions below are fulfilled, it is possible to recalculate the

original function given the Fourier transform. These conditions are also known as the

Dirichlet conditions.

Theorem 2.2.2 Let f ∶R→R be a function that fulfils (1) ∫ ∞−∞ ∣ f ∣dt converges and (2) in

any finite interval, f and its derivative f ′ are piecewise continuous with at most a finite

number of maxima, minima and discontinuities. For t ∈R where f is continuous we have

f (t) =∫ ∞

−∞

F [f](x)e2πitxdx.

For t ∈R where f is discontinuous we have

1

2
[f (t+)+ f (t−)] =∫ ∞

−∞

F [f](x)e2πitxdx,

with f (t+) and f (t−) denoting the right and left limits of f at t.

Proof: A proof can be found in Oppenheim et al. (1997). ◻

Theorem 2.2.3 Let f ,g ∶R→R be continuous and their derivatives f ′,g′ be piecewise

linear. If pointwise equality for the Fourier transform holds,

F [f](x) =F [g](x), ∀x ∈R,

then the original functions are pointwise equal

f (t) = g(t) ∀t ∈R.

16

2.2 General Fourier Theory

Proof: This is an application of the Dirichlet theorem, as it holds that

f (t) =∫ ∞

−∞

F [f](x)e2πitxdx

=∫
∞

−∞

F [g](x)e2πitxdx

= g(t),
for all t ∈R. ◻

This finding is crucial as it gives us a one-to-one correspondence of the Fourier transform

and the original function, which enables analysis in the Fourier space. Contrary, if two

functions would have the same Fourier transform, any analysis in the Fourier space would

be redundant.

The Fourier Series

The main difference between the Fourier transform and the Fourier series is that the

transform is applicable to signals that are not periodic, and the series is applicable to

signals that are periodic. For the latter, we will assume the function f to be periodic on[0,1]. This is not a real constraint as if we are given a function f with period T , we could

define the function g(x) = f (Tt) with period 1.

Definition 2.2.4 For a periodic function f ∶R→R on [0,1] that is integrable, the Fourier

series is the sum

∑
k∈Z

cke2πikx
,

with the Fourier coefficients given as

ck =∫
1

0
f (t)e−2πiktdt.

Theorem 2.2.5 For a function f ∶R→C that is periodic on [0,1] and smooth, it holds

that

f (x) =∑
k∈Z

cke2πikx
.

Meaning that the Fourier sum represents the original function.

Proof: A proof can be found in Deitmar and Echterhoff (2014). ◻

As the definition of the Fourier coefficients is only done on an interval of finite length,

the Fourier series itself is only defined for functions defined on an interval with finite

17

Chapter 2 Mathematical Theory

length, including periodic signals. An aperiodic signal can not be defined on an interval

of finite length, and hence one must use the Fourier transform for such a signal. It would

be possible to take the Fourier transform of a periodic signal by extending the function

outside of [0,1] with 0. The resulting Fourier transform would look like

f̂ (p) =∫ 1

0
f (x)e−2πipxdx,

which is not particularly different from the Fourier coefficients. Furthermore, the ability

to express a periodic signal as a discrete sum of frequencies is more meaningful than a

continuous sum via the inversion formula.

2.2.2 The Multi-Dimensional Fourier Transform

The Fourier transform for multidimensional functions f defined on Rn follows the one-

dimensional idea. We will denote by x = (x1, . . . ,xn) an n-dimensional vector with values

in Rn. The following definition is used for real- and complex-valued functions. In our ap-

plication, we are looking at real-valued functions and therefore, we define the transform

for real-valued functions.

Definition 2.2.6 For a real valued function f ∶ Rn → R the multidimensional Fourier

transform is defined as

F [f](ξ) ∶=∫
Rn

f (x)e−2πix⋅ξ dx.

The dot product in the definition is defined as x ⋅ξ =∑n
i=1 xiξi and acts as the key to extend

the 1-dimensional Fourier transform for n-dimensional functions without affecting the

appearance of its definition. The integral is over all of Rn, and as an n-fold multiple

integral, all the x j’s go from −∞ to∞. In coordinates, the Fourier transform reads as

F [f]((ξ1, . . . ,ξn)) ∶=∫ ∞

−∞

⋯∫
∞

−∞

f ((x1, . . . ,xn))e−2πi(x1ξ1+,...,+xnξn)dx1 . . .dxn.

As the coordinate-based notation is lengthy, especially for dimensions higher than 2, we

will continue using the vector notation.

The multidimensional Fourier Series

Conveniently, most of the ideas and theorems for the Fourier series are also valid in the

multidimensional case. Complex exponentials of a variable form the building blocks for

periodic functions in the multidimensional case. In n-dimensions, we have the function

e2πix1e2πix2⋯e2πixn

18

2.3 Fourier Series on the Rotation Manifold

that is, with period 1, periodic in each variable. While it is common in the 1-dimensional

case to think of periodicity ”in time”, this way of thinking is not helpful in the multidi-

mensional case, and hence we are not forcing ourselves to write the variable as ”t”. We

question ourselves whether we can express a periodic function f (x1, . . . ,xn) as a Fourier

series. We can answer this with ”yes” and furthermore, the properties and formulas are

like in the 1-dimensional case. For our work, it is enough to assume the period in each

variable to be 1. With m = (m1, . . . ,mn) we would imagine writing the Fourier series as

∑
m∈Zn

cme2πim1x1e2πm2ix2⋯e2πimnxn
= ∑

m∈Zn

cme2πim⋅x
,

with the sum over all integer combinations in Rn. To find the coefficients cm we extend

the argument from the 1-dimensional case and find them to be given by

∫
1

0
⋯∫

1

0
e−2πim1x1e−2πm2ix2⋯e−2πimnxn f (x1, . . . ,xn)dx1dx2 . . .dxn

=∫
1

0
⋯∫

1

0
e−2πi(m1x1+⋅⋅⋅+mn+xn) f (x1, . . . ,xn)dx1 . . .dxn

=∫[0,1]n e−2πim⋅x f (x1, . . . ,xn)dx.

In summary, we find the Fourier series of a function f (x) in Rn to be

∑
m∈Zn

cme2πim⋅x
, (2.1)

with the Fourier coefficients given as

cm =∫[0,1]n e−2πim⋅x f (x1, . . . ,xn)dx. (2.2)

2.3 Fourier Series on the Rotation Manifold

Throughout this section we will use the ZYZ-convention of the Euler-angle parameteri-

zation, identifying an element R ∈ SO(3) with R(α,β ,γ). For the sake of simplicity, we

will also denote functions f ∶ SO(3)→C by

f (R(α,β ,γ)) = f (α,β ,γ).

19

Chapter 2 Mathematical Theory

2.3.1 A Basis for L2(SO(3))
The Hilbert space L2(SO(3)) is associated with the inner product given by

⟨ f1, f2⟩ =∫
SO(3)

f1(R) f2(R)dR

=∫
2π

0
∫

π

0
∫

2π

0
f1(α,β ,γ) f2(α,β ,γ)dαdβdγ,

for f1, f2 ∈ L2(SO(3)).
To define a basis system for L2(SO(3)) we introduce the Wigner-D and Wigner-d

functions as they play a key role in Fourier analysis on SO(3). The Wigner-D functions

D
m,n

l
(R) are the eigenfunctions of the Laplace operator for SO(3). The parameterization

of these eigenfunctions in Euler angles yields an explicit expression for the Wigner-D

functions, as shown by Chirikjian (2000),

D
m,n

l
(α,β ,γ) = e−imαe−inγd

m,n

l
(cos(β)), (2.3)

with ∣m∣, ∣n∣ ≤ l ∈N0 and the Wigner-d functions being given as

d
m,n

l
(x) = (−1)l−m

2l

¿ÁÁÀ (l+m)!(l−n)!(l+n)!(l−m)! ⋅
¿ÁÁÀ(1−x)n−m

(1+x)m+n

dl−m

dxl−m

(1+x)n+l

(1−x)n−l
. (2.4)

The Peter-Weyl Theorem (Vilenkin (1978)) states that the harmonic spaces

Harml(SO(3)) = span{Dm,n

l
∶m,n = −l, . . . , l},

that are spanned by the Wigner-D functions satisfy, that the closure over their union

yields L2(SO(3)):
L2(SO(3)) = closL2

∞

⊕
l=0

Harml(SO(3)). (2.5)

This means that the set of Wigner-D functions {Dm,n

l
(R) ∶ l ∈N0, m,n = −l, . . . , l} forms

an orthogonal basis system in L2(SO(3)). Hence we know about the existence of a

representation for f ∈ L2 SO(3):
f (R) = ∞∑

l=0

l

∑
m=−l

l

∑
n=−l

f̂
m,n

l
D

m,n

l
(R) (2.6)

Explicit coefficients are reported in Potts et al. (2007) and are given by the integral

f̂
m,n

l
=

l+ 1
2

4π2
⟨ f ,Dm,n

l
⟩. (2.7)

20

2.3 Fourier Series on the Rotation Manifold

2.3.2 Discrete Fourier Transforms on SO(3)
For L ∈N we define the function spaces

DL =

L

⊕
l=0

Harml(SO(3)), (2.8)

with dimension

dim(DL) = L

∑
l=0

(2l+1)2 = 1

3
(L+1)(2L+1)(2L+3). (2.9)

We assume the rotation to be given in Euler angles, and hence write f (α,β ,γ) instead

of f (R((α,β ,γ))). Restricting ourselves to L-band limited functions f ∈DL the Fourier

sum reads as

f (α,β ,γ) (2.6)
=

L

∑
l=0

l

∑
m,n=−l

fl,m,nD
m,n

l
(α,β ,γ)

(2.3)
=

L

∑
l=0

l

∑
m,n=−l

fl,m,ne−imαe−inγd
m,n

l
(cos(β))

Rearranging the sums yields

=

L

∑
m=−L

e−imα
L

∑
n=−L

e−inγ
L

∑
l=max(∣m∣,∣n∣)

f
m,n

l
d

m,n

l
(cos(β)).

To get rid of the sum on the right, we follow Potts et al. (2007) to transform a linear

combination of the d
m,n

l
’s into a linear combination of first kind Chebychev-polynomials

which we call Tl . This results in

=

L

∑
m,n=−L

e−imα−inγ
L

∑
l=0

t
m,n

l
Tl(cos(β))(sin(β)mod(m+n,2)

.

We choose the coefficients h
m,n

l
such that they fulfil

L

∑
l=0

t
m,n

l
Tl(cos(β)) = L

∑
l=−L

h
m,n

l
e−ilβ

,

if m+n is even and

sin(β) L

∑
l=0

t
m,n

l
Tl(cos(β)) = L

∑
l=−L

h
m,n

l
e−ilβ

,

21

Chapter 2 Mathematical Theory

if m+n is odd. Together, we receive

f (α,β ,γ) = L

∑
l,m,n=−L

h
m,n

l
e
−i((m,n,l)(R(α,β ,γ))

. (2.10)

Thus we see that any such function f can be written by a sum with coefficients h
m,n

l

multiplied with exponentials of rotations. In theory, we know that there should be a

function that is able to map each rotation to the probability - that this is the underlying

rotation in the current situation (e.g. on the current image). An analytical derivation of

such a function is almost impossible. Especially, if symmetries are present that increase

the complexity of this function. Therefore, the idea to approximate such a function by

neural networks is close at hand. We will see later that it is possible to convert the expo-

nential into a sinusoidal form. Practically, we can achieve this sinusoidal representation

with a Fourier embedding on the input rotation. We do not have to calculate the coeffi-

cients h
m,n

l
by hand, but leave them learnable as weights of the neural network.

22

Chapter 3

Implicit Neural Representations

Implicit Neural Representations (INR) use multilayer perceptrons to represent high-

frequency functions in low-dimensional problem domains. Recently, these representa-

tions achieved state-of-the-art results on tasks related to complex 3D objects and scenes.

A core problem is the representation of highly detailed signals, which is tackled using

networks with periodic activation functions (SIRENs) or applying Fourier mappings to

the input. However, naively applying a Fourier embedding is a double-edged sword, and

therefore we will analyze this in more detail within this chapter.

Therefore, in the first part of the chapter, we present our work Benbarka & Höfer et al.

(2022), where we analyze the connection between the Fourier embedding and SIRENs

and show that a Fourier-mapped perceptron is structurally like one hidden layer SIREN.

Furthermore, we identify the relationship between the previously proposed Fourier map-

ping and the general d-dimensional Fourier series, leading to an integer lattice mapping.

Moreover, we modify a progressive training strategy to work on arbitrary Fourier map-

pings and show that it improves the generalization of the interpolation task. Lastly, we

compare the different mappings on the image regression and novel view synthesis tasks.

We confirm the previous finding that the main contributor to the mapping performance

is the size of the embedding and the standard deviation of its elements.

In the second part, we introduce our work Höfer and Zell (2022), where we propose

an iterative algorithm that is able to gradually adjust a poorly chosen Fourier embedding

in a way that it reaches an optimal parameterization after a few iterations. Given any

parameters for a Fourier embedding, the method first finds unimportant elements via a

pruning technique and then replaces them with an element adjusted in a way to optimize

the overall standard deviation of the embedding.

3.1 Introduction

Real-world signals, such as images or 3D shapes, are usually represented in a discrete

manner. Traditionally we represent images as a discrete set of pixels and 3D shapes as

voxel grids or meshes. However, the discrete representations have a disadvantage: They

are coupled to the spatial resolution, for example, it is not possible to scale a 128x128

image up to a 256x256 image, as the given information in the 128x128 image is not

23

Chapter 3 Implicit Neural Representations

enough to accurately fill in the missing pixel values. The amount of information we have

about the image signal is limited by the space of the 128x128 grid.

If we instead have a continuous function f that accurately represents the image signal,

that is, if we give f a pixel coordinate as input, f will output the correct RGB value for

that pixel. This means that we can sample pixel grids with any resolution from f ! This

is also true for other signals, such as the occupancy at a pixel location in a 3D grid for

the task of shape representation.

While the usage of such a function f is rather easy, it is not possible to simply write

such a function down, as they typically are too complex (Sitzmann et al. (2019)). How-

ever, it is possible to approximate those functions with neural networks. Hence, we intro-

duce implicit neural representations (INRs). INRs are a novel method for parameterizing

signals of different types. The traditional representation of signals is discrete (e.g., a dis-

crete set of pixels defines an image, and voxel grids or meshes define 3D shapes). The

basic idea of INRs is to replace this representation with a continuous one. Specifically,

one attempts to define a function from the input domain (e.g. pixel coordinates) to the

respective output (e.g. the specific RGB value at the pixel location). As it is in non-

trivial cases impossible to write down a mathematical formula that parameterizes these

functions, INRs try to find approximations of these functions by using neural networks.

This way of representing signals has multiple advantages: The representation is not

coupled to the spatial resolution anymore: having a high-resolution image traditionally

increases the memory consumption, which is not the case for INRs, as they inherently

have an ”infinite resolution”, this is especially useful in 3D and higher dimensions. Fur-

thermore, their differentiability makes them suited for gradient-based optimization. Us-

ing INRs to represent images (Henzler et al. (2020); Stanley (2007)), volume density

(Mildenhall et al. (2020)), and occupancy (Mescheder et al. (2019)) improves perfor-

mance in multiple tasks, e.g. shape representation (Chen and Zhang (2019); Deng et al.

(2020a); Genova et al. (2019, 2020); Jiang et al. (2020); Michalkiewicz et al. (2019);

Park et al. (2019a)), texture synthesis (Henzler et al. (2020); Oechsle et al. (2019)), de-

riving shapes from images (Liu et al. (2020, 2019)), and novel view synthesis (Mildenhall

et al. (2020); Niemeyer et al. (2020); Sitzmann et al. (2019)).

Simply building a neural network as the bridge between the input and output domain

will result in poor performance on the high-frequency details of a signal. Several works,

such as Mildenhall et al. (2020); Tancik et al. (2020); Sitzmann et al. (2020a), suggest

the usage of an initial Fourier embedding to the input.

In Tancik et al. (2020), the authors explored the general Fourier mapping and ex-

plained why it improves the performance so dramatically using an NTK (Neural Tangent

Kernel) framework. They could show that an initial Fourier embedding influences the

NTK to become shift-invariant. Moreover, changing the Fourier parametrization allows

tuning of the NTK spectrum and controls the complexity of details that the representation

inherits. Finally, their experiments show that a Gaussian sampling with an appropriate

standard deviation of the Fourier coefficients performs better than other mappings, e.g.,

standard positional encoding.

24

3.1 Introduction

Figure 3.1: (a) Architecture of an INR designed by an example MLP for the image re-

gression task with an initial Fourier embedding γ(⋅). (b)-(e) demonstrate the effect of

applying an initial Fourier embedding to the input coordinates on different tasks, ranging

from 3D shape regression and MRI reconstruction to inverse rendering. Superior repre-

sentations are obtained in the bottom row, where a Fourier mapping was applied, as the

embedding enables the representation of high-frequencies, Tancik et al. (2020).

To sum it up, we list the most common Fourier embeddings, given by γ , on an input

signal v ∈Rn (e.g., v = (x,y) ∈R2 if it represents a 2D pixel location):

• The basic encoding is defined as:

γ(v) = [cos(π2v),sin(π2v)]
It simply wraps input coordinates around the circle.

• The positional encoding is defined as:

γ(v) = [. . . ,cos(π2
j

m v),sin(π2
j

m v), . . .]
for j = 0, . . . ,m− 1 where m ∈ N, using a log-linear spacing for each dimension

(Mildenhall et al. (2020)).

• The Gaussian embedding is defined as:

γ(v) = [cos(2πBv),sin(2πBv)], where B ∈ Rm×d is sampled from a normal dis-

tribution N(0,σ2), while σ is the hyperparameter to be optimized (Tancik et al.

(2020)).

While these Fourier embeddings typically assume an MLP with a standard ReLU ac-

tivation function, the work of Sitzmann et al. (2020b), that was done around the same

time, proposes to make use of periodic activation functions instead of the initial Fourier

25

Chapter 3 Implicit Neural Representations

embedding. More precisely, they propose SIREN, a simple neural network architecture

for INRs that makes use of the sine as its periodic activation function:

φ(x) =Wn(φn−1 ○φn−2 ○ ⋅ ⋅ ⋅ ○φ0)(x)+bn, where xi↦ φi(Wixi+bi) = sin(Wxi+bi).
Here, the ith layer of the network is given by φi ∶ R

Mi ↦RNi . The affine transformation

is defined by the weight matrix Wi ∈R
Ni×Mi and the bias bi ∈R

N
i that are applied to the

input xi ∈R
Mi followed by the sine that is given as the activation function. Later we will

see, that the Fourier embedding and the SIREN network are closely related, i.e., a SIREN

layer represents a learnable Fourier embedding.

3.2 Related Work

The works by Park et al. (2019a),Chen (2019),Mescheder et al. (2019) first demonstrated

that INRs do outperform grid-, mesh-, and point-based approaches in parameterizing ge-

ometry and allowing for learning priors over shapes. This inspired the community to

develop further use cases of INRs, leading to the state of the art in 3D computer vi-

sion. Atzmon and Lipman (2020) show how we learn SDFs from raw data (i.e., without

ground truth distance values). Concurrently, the works of Jiang et al. (2020); Peng et al.

(2020); Chabra et al. (2020) proposed hybrid voxel grid/implicit representations to fit

large scaled 3D scenes. Sitzmann et al. (2020a) showed how to parameterize 3D scenes

that are room-scaled with a single implicit neural representation by leveraging sinusoidal

activation functions. Interesting results are achieved in various fields, starting from 2D

supervision only. Learning implicit representations of 3D shape and geometry with be-

ing given only 2D images with a differentiable ray marcher was achieved by Sitzmann

et al. (2019). A famous work of Mildenhall et al. (2020) also falls in this category.

They proposed the positional embedding for the Fourier embedding, as well as volumet-

ric rendering and ray-direction conditioning for qualitative scene reconstructions, also

known as Neural Radiance Fields (NeRF). A large number of follow-up publications is

done on top of this work, for example, Pixel-NERF, proposed by Yu et al. (2021) where

they proposed to condition a NeRF on local features on camera rays, which reduced

the number of needed 2D images for the scene reconstruction significantly. INRs from

3D supervision that should be mentioned are Saito et al. (2019), which introduced the

concept of conditioning INRs on local features extracted from context images. Photo

realistic, real-time re-rendering was achieved by follow-up work. Also from 3D super-

vision, there is Texture Fields by Oechsle et al. (2019), which directly learns a network

that maps 3D coordinates to their color value. Furthermore, INRs representing dynamic

scenes were proposed by Niemeyer et al. (2019) using time-dependent INRs, which can

be represented by space-time INRs.

When it comes to fine details of signals, the usage of a simple MLP without further

modifications will yield a lack of accuracy. Hence some works tackle this fundamen-

26

3.3 Seeing Implicit Neural Representations as Fourier Series

tal problem by fitting high-frequency components with positional encoding and periodic

nonlinearities. While Mildenhall et al. (2020) proposed positional encodings, Tancik

et al. (2020) investigated Fourier encodings using tools from the NTK theory. With that,

they could show that an MLP without an initial Fourier embedding is not able to learn

complex signals. They solve this problem by showing that the usage of an initial Fourier

embedding makes the kernel stationary. Still, this kernel has a tunable bandwidth and

hence is able to greatly improve the performance on regression tasks. In their case, they

could show that guided random mappings of the Fourier parameters achieve better results

than if one takes simple positional encodings. Concurrently, Sitzmann et al. (2020b) pro-

posed sinusoidal networks, which takes on a similar role as the Fourier embedding. In the

following, we will find similarities between these works. In both solutions, the MLP’s

first layer is composed of a variant of Fourier neural networks (FNN). FNNs are neural

networks that use either sine or cosine activations to get their features (Liu (2013)). The

first FNN was built by Gallant and White (1988). An unsupervised hidden neural net-

work with a cosine squasher activation function was proposed, and it was demonstrated

if certain weights were hand-wired, it could represent a Fourier series. In 1999, Silvescu

proposed a neural network that was different from standard feedforward neural networks.

Their method, however, was to use a cosine activation function. Fourier neural networks

are introduced in feedforward form by Liu (2013). They also proposed an initialization

strategy of the frequencies for the embedding, which speeds up convergence. Our work

will introduce another way to initialize the embedding, which results in a neural network

that is precisely a Fourier series.

3.3 Seeing Implicit Neural Representations as Fourier

Series

In this section, we present our work from Benbarka & Höfer et al. (2022), ’Seeing im-

plicit neural representations as Fourier series’. This work aims to answer the following

questions:

• What is the difference between SIRENs and the Fourier mapping?

• Will the performance be saturated when we continue to increase the mapping pa-

rameters?

• Is there a way to avoid over-fitting when training networks using Fourier mapping?

• Is a random Fourier mapping the optimal mapping?

By exploring the mathematical connection between Fourier mappings and SIRENs,

we demonstrated that Fourier-mapped perceptrons are structurally similar to one hid-

den layer SIRENs. Unlike Fourier mappings, SIRENs are trainable, and they represent

themselves in amplitude-phase form instead of sine-cosine form.

27

Chapter 3 Implicit Neural Representations

Our study of the functions we want to learn also revealed that their input domains

are limited (e.g., height and width of an image), and their values are defined on a finite

set of numbers. Thus, we can assume that they are continuous and periodic over their

input bound, which allows us to represent them as a Fourier series. As an additional

result, we have determined the trigonometric form of the d-dimensional Fourier series

and shown that it is a single perceptron with an integer lattice mapping applied to its in-

puts. Fourier series coefficients make up the weights in that perceptron. In the same way

that the Fourier series can theoretically represent any periodic signal, this perceptron can

represent any periodic signal if it has an infinite number of frequencies. We can get the

Fourier series coefficients in practice by sampling the signal at the Nyquist rate (double

its bandwidth) and using the fast Fourier transform (FFT). As a result, the number of

Fourier coefficients is the theoretical upper limit on the number of parameters required

for the mapping.

Further, we modified the progressive training strategy of Lin et al. (2021), in which

the lower frequencies are trained first, followed by the higher frequencies as the training

progresses. The result of this study is that we avoid over-fitting problems with our pro-

gressive training strategy. The proposed Integer Lattice mapping was tested in the image

regression and novel view synthesis tasks. We could confirm that the main contributor

to the mapping performance is the number of parameters and the standard deviation, as

was shown in Tancik et al. (2020). Our contribution can be summarized as follows:

● We introduce an integer Fourier mapping and prove that a perceptron with this map-

ping is equivalent to a Fourier series.

● We explore the mathematical connection between Fourier mappings and SIRENs

and show that a Fourier-mapped perceptron is structurally like a one hidden layer

SIREN.

● We show that the integer mapping forces periodicity of the network output.

● We modify the progressive training strategy of Lin et al. (2021) and show that it

improves the generalization of the interpolation task.

● We compare the different mappings on the image regression and novel view synthe-

sis tasks and verify the previous findings of Tancik et al. (2020) that the main

contributor to the mapping performance is the number of elements and standard

deviation.

28

3.3 Seeing Implicit Neural Representations as Fourier Series

Before we continue with the formulation of our method, we shortly present a mathe-

matical Lemma, which we will need later on.

Mathematical Lemmas

Lemma 3.3.1 The Fourier series expansion of a function with period p = 1d defined by

definition (2.1) reads as

f (x) = ∑
n∈Zd

cne2πin⋅x
, (3.1)

where cn are the Fourier series coefficients given by formula (2.2)

cn =∫[0,1]d f (x)e−2πinxdx, (3.2)

Using Euler’s formula and mathematical induction we will show that the formula can be

written as:

f (x) = ∑
n∈N0×Z

d−1

an cos(2πn ⋅x)+bn sin(2πn ⋅x) (3.3)

a0 = c0,

an =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

−2Im(cn) otherwise.

(3.4)

Proof: We will prove the validity of equation (3.3) in the general case of dimension

d ∈N. We use the concept of mathematical induction for this task. Therefore, we show

that the equation is true for d = 1 and additionally prove that if the equation holds for

dimension d−1, it is also valid for dimension d. First note that for real-valued functions,

it holds that cn = c∗-n where c∗n is the conjugate of cn. Furthermore, we use Euler’s formula

that says eix
= cos(x)+ isin(x).

29

Chapter 3 Implicit Neural Representations

d = 1:

f (x) = ∑
n∈Z1

cne2πin⋅x

=∑
n∈N

cne2πin⋅x
+∑

n∈N

c−ne−2πin⋅x
+c0

c∗n=c−n
=∑

n∈N

(Re(cn)+ iIm(cn))(cos(2πnx)+ isin(2πnx))
+∑

n∈N

(Re(cn)− iIm(cn))(cos(2πnx)− isin(2πnx))+c0

=∑
n∈N

2Re(cn)cos(2πnx)−2Im(cn)sin(2πnx)+c0

= ∑
n∈N0

an cos(2πnx)+bn sin(2πnx),

(3.5)

where

a0 = c0, an = 2Re(cn), bn = −2Im(cn). (3.6)

Assumption of the induction:

We will assume that the equation (3.3) holds for d−1, where d ≥ 2.

Induction step: d−1→ d:

As the Fourier series of any periodic and continuous function is absolutely convergent,

we are allowed to rearrange the sum in (∗) and receive

∑
n=(n1,...,nd)∈Zd

cne2πin⋅x

(∗)
= ∑

n1∈N

∑
(n2,...,nd)∈Zd−1

cne2πin⋅x
+ ∑

n1∈N

∑
(n2,...,nd)∈Zd−1

c−ne−2πin⋅x

+

0

∑
n1=0

∑
(n2,...,nd)∈Zd−1

cne2πin⋅x

c∗n=c−n
= ∑

n∈N×Zd−1

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑

n∈{0}×Zd−1

cne2πin⋅x

Ind. asm.
= ∑

n∈N×Zd−1

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑
n∈{0}×N0×Z

d−2

a′n cos(2πn ⋅x)+b′n sin(2πn ⋅x),

(3.7)

30

3.3 Seeing Implicit Neural Representations as Fourier Series

where

a′0 = c0,

a′n =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {3, . . . ,d} ∶ n2 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

2Re(cn) otherwise,

b′n =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {3, . . . ,d} ∶ n2 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

−2Im(cn) otherwise.

(3.8)

Combining these two summands, we get

∑
n∈N0×Z

d−1

an cos(2πn ⋅x)+bn sin(2πn ⋅x),
(3.9)

where

a0 = c0,

an =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

−2Im(cn) otherwise.

(3.10)

◻

3.3.1 Method

Integer Lattice Mapping

This section explains how a perceptron with an integer lattice Fourier mapping translates

to a Fourier series. The Fourier-mapped perceptron equation is presented first, followed

by the Fourier series’ general equation. The perceptron is the fundamental building block

of any neural network, and it is defined as

y(x,W′,b) = g(W′ ⋅x+b). (3.11)

Here y ∈Rdout is the perceptron’s output, g(⋅) is the (usually non-linear) activation func-

tion, x ∈ Rdin is the input, W′ ∈ Rdout×din is the weight matrix, and b ∈ Rdout is the bias

vector. Now, if we let g(⋅) to be the identity function and apply a Fourier mapping to the

input, we obtain

y(x,W) =W ⋅γ(x)+b, (3.12)

31

Chapter 3 Implicit Neural Representations

where γ(x) is the Fourier mapping defined as

γ(x) = (cos(2πB ⋅x)
sin(2πB ⋅x)) . (3.13)

W ∈ Rdout×2m, B ∈ Rm×din is the Fourier mapping matrix, and m is the number of fre-

quencies. Equation 3.12 is the general equation of a Fourier mapped perceptron, and we

will relate it to the Fourier series’s general equation.

A Fourier series is a weighted sum of sines and cosines with incrementally increasing

frequencies that can reconstruct any periodic function when its number of terms goes to

infinity. The functions we want to learn in applications that use coordinate-based MLPs

are not periodic. However, their inputs are naturally bounded (e.g., the height and width

of an image). Accordingly, it does not harm if we assume that the input is periodic

over its input’s bounds to represent it as a Fourier series. We will explain later why this

assumption has many advantages. A function f ∶ Rdin → Rdout is periodic with a period

p ∈Rdin if

f (x+n○p) = f (x) ∀n ∈Zd
, (3.14)

where ○ is the Hadamard product. As it is plausible to normalize the inputs with respect

to their bounds, we assume that each variable’s period is 1. The Fourier series expansion

of function (3.14) with p = 1d is defined in (2.1) to be

f (x) = ∑
n∈Zd

cne2πin⋅x
, (3.15)

where cn are the Fourier series coefficients, given by (2.2)

cn =∫[0,1]d f (x)e−2πinxdx. (3.16)

Using Euler’s formula and mathematical induction Lemma 3.3.1 tells us that equation

(3.15) can be written as

f (x) = ∑
n∈N0×Z

d−1

an cos(2πn ⋅x)+bn sin(2πn ⋅x), (3.17)

32

3.3 Seeing Implicit Neural Representations as Fourier Series

a0 = c0,

an =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0

−2Im(cn) otherwise.

(3.18)

Writing equation (3.17) in vector form, we receive

f (x) = (aB,bB) ⋅(cos(2πB ⋅x)
sin(2πB ⋅x)) , (3.19)

where aB = (an)n∈B, and bB = (bn)n∈B. Now, if we compare 3.12 and 3.19, we find

similarities. We see that (aB,bB) is equivalent to W, b is zero and B =N0×Z
d−1

, is the

concatenation of all possible permutations of n. For practicality, we limit B to

B = {0, . . . ,N}×{−N, . . . ,N}d−1
∖H, (3.20)

where N will be called the frequency of the mapping, the set H is defined as

H = {n ∈N0×Z
d−1∣∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}. Then the perceptron repre-

sents a Fourier series. Hence, we calculate the dimension m of all possible permutations

m = (N +1)(2N +1)d−1
−

d−2

∑
l=0

N(2N +1)l. (3.21)

We will prove this with mathematical induction. We use ∣ ⋅ ∣ to talk about the number

of elements in a set. Furthermore, we use the notation ⟦n⟧ ∶= {0, . . . ,n} for n ∈ N and⟦m, l⟧ ∶= {m, . . . , l} for m, l ∈Z and m < l. We have

B = {0, . . . ,N}×{−N, . . . ,N}d−1
∖{n ∈N0×Z

d−1
∶

∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}.
It is immediately clear, that

∣{0, . . . ,N}×{−N, . . . ,N}d−1∣ = (N +1)(2N +1)d−1
.

Therefore, the only thing we need to show is, that

∣{n ∈ ⟦N⟧×⟦−N,N⟧d−1
∶ ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣ !

=

d−2

∑
l=0

N(2N +1)l.
(3.22)

We will do this proof with mathematical induction. As d = 1 is trivial we start with

33

Chapter 3 Implicit Neural Representations

d = 2:

∣{n ∈ ⟦N⟧×⟦−N,N⟧ ∶ ∃ j ∈ {2} ∶ n1 = 0∧n j < 0}∣
= ∣{n ∈ {0}×⟦−N,−1⟧}∣
=N

Assumption of the induction:

We will assume that the equation (3.22) holds for some d, where d ≥ 2.

Induction step: d→ d+1:

∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ ⟦2,d+1⟧ ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣
= ∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ ⟦3,d+1⟧ ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣ +
∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ {2} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣
= ∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ ⟦3,d+1⟧ ∶
n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣ + ∣{n ∈ {0}×⟦−N,−1⟧×⟦−N,N⟧d−1}∣
= ∣{n ∈ ⟦N⟧×⟦−N,N⟧d−1

∶ ∃ j ∈ ⟦2,d⟧ ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣
+ N(2N +1)d−1

Ind. asm.
=

d−2

∑
l=0

N(2N +1)l +N(2N +1)d−1
=

d−1

∑
l=0

N(2N +1)l.
The Fourier series coefficients can be found in practice by sampling a function uni-

formly at a frequency higher than the Nyquist frequency and performing a Fast Fourier

Transform (FFT) on the sampled signal. An FFT coefficient is the Fourier series co-

efficient multiplied by the number of sampled points. We should, in theory, achieve

our training target after iteration zero if we initialize the weights with the Fourier series

coefficients.

SIRENs and Fourier Mapping Comparison

In this section we show that a Fourier mapped perceptron is structurally like a SIREN

with one hidden layer, as it is displayed in figure 3.2. If we evaluate W ⋅γ(x) in equation

(3.12), using (3.13) and combine the sine and cosine terms, we get:

y(x,W) =W ⋅ sin(2πC ⋅x+φ)+b, (3.23)

where φ ∶= (π/2, . . . ,π/2,0, . . . ,0)T ∈R2m and C ∶= (B,B)T . Here we see that C is acting

as the weight matrix applied to the input, φ is like the first bias vector and sin(⋅) is

the activation function. Hence, the initial Fourier mapping can be represented by an

extra initial SIREN layer, with the difference that B and φ are trainable in the SIREN

34

3.3 Seeing Implicit Neural Representations as Fourier Series

Figure 3.2: Visualization that the initial SIREN layer with a sinusoidal activation function

is the same as a Fourier mapped perceptron with a learnable Fourier embedding γ∗(x).
case. This finding closes the bridge between Fourier frequency mappings and sinusoidal

activation functions, which have recently attracted a lot of attention.

The proof of this formula is a straightforward calculation. By combining equation (3.12)

and (3.13) we get

y(x,W) =W ⋅(cos(2πB ⋅x)
sin(2πB ⋅x))+b.

If we set B = (B1, . . . ,Bm)T , with Bi ∈R
1×d , then the first summand is equal to

⎛⎜⎝
∑m

k=1W1,k cos(2πBkx)+∑m
k=1W1,m+k sin(2πBkx)
⋮

∑m
k=1Wdo,k cos(2πBkx)+∑m

k=1Wdo,m+k sin(2πBkx)
⎞⎟⎠

T

=

⎛⎜⎝
∑m

k=1W1,k sin(2πBkx−π/2)+∑m
k=1W1,m+k sin(2πBkx)

⋮

∑m
k=1Wdo,k sin(2πBkx−π/2)+∑m

k=1Wdo,m+k sin(2πBkx),
⎞⎟⎠

T

And if we define

φ = (−π/2, . . . ,−π/2,0, . . . ,0)T ∈R2m and C ∶= (B,B)T , we result in

y(x,W) =W ⋅ sin(2πC ⋅x+φ)T +b.

Progressive Training

Lin et al. (2021) introduced a training strategy for coarse-to-fine registration for NeRFs

which they called BARF. Their approach is to mask out the positional encoding’s high-

35

Chapter 3 Implicit Neural Representations

frequency activations at the start and gradually allow them as training progresses. This

strategy was shown to improve camera registration only on positional encodings. In our

work, we will demonstrate how to use this strategy on any Fourier mapping and show

that it improves interpolation generalization. We weight the frequencies of γ as follows:

γα(x) ∶= (wα
B

wα
B

)○γ(x) (3.24)

where wα
B

is the element wise application of the function wα(z) on the vector of Norms

of B on the input dimension:

wα
B ∶=wα

⎛⎜⎝
∣∣B1∣∣2
⋮∣∣Bm∣∣2
⎞⎟⎠ . (3.25)

where wα(z) is defined as:

wα(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if α − z < 0
1−cos((α−z)π)

2 if 0 ≤ α − z ≤ 1

1 if α − z > 1

(3.26)

Here, α ∈ [0,max((∣∣Bi∣∣din
)i∈{1,...,m})] is a parameter which is linearly increased during

training. This strategy forces the network to train the low frequencies at the start of train-

ing, ensuring that the network will produce smooth outputs. Later, when high-frequency

activations are allowed, the high-frequency components are trained, and the network can

focus on the left details. This strategy should reduce the effect of overfitting. It was

introduced by Tancik et al. (2020) when using mappings with large standard deviations.

Perceptron Pruning

The standard way of using equation (3.20) is by defining a value N and taking the whole

set BN . High-dimensional tasks lead to high memory consumption, and it is not clear

whether this subset of Zd brings the best performance. We, therefore, propose a way to

select a more appropriate subset through data pruning. A perceptron pruning pr(N,M)
is done as follows: Assume we have N,M ∈N with M >> N and ∣BN ∣ = n, ∣BM ∣ =m. We

train a perceptron with an integer mapping given by BM. After training, we define D

such that D contains only those elements of BM where the respective weights are greater

than a margin that is chosen to yield ∣D∣ = n. While BN and D now have the same size,

we believe that D will yield better performance because it contains the most relevant

frequencies of the signal we want to reconstruct.

36

3.3 Seeing Implicit Neural Representations as Fourier Series

f_1 f_3f_2

Gauss

Integer

Figure 3.3: The effect of the common activation functions on the spectrums of functions

with integer and non-integer frequencies. The first row are visualizations with an integer

embedding and the second row shows the spectrum for an initial Gaussian embedding.

The tested functions are: f1 is the identity function, f2 is the ReLU activation and f3 is

the sine.

Integer Lattice Mapping Applied to MLPs

Although we showed in section 3.3.1 that we can represent any bounded input function

with only one Fourier-mapped perceptron, in practice, these networks can become very

wide to give high performance. As a result, the number of calculations will increase. To

compromise between performance and speed, one can add depth and reduce the width of

the network.

First, it is natural that using MLPs rather than perceptrons increases performance.

However, it remains to be seen why our proposed integer mapping should perform better

than competing mappings for multilayer networks. One could argue that if a mapping

gives the perceptron a high representation power, it will also provide a high representa-

tion power to the MLP and vice versa. First, however, we should verify this claim with

experiments.

Periodicity in MLPs

The reader is reminded that a periodic function has integer frequencies. Our assumption

of a periodic signal indicates that it will have integer frequencies. Also, the activation

functions we are using only introduce integer frequencies when applied to a periodic

function, as we will show for the 1D case. With this, we reduce the search space for

frequencies from R to Z, which could make the optimization easier, as the search space

37

Chapter 3 Implicit Neural Representations

(a) None (b) WI (c) PT

(d) PT and WI (e) Ground truth

Figure 3.4: A visualization of the outputs of Fourier mapped perceptrons of N = 128. PT

stands for progressive training and WI stands for weight initialization.

is more compact and approachable. We claim that the network output is compelled to

be periodic when an integer mapping is applied to the input. This results from the fact

that a periodic signal only has integer frequencies and that the frequencies introduced by

the activations are integers. We will first examine the frequencies in the 1D example to

support this assertion, and we will then use 2D tests to support our conclusions. We now

explore the impact of putting an activation function on top of a sinus representation, as an

initial Fourier mapping entails using a sinus function on the mapped input. Frequencies

that are multiples of the input frequencies are produced when a ReLU or Sine is applied

to a mapped input.

ReLU(sin(x)) = 1

π
+

sin(x)
2
+ ∑

n=2k
k∈N

2

π(1−n2) cos(nx), (3.27)

38

3.3 Seeing Implicit Neural Representations as Fourier Series

0 100 200 300 400 500
Training Iteration

25

50

75

100

125

150

T
ra

in
 P

S
N

R

PT=T, WI=T

PT=F, WI=T

PT=T, WI=F

PT=F, WI=F

0 100 200 300 400 500
Training Iteration

10

15

20

25

T
e
s
t

P
S

N
R

Figure 3.5: The training progress of Fourier mapped perceptrons with N = 128. The left

and the right figures report the train and test PSNR, respectively. Weight initialization

without PT yields a PSNR of 160 which one can consider as the ground truth proving

that the perceptron is a Fourier series. Note that the y-axis limits are different in both

plots.

and if we apply a sine to a sine, we obtain

sin(A ⋅ sin(x)) = 2
∞

∑
n=0

J2n+1(A)sin((2n+1)x), (3.28)

where Ji are Bessel functions. In these cases, we can immediately see that the output fre-

quencies are multiples of the input frequencies. Motivated by these findings, we explore

the question of whether it does generalize to higher dimensional signals.

To do so, we define the Fourier matrix B in two different ways. First, we generate

BN limited by N = 2, responsible for the integer mapping and the Gauss mapping, we

sample B from a Gaussian distribution with mean, variance and dimension according to

the previous BN , to achieve maximal comparability. We then compare the spectrum of

f1 ∶= γ(x) ⋅1, f2 ∶= ReLu(γ(x) ⋅1) and f3 ∶= sin(γ(x) ⋅1), where 1 represents the weight

matrix, in this example defined to only contain 1’s. We visualize the spectrum of our

results in Fig. 3.3 in the range of (0,10)2.

We see that when a non-linearity is applied to the function with integer frequencies,

the output spectrum has only integer frequencies, and this means that it is periodic. Also

mentionable is the beautiful alignment of the high frequencies, which is in contrast to

the Gauss mapping, where no clear pattern is present. Moreover, we see that the sine ac-

tivation produces more high-frequency components than ReLUs, and this could explain

why sine activations are more effective at shallow networks.

39

Chapter 3 Implicit Neural Representations

22 23 24 25 26 27

Mapping Frequency

10

15

20

25

30

35

T
ra

in
 P

S
N

R

SIREN

PE

GAUSS RELU

FOURIER

22 23 24 25 26 27

Mapping Frequency

10

15

20

25

30

35

T
e
s
t

P
S
N

R

SIREN

PE

GAUSS RELU

FOURIER

Figure 3.6: Perceptron experiments with different values for the mapping frequency N.

We report the train PSNR on the left and the test PSNR on the right. For high values of

N our integer mapping outperforms all competing mappings.

(a) Elephants (b) Spaceship (c) Fox (d) Pyramid (e) Plants

(f) Islamic arch (g) Pattern (h) Football (i) Butterfly (j) COVID-19

Figure 3.7: The images used in the image regression experiments.

40

3.3 Seeing Implicit Neural Representations as Fourier Series

(a) Network predictions using N = 8

(b) Network predictions using N = 16

(c) Network predictions using N = 32

(d) Network predictions using N = 128

Figure 3.8: The visualization of the Fourier mapped perceptrons and the one layer Siren

with different numbers of parameters. Fourier Prog is trained with the progressive train-

ing scheme.

41

Chapter 3 Implicit Neural Representations

3.3.2 Experiments

Weight Initialization and Progressive Training

In this section, we want to confirm our mathematical claims through experiments. First,

we will show that the derivation of the integer mapping indeed represents the Fourier se-

ries. Secondly, we want to check whether progressive training helps with generalization.

We conducted our experiments on the image regression task. This task aims to make

a neural network memorize an image by predicting the color at each pixel location. We

use ten images with a resolution of 512×512, figure 3.7 shows the images used for the

image regression task. We report the mean peak signal-to-noise ratio (PSNR). We divide

the images into train and test sets, where we use every second pixel for training and

take the complete image for testing. We utilize three Fourier-mapped perceptrons with

N = 128 (Nyquist frequency), one for each image channel. We normalize the input (x) to

be between [0,1] in both width (x) and height (y) dimensions.

In this experiment, we made an ablation: With and without weight initialization using

the normalized FFT coefficients of the images’ training pixels, with and without the

progressive training scheme explained in section 3.3.1. For progressive training, α was

linearly increased from 0 to its maximum value at 75% of training iterations. During

training, we only make an update step after we accumulate the gradients of the whole

image. We did not study learning schedules in this work, and the reader is encouraged to

try different schedules. Figure 3.4 shows a visualization of one of the images, and Figure

3.5 shows the training progress, where the solid line is the mean PSNR and the shaded

area shows the standard deviation.

Figure 3.5 shows that the training PSNR starts at an optimum at the start of training

when we use weight initialization (WI), and we do not use progressive training (PT). This

fact underlines our claim that a perceptron with an integer lattice mapping is indeed a

Fourier series. In case WI and PT are used, the training PSNR is not optimal at the start

because the PT masks out high-frequency activations.

We can also see from Figure 3.5 that whenever we use progressive training, it always

shows a higher test PSNR, which certifies that progressive training helps with general-

ization. Lastly, when we did not employ both PT and WI, the perceptron overfits to the

training pixels, and this can be seen quantitatively with a very low test PSNR (red line in

Figure 3.5) and qualitatively with grid-like artefacts (in Figure 3.4a)).

Perceptron Experiments

In this experiment, we want to compare the representation power of the different map-

pings in the single perceptron case. We conducted our experiments in the same setting as

in Section 3.3.2, where we used progressive training and did not use weight initialization.

In the integer mapping, we increased the value of N from 4 until half the training

image dimension (Nyquist frequency) and calculated all possible permutations BN , as

discussed in section 3.3.1. For the Gaussian mapping, we sample m = ∣BN ∣ parameters

42

3.3 Seeing Implicit Neural Representations as Fourier Series
A

ct
iv

.
M

ap
p
in

g
N

=
8

m
=

1
1
3

N
=

1
6

m
=

4
8
1

N
=

3
2

m
=

1
9
8
5

d
=

0
d
=

2
d
=

4
d
=

6
d
=

0
d
=

2
d
=

4
d
=

6
d
=

0
d
=

2
d
=

4
d
=

6

S
in

e

N
o

1
6
.6

5
2
2
.1

5
2
3
.2

6
2
4
.0

7
1
7
.0

7
2
2
.0

9
2
3
.8

4
1
9
.7

6
1
7
.2

2
1
4
.9

0
1
4
.6

7
1
3
.6

3

In
te

g
er

1
5
.6

8
2
2
.3

1
2
2
.4

1
2
0
.9

4
1
7
.3

3
2
7
.6

6
2
7
.0

6
2
7
.3

3
1
9
.8

4
3
3
.7

8
2
6
.9

8
2
3
.6

0

P
ru

n
ed

1
5
.2

8
2
1
.0

3
2
2
.4

0
2
3
.0

0
1
6
.7

6
2
8
.1

7
2
7
.6

8
2
4
.6

6
1
8
.4

8
3
7
.3

4
3
0
.4

1
1
9
.7

4

R
el

U

P
o
s.

E
n
c.

1
1
.7

8
1
6
.6

1
1
7
.3

7
1
7
.7

7
1
1
.7

8
1
6
.8

7
1
7
.7

9
1
7
.9

5
1
1
.7

8
1
7
.0

5
1
8
.1

5
1
8
.1

5

G
au

ss
σ

1
0

1
1
.9

3
2
1
.9

0
2
1
.6

8
2
1
.6

9
1
7
.0

1
2
4
.5

3
2
4
.2

6
2
5
.1

3
1
8
.4

8
2
6
.1

0
2
6
.3

0
2
7
.4

8

G
au

ss
σ

p
r

1
4
.0

6
2
0
.2

3
2
0
.7

8
2
0
.8

8
1
2
.6

9
2
6
.0

2
2
6
.4

0
2
6
.7

2
1
3
.0

1
3
7
.6

9
3
7
.9

0
3
7
.7

4

In
te

g
er

1
5
.6

8
2
0
.5

1
2
0
.6

5
2
0
.6

2
1
7
.3

3
2
4
.4

2
2
4
.0

9
2
4
.4

9
1
9
.8

4
3
1
.5

7
3
2
.1

4
3
2
.7

9

P
ru

n
ed

1
5
.2

8
2
0
.3

5
2
0
.9

2
2
0
.9

6
1
6
.7

6
2
5
.8

7
2
6
.2

3
2
6
.3

3
1
8
.4

8
3
7
.7

0
3
6
.8

1
3
7
.4

8

T
ab

le
3
.1

:
T

h
e

m
ea

n
tr

ai
n

P
S

N
R

re
su

lt
s

o
f

n
et

w
o
rk

ty
p
e

co
m

p
ar

is
o
n

ex
p
er

im
en

t
w

it
h

v
ar

y
in

g
n
et

w
o
rk

d
ep

th
(d

),
n
u
m

b
er

o
f

fr
eq

u
en

ci
es

(N
).

W
e

u
se

th
e

fo
ll

o
w

in
g

ab
b
re

v
ia

ti
o
n
s:

A
ct

iv
.

=
A

ct
iv

at
io

n
fu

n
ct

io
n
,

M
ap

.
=

M
ap

p
in

g
ty

p
e,

In
t.

=
In

te
g
er

,
P

r.
=

P
ru

n
ed

In
te

g
er

,
P.

E
.
=

P
o
si

ti
o
n
al

E
n
co

d
in

g
,
G

s.
=

G
au

ss
ia

n
.

H
er

e,
m

is
th

e
m

ap
p
in

g
si

ze
an

d
σ

is
th

e
st

an
d
ar

d
d
ev

ia
ti

o
n
.

A
ct

iv
.

M
ap

p
in

g
N

=
8

m
=

1
1
3

N
=

1
6

m
=

4
8
1

N
=

3
2

m
=

1
9
8
5

d
=

0
d
=

2
d
=

4
d
=

6
d
=

0
d
=

2
d
=

4
d
=

6
d
=

0
d
=

2
d
=

4
d
=

6

S
in

e

N
o

1
6
.6

5
2
1
.6

3
2
1
.8

5
2
1
.9

9
1
7
.0

6
2
1
.2

8
2
2
.0

3
1
8
.5

0
1
7
.2

2
1
3
.5

7
1
3
.2

9
1
2
.3

7

In
te

g
er

1
5
.6

8
2
1
.7

5
2
1
.5

3
2
0
.0

6
1
7
.3

1
2
3
.4

8
2
2
.6

7
2
2
.2

8
1
9
.7

0
1
6
.8

5
1
7
.8

9
1
6
.3

6

P
ru

n
ed

1
5
.2

8
2
0
.4

9
2
1
.2

2
2
1
.4

5
1
6
.7

5
2
2
.0

0
2
1
.3

9
2
2
.1

7
1
8
.3

9
2
0
.4

9
1
5
.1

5
1
3
.1

3

R
el

u

P
o
s.

E
n
c.

1
1
.7

8
1
6
.6

0
1
7
.3

3
1
7
.7

0
1
1
.7

8
1
6
.8

5
1
7
.7

3
1
7
.8

7
1
1
.7

9
1
7
.0

2
1
8
.0

6
1
8
.0

2

G
au

ss
σ

1
0

1
1
.9

3
2
0
.6

7
2
1
.0

6
2
0
.9

0
1
7
.0

0
2
2
.9

6
2
2
.7

8
2
3
.0

4
1
8
.4

5
2
3
.6

6
2
3
.6

1
2
3
.7

3

G
au

ss
σ

p
r

1
4
.0

6
1
9
.8

9
2
0
.2

2
2
0
.2

1
1
2
.6

9
2
2
.4

6
2
2
.4

8
2
2
.1

6
1
2
.9

9
2
3
.1

2
2
3
.4

8
2
3
.3

3

In
te

g
er

1
5
.6

8
2
0
.2

7
2
0
.3

5
2
0
.2

3
1
7
.3

1
2
2
.9

3
2
2
.6

5
2
2
.5

0
1
9
.7

0
2
4
.3

6
2
4
.0

2
2
3
.7

3

P
ru

n
ed

1
5
.2

8
1
9
.9

8
2
0
.3

3
2
0
.2

1
1
6
.7

5
2
2
.3

1
2
2
.2

6
2
2
.0

9
1
8
.3

9
2
3
.2

4
2
3
.1

8
2
3
.3

0

T
ab

le
3
.2

:
T

h
e

m
ea

n
te

st
P

S
N

R
re

su
lt

s
o
f

n
et

w
o
rk

ty
p
e

co
m

p
ar

is
o
n

ex
p
er

im
en

t.
F

o
r

ab
b
re

v
ia

ti
o
n
s

se
e

ta
b
le

3
.1

.

43

Chapter 3 Implicit Neural Representations

from a Gaussian distribution with a standard deviation of 10 (which was the best value

for this task in our experiments). Also, we test a one-layer SIREN with one hidden layer

having the same size m. Finally, we did not include the positional encoding (PE) scheme

from Mildenhall et al. (2020), as it was not able to regress the image in the perceptron

case. Figure 3.6 shows our experiments’ results on the train and test pixels, respectively.

Figure 3.8 shows the networks’ outputs trained on one of the images.

At low N values (Figure 3.8a), we see that the Gaussian mapped perceptrons do not

work because the number of sampled frequencies is low, so there is a low chance that

samples will be near the image’s critical frequencies. On the other hand, the integer-

mapped perceptrons give a blurry image because they can only learn low frequencies.

The SIREN performs relatively well in this case, and we think this is because SIRENs

naturally inherit a learnable Fourier mapping that is not restricted to the initial sampling,

as described in section 3.3.1. PE can only produce horizontal and vertical lines because

it has diagonal frequencies (only one non-zero frequency is allowed), and this effect is

persistent at any value of N.

However, at around N = 30, the SNR of the SIREN and the Gaussian-mapped per-

ceptrons saturates, while the integer-mapped perceptrons’ PSNR keeps rising. On the

other hand, the PSNR of the SIREN and the Gaussian mapped perceptrons saturates. We

think this is because both mappings rely on sampling the frequencies. Furthermore, the

integer mapping matrix’s standard deviation increases as N increases, and we see that

the integer mapped perceptrons with the usual training scheme start to overfit. And these

results agree with the conclusions given by Tancik et al. (2020). However, when we used

the progressive training strategy, the perceptron avoided overfitting and achieved the best

training and test PSNRs. Even the trainability of the SIREN mapping did not help in this

case.

MLP Experiments

Our theory for integer mapping assumes an underlying function that is periodic. How-

ever, it needs to be clarified that we will end up with a periodic function if we go the

other way, using an integer mapping. In this experiment, we want to check if applying an

integer mapping forces periodicity. Secondly, we want to validate our claim (in section

3.3.1) that if a mapping gives the perceptron a high representation power, it will also give

a high representation power to the MLP and vice versa. We compared ReLU networks

with integer, Gaussian, positional encoding (PE), and pruned integer mapping (section

3.3.1). We also compared SIRENS with no mapping (extra layer), integer, or pruned

mapping. We made a grid search of the parameters N = [8,16,32], depth= [0,2,4,6]
(depth = 0 represents a perceptron) and fixed the width to 32. For the pruned mapping,

we used a pr(N,128). And for the Gaussian mapping, we had two settings. The first one

had a standard deviation of 10 (σ10), which had the best performance in the perceptron

experiments. In the second one, we set the standard deviation the same as the pruned

integer mapping’s standard deviation (σpr) to check its effect. Tables 3.1 and 3.2 show

44

3.3 Seeing Implicit Neural Representations as Fourier Series

Figure 3.9: Comparison of the SIREN (Sitzmann et al. (2020a)), Gauss ReLU (Tancik

et al. (2020)) and our results on the image regression task. The row above the horizontal

line shows the reconstructed 512×512 image of the first period, and the row below the

horizontal line shows the next period in the height and width dimensions.

the mean train and test PSNRs, respectively.

Figure 3.9 shows a visualization of the network’s outputs at N = 16, depth = 4 and

width = 32 for the first period and next period in the height and width directions (f ([x+
1,y+1])). And we see that the integer mapping forces the network’s underlying function

to be periodic unlike the SIREN and ReLU network with Gauss mapping, which proves

our first hypothesis.

From the table 3.1, we see that if a mapping at d = 0 gives the highest PSNR, this does

not mean that it will give the highest PSNR for d > 0 and vice versa. One clear example

at N = 32 is the Gauss σpr, where it has a PSNR of 13.01 dB at d = 0, which is lower than

integer mapping (19.84 dB), but has the highest PSNR at d = [4,6]. This result disproves

our initial assumption that if a mapping gives the perceptron a high representation power,

it will also give a high representation power to the MLP. We also see that the pruned

integer mapping has comparable results with the Gauss σpr, which shows that the main

contributor to the performance is the mappings’ standard deviation.

From the tables, we can also observe some trends. First, networks with sine activations

and large mappings collapse during training and perform worse than RelU networks.

Second, the integer mapping usually gives the best test PSNR, demonstrating its effec-

tiveness in the MLP case. Third, the pruned integer mapping shows consistently better

train PSNR than the normal integer mapping at d > 0. We believe this is because pruned

45

Chapter 3 Implicit Neural Representations

(a) ReLu without pruning. (b) ReLu with pruning.

(c) Sine without pruning. (d) Sine with pruning. (e) Ground truth

Figure 3.10: View synthesis results using a simplified Nerf. A small MLP with a depth

of 4, width of 64 and integer mapping with a frequency of 4 is used. The pruning is done

with pr(4,8). The pruning technique shows qualitative improvements.

mapping has a higher standard deviation. Finally, the PE is worse in every case because

we cannot easily control the standard deviation, and it has very few parameters.

Novel View Synthesis Experiments

This section analyzes whether our findings in the image regression task transfer to the

novel view synthesis (NVS) task. In NVS, we are given a set of 2D images of a scene, and

we are supposed to find its 3D representation. With this representation, one can render

images from new viewpoints. In contrast to the 2D experiments, the inputs are (x,y,z)
coordinates that are mapped to a 4-dimensional output, the RGB-values, and a volume

density. For this experiment, a simplified version of the official NeRF from Mildenhall

et al. (2020) is used, where the view dependency and hierarchical sampling are removed.

Here, we experiment with the input mappings used in section 3.3.2. Unless otherwise

stated, we adopt the settings from the image regression task. We set the network width

to 64.

As the mapping size increases exponentially, we do our experiments with lower fre-

quencies than in the 2D case. We used the integer mapping on four frequencies. The

46

3.3 Seeing Implicit Neural Representations as Fourier Series

Act. Mapping
N = 4 N=8

d=0 d=2 d=4 d=6 d=0

Sine

No 20.37 23.08 23.55 23.35 OM

Integer 18.42 22.22 22.95 22.97 19.31

Pruned 19.15 23.12 23.58 23.36 -

Relu

Pos. Enc. 16.30 21.48 22.64 23.51 16.40

Gauss 18.93 22.81 23.64 23.82 19.29

Integer 18.42 21.81 22.68 23.28 19.31

Pruned 19.15 22.78 23.61 23.89 -

Table 3.3: Validation PSNR scores of Nerf experiments using a mapping of frequency 4.

OM stands for out of memory.

frequencies of our mapping were limited to the maximum network size which we could

fit on an NVIDIA RTX-2080Ti with 11GB memory. The pruning is given by pr(4,8).
We conduct our experiments on the bulldozer scene, which is commonly used for Nerf

experiments. For training, we used a batch size of 128 for 50.000 epochs and a learning

rate of 5×10−4.

As seen in Table 3.9, in the perceptron case (d = 0), SIREN provides the best perfor-

mance, which aligns with our image regression results at low values of N. We observe

that the pruned mapping increases the performance compared to normal mapping for

both RelU and sinusoidal activation. This increase in performance is because the pruned

mapping has a higher standard deviation than the normal mapping. Qualitative improve-

ments of pruning can be seen in Figure 3.10. Gauss gives comparable results to pruned

integer mapping because they have the same standard deviation. These findings align

with our conclusions from image regression experiments. However, due to memory

limitations, we could not test a perceptron with frequencies higher than 8, which was

superior in image regression.

3.3.3 Conclusion

In this work, we identified a relationship between the Fourier mapping and the general

d-dimensional Fourier series, which led to the integer lattice mapping. We also showed

that this mapping forces periodicity of the neural network’s underlying function. From

experiments, we showed that one perceptron with frequencies equal to the Nyquist rate

of the signal is enough to reconstruct it. Furthermore, we showed that the progressive

training strategy improves the generalization of the interpolation task. Lastly, we con-

firmed the previous findings that the main contributor to the mapping performance is its

size and the standard deviation of its elements.

47

Chapter 3 Implicit Neural Representations

3.4 Automatic Adjustment of Fourier Embeddings

While everything points towards the usage of Fourier embeddings, it still requires expert

knowledge when choosing the optimal embedding. Naively applying positional encoding

can become a double-edged sword, as stated by Lin et al. (2021). This also applies

to the Gaussian embedding, following Tancik et al. (2020), where it requires an initial

hyperparameter search on the standard deviation used for the sampling of the parameters.

The previously introduced integer mapping from Benbarka & Höfer et al. (2022) suffers

from a high memory consumption in higher-dimensional problem domains. Hence a

trade-off between the number of parameters and available resources has to be made.

In this section we want to present the work of Höfer and Zell (2022), which aims to

skip the search for the correct embedding parameters by a remove-and-replace approach

during training. Starting with some Fourier embedding matrix B, we will discuss the

question of which of its elements are the most influential ones for the performance. Af-

ter removing the least essential elements, we replace them with their adjusted version.

This adjustment procedure mainly relies on findings of Tancik et al. (2020) and Ben-

barka & Höfer et al. (2022), namely that the highest influence on the performance is the

standard deviation of the Fourier parameters. Our contributions are as follows:

• We introduce and analyze different pruning techniques that determine the impor-

tance of a Fourier embedding parameter.

• We propose a replacement strategy for unimportant Fourier embedding parameters

to increase the overall performance.

• Finally, we formulate the remove and replace techniques as an iterative method,

removing the need to search for an optimal Fourier embedding parametrization.

Still, it remains unclear which parametrization to choose to achieve the best perfor-

mance for the positional encoding and the Gaussian sampling. An optimal parametriza-

tion is dependent on many factors, like the task and the network architecture. In the

previous section, we proposed the usage of the progressive training strategy for coarse-

to-fine registration. Starting with a fixed initial Fourier parametrization, high frequencies

are masked out at the beginning of training and are then gradually included. This is par-

ticularly useful for applications starting with unknown poses, which can be the case in

view synthesis and localization of video sequences. While this allows adjustment of the

Fourier parameters, this strategy is still dependant on the initial parametrization.

This work will focus on the Gaussian encoding using Fourier features, shown to out-

perform the positional encoding Tancik et al. (2020), as it is the most challenging one

without an underlying structure. Different from the previous works, we want to allow

the Fourier embedding parameters to adapt. With this, the need to search for an op-

timal initial parametrization is redundant as the network itself searches for its optimal

parametrization through an iterative method.

48

3.4 Automatic Adjustment of Fourier Embeddings

(a) Initial Reconstruction (b) After 2 iterations

(c) After 5 iterations (d) Ground truth

Figure 3.11: Reconstruction results on the image regression task. An initial Fourier em-

bedding matrix produces poor reconstructions (a). After two iterations of our adjustment

method, more details are visible (b). Finally, after five iterations, our method produces

high-quality results (c) that visually matches the ground truth (d).

49

Chapter 3 Implicit Neural Representations

Initially trained

MLP with Fourier

embedding Γ

MLP with updated

Fourier embedding Γ = Γ\Γ− ∪ Γ+

MLP with

reduced Fourier

embedding Γ\Γ−

A pruning removes

unimportant elements

Elements are moved towards/

away from the mean

Train for a few

iterations

Figure 3.12: Overall Remove-and-Replace methodology. After training the network for

a few iterations, we remove the Fourier embedding matrix elements via the removal

strategy from section 3.4.2. To keep the size constant, we replace those elements with

the replacement strategy from section 3.4.2 and continue training the MLP. This is an

iterative procedure.

3.4.1 Method

The Fourier Embedding

Instead of using the pixel coordinates directly as input to the network, it is common to use

an initial Fourier embedding, as it is displayed in Figure 3.1. In this work, we focus on the

Gaussian Fourier embedding, motivated by Tancik et al. (2020). We remind the reader

about its definition in the following: Let v be the input coordinate of the corresponding

signal, e.g. the pixel coordinate in the image regression task. The dimension of the

coordinate depends on the task. E.g. in the image regression task, it is 2-dimensional.

Then, the Gaussian embedding is defined as follows:

Γ(v) = [cos(2πBv)T ,sin(2πBv)T],
where B ∈Rm×d and each entry is sampled from N(0,σ2), with σ as its hyperparameter.

3.4.2 Overall Methodology

Our general idea is to provide an iterative method that consists of a remove and replace

strategy used during training that can adjust an initial parameterization of the Fourier

50

3.4 Automatic Adjustment of Fourier Embeddings

embedding so that the overall performance increases. To do so, we define ways to select

the elements to be removed and the elements by which they are replaced.

Following Figure 3.12, the general pipeline is as follows: We start training with an

arbitrary and not optimized initialization of the Fourier parameters. After N training it-

erations, we select k elements to be removed and replace them immediately. As this is

an iterative method, one can either set a fixed number of iterations or guarantee conver-

gence by tracking the performance between the iteration steps and stopping whenever

the training/validation accuracy drops.

Which Elements Are to Be Removed?

To select the least essential elements of the embedding matrix B, it is crucial to have

a way to measure the importance of specific elements. The value of the corresponding

weights could give one way of measurement, following the idea of ’the higher the cor-

responding weight - the more important the element’. We name this approach Weight-

Pruning and apply it after training for a few iterations. This is closely related to the

previously introduced perceptron pruning, but it is not limited to a perceptron. Instead, it

is defined for general MLPs. A WeightPruning WP(m,n) with an initial B of size ∣B∣ =m

is performed as follows: Define n to be n <m. We train the network with a mapping de-

fined by B. After training the network, we introduce B* in such a way that B* consists of

only those elements of B where the respective weights are greater than a margin chosen

so that ∣B*∣ = n. With that, we believe that B* will provide superior performance as it

contains the most important frequencies of the signal that is to be reconstructed.

Recently, Wang et al. (2021a) showed that for the architecture search task, determining

an element’s relevance by the value of its corresponding weight is not optimal. Instead,

they propose another way of measurement: to exclude individual elements and evaluate

the performance of the resulting network. We name this approach UnitPruning and ap-

ply it after training for a few iterations. A UnitPruning UP(m,n) with an initial B of size∣B∣ =m is done as follows: Each Fourier parameter bi ∈B has its associated weight value

wi. By setting wi = 0, we exclude the Fourier parameter and can calculate the resulting

loss Li. We then measure the importance of a parameter by the size of the resulting loss

Li. If the performance drops by a considerable amount, we say that the parameter is

important, and a minor performance drop means that the parameter is unimportant. The

Fourier parameters, with the highest Li, are then removed.

How to Replace the Removed Elements?

After elements of the Fourier embedding have been removed, the task is now to replace

them. We propose a replacement strategy that is built on the observation from Tancik

et al. (2020); Benbarka & Höfer et al. (2022), that the most critical component for good

performance is the standard deviation of the Fourier embedding rather than the actual

values of the parameters. Assuming now that the reason for removing the elements in

51

Chapter 3 Implicit Neural Representations

Figure 3.13: The weight value and introduced loss of an element bi from the Fourier

embedding matrix B, after applying softmax. The magnitude of the accociated weight

for some bi does not necessarily agree with its introduced loss at convergence.

mean(B) bb

α = 1 α = 1 α = -1α = -1

Figure 3.14: Influence of α on the change of some Fourier value b, for two different

positions. If α = 1, the value b will be moved to the mean, reducing the overall standard

deviation of the elements in B. Contrary, if α = −1, the overall standard deviation will be

increased.

52

3.4 Automatic Adjustment of Fourier Embeddings

Figure 3.15: The training progress of our iterative method. After 1000 iterations, the

Fourier embedding matrix B is updated, and the network weights are reset. With each

iteration, the quality of the output is increased.

the previous step was the influence on the standard deviation of the whole embedding,

we want to replace them with elements that have the opposite influence on the standard

deviation. This is done as follows:

Given the Fourier parameters B = (b1, . . . ,bd), and the information that in the previous

step the element bi was removed, the replacement is

bnew
i = bi+α[mean(B)−bi]. (3.29)

We want to define the parameter α in such a way that it follows the structure of Figure

3.14. For the direction we want, that if σold < σnew that α < 0 and if σold > σnew that

α > 0 respectively. In words, this means that if the removed bi was responsible for a high

standard deviation of the Fourier parameters, then the new b∗i will be closer to the mean

and therefore reduce the overall standard deviation. Hence, we define α in the following

way:

α = s ⋅(σold−σnew) 1∣mean(B)−bi∣γ . (3.30)

Here s and γ are hyperparameters, and the fraction on the right side has the purpose

of accommodating the closeness of bi to the mean. Finally, we manually add some

restrictions to the value: by limiting α ∈ [−1,1], we take care of outliers that would

introduce big steps and guarantee that in case of a positive α value, we are not moving

away from the mean (which would happen with α > 2).

Simplified Version:

53

Chapter 3 Implicit Neural Representations

Type init. size n = 6 n = 8 n = 10 n = 12

No n 15.23 17.21 17.36 18.55

W.Prune

18 19.02 20.16 20.96 18.73

24 17.94 20.62 20.78 21.34

32 16.67 19.53 21.08 21.25

U.Prune

18 19.02 18.57 20.73 18.73

24 17.94 21.28 20.67 20.59

32 15.23 20.0 20.50 21.33

Table 3.4: A network with an initial Fourier embedding matrix of size ∣B∣ =m is initially

trained. Then, using the removal step from section 3.4.2, less important elements of B

are removed to yield a size ∣B*∣ = n <m. This table shows the resulting training PSNR

scores with a standard deviation of 32.

Type init. size n = 6 n = 8 n = 10 n = 12

No n 9.40 11.59 10.16 11.54

W.Prune

18 17.03 17.41 17.24 16.25

24 16.17 17.80 17.66 17.28

32 13.79 14.47 16.86 17.02

U.Prune

18 17.03 18.57 16.84 16.25

24 16.17 17.74 17.35 17.28

32 12.23 15.40 16.46 17.56

Table 3.5: This table shows the test PSNR scores from the experiments in Table 3.4.

If the scale s is chosen too big, the resulting update step is

α ∈ {−1,1}. (3.31)

This leads to a simplified version of the replacement. Basically, one only needs to cal-

culate the sign of σold −σnew and receives the α value without the need to adjust the

hyperparameters s and γ .

3.4.3 Experiments

We focus on the image regression task. Given an Image I, the aim is to learn a function

f ∶ (x,y)→ (R,G,B), that maps each pixel coordinate (x,y) to its corresponding RGB

value. First, we define the function f to be a multilayer perceptron. As discussed in the

previous chapter, we apply a Fourier mapping to the pixel coordinates, which is then fed

through the network. We evaluate the images from figure 3.7 with a size of 512×512.

54

3.4 Automatic Adjustment of Fourier Embeddings

Type init. size n = 6 n = 8 n = 10 n = 12

No n 15.18 16.93 18.03 17.57

W.Prune

18 16.46 19.42 19.66 18.75

24 15.57 19.62 19.72 20.39

32 14.33 19.05 18.23 20.50

U.Prune

18 17.42 19.88 20.05 19.21

24 14.28 19.69 19.72 20.74

32 14.33 19.59 18.67 20.56

Table 3.6: A network with an initial Fourier embedding matrix of size ∣B∣ =m is initially

trained. Then, using the removal step from 3.4.2, less important elements of B are re-

moved to yield a size ∣B*∣ = n < m. This table shows the resulting in training PSNR

scores with a standard deviation of 48.

Type init. size n = 6 n = 8 n = 10 n = 12

No n 8.65 9.30 8.53 8.74

W.Prune

18 11.04 12.23 11.38 10.50

24 12.08 14.34 14.24 13.32

32 11.65 12.00 12.88 12.64

U.Prune

18 9.37 12.40 12.44 10.87

24 11.67 13.62 14.24 13.13

32 11.65 13.77 13.43 13.77

Table 3.7: This table shows the test PSNR scores from the experiments in Table 3.6.

The results are given in PSNR: the peak signal-to-noise ratio (as it is a scaled logarithm

of the squared maximum pixel value in the image divided by the MSE, higher values

describe a better performance). While we define the training set to consist of every

second pixel in the image, the test is the whole image. In general, we use the MSE loss

combined with the Adam optimizer.

Experiments on the Pruning Task

In this section, we compare pruning techniques following section 3.4.2. To conduct the

experiments, we choose the network architecture to have a depth of 6 and a width of

128. We sample the initial Fourier parameters B from a normal distribution N (0,σ2).
We intentionally choose the variance σ2 to be not optimized, such that we can analyze

whether the pruning techniques are able to select appropriate elements. Both pruning

techniques start with the same sampled B, with an initial size of ∣B∣ =m. After training

for a few iterations, we use the pruning techniques to choose the most suitable subset B*

55

Chapter 3 Implicit Neural Representations

Train Test

n = 24 n = 32 n = 48 n = 24 n = 32 n = 48

Basic 21.01 20.34

PE 23.90 25.18 25.16 21.35 21.17 21.34

non-optimal

No replacement 21.1 21.59 22.51 13.91 13.47 13.38

initialization

Barf 22.2 25.18 25.75 17.25 19.40 20.64

Ours (3.4.2) 25.63 27.76 28.88 22.64 22.66 21.83

Gaussian 4 it. 24.39 23.72 23.09 17.71 16.27 14.31

Gaussian 15 it. 25.86 26.00 26.88 21.41 19.83 18.04

Table 3.8: Train and test PSNR scores of the whole procedure using different Fourier

embedding sizes n and replacement strategies. We compare our replace strategy from

section 3.4.2 with a gaussian replacment, the progressive training strategy from Barf (Lin

et al. (2021)). and for comparison, the results one would obtain without our iterative

method. Furthermore, we compare it with common approaches, basic embedding and

postional encoding.

of B with size ∣B*∣ = n <m. Finally, we compare the performance when training with the

new Fourier embedding matrix B* and also compare it to the results one would achieve

when directly sampling a matrix of size n from N (0,σ2).
To demonstrate that the pruning techniques yield a different solution, we have a closer

look at Figure 3.13. After training, we compare the elements of the Fourier embedding

matrix B. The sizes of B are 4, 8 and 12. The orange bars represent the weight value of

the neural network that is associated with the element b from B. The blue bars are the in-

troduced losses that we get if we set the associated weight value to 0. For comparability,

we used the softmax function on the original values. While, in general, it looks like there

is a relation between the two values, the order of the elements is different. Therefore, it

is necessary to conduct more experiments on the performance of the pruning techniques.

In the tables 3.4, 3.5, 3.6 and 3.7, we can see that for both the train and test data,

using any pruning technique outperforms a direct sampled B of size n. Both pruning

techniques show comparable performance. If the gap between the two parameters m and

n is too big, both tend to lose quality. Contrary, choosing m close to n would reduce

the number of elements to choose from. Overall, we see slightly better performances of

UnitPruning, aligning with the results in Wang et al. (2021a). Therefore, we continue

with UnitPruning in the following experiments.

For each iteration step, it is necessary to do some initial training. To determine the

optimal number of training iterations, we do the following experiment: We take different

networks with some Fourier embedding matrix B. In Figure 3.16 the x-axis determines

the number of iterations until we apply our UnitPrune. After the pruning, we train the

network for a fixed length and compare the resulting PSNR scores. Here, the same PSNR

56

3.4 Automatic Adjustment of Fourier Embeddings

Figure 3.16: Experiments on the number of iterations before applying the pruning tech-

niques. A UnitPruning is applied after training for the given amount of iterations. Simil-

iar PSNR scores mean, that the pruned elements are the same.

scores imply that the resulting Fourier matrix B* are the same, which means that after

the latest 300 iterations, the pruning method yields no changes. For our experiments,

we then used 1000 iterations; as for the task of image regression, the amount of time is

considerably small.

Experiments on the Whole Procedure

In addition to the experiments in the previous section, we now replace the removed el-

ements of B. In this experiment, we update 5 Fourier parameters with 1000 iterations

steps between the update steps. We compare our approach described in section 3.4.2

with the original performance and a replacement when simply sampling from a normal

distribution with the same standard deviation. Also, we compare it to the progressive

training strategy we introduced in section 3.3.1, where the high-frequency activations of

the encodings are hidden at the beginning of the training and are gradually allowed dur-

ing the training. All of the upper methods are built on top of a poorly sampled Fourier

embedding. We compare the results to a basic embedding that maps the input coordi-

nate to a sinusoidal representation with a fixed size and the commonly used positional

encoding.

In Table 3.8, one can see that an initially bad Fourier embedding matrix B can be mod-

ified during training by our automatic adjustment, such that after only a few iterations,

the resulting PSNR values are appropriate. Also, the sampling from a Gaussian distribu-

57

Chapter 3 Implicit Neural Representations

NeRF

Basic 23.16 ± 0.90

Positional encoding 24.81 ± 0.88

Gauss initial 20.22 ± 0.89

Gauss iterated 25.17 ± 0.92

Table 3.9: Resulting PSNR scores of the view synthesis task using a ’tiny’ NeRF. Our

iterative method can transform a poorly chosen initial Gauss embedding into a well per-

forming one.

tion gives a good performance, with the difference that it needs way more iterations until

the performance saturates. Additionally, our approach yields the best test PSNR scores.

It should also be remarked that the replacement is dependent on the initially chosen stan-

dard deviation in the Gaussian case. Hence a bad selection at the beginning would badly

influence the replacement.

To guarantee that the network is not stuck at a local minimum, we reset all weights of

the network after the replacement to guarantee the inclusion of the new Fourier param-

eters. As shown in Figure 3.15, this results in jumps of the training procedure, yielding

a performance increase with each iteration. To prevent the network from losing all the

information from the previous training steps, we explored the possibilities of skipping

the weight reset, adding random noise, or resetting the weights of the first layer. Exper-

iments showed that none of these approaches gave satisfying results. Still, it is possible

to analyse possibilities further to save some effort from the previous training steps.

Experiments on the Novel View Synthesis Task

To test whether our method is applicable to novel view synthesis, we chose a ’tiny’ NeRF

where we removed view dependence and hierarchical sampling. Generally, a NeRF takes

as input a set of 2D images and tries to recreate a 3D representation of the scene. In this

scenario, we are given three-dimensional input coordinates (x,y,z) and map them to(R,G,B,σ), where σ is the volume density.

The corresponding MLP has a width of 256 and a depth of 4. We trained the model for

50.000 iterations with the Adam optimizer and individually optimized learning rates. For

evaluation, we take the mean PSNR scores of unseen test images from different viewing

angles.

In Fig. 3.17 the qualitative improvements of our iterative method can be seen. Starting

with a non suitable Gaussian Fourier initialization, we receive after a few iterations sat-

isfactory results. Quantitative results (mean PSNR scores and standard deviation) can be

found in Table 3.9, where we outperform traditional approaches, namely the positional

encoding and the basic embedding.

58

3.4 Automatic Adjustment of Fourier Embeddings

(a) Initial Reconstruction (b) After 3 iterations

(c) After 7 iterations (d) Ground truth

Figure 3.17: View synthesis performance using a ’tiny’ NeRF. An initial poorly chosen

Fourier embedding matrix produces poor reconstructions (a). We gradually increase the

reconstruction by using our iterative method (b,c).

59

Chapter 3 Implicit Neural Representations

3.4.4 Conclusion

This work introduced an iterative method to adjust the Fourier parametrization, consist-

ing of a remove and replace step. We introduced techniques for the steps and found

reasonable working solutions for both. Our method can be tested with any initial Fourier

embedding and is designed to account for poorly chosen parametrizations. With this, the

need to search for an optimal Fourier embedding is redundant. In our work, we focused

on the Fourier embedding itself, using the image regression task and view synthesis task

as application. Future work can analyze whether our method can be applied to other

tasks, such as sounds, occupancy and others.

60

Chapter 4

From Object Detection to Instance

Segmentation

4.1 Technical Introduction

Many researchers have investigated a wide range of sub-problems in the varied and well-

known field of computer vision. We will introduce the tasks of image classification,

object detection and image segmentation. After a detailed literature review, we will

introduce our work ’FourierMask: Instance Segmentation using Fourier Mapping in Im-

plicit Neural Networks’ by Riaz et al. (2022). It falls under the category of instance

segmentation by utilizing an implicit mask predictor.

4.1.1 Task Definition

Image Classification The process of assigning a single label to a picture is known as

object classification. Typically, the input is a cropped image with only one foreground

object visible, and the output is a label for that image. See the left image of Fig. 4.1.

With the rise of convolutional neural networks, architectures like VGG16 and ResNet

have demonstrated state-of-the-art performance in the classification task on the Ima-

geNet dataset introduced in Deng et al. (2009). While this is a fundamental problem

in computer vision, classification is not covered in this work.

Object Detection One can think of object detection as object categorization plus local-

ization. An image with any number of objects at any scale serves as the input, and the

result is a set of bounding boxes. Each bounding box gives a label to identify the class

(or kind) of an object in the box and defines a region in the image. 3D object detection,

where the bounding box tries to identify the item’s full location in 3D space, and 2D

object detection, where the bounding box is defined just in the image plane, are being

worked on. Since 2D object detection is the primary subject of this study, we will call

it ”(object) detection.” For an example, input image and bounding box output, see the

middle image of Fig. 4.1.

Object detection is of particular interest to us as it aids in pose estimation. Object de-

61

Chapter 4 From Object Detection to Instance Segmentation

Figure 4.1: The difference between classification, detection and segmentation, credit:

Codebasics (2020).

tection algorithms differ from classification algorithms in that they attempt to locate the

object of interest by drawing a bounding box around it. Furthermore, there may not al-

ways be just one bounding box drawn for object detection. There might be a number of

bounding boxes representing different objects of interest within the image, which are not

known beforehand. This problem cannot be solved by appending a fixed fully connected

layer on top of a typical convolutional network, as the output layer’s length is variable

rather than constant since the number of the items of interest is not fixed. A simplistic

solution to this issue would be to select distinct areas of interest from the image and use a

CNN to determine whether the object is present in that area. The issue with this method

is that the objects of interest could be located differently in the image’s space and have

various aspect ratios. Therefore, one would have to choose a large number of locations,

which could result in excessive computing times.

Consequently, techniques like R-CNN by Girshick et al. (2014), YOLO by Redmon

et al. (2016), and others have been introduced to handle the search of finding the oc-

currences of the present objects fast and reliably. Girshick et al. (2014) suggested an

approach where they use selective search to extract just 2000 regions from the image,

and he dubbed them region proposals to get over the issue of selecting a large number of

regions. Therefore, one may now deal with 2000 regions rather than trying to categorize

a large number of regions. These region proposals are then fed through a convolutional

neural network to produce a feature vector. Furthermore, the algorithm predicts four off-

set values to increase the precision of the bounding box, as well as the presence of an

object within the region proposals. The R-CNN networks still suffer from problems such

as a lack of speed because one has to process all of the 2000 regions per image and hence

it cannot be implemented in real-time. Also, the selective search algorithm is fixed and

therefore, no learning is happening in this stage, which could lead to a lousy region pro-

posal generation. Some drawbacks have been solved by Fast R-CNN (Girshick (2015)).

The main difference is that instead of feeding the region proposals to the CNN, the input

62

4.1 Technical Introduction

image is directly fed through a CNN to yield a feature map from which region propos-

als are then identified. As there is no need anymore to put the 2000 region proposals

through the CNN for all images, it speeds up the inference by a significant amount. Still,

the inference is not in real-time, as the selective search algorithm is time-consuming. To

achieve real-time performance, Faster R-CNN (Ren et al. (2015)) was introduced, which

eliminates the need of the selective search algorithm. Instead, the region proposals are

predicted with a separate network which enables real-time object detection.

While the R-CNN-based detection algorithms make use of region proposals, we want to

introduce YOLO, a network that only looks at parts of the image with a high probabil-

ity of containing an object. The bounding boxes and class probabilities for these boxes

are predicted by a single convolutional network. In order for YOLO to function, we

first divide a picture into a grid and then take multiple bounding boxes for each grid.

The network outputs a class probability and offset values for the bounding box for each

bounding box. The object is identified within the image by selecting the bounding boxes

with the class probability over a threshold value. YOLO is considerably faster than other

object detection methods. The YOLO algorithm’s weakness is that it has trouble detect-

ing small objects in the image; for instance, it might have trouble spotting a flock of

birds. The algorithm’s spatial limitations are to blame for this. There are multiple works

on top of YOLO, which can be found in the literature and are called YOLO v1, . . . , and

YOLO v7, that are improved versions of the initial work from Redmon et al. (2016).

Besides the now-introduced methods, there are more that can be found in the literature;

however, as the R-CNN and YOLO networks are the most influential ones, we only in-

troduced them here.

For applications that need to be done in real-time such as a safety system on a vehicle,

it is important that the detectors have a high framerate. With the usage of a modern GPU

such as the Nvidia RTX 3060, this can be achieved with most state-of-the-art detectors.

In the case that one only has a CPU, things get more complicated. One has to look for

specific network designs, such as the MobileNet family. The orange bar in figure 4.2

represents the framerate on an i5 CPU, yielding significantly lower values compared to

the GPU. Still, the usage of mobilenet backbones enables a framerate that comes close

to 15. In other scenarios, for example, in the case of detection on a drone or a land ma-

chine, one needs a mobile GPU, for example, the Nvidia Jetson AGX Xavier, where we

conducted another benchmark of a subset of the previous detectors. Following figure 4.3

it is possible to receive framerates over 20 fps.

Image Segmentation Related to object detection, image segmentation produces a more

precise identification of the image. The input is similar to the input of object detection,

but the result is a class label for each pixel of the input image. See Figure 4.1’s right col-

umn for an illustration. A special type of image segmentation is instance segmentation,

which focuses on instances of objects and demarcates their boundaries. In this instance,

the dog’s and cat’s pixels are classified as belonging to the respective class, while all other

pixels are classified as ”background.” We will focus on instance segmentation methods

63

Chapter 4 From Object Detection to Instance Segmentation

0 20 40 60 80 100 120
framerate

faster_rcnn_resnet101_v1d_coco

faster_rcnn_resnet50_v1b_coco

faster_rcnn_fpn_syncbn_resnest269_coco

faster_rcnn_fpn_syncbn_resnest101_coco

faster_rcnn_resnet50_v1b_voc

faster_rcnn_fpn_syncbn_resnest50_coco

faster_rcnn_fpn_resnet101_v1d_coco

faster_rcnn_fpn_resnet50_v1b_coco

ssd_512_vgg16_atrous_coco

ssd_300_vgg16_atrous_coco

ssd_512_vgg16_atrous_voc

ssd_300_vgg16_atrous_voc

center_net_resnet101_v1b_dcnv2_coco

yolo3_darknet53_coco

center_net_resnet101_v1b_coco

center_net_resnet101_v1b_dcnv2_voc

center_net_resnet101_v1b_voc

yolo3_darknet53_voc

ssd_300_resnet34_v1b_coco

ssd_512_resnet50_v1_coco

center_net_resnet50_v1b_dcnv2_coco

center_net_resnet50_v1b_dcnv2_voc

center_net_resnet50_v1b_coco

center_net_resnet50_v1b_voc

yolov7

ssd_512_resnet50_v1_voc

yolo3_mobilenet1.0_coco

yolov7 diff. scene

yolo3_mobilenet1.0_voc

ssd_512_mobilenet1.0_coco

center_net_resnet18_v1b_dcnv2_coco

center_net_resnet18_v1b_coco

center_net_resnet18_v1b_dcnv2_voc

center_net_resnet18_v1b_voc

ssd_512_mobilenet1.0_voc
m

od
el

max framerate cpu
max framerate gpu
min framerate cpu
min framerate gpu
framerate 15fps
framerate 30fps
framerate 60fps
framrate RTX 3060
framerate i5 12600k

yolo3_darknet53_coco

ssd_512_mobilenet1.0_voc

faster_rcnn_resnet101_coco

center_net_resnet101_v1b_coco

yolo3_darknet53_coco

ssd_512_vgg16_atrous_voc

ssd_512_vgg16_atrous_coco

faster_rcnn_fpn_resnet50_coco

faster_rcnn_resnet50_voc

faster_rcnn_fpn_resnest101_coco

center_net_resnet18_v1b_voc

center_net_resnet18_v1b_coco

ssd_512_mobilenet1.0_coco

yolo3_mobilenet1.0_voc

yolov7 diff. scene

center_net_resnet50_dcnv2_voc

ssd_512_resnet50_v1_coco

ssd_300_resnet34_v1b_coco

yolo3_mobilenet1.0_coco

ssd_512_resnet50_v1_voc

yolov7

center_net_resnet50_v1b_voc

0 20 40 60 80 100 120
framerate

faster_rcnn_resnet101_v1d_coco

faster_rcnn_resnet50_v1b_coco

faster_rcnn_fpn_syncbn_resnest269_coco

faster_rcnn_fpn_syncbn_resnest101_coco

faster_rcnn_resnet50_v1b_voc

faster_rcnn_fpn_syncbn_resnest50_coco

faster_rcnn_fpn_resnet101_v1d_coco

faster_rcnn_fpn_resnet50_v1b_coco

ssd_512_vgg16_atrous_coco

ssd_300_vgg16_atrous_coco

ssd_512_vgg16_atrous_voc

ssd_300_vgg16_atrous_voc

center_net_resnet101_v1b_dcnv2_coco

yolo3_darknet53_coco

center_net_resnet101_v1b_coco

center_net_resnet101_v1b_dcnv2_voc

center_net_resnet101_v1b_voc

yolo3_darknet53_voc

ssd_300_resnet34_v1b_coco

ssd_512_resnet50_v1_coco

center_net_resnet50_v1b_dcnv2_coco

center_net_resnet50_v1b_dcnv2_voc

center_net_resnet50_v1b_coco

center_net_resnet50_v1b_voc

yolov7

ssd_512_resnet50_v1_voc

yolo3_mobilenet1.0_coco

yolov7 diff. scene

yolo3_mobilenet1.0_voc

ssd_512_mobilenet1.0_coco

center_net_resnet18_v1b_dcnv2_coco

center_net_resnet18_v1b_coco

center_net_resnet18_v1b_dcnv2_voc

center_net_resnet18_v1b_voc

ssd_512_mobilenet1.0_voc
m

od
el

max framerate cpu
max framerate gpu
min framerate cpu
min framerate gpu
framerate 15fps
framerate 30fps
framerate 60fps
framrate RTX 3060
framerate i5 12600k

Figure 4.2: A benchmark on the framerate of common object detectors. The orange bar

represents the framerate on a CPU, and the blue bars stand for the framerate utilizing a

GPU respectively. The fastest detectors can reach a framerate of over 100 fps.

in the following.

In two-stage instance segmentation, the network first detects (proposes) the objects

and then predicts a segmentation mask from the detected region. The baseline method for

many two-stage methods is Mask R-CNN (He et al. (2017)). Faster R-CNN introduced

by Ren et al. (2015) was given an additional mask branch resulting in Mask R-CNN,

which created a binary mask that distinguished between the foreground and background

pixels in a region of interest. The mask IoU was regressed, and the mask scoring R-CNN

had a network block to learn the quality of the anticipated instance masks in Huang

et al. (2019). ShapeMask, which is described in Kuo et al. (2019), calculated the shape

from bounding box detections using shape priors, and then it was further refined into a

mask by learning instance embeddings. Focusing on crucial pixels and reducing noise

were made possible by CenterMask’s use of a spatial attention-guided mask on top of

FCOS’s object detector introduced in Lee and Park (2020). PointRend addressed in-

stance segmentation as a rendering issue which was introduced in Kirillov et al. (2020).

A fully linked MLP was used to sample uncertain points from the feature map and its

64

4.1 Technical Introduction

Figure 4.3: A benchmark on the framerate of common object detectors that define a

subset of the introduced detectors in figure 4.2. For this experiment, we utilized an

Nvidia Jetson AGX Xavier.

fine-grained features from a higher-resolution feature map in order to forecast extremely

sharp object boundaries. PolyTransform by Liang et al. (2020) employed a polygon rep-

resentation of masks rather than a binary grid representation. High accuracy is achieved

with these approaches, but they are typically slower than one-stage procedures.

65

Chapter 4 From Object Detection to Instance Segmentation

One stage instance segmentation methods can predict in a single shot, without using

any proposed regions/bounding boxes as an intermediate step, the instance masks. To

estimate masks at real-time speeds, YOLACT used a linear combination of prototype

masks and mask coefficients for each instance. Embedmask, introduced in Ying et al.

(2019), also used embedding modules for pixels and mask suggestions. Using the ob-

ject’s keypoints, in Zhou et al. (2019a) where they introduced ExtremeNet, estimated the

contour (octagon) around the object. Similar to how Polarmask from Xie et al. (2020)

predicted a contour from a center point, Tian et al. (2019) introduced FCOS and used

the polar representation. Dense RepPoints introduced in Yang et al. (2019) uses a mas-

sive collection of points to depict object boundaries. The inverse fast Fourier transform

(IFFT) was used by FourierNet in Riaz et al. (2021) to create a contour around an object

represented by polar coordinates. In order to forecast the outlines, the network learned

the Fourier series coefficients.

Before we introduce the task of object pose estimation, we are going to propose Fouri-

erMask, a method for segmentation that utilizes INRs for this task.

4.2 FourierMask: Instance Segmentation using Fourier

Mapping in Implicit Neural Networks

This section introduces our work in Riaz et al. (2022), where we utilized implicit neu-

ral representations for the instance segmentation task, which we named FourierMask.

It utilizes a Fourier mapping to the coordinate locations and takes the mapped features

as inputs to an implicit neural representation which is then able to generate an accurate

segmentation mask. FourierMask learns to predict the FM coefficients for a specific in-

stance and thus adapts the FM to a specific object. FourierMask can now be generalized

to predict instance segmentation masks from raw images. Because implicit functions are

continuous in the domain of input coordinates, we show how we can generate higher-

resolution masks during inference by subsampling the input pixel coordinates. Further-

more, we train an MLP renderer extended FourierMask on the uncertain predictions of

FourierMask and show that it significantly improves mask quality. FourierMask matches

the baseline Mask R-CNN at the same output resolution on the MS COCO dataset and

outperforms it at higher resolutions.

Instance Segmentation Using Implicit Neural Representations

There has been a shift from classical approaches towards deep learning methods in the

past decade. The availability of real and synthetic data and high computation capabilities

have made it possible to use these ’black box’ models on highly complex and critical

problems. For instance, segmentation CNNs have been used most commonly in recent

years. Instance segmentation masks can be generated by classifying pixels in a region of

interest as either foreground or background, such as Mask R-CNN by He et al. (2017).

66

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

(a) Mask R-CNN (b) PointRend (c) FourierMask

Figure 4.4: Comparison between Mask R-CNN by He et al. (2017), PointRend by Kir-

illov et al. (2020) and FourierMask.

The performance of these methods is generally the best, but they are slower and require

a lot more computation. It is possible to predict the contour points around the edge of

an object (Yang et al. (2019), Xie et al. (2020)). Despite being faster, such methods

fall short of pixel-wise classification methods in terms of performance. Some methods

attempt to encode the mask contours in a compressed representation (Xu et al. (2019),

Riaz et al. (2021)). Although these mask representations are compact and meaningful,

they fall short of the superior capabilities of pixel-wise methods. The general shape

of segmentation masks is held by the low-frequency components of the Fourier series,

while the edges of the mask are held by the high-frequency components. As a result, our

representation is meaningful and can be compressed based on the use case.

FourierMask is an implicit neural representation. As we know from chapter 3, for the

task of image regression, implicit representations can be thought of as learnable func-

tions characterized by neural networks that map a pixel coordinate to its corresponding

RGB value. We further showed that applying a Fourier mapping to the coordinates as a

pre-step allows the implicit networks to learn high-frequency details in images and 3D

scenes. FourierMask draws inspiration from this work and applies this knowledge to

the task of instance segmentation. In comparison to traditional representations, implicit

representations have the advantage of learning and reconstructing fine details, which tra-

ditional representations find difficult to do in such small models. We can sub-sample the

pixel coordinates to generate higher-resolution masks during inference because implicit

functions are continuous in the domain of input coordinates.

In this work, our contributions are as follows:

• We develop FourierMask, which can replace any mask predictor that uses a region

of interest (ROI) to predict a binary mask. It is fully differentiable and end-to-end

trainable.

• We show that implicit representations can be applied to the task of instance seg-

mentation. We achieve this by learning the coefficients of the Fourier mapping of

a particular object.

67

Chapter 4 From Object Detection to Instance Segmentation

• As implicit functions are continuous in the domain of input coordinates, we show

that we can sub-sample the pixel coordinates to generate higher-resolution masks

during inference. These higher-resolution masks are smoother and improve the

performance on MS COCO.

• We verify and illustrate that the rendering strategy from PointRend (Kirillov et al.

(2020)) brings significant qualitative gains for FourierMask. Our renderer Fouri-

erRend improves the mask boundary of FourierMask significantly.

4.2.1 Method

The Head of FourierMask to Predict Fourier Coefficients

This section explains the network architecture of FourierMask. We employ Mask R-CNN

(He et al. (2017)) as our baseline model. We use a ResNet (He et al. (2016)) backbone

pre-trained on the ImageNet dataset (Deng et al. (2009)), with a feature pyramid network

(FPN) (Lin et al. (2017b)) architecture. Following Mask R-CNN, we use a small region

proposal network (RPN), which generates k proposal candidates from all feature levels

from the FPN. To generate fixed-size feature maps from these proposal candidates, we

use an ROI Align (He et al. (2017)) operation. This produces a (k,d,m,m) sized feature

map for the mask head, where m is the fixed spatial size after the ROI Align operation,

and d is the number of channels. The structure of the head is shown in figure 4.7. We

apply four convolutions consecutively, each with a kernel size 3×3 and a stride of 1.

Then we apply a transposed convolution layer with 2c number of filters, which generates

a spatial volume of size 2c×2m×2m. We call this feature volume W, which holds 2c

Fourier coefficients for each spatial location.

Generate Fourier Features from the Fourier Coefficients

In this section, we explain how to obtain the Fourier features from the coefficients W.

We use the integer lattice mapping as our Fourier embedding, which we introduced in

section 3.3.1

γ(x) = (cos(2πB ⋅x)
sin(2πB ⋅x)) . (4.1)

Here x ∈Rp×2 are the pixel coordinates, normalized to a value in the range of [0,1] and

p are the total number of pixels in the image. Since sine and cosine have a period of 2π ,

by normalizing the pixel coordinate x to the range of [0,1], we ensure that one complete

image lies in a period of 2π . Images are not periodic signals, but since they are bounded

by the image resolution, we can safely apply our method to predict 2D binary masks as

they can be thought of as their existing continuous extension over their input bounds.

B ∈Z2×c is the integer lattice matrix which holds the possible combinations of harmonic

68

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

frequency integers of Fourier series for both dimensions in the image. As we are given a

dimension of 2, formula 3.21 tells us that the number of coefficients from the embedding

is

c = (N +1)(2N +1)−N, (4.2)

where N is the frequency of the embedding, which is a hyperparameter. Fourier Features

are generated as follows:

FF(x, W) = γ(x)○W, (4.3)

where ○ is the element-wise (Hadamard) product, W ∈ Rp×2c is the weight matrix pre-

dicted by the FourierMask. Note that we flatten the spatial dimension of the prediction

beforehand (p = 2m×2m).

Basic FourierMask: Predict Binary Mask from Fourier Features

Let ff i be the ith column of FF; then the binary mask y is defined as

y(x,W) = φ(2c

∑
i=1

ff i). (4.4)

Here φ is the sigmoid activation function, which we use to bound the output between 0

and 1. Note that y(x,W) can be interpreted as an implicit representation with a single

perceptron because it is a linear combination of Fourier features followed by a non linear

activation function.

Fourier Features based MLP

As shown by Sitzmann et al. (2020b) and Tancik et al. (2020), implicit representations

can learn to generate shapes, images and more from input coordinates very effectively.

Following the work from Tancik et al. (2020), we saw that Fourier mapping of input

coordinates lets the MLP learn higher frequencies and consequently generate images

with finer detail compared to MLPs without Fourier mapping. Furthermore, Sitzmann

et al. (2020b) showed that using periodic activation functions works better compared to

ReLU in implicit neural networks. We employ an MLP with sine activation functions, in

which Fourier features (FF) are the input and mask y′ is the output. We have three hidden

layers (Siren layers), each with 256 neurons. The MLP has a single output neuron, on

which we apply a sigmoid function to bind it between 0 and 1. The Fourier features (FF)

are generated by the equation (4.3), and they are parameterized by coefficients W learned

by the network and therefore adapted for a specific input ROI. Coordinate-based MLPs

encode the information of one particular image or shape, but by parameterizing them

with learned Fourier coefficients W of each object, we can generalize them to generate a

binary mask of any object.

69

Chapter 4 From Object Detection to Instance Segmentation

Figure 4.5: Extended FourierMask applied to instance segmentation. The CNN backbone

first generates fine-grained features. Region proposals of these features are fed through

the FourierMask head to generate the Fourier features and the binary mask. The unsure

elements in the binary masks (pixels where the value is close to 0.5) are fed through

an additional MLP, in the sense that the MLP receives interpolated features of 1) the

fine-grained features and 2) Fourier features as input. This illustration is adapted from

Kirillov et al. (2020).

4.2.2 Extended FourierMask - MLP as a Renderer

For generating boundary-aligned masks, we used a renderer MLP which specialized only

on the uncertain regions of the mask predicted by equation (4.4). We adopted the ren-

dering strategy from PointRend by Kirillov et al. (2020) and made the following mod-

ification in the point head (figure 4.6). Rather than sampling coarse mask features in

the mask head, we sample the Fourier features (FF) from equation (4.3) at uncertain

mask prediction coordinates (the locations where the predictions are near 0.5). Fourier

features FF(x, W) make extended FourierMask an implicit MLP since its input is a func-

tion of input coordinates x, and therefore, we can take leverage from its implicit nature,

as discussed before. We concatenate these Fourier features and fine-grained features

(from the ’p2’ level FPN feature map). We replace the mask predictions from equation

(4.4) (coarse predictions), with the fine-detailed predictions from extended FourierMask.

Consequently, we replace uncertain predictions at the boundary with more accurate pre-

70

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

dictions of the renderer, resulting in crisp and boundary-aligned masks. An illustration

can be found in Figure 4.5.

Training and Loss Function

We concatenate the output y from equation (4.4) and y′ from the MLP and train both

masks in parallel. By training the output y, we learn the coefficients W of a Fourier

series in their true sense. We need these coefficients because we assume that the input

for the MLP are Fourier features. We use IoU loss for training the binary masks defined

as:

IoU loss =
∑N

i=0 min(ypi
,yti)

∑N
j=0 max(yp j

,yt j
) (4.5)

ypi
is the predicted value of the pixel i, yti is the ground truth value of the pixel i and N is

the total number of pixels in the predicted mask.

4.2.3 Experiments

For all our experiments, we employ a Resnet 50 backbone with a feature pyramid net-

work pre-trained on ImageNet (Deng et al. (2009)) unless otherwise stated. We use the

Mask R-CNN default settings from detectron2 (Wu et al. (2019)). We train on the MS

COCO (Lin et al. (2014)) training set and show the results on its validation set. We pre-

dict class agnostic masks, i.e. rather than predicting a mask for each class in MS COCO,

and we predict only one mask per ROI. For the baseline, we trained a Mask R-CNN, and

PointRend by Kirillov et al. (2020) with class agnostic masks.

Spectrum Analysis on MS COCO

To validate that the Fourier Mapping (equation (4.4)) works, for instance, in mask predic-

tion, we performed a spectrum analysis on the MS COCO training dataset. Along with

verifying our method, this analysis gave us insight into the optimal number of frequen-

cies for the dataset. We performed this experiment by applying a fast Fourier transform

Figure 4.6: Difference between point head from PointRend and extended FourierMask.

71

Chapter 4 From Object Detection to Instance Segmentation

on all the target object masks in the COCO training dataset. This Fourier transform gave

us the coefficients of a Fourier series, which hold the same meaning as the coefficients

prediction W of FourierMask. Firstly, we sampled only the lower frequency coefficients

of the Fourier series and reconstructed the object’s mask by applying equation (4.4). We

did this for all the objects’ masks in the COCO training set and evaluated the IoU loss

of the reconstruction compared to the target. Then we incrementally added higher fre-

quency coefficients and repeated the above-mentioned procedure until we reached the

maximum number of frequencies. Figure 4.8 shows the mean IoU loss at various fre-

quencies. It can be seen that the loss decreases exponentially. We choose the maximum

frequency as 12 since it has a low enough reconstruction loss and fits comfortably in our

GPU memory. Figure 4.9 illustrates a visual comparison between the ground truth and

reconstructions using the varying number of frequencies.

Figure 4.7: FourierMask head architecture for a ROI Align size of 14x14. The network

predicts Fourier coefficients W for each location in the feature map.

Figure 4.8: IOU vs Frequencies.

(a) GT (b) 2 (c) 3

(d) 4 (e) 8 (f) 25

Figure 4.9: The ground truth vs its re-

constructions at various frequencies.

Number of Frequencies

To validate our experiment from the previous section, we trained a FourierMask with a

similar configuration. Rather than predicting a set of coefficients for each pixel, we mod-

ified the architecture to predict a single vector for the whole image. We applied strided

72

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

Figure 4.10: Modified FourierMask architecture with spatial size re-

duced to 1.

Figure 4.11: The mAP when using a

subset of trained frequencies.

(a) N = 1 (b) N = 4 (c) N = 12

Figure 4.12: Mask predictions using various frequencies N.

(stride=2) 3×3 convolutions two times (on the ROI) to reduce the feature size by 1/4th

and then used a fully connected layer to predict the coefficients. The network architec-

ture is shown in figure 4.10. We applied the equation (4.3) and (4.4) for generating the

mask. We copied the predicted Fourier coefficients p times to match the dimensions for

matrix multiplication in equation (4.3). We trained the network with 12 frequencies and

an output resolution of 56×56 using the IoU loss. We did not add an MLP branch in

this experiment and trained only the equation (4.4). We evaluated the mAP precision of

the network on the COCO validation dataset when using a subset of the Fourier compo-

nent frequencies. The network was trained on 12 frequencies, but during inference, we

73

Chapter 4 From Object Detection to Instance Segmentation

Model Backbone mAP

Mask R-CNN ResNet-50 34.86

FF ResNet-50 34.89

FF + MLP ResNet-50 34.97

FF + MLP ResNeXt-101 39.09

Table 4.1: Comparison of various FourierMask architectures with Mask R-CNN.

incrementally added the higher frequency components starting from the first component.

Figure 4.11 shows the result of this test. The mAP shows a similar trend as seen in figure

4.8 and therefore validates the spectrum analysis and the choice of 12 maximum frequen-

cies. Figure 4.12 shows an example how the masks change when a different number of

frequencies are used.

Fourier Features based MLP

To validate that the Fourier Feature-based MLP improves the performance of Fourier-

Mask, we trained two networks with the architecture shown in figure 4.7. The network

predicts separate Fourier coefficients for each spatial location in this architecture. The

first network was trained on the masks obtained using y in equation (4.4) and output y′ of

MLP (FF + MLP). The second network was trained only using equation (4.4) (FF). Both

networks used 12 Fourier frequencies and had an output resolution of 28×28 pixels. We

used class-agnostic masks and therefore predicted only one class for each region of in-

terest rather than a mask for each class in the COCO dataset. We had two hidden layers

(both with sine activations and 256 neurons) and a single output neuron with sigmoid

activation. For the first network (FF + MLP), we took the mean of the masks predicted

by y (equation (4.4)) and output y′ of MLP during inference. The results are shown in the

table 4.1. As can be seen in the table, the network with an MLP shows the best perfor-

mance among the models with ResNet-50 backbone. We also trained the same network

with a larger ResNeXt-101 (Xie et al. (2017)) backbone. The improvement of more than

four mAP over Resnet-50 model shows that our model scales well to bigger backbones.

Higher Resolution using Pixel Sub-sampling

One of the advantages of our method is that it can predict masks at sub-pixel resolution

because implicit representations are continuous in the input domain. We analyzed this

by evaluating the trained networks in section 4.2.3 on the MS COCO validation set on

various pixel steps. For the input x in the equation (4.1), rather than using integer values

of pixels (pixel step of 1), we used a pixel step of 1/2s−1, where s ∈ Z+ is the scaling

factor. This effectively scaled both the height and width of the input x by a factor of s.

To match the size of input pixels x, we upsampled the coefficients W in equation (4.3)

74

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

Model Pixel Step Resolution mAP Speed (ms)

Mask R-CNN 1 28×28 34.86 48.7

FF 1 28×28 34.89 50.3

FF 1/2 56×56 35.13 59.1

FF 1/4 112×112 35.18 68.3

FF + MLP 1 28×28 34.97 52.1

FF + MLP 1/2 56×56 35.18 67.0

Table 4.2: Sub-sampling performance and speed (GTX 2080Ti).

in the spatial dimension using bilinear interpolation by a scaling factor 2s−1. Table 4.2

shows the evaluation using the two networks explained in section 4.2.3. We can observe

that using a lower pixel step improves the mAP.

Figure 4.13 shows how the mask boundary smooths out when sub-sampling the pix-

els. Note that we trained the network on 28×28 output resolution, but we can generate

higher resolution output during inference, which is a considerable advantage over other

methods.

Higher Resolution using Extended FourierMask

To generate higher resolution masks, we used Extended FourierMask (section 4.2.2)

along with the subdivision strategy from Pointrend (Kirillov et al. (2020)). We replaced

the predictions from equation (4.4) (coarse predictions) with the fine detailed predictions

from the extended FourierMask. This resulted in masks which were crisper and bound-

ary aligned. For training extended FourierMask, we employ the default settings of the

point selection strategy along with the point loss from PointRend. The results are shown

in table 4.3. Here, we also evaluate the mask quality using the Boundary IOU (Cheng

et al. (2021)) metric (mAPbound), which penalizes the boundary quality more than overall

correct pixels. Compared to Mask R-CNN, we see a decent improvement of more than

0.7 mAPmask and 1.6 mAPbound with comparable speeds. We can clearly see visual im-

provements, specially in boundary quality (see figure 4.4). Compared to PointRend, we

observe that the masks are more complete (see figure 4.4) with a reasonably lower infer-

ence speed. Note that extended FourierMask achieves 224×224 in 3 sub-division steps

compared to 5 steps of PointRend because extended FourierMask’s initial resolution is

28×28 compared to 7×7 of PointRend.

ReLU vs Sinusoidal Activations

To investigate if sinusoidal activations in MLP indeed perform better than ReLU acti-

vations, we trained a network with the same settings and architecture as in the section

75

Chapter 4 From Object Detection to Instance Segmentation

(a) Step = 1 (b) Step = 1/2

(c) Step = 1/4 (d) Step = 1/8

Figure 4.13: Subsampling the pixels smooths out the boundaries of the mask.

Model Sub. steps Resolution mAPmask mAPbound Speed (ms)

Mask R-CNN 0 28×28 34.86 21.2 48.7

Extended FourierMask 0 28×28 35.01 21.0 48.7

Extended FourierMask 1 56×56 35.63 22.8 52.4

Extended FourierMask 2 112×112 35.64 22.8 55.7

Extended FourierMask 3 224×224 35.64 22.9 59.4

PointRend 5 224×224 36.12 23.5 81.6

Table 4.3: The effect of subdivision inference.

4.2.3, but replaced sine activations with ReLU. Table 4.4 shows that the usage of sinu-

soidal activation functions is indeed capable of increasing the performance.

76

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

Model Backbone mAP

FM + MLP (Sine) ResNet-50 34.97

FM + MLP (ReLU) ResNet-50 34.41

Table 4.4: Comparison between Sine and ReLU.

4.2.4 Conclusion

In this study we demonstrated how implicit representations combined with the Fourier

series can be applied to instance segmentation. Our Fourier mapping generated com-

pact masks. A shape is determined by the lower Fourier frequency and a sharp edge

by the higher Fourier frequency. Furthermore, by subsampling the pixel coordinates in

our implicit MLP, we can generate higher resolution masks during inference, which are

visually smoother and improve the mAP over our baseline Mask R-CNN. The boundary

quality of FourierMask is significantly improved when using our extended FourierMask

associated with a renderer MLP.

Qualitative comparisons

In the following are some sample images from extended FourierMask compared to Mask

R-CNN with similar architecture. The left images are the prediction from extended

FourierMask with subdivision inference and the right ones are of Mask R-CNN. Since

our method improves the boundary quality, we choose large objects with many corner-

s/edges (for example giraffes, humans, airplanes, vehicles and other animals) rather than

smooth objects.

77

Chapter 4 From Object Detection to Instance Segmentation

Figure 4.14: Left image: FourierMask, Right image: Mask R-CNN.

78

4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks

Figure 4.15: Left image: FourierMask, Right image: Mask R-CNN.

79

Chapter 5

Pose Estimation with Augmented

Autoencoders

Object Pose A full object pose is defined as the three-dimensional translation (x,y,z

position) and three-dimensional orientation (in any parameterization) of an object. As

discussed in section 2.1.1, the three degrees of freedom in a rotation refer to the three

freely eligible elements. This problem has been studied in a variety of ways. 2D ob-

ject detection algorithms are limited to the two translation parameters in the image plane

and ignore the third translation parameter and the object’s orientation. Using depth es-

timation methods, one can obtain a third out-of-plane translation parameter. As we will

discuss below, some recent works have only focused on the 3D orientation of the 6D

problem, while others focus on the full 6D problem. Typical challenges associated with

pose estimation include:

• Occlusion: Occlusion occurs when part of the object is hidden by another object,

making it difficult for the pose estimation system to accurately predict its position

and orientation.

• Scale and viewpoint changes: Pose estimation algorithms often rely on certain

assumptions about the size and viewpoint of the object being tracked. If the object

changes size or the viewpoint changes, the algorithm may not be able to accurately

estimate its pose.

• Limited training data: Many pose estimation algorithms are based on machine

learning techniques, which require a large amount of training data to learn from.

If the training data is limited or not representative of the real-world conditions, the

algorithm may not be able to accurately estimate the pose of the object.

• Real-time performance: Pose estimation algorithms often need to run in real-time,

which can be challenging due to the computational complexity of the algorithms

and the need to process large amounts of data in a short amount of time.

• Ambiguity: Some objects, such as a cylinder or cube, have a high degree of sym-

metry and may have multiple possible poses that are equally valid. This can make

81

Chapter 5 Pose Estimation with Augmented Autoencoders

it difficult for pose estimation algorithms to determine the correct pose of the ob-

ject.

5.1 Solutions to Pose Estimation

Pose estimation for 6D objects was almost considered solved at one point. Unfortunately,

the detection systems were only capable of detecting objects with rich texture. The re-

search focused on finding features that improved the robustness of the system to changes

in illumination. As time went on, more methods were developed that focus on objects

with little or no texture. With applications in robotics becoming more intriguing, which

required algorithms that were robust to occlusions and clutter in the scene, new datasets

illustrating these issues were developed. In this regard, the BOP challenge has to be

named. It took place for the first time in 2019 and from then on annually see Hodaň et al.

(2020). It is a challenge for researchers on 6D pose estimation on multiple well-known

6D datasets such as YCB in Xiang et al. (2017), containing textureless and symmetric

objects, strong occlusions and clutter. The Linemod dataset in Hinterstoisser et al. (2012)

also contains symmetric objects and even has a subset that is named occluded Linemod,

which follows its name containing heavily occluded scenes of objects. The last we want

to name here is TLESS (Hodan et al. (2017)), which contains textureless industrial ob-

jects that form a challenging benchmark for pose estimation. Recently, convolutional

neural networks (Sundermeyer et al. (2020); Labbé et al. (2020); Park et al. (2019b);

Li et al. (2019)) have proven to be promising in the BOP2020 challenge (Hodaň et al.

(2020)) on 6D pose estimation, even surpassing the top depth-based methods for the first

time. They also tend to be faster, mostly with a runtime of less than one second. These

methods mainly depend on an object detection phase, which is achieved using a state-

of-the-art object detector (Mask R-CNN He et al. (2017), RetinaNet Lin et al. (2017a),

Faster R-CNN Ren et al. (2015)).

We are going to present some works sorted by their technique in the following.

Traditional Template-based and Feature-based Methods

In the past, most techniques for 6D pose estimation were feature-based or template-

based. Traditional approaches include template-matching (e.g. the work of Hinter-

stoisser et al. (2011)), where they try to match a rotating object to the image until a

good fit is achieved. However, these approaches suffer especially from occluded scenes.

The feature-based algorithms locate visual characteristics that correlate to known object

positions and then calculate the pose. One differentiates between local feature matching,

which includes the finding of point-to-point correspondences of multiple images such as

Multiview Stereo by Schönberger et al. (2016) and Goesele et al. (2007) and structure

motion by Mur-Artal et al. (2015). Here, key points are detected for input images, such

as corners or edges. Then point-to-point correspondences are found by matching simi-

82

5.1 Solutions to Pose Estimation

lar features in the different images. In contrast to the multiview approaches, where the

movement of the camera is estimated, key points can directly be used for pose estimation

which has been done for point clouds by Tombari et al. (2010) and Rusu et al. (2009)

and RGB images in Lowe (2004) and Bay et al. (2006). Methods based on local features

suffer from textureless objects when RGB data is used as input and symmetric objects for

the point cloud-based methods. To achieve better results for textureless objects, meth-

ods relying on global features have been introduced. The advantage of global features

is that they inherit representations of objects in different poses and thus do not suffer

from the non-uniqueness of local features. Global-feature-based methods have similarly

been used for different input data such as RGB by Konishi et al. (2016), RGB-D by

Hinterstoisser et al. (2012); Tejani et al. (2014) and point cloud by Drost et al. (2010);

Wohlkinger and Vincze (2011). With the presence of a 3D CAD model, dominantly point

pair features have been used, such as by Drost et al. (2010).

Deep Learning-based Methods

With the appearance of convolutional neural networks, researchers made the previously

hand-designed features learnable. In the work of Kehl et al. (2016) they make use of

convolutional autoencoders to train local descriptors on RGB-D data. Each local cor-

respondences of objects vote for the center based on the relative position of the patch.

Similarly, global features can be encoded by convolutional neural networks. In the works

by Wohlhart and Lepetit (2015); Balntas et al. (2017) global features are trained by learn-

ing a manifold that distinguishes between different poses in the feature space.

Other methods directly regress the pose. This can be achieved by extending Mask R-

CNN to pose estimation by adding a pose branch to the network output, see Do et al.

(2018). In their work, they regress the SO(3) Lie group as the pose representation; they

motivate this representation by saying that compared to quaternions and orthonormal

matrix, the Lie algebra has fewer parameters and is unconstrained and thus making the

training easier. In general, different types of rotation parameterizations have been used

for the regression task. For example, the 2D projections of the 3D bounding box co-

ordinates by Rad and Lepetit (2017), or unit quaternions and translations (Xiang et al.

(2017)). Overall, the direct regression is computationally efficient as there is no need to

further process the network output. These methods, however, have the drawback of not

generating multiple pose hypotheses to estimate occluded objects robustly, and symmet-

ric objects have to be handled accordingly.

Implicit and Statistical Pose Estimation Methods

As symmetries occur plentifully in industrial or everyday objects, it is interesting and

essential to conduct further research on their occurrence. If object symmetries are known

during training, it is possible to group equivalent rotations to a single one, allowing

training to proceed as in classical single-valued regression (Pitteri et al. (2019)). In

83

Chapter 5 Pose Estimation with Augmented Autoencoders

Corona et al. (2018), manually labelled symmetries of 3D poses are needed to learn the

embedding and classification of the symmetry order together.

On the contrary, Sundermeyer et al. (2020) make pose or symmetry supervision unnec-

essary by using an implicit augmented autoencoder to isolate pose information. During

inference, they receive a latent representation, compare it to a fully covered sample in a

codebook of saved latent representations of rotations and take the closest one.

As symmetries are not the only source of pose uncertainty, it is interesting to utilize a

more flexible representation. Recent works focused on a statistical approach by consid-

ering parametric probability distributions. Peretroukhin et al. (2020); Deng et al. (2022);

Gilitschenski et al. (2019) regressed the parameters of a von Mises distribution over

Euler-angles and Mohlin et al. (2020) utilize Matrix Fisher distributions on SO(3). To

this end, Prokudin et al. (2018), Gilitschenski et al. (2019) and Deng et al. (2022) pro-

pose using multimodal mixture distributions. In Deng et al. (2022) they introduce Deep

Bingham networks, a framework to handle pose ambiguities. They introduce a multi-

hypothesis head to predict a family of poses to capture the nature of the solution space.

From a technical perspective, they regress Bingham mixture models. Here, the Bing-

ham distribution lies on Sd−1 and is an antipodally symmetric probability distribution

derived from a Gaussian with zero mean. While in Gilitschenski et al. (2019), they try to

deal with the uncertainty of orientation, they introduce a loss to capture the symmetries

by characterizing uncertainty with unit quaternions based on the Bingham distribution.

They name their introduced loss ’Bingham loss’. Furthermore, they demonstrate multi-

modal orientation prediction by using a Bingham variant of mixture density networks.

In Prokudin et al. (2018) they propose a probabilistic deep learning model to predict a

mixture of von Mises distributions. With that, they are able to learn a mixture model

using a finite and infinite number of mixture components. Furthermore, they give an

analysis of the importance of probabilistic regression. One challenge when training the

mixtures is avoiding mode collapse, for which a winner-takes-it-all strategy can be used

(Deng et al. (2022)). An alternative to the mixture models is to predict multiple pose

hypotheses directly Manhardt et al. (2019), but this does not share any of the benefits of

a probabilistic representation.

A more general representation of the distribution is proposed by Murphy et al. (2021),

where they implicitly model the probability density function with a multilayer perceptron

whose architecture is inspired by the field of INRs. Their works provide the challeng-

ing SYMSOL and SYMSOL II datasets focused on symmetries and can show superior

performance to the above-introduced mixture models.

84

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

5.2 Object Detection and Autoencoder-based 6D Pose

Estimation for Highly Cluttered Bin Picking

In this section, we are going to introduce our work in Höfer et al. (2021), a framework for

object detection and pose estimation developed for the special setting of highly cluttered

bin picking. Bin picking is a fundamental problem in industrial contexts and robotics,

with 6D pose estimation serving as its primary module. However, when it comes to small

objects, industrial depth sensors are inaccurate. As a result, we offer a framework for

implicit pose estimation in extremely cluttered situations with small objects that relies

mostly on RGB data and only uses depth information for pose refining. We compare

synthetic data generation methodologies for object detection and pose estimation in this

study, and we present a pose filtering system that finds the most accurate predicted poses.

By the usage of synthetic data, we overcome the problem of limited training data, and

as it is the case that industrial objects do not change in size, such as humans do, we do

not suffer from the problem of scale changes. As we assume our system is with a fixed

camera position, we generate the synthetic data accordingly from the same viewing angle

as it is given in the real scenario, removing the viewpoint change problem. Furthermore,

we show that our pose estimation algorithm can process multiple images per second,

which is considerably faster than traditional methods, e.g. relying on template matching.

Finally, by the implicit nature of the augmented autoencoder, no symmetry supervision

is necessary, helping in the presence of symmetric objects.

5.2.1 Introduction

Bin picking is a major automation task with various applications in industrial sectors.

The core starting problem of this work is the 6D pose estimation of instances. To

tackle this problem, an RGB-D or depth camera is usually installed on top of the bin.

There are existing solutions to bin picking of large objects, mostly using local invari-

ant features (Abbeloos and Goedemé (2016); Liu et al. (2018)) or template-matching

algorithms (Hinterstoisser et al. (2011)), which rely on the computationally expensive

evaluation of many pose hypotheses. Moreover, local features do not perform well for

texture-less objects, and thus, template-matching often fails in heavily cluttered scenes

with severely occluded objects. Additionally, depth sensors are often more sensitive to

lighting variations than RGB cameras (Sundermeyer et al. (2020)). Most importantly, for

small objects, the depth information is often insufficient to get accurate pose estimates.

Therefore, in this work, we focus on RGB-based convolutional neural networks, which

make use of depth information only for pose refinement.

Accordingly, one of the important issues for training a deep network is labelling the

training dataset, which requires high effort for tasks like 6D pose estimation (Hodan

et al. (2017)). Given a CAD model of the object, which is usually available in the indus-

try, generating a synthetic dataset is possible. However, training on only synthetic 2D

85

Chapter 5 Pose Estimation with Augmented Autoencoders

images of the CAD models does not generalize well to real data. Hence, more insightful

techniques are required to bridge the gap between simulation and reality (Sundermeyer

et al. (2020)).

Generally, a state-of-the-art object detector is first used to recognize individual objects,

and the resultant cropped images are passed to the pose estimator. Following Labbé et al.

(2020); Joffe et al. (2019), we use Mask R-CNN (He et al. (2017)) for object detection.

As for the task of pose estimation, we consider an implicit augmented autoencoder (Sun-

dermeyer et al. (2020)) since it has demonstrated good performance in bin picking of

deformable products (Joffe et al. (2019)). Sample results of our proposed method are

displayed in Fig. 5.10. Moreover, once the general pipeline is given, the predicted poses

can be further refined using a pose refinement method. Previously, this step has been

achieved (Labbé et al. (2020); Sundermeyer et al. (2020)) by the ICP algorithm (Zhang

(1994)). As the ICP-based methods show slow performance, we show that incorporating

the depth information into the pose estimation procedure achieves comparable results.

Besides, a filtering algorithm is applied to choose the best poses among the estimated

ones. The main contributions of this work are as follows:

1. We present a comprehensive framework from creating a synthetic dataset to the

prediction of the 6D pose estimates in bin picking scenarios, where no real la-

belling is needed.

2. We show that a more realistic renderer for data generation significantly improves

the performance on heavily cluttered piles.

3. We present a pose filtering scheme to select the best pose predictions.

4. We give an analysis of how the performance of the autoencoder can be improved

in bin picking scenarios.

5.2.2 Methodology

In this work, we consider heavily cluttered and occluded scenes of small industrial ob-

jects. Here, we explain the methods for dataset generation, followed by the full frame-

work for object detection and pose estimation.

Dataset Generation

Creating a synthetic dataset can be achieved by using the CAD models of the objects.

Since our pipeline has two main tasks, we need to create a dataset for both, object detec-

tion and pose estimation. As the effort of labeling 6D poses in cluttered scenes is high

and demands a complex setup (Hodan et al. (2017)), some works (Kehl et al. (2017);

Sundermeyer et al. (2020)) have proposed training on synthetic images rendered from

86

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

(a) (b)

(c) (d)

Figure 5.1: (a) A sample image of a cluttered bin captured by a Microsoft Azure Kinect

RGB-D camera. (b) Detection results, limited to 30 objects, to be visually recognizable.

(c) Pose estimation results for all the detected objects. (d) The best five selected poses

based on the filtering algorithm.

a 3D model. To bridge the gap to reality, random augmentations and domain random-

ization techniques have been applied (Pashevich et al. (2019); Tobin et al. (2017)). As

a different solution to this problem, a more realistic data generation using a physics en-

gine has been proposed in Denninger et al. (2019). In our work, we benefit from this

approach to generate photorealistic cluttered piles and propose the full framework for

object detection and pose estimation.

Dataset for Object Detection

As the first approach, we make use of the pipeline in Sundermeyer et al. (2020) to gen-

erate synthetic images to train the object detector. In particular, a CAD model is used

to render the object on a black background. Then, random images from the Pascal VOC

dataset Everingham et al. (2015) are added as a background, followed by random aug-

87

Chapter 5 Pose Estimation with Augmented Autoencoders

(a) Object 1 (b) Object 2

Figure 5.2: The objects of interest are grey plastic pieces with sizes of 2.3×3.6×0.8cm3

and 1.5×2.7×0.9cm3, respectively.

(a) Naive dataset (b) Realistic dataset

Figure 5.3: The synthetic datasets generated with two different pipelines for object 1.

mentations strategies, including blurring, contrast normalization, dropout, cropping, in-

verting and more. We create 60K images per object with 5-20 instances per scene. Due

to their simplicity, we call these images “naive dataset”.

For the second approach, we employ BlenderProc (Denninger et al. (2019)) to gener-

ate more realistic synthetic images. BlenderProc utilizes a physics engine to make the

synthetic data look more realistic. Furthermore, it uses different lighting effects, object

materials and applies physics and collision checking as well. With BlenderProc, we gen-

erate for each object type 20K images with 30 instances and 5K images with 300 objects.

The camera configuration is sampled in a range of 20○ around the top of the scene with

a height between 27-33cm. We call this the “realistic dataset”.

In this work, we consider two industrial objects (see Fig. 5.2). Sample images of the

naive and realistic images for object 1 are depicted in Fig. 5.3.

88

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

Dataset for Pose Estimation

Similar to the naive dataset in the previous section, we generate images with correspond-

ing 6D pose annotations, with an additional step of image cropping around the objects.

We also compare the original pipeline results against a new dataset, where we render

multiple objects in the image crops. In Fig. 5.6, samples of different training data are

displayed on the left side. While the top image shows one single object in each image

crop, the bottom one includes multiple objects.

Test Dataset for Object Detection

To evaluate the object detector, we captured 50 real images per object model with more

than 100 instances in the bin. The images were taken using a Microsoft Azure Kinect

camera mounted at a height of 30cm over the bin (see Fig. 5.4). We hand-labelled the

bounding boxes and segmentation masks for all the present objects.

Test Dataset for Pose Estimation

While we show qualitative results in real-world scenarios, the quantitative results are re-

ported on a synthetic dataset because only for this we have full ground truth data. The

autoencoder is trained on synthetic data following the pipeline in Sundermeyer et al.

(2020), and we create the test dataset with BlenderProc (Denninger et al. (2019)). To be

more precise, BlenderProc generates 3D scenes, whereas the pipeline in (Sundermeyer

et al. (2020)) creates augmented 2D images. Since the data distributions of these syn-

thetic datasets are different, we will show that training the pose estimator on the naive

dataset and testing on the photorealistic images leads to suitable performance.

As such, for each object, we created one dataset consisting of 1K images with 300

objects. The camera is located 30cm on top of the bin ground. We choose a blue back-

ground to make it visually comparable to our real settings.

Object Detection

In general, any state-of-the-art object detector (Faster R-CNN (Ren et al. (2015)), Reti-

naNet (Lin et al. (2017a)), SSD (Liu et al. (2016))) can be used for object detection.

However, these methods only predict the bounding boxes. Therefore, we choose Mask

R-CNN, which has the advantage of predicting the segmentation masks of the object as

well. This can be used for pose refinement (Wong et al. (2017)) by segmenting the point

clouds of the objects. In addition, we can compare the pose estimation results when,

instead of the whole bounding box, only the pixels visible in the segmentation mask

are given to the pose estimation module. Given an image, we predict a set D of object

detections.

89

Chapter 5 Pose Estimation with Augmented Autoencoders

(a) Real test dataset 1 (b) Real test dataset 2

Figure 5.4: Examples of our labeled test dataset in real scenarios.

Pose Estimation

To receive pose estimates from the set D of the detections, we resort to the autoencoder

network presented in Sundermeyer et al. (2020). As the autoencoder’s training procedure

is based on only synthetic data, it is more applicable to new industrial settings where no

labelled data exists. In addition, the autoencoder has demonstrated good performance in

pick-and-place tasks (Deng et al. (2020b); Joffe et al. (2019)). Its method of operation

is as follows: An autoencoder is originally a dimensionality-reducing technique for high

dimensional data such as images, consisting of an Encoder φ and a Decoder ψ (see Fig.

5.6). An input x ∈RO will be first fed through the Encoder: z = φ(x). This value z ∈Ro

will later be called the latent representation of the vector x. For the dimension we have

o << O. The output is produced by the Decoder: x̂ = ψ(z). Putting it all together, we

have:

x̂ = (ψ ○φ)(x)
In our case, we will have the same dimensions for the input x and the output x̂.

In the training procedure, we first produce a rendered image of the object with some

random rotation on black background; we call it I1. A random background is added, and

further augmentations are done on this image. Let us say faugm is the function respon-

sible for these operations. The new image I2 = faugm(I1) is then fed as the input to the

Autoencoder. The training objective is to reconstruct the input I1 after passing through

the low dimensional bottleneck, where the loss is the sum over the pixel-wise L2 dis-

tance. Here φ and ψ are neural networks that are being trained.

After training, we create a codebook to determine the rotation of the object. The code-

90

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

Figure 5.5: The Autoencoder way to do pose estimation. After training the Autoencoder

there is an additional offline stage to create the codebook, which is visible at the top.

Equidistant viewpoints are sampled (typically a 5° difference). The object of interest is

then rendered on a black background without further augmentations. Now, each of these

rendered poses is fed through the encoder to generate multiple latent representations

(z1, . . . ,zn). This so-generated matrix is now saved with the corresponding rotations and

referred to as the codebook. During the online stage displayed at the bottom, an object

detector (here SSD) is used to detect an object and produce a bounding box. The image

within the bounding box is then cropped and used as the input to the encoder of the

Autoencoder. Again a latent representation is produced, and a knn-search finds then the

most similar representation in the codebook via cosine similarity. Credit: Sundermeyer

et al. (2020).

book is the set of all latent representations of the discretized 3D rotations that cover the

whole SO(3).

At test time, the image crops from the set D are fed into the encoder. The resulting la-

tent representation ztest is then compared with all the latent representations (zi) from the

codebook via a k-NN search, with the similarity function as:

cosi =
ziztest∣∣zi∣∣ ∣∣ztest∣∣ . (5.1)

We then choose the rotations with the highest cosine similarities. For a detailed illustra-

tion see figure 5.6.

5.2.3 Selecting the Best Pose Estimates

In cluttered scenes, we have pose estimations of several hundred objects. These will be

used for the picking task, and as the robot will only pick one object at a time, we are

91

Chapter 5 Pose Estimation with Augmented Autoencoders

Figure 5.6: The architecture of the autoencoder. The autoencoder is trained to map the

augmented images to the original image. On the left, there are the two different types of

training data.

only interested in the k-top pose estimates, and the question arises, how to select the k-

best pose estimates. While one can sort the pose estimates regarding to the scores given

by Mask R-CNN, or by the highest cosine similarities (5.1), we define a new selecting

method that compares the depth of the original image with the depth of the rendered

image.

Let Ai
1

be the predicted segmentation mask of object i.

Given a predicted 6D pose (t̄, R̄), we render the depth image Ω̄ and we define the set of

pixels Ai
2
∶= {(p,q) ∶ ∣Ω(p,q)−Ω̄(p,q)∣ <m}, for some margin m and where Ω represents

the real depth image.

Ai
3

is the segmentation mask of the rendered image.

Ai ∶= Ai
1
∩Ai

2
∩Ai

3
. For each pose estimate we calculate the depth error as follows:

ei = ∑
(p,q)∈Ai

∣Ω(p,q)− Ω̄(p,q)∣ (5.2)

In the next section, we compare the different approaches.

5.2.4 Experimental Results

Experiments on Object Detection

We fine-tuned a pretrained Mask R-CNN with a ResNet-50 backbone for 15 epochs with

an initial learning rate of 0.001 and a mini-batch size of 4 images. The learning rate was

92

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

Object dataset AP50∶95(%) AP50(%) ARmax=100(%)

Object 1
naive 9.3 12.5 9.6

realistic 66.8 82.8 80.3

Object 2
naive 0.9 1.0 0.1

realistic 50.4 68.7 59.2

Table 5.1: Object detection results after training Mask R-CNN on different synthetic

datasets

reduced by a factor of 10 at epochs 3, 6, 9 and 12. Stochastic gradient descent (SGD)

with momentum (0.9) and weight decay (0.0005) was used for optimization. Our work is

based on the torchvision implementation of Mask R-CNN that can be found in (Marcel

and Rodriguez (2010)). In Table. 5.1, the accuracies of object detection in terms of AP50

(the average precision with IoU thresholded at 0.50), AP50∶95 and ARmax=100 (the average

recall with 100 detections per image) are tabulated. While training on the naive dataset

does not generalize well to our heavily cluttered real scenarios, Mask R-CNN trained on

the realistic dataset considerably boosts the performance.

Experiments on Pose Estimation

To this goal, we trained the autoencoder with a latent space size of 128. We chose the L2

loss function, a learning rate of 0.0001 and used the Adam optimizer with a batch size

of 32 and trained it for 40K iterations. The pose error metrics used for evaluation are the

Visible Surface Discrepancy (VSD), the Maximum Symmetry-aware Surface Distance

(MSSD) and the Maximum Symmetry-aware Projection Distance (MSPD), that are be-

ing used in the BOP2020 challenge (Hodaň et al. (2020)). An estimated pose is consid-

ered as correct w.r.t. the pose-error function e if e < θe, where e ∈ {eVSD,eMSSD,eMSPD}
and θe is the threshold of correctness. We used the same values for θe as in Hodaň et al.

(2020) to calculate the average recall rates ARVSD , ARMSSD and ARMSPD. The perfor-

mance of the method on a dataset is measured by the Average Recall AR = (ARVSD +

ARMSSD+ARMSPD)/3.

In Table 5.2, we compare the results of the different methods on selecting the best five

pose estimates. In these experiments, we did not make use of ICP, but we took the depth

measurement at the center of the object. It shows that sorting according to the vector (ei)
in (5.2), results in superior performance compared to other approaches.

The experiments in Table 5.3 are conducted using the selection method defined by the

vector (ei). We compare the results, when testing with only RGB information, using the

depth measurement at the object center and the improvement through ICP refinement.

While ICP refinement increases the performance slightly, the refinement of several hun-

dred poses per image takes time, making it impractical for the usage in real-time settings.

The experiments to reduce the noise in cluttered scenes, like feeding only the pixels vis-

93

Chapter 5 Pose Estimation with Augmented Autoencoders

Object
sorted by Mask sorted by max sorted by depth

R-CNN scores cosine sim. differences (ei)
Object 1 0.509 0.394 0.812

Object 2 0.533 0.449 0.633

Table 5.2: Average recall of top 5 pose estimates sorted by three different approaches for

selecting the best estimates

Object
RGB RGB + depth

+ ICP normal mult.-obj. mask

Object 1 0.691 0.829 0.812 0.790 0.798

Object 2 0.348 0.703 0.633 0.627 0.614

time (s) 0.699 18.39 0.697

Table 5.3: Average recall of top 5 pose estimates using ICP and depth measurements and

combinations.

ible in the mask to the autoencoder, or training the autoencoder with multiple objects,

have shown, against our intuition, a worse performance than the normal pipeline. Note

how incorporating the depth has improved the accuracy.

5.2.5 Conclusion

In this work, we investigated the task of bin picking from piles of crowded, small-sized

and identical objects. In particular, we explored the main required vision modules for this

challenging problem, i.e. object detection and pose estimation. For each task, we em-

ployed convolutional neural networks, which are trained on two types of generated syn-

thetic datasets. Experimental results on synthetic and real images show that the proposed

comprehensive framework, from dataset generation to pose estimation, is promising for

industrial bin picking.

5.2.6 Further Qualitative Results

We provide qualitative results on real scenes captured with a Microsoft Kinect Azure

Camera. The images were taken at a height of 30cm above the bin. We visualize all the

steps from detection to pose selection. The images were taken on different day times.

Therefore the different light conditions affect the colour of the images.

While Mask R-CNN, trained on the naive dataset, detects some objects in a less clut-

tered scene, its performance on a cluttered bin is not sufficient. On the other hand, the

performance after training on the realistic synthetic data yields promising results even on

the cluttered scenes.

94

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

The pose estimates in the less cluttered scenes look overall good, whereas, in the clut-

tered scenes, some are incorrect. However, we can see that all selection methods are able

to choose visually correct appearing poses. If we take a closer look, the pose estimates

selected according to the cosine similarity values in the images 5.7h and 5.9h have both

an incorrect pose for the respective upper objects. Also, for the image 5.9g, the lowest

pose estimate has a different angle than the original object. In these cases, the selec-

tion according to the vector (ei), could determine those poses as incorrect and they were

therefore not selected.

95

Chapter 5 Pose Estimation with Augmented Autoencoders

(a) A sample image of a cluttered

bin captured by a Microsoft Azure

Kinect RGB-D camera.

(b) Detection results of Mask R-

CNN trained on the realistic syn-

thetic data.

(c) Detection results of Mask R-

CNN trained on the realistic syn-

thetic data, limited to 30 detections.

(d) Detection results of Mask R-

CNN trained on the naive synthetic

data - no detected objects.

(e) Pose estimation results for all

the detected objects.

(f) Selecting the best 5 poses ac-

cording to the vector (ei).

(g) Selecting the best 5 pose es-

timates according to the scores of

Mask R-CNN.

(h) Selecting the best 5 pose esti-

mates according to the cosine sim-

ilarity values.

Figure 5.7: Qualitative results in a heavily cluttered bin for object 1.
96

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

(a) A sample image of a less clut-

tered bin captured by a Microsoft

Azure Kinect RGB-D camera.

(b) Detection results of Mask R-

CNN trained on the realistic syn-

thetic data.

(c) Detection results of Mask R-

CNN trained on the naive synthetic

data.

(d) Pose estimation results for all

the detected objects.
(e) Selecting the best 5 poses ac-

cording to the vector (ei).

(f) Selecting the best 5 pose esti-

mates according to the scores of

Mask R-CNN.

(g) Selecting the best 5 pose esti-

mates according to the cosine sim-

ilarity values.

Figure 5.8: Qualitative results in a less cluttered bin for object 1.
97

Chapter 5 Pose Estimation with Augmented Autoencoders

(a) A sample image of a cluttered

bin captured by a Microsoft Azure

Kinect RGB-D camera.

(b) Detection results of Mask R-

CNN trained on the realistic syn-

thetic data.

(c) Detection results of Mask R-

CNN trained on the realistic syn-

thetic data, limited to 30 detections.

(d) Detection results of Mask R-

CNN trained on the naive synthetic

data - no detected objects.

(e) Pose estimation results for all

the detected objects.
(f) Selecting the best 5 poses ac-

cording to the vector (ei).

(g) Selecting the best 5 pose es-

timates according to the scores of

Mask R-CNN.

(h) Selecting the best 5 pose esti-

mates according to the cosine sim-

ilarity values.

Figure 5.9: Qualitative results in a heavily cluttered bin for object 2.98

5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking

(a) A sample image of a less clut-

tered bin captured by a Microsoft

Azure Kinect RGB-D camera.

(b) Detection results of Mask R-

CNN trained on the realistic syn-

thetic data.

(c) Detection results of Mask R-

CNN trained on the naive synthetic

data.

(d) Pose estimation results for all

the detected objects.

(e) Selecting the best 5 poses ac-

cording to the vector (ei).

(f) Selecting the best 5 pose esti-

mates according to the scores of

Mask R-CNN.

(g) Selecting the best 5 pose esti-

mates according to the cosine sim-

ilarity values.

Figure 5.10: Qualitative results in a less cluttered bin for object 2. 99

Chapter 6

Prediciting the Probability Distribution

on SO(3) Using Implicit Neural

Representations

Pose estimation of objects in images is an essential problem in virtual and augmented re-

ality and robotics. Traditional solutions use depth cameras, which can be expensive, and

working solutions require long processing times. In this chapter, we present our work

HyperPosePDF in Höfer et al. (2023), which focuses on the more difficult task when

only RGB information is available. To this end, we predict not only the pose of an object

but the complete probability density function (pdf) on the rotation manifold. This is the

most general way to approach the pose estimation problem and is particularly useful in

analysing object symmetries. In this work, we leverage implicit neural representations

for the task of pose estimation and show that hypernetworks can be used to predict the

rotational pdf. Furthermore, we analyse the Fourier embedding on SO(3) and evaluate

the effectiveness of an initial Fourier embedding that proved successful. Our Hyper-

PosePDF outperforms the current state of the art approaches on the SYMSOL (Murphy

et al. (2021)) dataset.

6.1 Hypernetworks

Hypernetworks are a type of neural network architecture used in deep learning that gen-

erate the weights of another neural network, known as the ”target network”. In other

words, a hypernetwork takes as input some representation of the desired output network

and outputs its weights. Hypernetworks have become very common in deep learning

and date back as far as the beginning of the 1990s in the context of meta-learning and

self-referential networks (Schmidhuber (1992b)). Several works explored the use of hy-

pernetworks for RNNs, e.g. Schmidhuber (1992a) use fast weights and two feed-forward

networks to learn to deal with temporal sequences in this alternative gradient-based sys-

tem: By producing context-dependent weight changes, the first network will be able to

produce very rapid weight changes for the second network. In Ha et al. (2016) they

look at how hypernetworks can make deep convolutional networks and long recurrent

101

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

networks more efficient by incorporating weight-sharing across layers. Their main re-

sult is that hypernetworks can generate non-shared weights for LSTMs and achieve near

state-of-the-art results on a variety of sequence modelling tasks. Further works that use

hypernetworks for RNNs can be found in Gomez and Schmidhuber (2005),Sutskever

et al. (2011), Ba et al. (2016) and Goyal et al. (2019). Of course, it is also possible to use

hypernetworks for CNNs, which is done by Denil et al. (2013), where they measure the

percentage of weights that can be predicted without losing accuracy. In their work, they

show that they can predict more than 95 % of the weights and only learn a small number

of weights without an accuracy drop. Also, in the work by Klein et al. (2015), they learn

a function that maps the input to filters, which are used for the dynamic convolutional

layers. They evaluate their method for the task of short-range weather prediction. Fur-

ther works on the usage of hypernetworks for CNNs can be found in Jia et al. (2016),

Bertinetto et al. (2016), Perez et al. (2018), Kang et al. (2017) and Savarese and Maire

(2019). Hypernetworks are also used for reinforcement learning (Dwaracherla et al.

(2020); Huang et al. (2021); Sarafian et al. (2021)) and architecture search algorithms,

which incorporated forms of hypernetworks early on (Stanley et al. (2009); Koutnik

et al. (2010); Brock et al. (2017); Zhang et al. (2018)). Furthermore, the concept of

self-attention can be viewed as a form of adaptive layers (Schlag et al. (2021)). Finally,

hypernetworks have also been introduced to the field of implicit neural representations

(Sitzmann et al. (2020a)). However, the use of hypernetworks has mainly been explored

for 2D and 3D image and scene generation (Mescheder et al. (2019); Littwin and Wolf

(2019); Sitzmann et al. (2019); Skorokhodov et al. (2021); Wang et al. (2021b)). We

want to apply a hypernetwork to implicit neural representations associated with the task

of predicting the probability distribution on the rotation manifold.

6.2 Introduction

Pose estimation has gained an increasing interest in the last years. In many robotic appli-

cations, such as object grasping, tracking and occlusion handling, the robotic perception

should be able to accurately estimate 3D poses to perform a valid grasp. Traditional ap-

proaches assume present depth information and estimate the pose by relying on local in-

variant features (Abbeloos and Goedemé (2016); Liu et al. (2018)) or template-matching

(Hinterstoisser et al. (2011)). These algorithms rely on expensive evaluations of multi-

ple pose hypotheses, rendering them inefficient. Furthermore, missing textures on many

objects hamper their performance.

In our work, we are going to make use of a hypernetwork to predict the weights of an

implicit neural representation. This implicit neural representation is associated with the

task of representing a probability distribution on SO(3). We then aim to fully utilize the

theoretical findings on Fourier embeddings for pose estimation, which have been found

to be crucial for the performance of implicit neural representations. We will introduce

our approach in the following.

102

6.3 Method

Figure 6.1: Overview of the network architecture. An image x is fed through a vision

network that predicts a feature vector. This feature vector is then used as the weights of

an MLP. The MLP acts on the rotation manifold and takes as input the Fourier embedded

rotation γ(R) and outputs its probability of being the underlying rotation in the image.

6.3 Method

Given an image x, our goal is to predict a probability density function

p(⋅∣x) ∶ SO(3)→ [0,1] (6.1)

that incorporates not only a single rotation but the general information on the distribu-

tion of the rotation of an object in a given image. This is especially helpful in finding

symmetry patterns of objects.

We give a general overview of our approach in Figure 6.1. The input image is first

fed through a vision network to output a feature vector. This feature vector is then used

as the weights of an MLP. The MLP then represents the probability density function on

SO(3) by taking a Fourier-mapped rotation SO(3) ∈R↦ γ(R) as input, and outputting the

corresponding probability p(R∣x) ∈ [0,1]. With this formulation, it is possible to make

single pose predictions by taking the mode of the pdf or to predict the full distribution to

observe patterns of symmetries.

6.3.1 Fourier Transform on the Rotation Manifold

For an integrable function of the form f ∶R→C the Fourier transform of f is defined as

F f (l) =∫
R

f (x)e−ilx dx. (6.2)

103

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

The Fourier series is usually applied to periodic, and bounded functions, i.e. of the form

f ∶ [0,2π)→C. Instead of defining f on the range [0,2π), we can also find a mapping

between α ∈ [0,2π) and the rotation matrices Rα ∈ SO(2), where α is the rotation angle.

This allows us to use the Fourier transform for complex valued functions defined on the

rotation group SO(2). This indeed suggests that the Fourier transform can be generalized

to work with various other groups, specifically SO(3).

In fact, this is possible by introducing the Wigner-D matrices, which are from a tech-

nical point of view the irreducible representations of the rotation group SO(3) (Ping

et al. (2002)). Leveraging this observation, it is possible to define the Fourier series for a

function

f ∶ SO(3)Ð→R. (6.3)

By using the Wigner-D functions D
m,n

l
, which are an orthogonal basis for the rotation

group SO(3), the Fourier series is given as

f =
L

∑
l=1

l

∑
m,n=−l

fl,m,nD
m,n

l
(6.4)

with the integer L denoting the degree of freedom. It is possible to rewrite this into

an ordinary Fourier transform by expanding the Wigner-D function to a Fourier sum.

In literature, this derivation is usually given by using the Euler angles representation

R(α,β ,γ) of the respective rotation. Following section 2.3 it turns out that

f (R(α,β ,γ))) = L

∑
l,m,n=−L

h
m,n

l
e
−i((m,n,l)(R(α,β ,γ))

, (6.5)

where the derivation of the Fourier coefficients h
m,n

l
can be found in the remainder of

section 2.3. For ease of writing, we define i ∶= (m,n, l). Instead of writing h
m,n

l
we write

hn1,n2,n3
= hn. If we define n = (n1,n2,n3) = (l,m,n) and x = (α,β ,γ), we can use Lemma

3.3.1 with dimension 3 to find another parameterization of this function, namely

f (R) = L

∑
i=−L,m≥0

ai cos(2πiR)+bi sin(2πiR), (6.6)

104

6.3 Method

where

a0 = h0,

ai =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2,3} ∶ i1 = i j−1 = 0∧ i j < 0

2Re(hi) otherwise,

bi =

⎧⎪⎪⎨⎪⎪⎩
0 ∃ j ∈ {2,3} ∶ i1 = i j−1 = 0∧ i j < 0

−2Im(hi) otherwise.

(6.7)

The main idea is to make the coefficients a and b trainable by letting them act as weights

of a neural network on an initial Fourier embedding. In chapter 3, we showed that for

problems of dimension > 2, as in our case, memory problems arise on the current modern

Nvidia RTX 2080Ti GPU, if all coefficients are jointly approximated, as the size of the

embedding simply gets too large. This introduces the need to find appropriate Fourier

embeddings that do not affect the performance and memory consumption of the method.

The design choices of the embedding are discussed in the next section.

6.3.2 Fourier Embedding

Recall the embeddings that we introduced in chapter 3. We are going to compare the

following three embeddings on a flattened rotation R ∈ SO(3), which we call r in the

following.

• The positional encoding is defined as:

γ(r) = [. . . ,cos(π2
j

m r),sin(π2
j

m r), . . .]
for j = 0, . . . ,m− 1 where m ∈ N, using a log-linear spacing for each dimension

(Mildenhall et al. (2020)).

• The Gaussian embedding is defined as:

γ(r) = [cos(2πBr),sin(2πBr)], where B ∈ Rm×d is sampled from a normal dis-

tribution N (0,σ2), while σ is the hyperparameter to be optimized Tancik et al.

(2020).

• The sinusoidal network is defined as: Instead of using an initial Fourier encoding,

it is also possible to use a sinusoidal network. Contrary to classical MLPs, it

consists of periodic activation functions. It has been shown that an additional

initial sinusoidal layer acts as a learnable Fourier embedding layer, achieving a

similar or better performance (see chapter 3).

105

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

6.4 Experiments

We conduct our experiments on the Symsol I, Symsol II and Pascal3D+ datasets. While

we use the common Acc30° metric for Pascal3D+, we evaluate the SYMSOL datasets

using two metrics: log likelihood and spread, which we will introduce in the following.

6.4.1 Datasets

SYMSOL I

The Symsol I dataset is publicly available as part of the Tensorflow datasets. This dataset

is especially interesting as it consists of 5 objects with multiple symmetries, namely:

cone, cylinder, tetrahedron, cube and icosahedron. Here, the tetrahedron, cube and

icosahedron have countably many symmetries, i.e. 12, 24 and 60, respectively. As the

cone and cylinder both have continuous symmetries, their annotations are made discrete

with an equidistant 1-degree spacing. Each RGB image is of size 224×224. The associ-

ated labels per image are its class and the ground truth rotation, including all equivalent

rotations.

SYMSOL II

The Symsol II dataset is also publicly available as part of the Tensorflow datasets. This

dataset consists of three objects: a tetrahedron (tetX) with a marked red area, a cylin-

der (cylO) with a marked off-center point and a sphere (sphX) with an X and a marked

point. Depending on the visibility, these markings affect the number of symmetries sig-

nificantly. For example, the sphere without visible markings would have all orientations

with the marks on the back possible, but if both markings are visible, the orientation

would be unique.

Pascal3D+

To analyze whether our approach is applicable to single pose estimation, we conduct

additional experiments on a subset of the Pascal3D+ dataset Xiang et al. (2014). It

consists of a subset of the object categories from the well-known PASCAL VOC dataset

Everingham et al. (2010b), where 3D annotations are added. Furthermore, the dataset

has been enlarged by adding more images from the ImageNet dataset Deng et al. (2009).

The annotation of an object consists of the elevation, azimuth, and distance of the camera

position in 3D. With at least 3000 instances per category, it is a challenging dataset of

real-world objects, like planes, trains, bicycles and more. The choice of a subset is

due to the unavailability of an official data loader and existing invalid bounding box

annotations in the dataset that we handled individually, e.g. manually adding the missing

annotations or skipping elements with incorrect annotations. This leads us to exclude

quantitative results of the objects where we can not guarantee alignment with publicly

106

6.4 Experiments

(a) If the red marker is visible, the rotation of the cylinder is unique.

(b) Rotation around the x-axis

with the marker being moved

to the bottom.

(c) Rotation around the y-axis

with the marker being pushed

to the front.

(d) Rotation around the z-axis

with the marker being moved

to the bottom.

(e) Rotation around the x-axis

with the marker being moved

to the top.

(f) Rotation around the y-axis

with the marker being pushed

to the back.

(g) Rotation around the x-axis

with the marker being moved

to the left.

(h) As the marker is not visible,

a continuous symmetry can be

seen. Only half of the symme-

try axis of a normal cylinder is

displayed as the model learned

to nullify the subspace of ro-

tations for which the marker

would be visible.

(i) The marker is not visible,

therefore our model outputs a

continuous symmetry axis with

a gap in between represent-

ing the area, where the marker

would be visible.

(j) The movement around the

z-axis has the effect of main-

taining the tilt colour. As

in this scenario the marker

was always visible, only one

unique rotation is present.

Figure 6.2: Visualization of results on the cylO object from the SYMSOL II dataset.

Elements of SO(3) with a positive probability are visualized as points on the grid. In-

tuitively, we can consider each point on the grid as the direction of a canonical z-axis,

and the color indicates the angle of inclination around this axis. Note that the hollow

circle indicates the ground truth pose, while the filled area depicts the predicted poses.

Note that in the case of a missing red dot, the ground truth pose may be ambiguous and

we plot only one possible ground truth pose. The visualization tool was introduced by

Murphy et al. (2021).

107

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

(a) A tv faced towards the camera while a

movie is playing.

(b) A sofa in beige with two pillows placed on

it.

(c) A bottle with yellow plastic wrapped

around it.
(d) A red bus with the front faced to the right.

Figure 6.3: Results on the Pascal3D+ dataset. As all objects in these images are standing

upright and are faced towards us, the rotations are closely related. With the presence of

texture, symmetries are not existent and hence, we predict only a single rotation for the

objects.

available results on this dataset. Still, we show qualitative results in the end of this

section. For the train and test splits, we follow the split provided by Liao et al. (2019).

6.4.2 Evaluation Metrics

We assume the ground truth labels to be samples from an underlying but unknown dis-

tribution, which contains all information about symmetries, noise and ambiguities. As

the output of our model is also a distribution, it is standard to compare the two distribu-

tions using maximum likelihood. More formally: Our test set consists of images x ∈ I,

where each x has annotated poses Rx
= (Rx

1
, . . . ,Rx

k
) for some k ∈N and k > 1 if there exist

symmetries. We then calculate the averaged log likelihood as follows

LL =
1∣I∣∑x∈I

1∣Rx∣ ∑R∈Rx

log(p(R∣x)).
Another way of comparing two distributions is to calculate the spread Spr. It assumes

a set of equivalent rotation annotations to be given. It uses the geodesic distance

d ∶ SO(3)×SO(3)→R+(R1,R2)↦ ∣∣ logR1RT
2 ∣∣F

using the Frobenius norm ∣∣ ⋅ ∣∣F . Only the closest ground truth annotation is then taken

108

6.4 Experiments

SYMSOL I (log likelihood ↑)

cone cyl. tet. cube ico. avg.

Deng et al. (2022) 0.16 -0.95 0.27 -4.44 -2.45 -1.48

Gilitschenski et al. (2019) 3.84 0.88 -2.29 -2.29 -2.29 -0.43

Prokudin et al. (2018) -1.87 -3.34 -1.28 -1.86 -0.50 -2.39

Murphy et al. (2021) 4.45 4.26 5.70 4.81 1.28 4.10

HyperPosePDF (ours) 5.74 4.73 7.04 6.77 5.10 5.78

Table 6.1: A model was jointly trained for all of the SYMSOL I classes. We compare

our results against multimodal mixture models (Deng et al. (2022); Gilitschenski et al.

(2019); Prokudin et al. (2018)) and Implicit-PDF by Murphy et al. (2021) which we

all outperform by a significant amount in the log likelihood metric. A value of -2.29

represents the minimal information of a uniform distribution on SO(3).

SYMSOL I (Spread ↓)

cone cyl. tet. cube ico. avg.

Deng et al. (2022) 10.1 15.2 16.7 40.7 28.5 22.2

Murphy et al. (2021) 1.4 1.4 4.6 4.0 8.4 4.0

HyperPosePDF (ours) 0.6 0.5 3.3 2.2 3.2 1.97

Table 6.2: Similar to Table 6.1 we train a joint model for all objects in the SYMSOL I

dataset and compare it to the method of Deng et al. (2022) and Implicit-PDF by Murphy

et al. (2021). For the cone and cylinder, the spread of the probability prediction away

from the rotational continuous symmetry has a value of less than one degree.

into account

Spr = ER∼p(R∣x)[min
R′∈Rx

d(R,R′)].

6.4.3 Experiments on the SYMSOL I Dataset

Our implementation specifics are as follows. For our vision module, we use a pretrained

ResNet-50 backbone. We predict the weights of a one-layer network with a width of 256.

The number of coefficients used for the positional encoding is set to 4. A learning rate

of 1e−4 is used for the first 1000 iterations; then, a cosine decay is applied. Using the

Adam optimizer, we evaluate our model after 200k iterations using a batch size of 16.

The model jointly learns all object classes of the SYMSOL I dataset. Table 6.1 shows

the log-likelihood results. In this metric, we can demonstrate superior results to compet-

109

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

SYMSOL I (log likelihood ↑)

cone cyl. tet. cube ico. avg.

Positional Encoding 5.74 4.73 7.04 6.77 5.10 5.78

Gaussian encoding 5.78 5.05 7.16 6.80 5.48 6.05

Siren encoding 5.66 4.71 8.06 7.34 4.01 5.96

Table 6.3: We evaluate the effect of an initial Fourier embedding being applied to our

network. In this table we compare the effect of positional encoding (Mildenhall et al.

(2020)) vs. Gaussian encoding (Tancik et al. (2020)) vs. a learnable sinusoidal layer

(Sitzmann et al. (2020a)). While the positional encoding is the most spread embedding,

it is possible to increase the performance by changing to a Gaussian embedding or a

learnable sinusoidal layer. For the experiments reported in the other tables, we use a

positional encoding.

ing methods on all objects individually and on average. This is particularly visible for the

objects cone, tetrahedron, cube and icosahedron. We were able to rerun the experiments

of the competing methods and receive numbers close to their official numbers. Still, we

show their reported values in our table. Note that we used the positional encoding in this

experiment. We can further improve the performance by switching to Gaussian or Siren

encodings. Table 6.2 shows the spread results. We compare against reported values from

Deng et al. (2022) and Murphy et al. (2021). The metric values are in degrees and show

how well the method is able to capture the ground truths. For the cone and cylinder, the

spread of the probability prediction away from the continuous rotational symmetry has a

value of less than one degree. The spread experiments have only been conducted on the

SYMSOL I dataset as it is the only one with full symmetry annotations. If only a single

ground truth is known, this metric would be misleading as it penalizes correct predictions

if no corresponding annotation is available.

We compare the different Fourier embeddings as introduced in section 3.2. We found a

scale of 2 to perform best for the Gaussian embedding. Likewise, the performance of the

sinusoidal embedding heavily depends on the chosen bias, which we found to perform

best with a value of 1. Table 6.3 shows that, in general, an embedding is helpful, and with

proper parameters, it is possible for the Gaussian and Siren embedding to outperform the

positional encoding.

6.4.4 Experiments on the SYMSOL II Dataset

We took the same implementation specifics as for the SYMSOL I dataset. Following

Murphy et al. (2021), we trained a network for each object separately. Table 6.4 shows

that we are able to achieve promising results on this challenging dataset. In particular,

we show in the experiments that our method is able to represent distributions that cannot

110

6.4 Experiments

SYMSOL II (log likelihood ↑)

sphX cylO tetX avg.

Deng et al. (2022) 1.12 2.99 3.61 2.57

Gilitschenski et al. (2019) 3.32 4.88 2.90 3.70

Prokudin et al. (2018) 4.19 4.16 1.48 0.48

Murphy et al. (2021) 7.30 6.91 8.49 7.57

HyperPosePDF (Ours) 7.73 7.12 8.53 7.72

Table 6.4: For this experiment, we trained a model for each object of the SYMSOL II

dataset separately and compare our results against multimodal mixture models (Deng

et al. (2022); Gilitschenski et al. (2019); Prokudin et al. (2018)) and Implicit-PDF by

Murphy et al. (2021). We are able to achieve better results than our competitors on all

objects. These experiments were especially challenging due to the differing numbers of

symmetries that are dependant on the visibility of the markers on the objects.

be well approximated by mixture-based models. That is mainly because of the changing

amount of present symmetries due to the visibility of the given markings.

In general, it is not clear how to visualize a pose. Reporting the values of a 3×3 rota-

tion matrix will not help the reader to check whether the predicted pose is correct or not.

Just recently in Murphy et al. (2021) a new method for visualizing poses was introduced.

With the help of Hopf fibrations, they project circles of poses from SO(3) to the 2-sphere

and then use the color to indicate the location on the circle. Because of the projection

to a lower dimension, limitations do exist. Still, we are happy to use the visualization

tool to demonstrate the performance of our model. Figure 6.5 shows qualitative results

of a model trained on SYMSOL II. We plot the ground truth and predicted poses of cylO

object. The plots illustrate that the model has successfully learned the pose distribution

of this object. When the red dot is visible, the model successfully collapses the distribu-

tion to predict a small range of poses. When it is not visible, the model outputs a smooth

distribution of all possible poses given how the object is visible in the figure.

6.4.5 Experiments on the Pascal3D+ Dataset

Our implementation specifics are as follows. As the complexity of the images in the

Pascal3D+ dataset is higher than in the SYMSOL dataset, we choose a larger pretrained

ResNet-101 backbone for our vision module. We predict the weights of a one-layer

network with a width of 256. Using the Adam optimizer, we evaluate our model after

150k iterations using a batch size of 16. A learning rate of 1e−5 is used for the first 1000

iterations, and then a cosine decay is applied.

Table 6.5 shows our evaluations in the standard Acc30° metric and the median angular

error. While our method is specifically designed to account for present symmetries, the

111

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

PASCAL3D+ (Acc30° ↑)

bottle bus table sofa tv avg

Liao et al. (2019) 0.93 0.95 0.61 0.95 0.82 0.852

Mohlin et al. (2020) 0.94 0.95 0.62 0.85 0.84 0.840

Prokudin et al. (2018) 0.96 0.93 0.76 0.90 0.91 0.892

Tulsiani and Malik (2015) 0.93 0.98 0.62 0.82 0.80 0.830

Mahendran et al. (2018) 0.96 0.97 0.67 0.97 0.88 0.890

Murphy et al. (2021) 0.93 0.95 0.78 0.88 0.86 0.880

HyperPosePDF (Ours) 0.83 0.92 0.97 0.89 0.88 0.898

PASCAL3D+ (Median ↓)

bottle bus table sofa tv avg

Liao et al. (2019) 10.3 4.8 12.0 12.3 14.3 10.74

Mohlin et al. (2020) 7.8 3.3 12.5 13.8 11.7 9.82

Prokudin et al. (2018) 5.4 2.9 12.6 9.1 12.0 8.4

Tulsiani and Malik (2015) 12.9 5.8 15.2 13.7 15.4 12.6

Mahendran et al. (2018) 7.0 3.1 11.3 10.2 11.7 8.66

Murphy et al. (2021) 8.8 3.4 7.3 9.5 12.3 8.26

HyperPosePDF (Ours) 11.7 3.9 4.2 5.8 6.5 6.42

Table 6.5: Results on objects from the Pascal3D+ dataset. A single model was jointly

trained on all classes. We compare our results in the Acc30° and the median in degrees.

We are able to achieve similar or slightly better results than the competing methods.

table shows that we are also competitive in the task of single-pose prediction. In Liao

et al. (2019) the authors reported values that are incorrectly lowered by a factor of
√

2.

Hence we report the corrected values in our experiments. Visualizations can be found in

Figure 6.4, where we display four objects: a bottle, a sofa, a bus, and a tv monitor. With

the presence of textures, the pose predictions are unique.

6.5 Conclusion

Previous works demonstrated that hypernetworks can be used to predict implicit neu-

ral representations for the task of 2D and 3D shape reconstruction. To the best of our

knowledge, we are the first to show that hypernetworks are able to predict the weights

of an implicit neural representation associated with the task of pose estimation. Hy-

perPosePDF is able to predict a non-parametric distribution on the rotation manifold,

designed to incorporate the uncertainty of symmetry, noise and ambiguities. Addition-

ally, we could show that the commonly used Fourier embedding for INRs is also capable

112

6.5 Conclusion

of boosting the pose estimation results. Furthermore, we achieve superior performance

on the challenging SYMSOL datasets that consist of objects with varying symmetries.

Besides that, we are able to maintain comparable performance on single-pose estimation

evaluated on the Pascal3D+ dataset.

This work demonstrated promising results in pose estimation tasks. In future works,

it would be interesting to see how these insights generalize to new application domains,

such as spin detection in table tennis robots or visual-inertial odometry in flying robots.

113

Chapter 6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations

Figure 6.4: Further results on daily life images from the Pascal Voc dataset.

114

6.5 Conclusion

(a) No marking on the object, therefore our

model predicts a continous symmetry.
(b) Our model captures all 12 symmetries.

(c) The cube consists of 24 symmetries which

we are able to capture.

(d) The cylinder without marker has a continous

symmetry.

(e) The red marker is visible on the cylinder.

Hence, no symmetries are present.

(f) The cylinder without a marker has a continu-

ous symmetry.

Figure 6.5: Visualization of results on objects from the SYMSOL and SYMSOL II

datasets.

115

Chapter 7

Overall Conclusion

In this dissertation, several research areas in the field of computer vision were presented.

These ranged from object detection and segmentation to implicit neural representations,

meta learning and pose estimation. Overall, we presented two implicit methods for pose

estimation based on RGB data and one of them we embedded in a complete framework

from data generation to a pose filtering algorithm.

Beginning in Chapter 2, we concentrated on the introduction of the basics of Fourier

Theory and rotation representations. In this context, we started with the introduction of

rotation parameterizations as well as the subsequent discussion about their usability for

pose estimation. At the same time, Fourier Theory is a core element of implicit neural

representations, and is therefore also introduced here. As a conclusion of this chapter,

Fourier Theory was discussed on SO(3).

In Chapter 3 we first introduced the research field of implicit neural representations. In

this area neural networks are used to approximate complex functions. These are able to

parametrize discrete signal representations by a continuous function. In this chapter, we

addressed the tasks of image regression and the novel view synthesis task. We put a spe-

cial focus on an initial Fourier embedding, which is crucial for this task. Specifically, we

introduced an integer embedding that is equivalent to the Fourier series for a perceptron,

provided that the width of this layer is large enough. At the same time we could show

that a layer with a sine activation function is equivalent to a learnable Fourier embedding.

With these results, we were able to beat other well-known embeddings such as positional

and gaussian embedding. In addition, we introduced in this chapter a method to gradu-

ally improve an initially poorly chosen embedding by pruning unimportant elements of

the embedding and replacing them with new elements that have a positive impact on the

standard deviation of the embedding matrix.

The foundations for object localization are laid in chapter 4. Starting with an evalua-

tion of the framerate of state of the art object detectors on a GPU/CPU and mobile GPU,

we continue with the introduction of object segmentation. In this sense, we presented

FourierMask, a method for instance segmentation that builds on Mask R-CNN and uses

implicit neural representations in a special way to improve the mask at the boundary.

The idea was the following, first a coarse mask is determined that in principle matches

the baseline Mask R-CNN. It is typically able to make out the object, but usually does

117

Chapter 7 Overall Conclusion

not hit the exact contours of details, like the exact segmentation of the hands or other

small details. Now, however, a more accurate prediction is made at the edge pixels of

the segmentation mask, where the confidence score is close to 0.5. For this purpose, an

implicit neural representation takes on the task of processing these pixels using a Fourier

representation to ultimately determine whether these pixels belong to the object or not.

Chapter 5 now introduced the task of pose estimation. After a short overview of tech-

niques and problems we introduced a framework for pose estimation in highly cluttered

bin picking scenarios. Here, we started by generating synthetic data on which we could

train our detectors. Our pipeline consisted of Mask R-CNN for object localization, fol-

lowed by an implicit pose estimator, which we called augmented autoencoder. This was

trained to isolate objects from their background on RGB data and generate latent code.

This latent code was then compared to previously generated latent codes that implicitly

represented a discrete subset of SO(3). The rotation with the most similar latent code

was then taken as the estimate. Since in our case there were several hundred objects in a

cluster, we introduced a method for filtering the best estimates based on depth data.

Finally, in Chapter 6, we introduced HyperPosePDF. Our network HyperPosePDF

worked as follows: we first used a vision network, which takes RGB images as input and

then determines weights for a second network. In other words, it takes on the function

of a hypernetwork. The second network is an implicit neural representation, which gets

Fourier mapped rotations as input and maps them to a probability. This gives a prob-

ability distribution on SO(3) for the pose of the given object, which allows to generate

multiple and even continuous pose hypotheses, particularly well suited for symmetric ob-

jects. Compared to the mixture based models, our method is more effective in capturing

uncertainties.

118

Abbreviations

AP Average Precision

AR Average Recall

CAD Computer-Aided Design

CNN Convolutional Neural Network

COCO Common Objects in Context

FCOS Fully Convolutional Object Detector

FF Fourier Features

FFT Fast Fourier Transform

FM FourierMask

FNN Fourier Neural Networks

GPU Graphics Processing Unit

ICP Iterative Closest Point

IoU Intersection over Union

INR Implicit Neural Representation

k-NN k-Nearest Neighbors

LSTM Long Short-Term Memory

mAP Mean Average Precision

MSPD Maximum Symmetry-aware Projection Distance

MSSD Maximum Symmetry-aware Surface Distance

NeRF Neural Radiance Fields

NN Neural Network

PDF Probability Density Function

PSNR Peak Signal-to-Noise Ratio

PT Progressive Training

R-CNN Region Based Convolutional Neural networks

ReLu Rectified Linear Unit

SIREN SInusoidal REpresentation Networks

SOTA State of the Art

SSD Single Shot Detector

SYMSOL Symmetric Solids

VSD Visual Surface Discrepancy

YOLACT You Only Look At CoefficienTs

YOLO You Only Look Once

119

Bibliography

Abbeloos, W. and Goedemé, T. (2016). Point pair feature based object detection for

random bin picking. In 2016 13th Conference on Computer and Robot Vision (CRV),

pages 432–439. IEEE.

Atzmon, M. and Lipman, Y. (2020). Sal: Sign agnostic learning of shapes from raw

data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2565–2574.

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C. (2016). Using fast weights

to attend to the recent past. Advances in neural information processing systems, 29.

Balntas, V., Doumanoglou, A., Sahin, C., Sock, J., Kouskouridas, R., and Kim, T.-K.

(2017). Pose guided rgbd feature learning for 3d object pose estimation. In Proceed-

ings of the IEEE international conference on computer vision, pages 3856–3864.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf: Speeded up robust features. In

European conference on computer vision, pages 404–417. Springer.

Benbarka & Höfer, N. . T., Zell, A., et al. (2022). Seeing implicit neural representations

as fourier series. In Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 2041–2050.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and Torr, P. H. (2016). Fully-

convolutional siamese networks for object tracking. In European conference on com-

puter vision, pages 850–865. Springer.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2017). Smash: one-shot model

architecture search through hypernetworks. arXiv preprint arXiv:1708.05344.

Chabra, R., Lenssen, J. E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., and Newcombe,

R. (2020). Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.

In European Conference on Computer Vision, pages 608–625. Springer.

Chen, Z. (2019). IM-NET: Learning implicit fields for generative shape modeling. Ph.D.

thesis, Applied Sciences: School of Computing Science.

Chen, Z. and Zhang, H. (2019). Learning implicit fields for generative shape model-

ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5939–5948.

121

Bibliography

Cheng, B., Girshick, R., Dollár, P., Berg, A. C., and Kirillov, A. (2021). Boundary IoU:

Improving object-centric image segmentation evaluation. In CVPR.

Chirikjian, G. S. (2000). Engineering applications of noncommutative harmonic analy-

sis: with emphasis on rotation and motion groups. CRC press.

Codebasics (2020). Image classification vs object detection vs image segmenta-

tion — deep learning tutorial 28. https://www.youtube.com/watch?v=

taC5pMCm70U.

Corona, E., Kundu, K., and Fidler, S. (2018). Pose estimation for objects with rotational

symmetry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 7215–7222. IEEE.

Deitmar, A. and Echterhoff, S. (2014). Principles of harmonic analysis. Springer.

Deng, B., Lewis, J. P., Jeruzalski, T., Pons-Moll, G., Hinton, G., Norouzi, M., and

Tagliasacchi, A. (2020a). Nasa neural articulated shape approximation. In European

Conference on Computer Vision, pages 612–628. Springer.

Deng, H., Bui, M., Navab, N., Guibas, L., Ilic, S., and Birdal, T. (2022). Deep bingham

networks: Dealing with uncertainty and ambiguity in pose estimation. International

Journal of Computer Vision, pages 1–28.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee.

Deng, X., Xiang, Y., Mousavian, A., et al. (2020b). Self-supervised 6d object pose es-

timation for robot manipulation. In 2020 IEEE International Conference on Robotics

and Automation (ICRA), pages 3665–3671. IEEE.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and De Freitas, N. (2013). Predicting

parameters in deep learning. Advances in neural information processing systems, 26.

Denninger, M., Sundermeyer, M., Winkelbauer, D., Zidan, Y., and Olefir, D. (2019).

Blenderproc. arXiv preprint arXiv:1911.01911.

Do, T.-T., Cai, M., Pham, T., and Reid, I. (2018). Deep-6dpose: Recovering 6d object

pose from a single rgb image. arXiv preprint arXiv:1802.10367.

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally:

Efficient and robust 3d object recognition. In 2010 IEEE computer society conference

on computer vision and pattern recognition, pages 998–1005. Ieee.

122

Bibliography

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen, Z., and Van Roy, B. (2020).

Hypermodels for exploration. arXiv preprint arXiv:2006.07464.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010a).

The pascal visual object classes (voc) challenge. International Journal of Computer

Vision, 88(2), 303–338.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010b).

The pascal visual object classes (voc) challenge. International journal of computer

vision, 88(2), 303–338.

Everingham, M., Eslami, S. M. A., and others. (2015). The pascal visual object classes

challenge: A retrospective. International Journal of Computer Vision, 111(1), 98–136.

Gallant, A. R. and White, H. (1988). There exists a neural network that does not make

avoidable mistakes. In ICNN, pages 657–664.

Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W. T., and Funkhouser, T. (2019).

Learning shape templates with structured implicit functions. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 7154–7164.

Genova, K., Cole, F., Sud, A., Sarna, A., and Funkhouser, T. (2020). Local deep implicit

functions for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4857–4866.

Gilitschenski, I., Sahoo, R., Schwarting, W., Amini, A., Karaman, S., and Rus, D. (2019).

Deep orientation uncertainty learning based on a bingham loss. In International Con-

ference on Learning Representations.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies

for accurate object detection and semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 580–587.

Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. (2007). Multi-view

stereo for community photo collections. In 2007 IEEE 11th International Conference

on Computer Vision, pages 1–8. IEEE.

Gomez, F. and Schmidhuber, J. (2005). Evolving modular fast-weight networks for

control. In International Conference on Artificial Neural Networks, pages 383–389.

Springer.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf,

B. (2019). Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893.

123

Bibliography

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR).

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of

the IEEE international conference on computer vision, pages 2961–2969.

Hemingway, E. G. and O’Reilly, O. M. (2018). Perspectives on euler angle singularities,

gimbal lock, and the orthogonality of applied forces and applied moments. Multibody

System Dynamics, 44(1), 31–56.

Henzler, P., Mitra, N. J., and Ritschel, T. (2020). Learning a neural 3d texture space from

2d exemplars. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8356–8364.

Hinterstoisser, S., Holzer, S., et al. (2011). Multimodal templates for real-time detection

of texture-less objects in heavily cluttered scenes. In 2011 international conference on

computer vision, pages 858–865. IEEE.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., and Navab,

N. (2012). Model based training, detection and pose estimation of texture-less 3d

objects in heavily cluttered scenes. In Asian conference on computer vision, pages

548–562. Springer.

Hodan, T., Haluza, P., et al. (2017). T-less: An rgb-d dataset for 6d pose estimation of

texture-less objects. In 2017 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 880–888. IEEE.

Hodaň, T., Sundermeyer, M., Drost, B., Labbé, Y., Brachmann, E., Michel, F., Rother,

C., and Matas, J. (2020). Bop challenge 2020 on 6d object localization. In European

Conference on Computer Vision, pages 577–594. Springer.

Höfer, T. and Zell, A. (2022). Automatic adjustment of fourier embedding parameteri-

zations. In 2022 27th International Conference on Pattern Recognition (ICPR), pages

7833–7840. IEEE.

Höfer, T., Shamsafar, F., Benbarka, N., and Zell, A. (2021). Object detection and

autoencoder-based 6d pose estimation for highly cluttered bin picking. In 2021 IEEE

International Conference on Image Processing (ICIP), pages 704–708. IEEE.

Höfer, T., Kiefer, B., and Zell, A. (2023). Hyperposepdf: Predicting the probability

distribution on so(3). In Proceedings of the IEEE/CVF Winter Conference on Appli-

cations of Computer Vision, pages 2041–2050.

124

Bibliography

Huang, Y., Xie, K., Bharadhwaj, H., and Shkurti, F. (2021). Continual model-based

reinforcement learning with hypernetworks. In 2021 IEEE International Conference

on Robotics and Automation (ICRA), pages 799–805. IEEE.

Huang, Z., Huang, L., Gong, Y., Huang, C., and Wang, X. (2019). Mask scoring r-cnn.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 6409–6418.

Jia, X., De Brabandere, B., Tuytelaars, T., and Gool, L. V. (2016). Dynamic filter net-

works. Advances in neural information processing systems, 29.

Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al. (2020).

Local implicit grid representations for 3d scenes. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 6001–6010.

Joffe, B., Walker, T., Gourdon, R., and Ahlin, K. (2019). Pose estimation and bin picking

for deformable products. IFAC-PapersOnLine, 52(30), 361–366.

Kang, D., Dhar, D., and Chan, A. (2017). Incorporating side information by adaptive

convolution. Advances in Neural Information Processing Systems, 30.

Kehl, W., Milletari, F., Tombari, F., Ilic, S., and Navab, N. (2016). Deep learning of local

rgb-d patches for 3d object detection and 6d pose estimation. In European conference

on computer vision, pages 205–220. Springer.

Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N. (2017). Ssd-6d: Making rgb-

based 3d detection and 6d pose estimation great again. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1521–1529.

Kirillov, A., Wu, Y., He, K., and Girshick, R. (2020). Pointrend: Image segmentation

as rendering. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 9799–9808.

Klein, B., Wolf, L., and Afek, Y. (2015). A dynamic convolutional layer for short range

weather prediction. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4840–4848.

Konishi, Y., Hanzawa, Y., Kawade, M., and Hashimoto, M. (2016). Fast 6d pose estima-

tion from a monocular image using hierarchical pose trees. In European Conference

on Computer Vision, pages 398–413. Springer.

Koutnik, J., Gomez, F., and Schmidhuber, J. (2010). Evolving neural networks in com-

pressed weight space. In Proceedings of the 12th annual conference on Genetic and

evolutionary computation, pages 619–626.

125

Bibliography

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). 2012 alexnet. Adv. Neural Inf.

Process. Syst, pages 1–9.

Kuo, W., Angelova, A., Malik, J., and Lin, T.-Y. (2019). Shapemask: Learning to seg-

ment novel objects by refining shape priors. In Proceedings of the IEEE/CVF interna-

tional conference on computer vision, pages 9207–9216.

Labbé, Y., Carpentier, J., Aubry, M., and Sivic, J. (2020). Cosypose: Consistent multi-

view multi-object 6d pose estimation. In European Conference on Computer Vision,

pages 574–591. Springer.

Lee, Y. and Park, J. (2020). Centermask: Real-time anchor-free instance segmentation. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 13906–13915.

Li, Z., Wang, G., and Ji, X. (2019). Cdpn: Coordinates-based disentangled pose network

for real-time rgb-based 6-dof object pose estimation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 7678–7687.

Liang, J., Homayounfar, N., Ma, W.-C., Xiong, Y., Hu, R., and Urtasun, R. (2020). Poly-

transform: Deep polygon transformer for instance segmentation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9131–

9140.

Liao, S., Gavves, E., and Snoek, C. G. (2019). Spherical regression: Learning

viewpoints, surface normals and 3d rotations on n-spheres. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9759–

9767.

Lin, C.-H., Ma, W.-C., Torralba, A., and Lucey, S. (2021). Barf: Bundle-adjusting

neural radiance fields. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 5741–5751.

Lin, T., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017a). Focal loss for dense object

detection. In Proceedings of the IEEE international conference on computer vision,

pages 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and

Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European

conference on computer vision, pages 740–755. Springer.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017b).

Feature pyramid networks for object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

126

Bibliography

Littwin, G. and Wolf, L. (2019). Deep meta functionals for shape representation. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

1824–1833.

Liu, D., Arai, S., Miao, J., et al. (2018). Point pair feature-based pose estimation with

multiple edge appearance models (ppf-meam) for robotic bin picking. Sensors, 18(8),

2719.

Liu, S. (2013). Fourier neural network for machine learning. In 2013 International

Conference on Machine Learning and Cybernetics, volume 1, pages 285–290. IEEE.

Liu, S., Saito, S., Chen, W., and Li, H. (2019). Learning to infer implicit surfaces without

3d supervision. Advances in Neural Information Processing Systems, 32, 8295–8306.

Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., and Cui, Z. (2020). Dist: Rendering

deep implicit signed distance function with differentiable sphere tracing. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

2019–2028.

Liu, W., Anguelov, D., Erhan, D., et al. (2016). Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2), 91–110.

Mahendran, S., Ali, H., and Vidal, R. (2018). A mixed classification-regression frame-

work for 3d pose estimation from 2d images. arXiv preprint arXiv:1805.03225.

Malan, D. (2004). Representation of how the axis and angle rotation representation can

be visualized. Public Domain.

Manhardt, F., Arroyo, D. M., Rupprecht, C., Busam, B., Birdal, T., Navab, N., and

Tombari, F. (2019). Explaining the ambiguity of object detection and 6d pose from

visual data. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 6841–6850.

Marcel, S. and Rodriguez, Y. (2010). Torchvision the machine-vision package of torch.

In Proceedings of the 18th ACM international conference on Multimedia, pages 1485–

1488.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Oc-

cupancy networks: Learning 3d reconstruction in function space. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4460–

4470.

127

Bibliography

Michalkiewicz, M., Pontes, J. K., Jack, D., Baktashmotlagh, M., and Eriksson, A. (2019).

Implicit surface representations as layers in neural networks. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 4743–4752.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng,

R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In

European Conference on Computer Vision, pages 405–421. Springer.

Mohlin, D., Sullivan, J., and Bianchi, G. (2020). Probabilistic orientation estimation

with matrix fisher distributions. Advances in Neural Information Processing Systems,

33, 4884–4893.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile and

accurate monocular slam system. IEEE transactions on robotics, 31(5), 1147–1163.

Murphy, K., Esteves, C., Jampani, V., Ramalingam, S., and Makadia, A. (2021). Implicit-

pdf: Non-parametric representation of probability distributions on the rotation mani-

fold. arXiv preprint arXiv:2106.05965.

Murray, R. M., Li, Z., and Sastry, S. S. (2017). A mathematical introduction to robotic

manipulation. CRC press.

Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A. (2019). Occupancy flow: 4d

reconstruction by learning particle dynamics. In International Conference on Com-

puter Vision.

Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A. (2020). Differentiable vol-

umetric rendering: Learning implicit 3d representations without 3d supervision. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 3504–3515.

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and Geiger, A. (2019). Tex-

ture fields: Learning texture representations in function space. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 4531–4540.

Oppenheim, A. V., Buck, J., Daniel, M., Willsky, A. S., Nawab, S. H., and Singer, A.

(1997). Signals & systems. Pearson Educación.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019a). Deepsdf:

Learning continuous signed distance functions for shape representation. In Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition, pages

165–174.

Park, K., Patten, T., and Vincze, M. (2019b). Pix2pose: Pixel-wise coordinate regression

of objects for 6d pose estimation. In Proceedings of the IEEE International Conference

on Computer Vision, pages 7668–7677.

128

Bibliography

Pashevich, A., Strudel, R., Kalevatykh, I., Laptev, I., and Schmid, C. (2019). Learning

to augment synthetic images for sim2real policy transfer. In 2019 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 2651–2657. IEEE.

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and Geiger, A. (2020). Convo-

lutional occupancy networks. In Computer Vision–ECCV 2020: 16th European Con-

ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages 523–540.

Springer.

Peretroukhin, V., Giamou, M., Rosen, D., and Greene, W. (2020). A smooth representa-

tion of belief of so (3) for deep rotation learning with uncertainty. RSS.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film: Visual

reasoning with a general conditioning layer. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 32.

Ping, J., Wang, F., and Chen, J.-Q. (2002). Group representation theory for physicists.

World Scientific Publishing Company.

Pitteri, G., Ramamonjisoa, M., Ilic, S., and Lepetit, V. (2019). On object symmetries

and 6d pose estimation from images. In 2019 International Conference on 3D Vision

(3DV), pages 614–622. IEEE.

Potts, D., Prestin, J., and Vollrath, A. (2007). A fast fourier algorithm on the rotation

group. Preprint A-07-06, Univ. zu Lübeck.

Prestin, J. (2010). The nonequispaced fast so (3) fourier transform, generalisations and

applications.

Prokudin, S., Gehler, P., and Nowozin, S. (2018). Deep directional statistics: Pose esti-

mation with uncertainty quantification. In Proceedings of the European conference on

computer vision (ECCV), pages 534–551.

Rad, M. and Lepetit, V. (2017). Bb8: A scalable, accurate, robust to partial occlusion

method for predicting the 3d poses of challenging objects without using depth. In

Proceedings of the IEEE international conference on computer vision, pages 3828–

3836.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Uni-

fied, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. In Advances in neural information process-

ing systems, pages 91–99.

129

Bibliography

Riaz, Hamd ul Moqeet, B., Nuri, Höfer, T., and Zell, A. (2022). Fouriermask: Instance

segmentation using fourier mapping in implicit neural networks. In International Con-

ference on Image Analysis and Processing, pages 587–598. Springer.

Riaz, H. U. M., Benbarka, N., and Zell, A. (2021). Fouriernet: Compact mask repre-

sentation for instance segmentation using differentiable shape decoders. In 2020 25th

International Conference on Pattern Recognition (ICPR), pages 7833–7840. IEEE.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition

challenge. International journal of computer vision, 115(3), 211–252.

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh) for

3d registration. In 2009 IEEE international conference on robotics and automation,

pages 3212–3217. IEEE.

Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., and Li, H. (2019).

Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

2304–2314.

Sarafian, E., Keynan, S., and Kraus, S. (2021). Recomposing the reinforcement learning

building blocks with hypernetworks. In International Conference on Machine Learn-

ing, pages 9301–9312. PMLR.

Savarese, P. and Maire, M. (2019). Learning implicitly recurrent cnns through parameter

sharing. arXiv preprint arXiv:1902.09701.

Schlag, I., Irie, K., and Schmidhuber, J. (2021). Linear transformers are secretly fast

weight programmers. In International Conference on Machine Learning, pages 9355–

9366. PMLR.

Schmidhuber, J. (1992a). Learning to control fast-weight memories: An alternative to

dynamic recurrent networks. Neural Computation, 4(1), 131–139.

Schmidhuber, J. (1992b). Steps towardsself-referential’neural learning: A thought ex-

periment.

Schönberger, J. L., Zheng, E., Frahm, J.-M., and Pollefeys, M. (2016). Pixelwise view

selection for unstructured multi-view stereo. In European conference on computer

vision, pages 501–518. Springer.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. (2019). Scene representation net-

works: continuous 3d-structure-aware neural scene representations. In Proceedings of

the 33rd International Conference on Neural Information Processing Systems, pages

1121–1132.

130

Bibliography

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. (2020a). Implicit

neural representations with periodic activation functions. Advances in Neural Infor-

mation Processing Systems, 33.

Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., and Wetzstein, G. (2020b).

Implicit neural representations with periodic activation functions. In Proc. NeurIPS.

Skorokhodov, I., Ignatyev, S., and Elhoseiny, M. (2021). Adversarial generation of con-

tinuous images. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 10753–10764.

Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction

of development. Genetic programming and evolvable machines, 8(2), 131–162.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-based encoding

for evolving large-scale neural networks. Artificial life, 15(2), 185–212.

Sundermeyer, M., Marton, Z.-C., Durner, M., and Triebel, R. (2020). Augmented au-

toencoders: Implicit 3d orientation learning for 6d object detection. International

Journal of Computer Vision, 128(3), 714–729.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent neural

networks. In ICML.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U.,

Ramamoorthi, R., Barron, J., and Ng, R. (2020). Fourier features let networks learn

high frequency functions in low dimensional domains. Advances in Neural Informa-

tion Processing Systems, 33, 7537–7547.

Tejani, A., Tang, D., Kouskouridas, R., and Kim, T.-K. (2014). Latent-class hough

forests for 3d object detection and pose estimation. In European Conference on Com-

puter Vision, pages 462–477. Springer.

Tian, Z., Shen, C., Chen, H., and He, T. (2019). Fcos: Fully convolutional one-stage

object detection. In Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, pages 9627–9636.

Tobin, J., Fong, R., Ray, A., et al. (2017). Domain randomization for transferring deep

neural networks from simulation to the real world. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 23–30. IEEE.

Tombari, F., Salti, S., and Stefano, L. D. (2010). Unique signatures of histograms for

local surface description. In European conference on computer vision, pages 356–

369. Springer.

131

Bibliography

Tulsiani, S. and Malik, J. (2015). Viewpoints and keypoints. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1510–1519.

Vilenkin, N. I. (1978). Special functions and the theory of group representations, vol-

ume 22. American Mathematical Soc.

Wang, R., Cheng, M., Chen, X., Tang, X., and Hsieh, C.-J. (2021a). Rethinking archi-

tecture selection in differentiable nas. arXiv preprint arXiv:2108.04392.

Wang, S., Mihajlovic, M., Ma, Q., Geiger, A., and Tang, S. (2021b). Metaavatar: Learn-

ing animatable clothed human models from few depth images. Advances in Neural

Information Processing Systems, 34, 2810–2822.

Wohlhart, P. and Lepetit, V. (2015). Learning descriptors for object recognition and

3d pose estimation. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3109–3118.

Wohlkinger, W. and Vincze, M. (2011). Ensemble of shape functions for 3d object

classification. In 2011 IEEE international conference on robotics and biomimetics,

pages 2987–2992. IEEE.

Wong, J. M., Kee, V., Le, T., et al. (2017). Segicp: Integrated deep semantic segmenta-

tion and pose estimation. In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 5784–5789. IEEE.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2. https:

//github.com/facebookresearch/detectron2.

Xiang, Y., Mottaghi, R., and Savarese, S. (2014). Beyond pascal: A benchmark for 3d

object detection in the wild. In IEEE Winter Conference on Applications of Computer

Vision (WACV).

Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017). Posecnn: A convolu-

tional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint

arXiv:1711.00199.

Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., and Luo, P. (2020).

Polarmask: Single shot instance segmentation with polar representation. In Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition, pages

12193–12202.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transfor-

mations for deep neural networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1492–1500.

132

Bibliography

Xu, W., Wang, H., Qi, F., and Lu, C. (2019). Explicit shape encoding for real-time

instance segmentation. In The IEEE International Conference on Computer Vision

(ICCV).

Yang, Z., Xu, Y., Xue, H., Zhang, Z., Urtasun, R., Wang, L., Lin, S., and Hu, H. (2019).

Dense reppoints: Representing visual objects with dense point sets. arXiv preprint

arXiv:1912.11473, 2.

Ying, H., Huang, Z., Liu, S., Shao, T., and Zhou, K. (2019). Embedmask: Embedding

coupling for one-stage instance segmentation. arXiv preprint arXiv:1912.01954.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. (2021). pixelnerf: Neural radiance fields

from one or few images. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4578–4587.

Zeitlhöfler, J. (2019). Nominal and observation-based attitude realization for precise

orbit determination of the jason satellites.

Zhang, C., Ren, M., and Urtasun, R. (2018). Graph hypernetworks for neural architecture

search. arXiv preprint arXiv:1810.05749.

Zhang, Z. (1994). Iterative point matching for registration of free-form curves and sur-

faces. International journal of computer vision, 13(2), 119–152.

Zhou, X., Zhuo, J., and Krahenbuhl, P. (2019a). Bottom-up object detection by grouping

extreme and center points. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 850–859.

Zhou, Y., Barnes, C., Lu, J., Yang, J., and Li, H. (2019b). On the continuity of rotation

representations in neural networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5745–5753.

133

	1 Introduction
	1.1 Motivation
	1.2 Contribution & Outline

	2 Mathematical Theory
	2.1 Rotation Representation
	2.1.1 Three Dimensional Rotations
	2.1.2 Parameterizations of the Rotation

	2.2 General Fourier Theory
	2.2.1 The One-Dimenional Fourier transform
	2.2.2 The Multi-Dimensional Fourier Transform

	2.3 Fourier Series on the Rotation Manifold
	2.3.1 A Basis for L2(SO(3))
	2.3.2 Discrete Fourier Transforms on SO(3)

	3 Implicit Neural Representations
	3.1 Introduction
	3.2 Related Work
	3.3 Seeing Implicit Neural Representations as Fourier Series
	3.3.1 Method
	3.3.2 Experiments
	3.3.3 Conclusion

	3.4 Automatic Adjustment of Fourier Embeddings
	3.4.1 Method
	3.4.2 Overall Methodology
	3.4.3 Experiments
	3.4.4 Conclusion

	4 From Object Detection to Instance Segmentation
	4.1 Technical Introduction
	4.1.1 Task Definition

	4.2 FourierMask: Instance Segmentation using Fourier Mapping in Implicit Neural Networks
	4.2.1 Method
	4.2.2 Extended FourierMask - MLP as a Renderer
	4.2.3 Experiments
	4.2.4 Conclusion

	5 Pose Estimation with Augmented Autoencoders
	5.1 Solutions to Pose Estimation
	5.2 Object Detection and Autoencoder-based 6D Pose Estimation for Highly Cluttered Bin Picking
	5.2.1 Introduction
	5.2.2 Methodology
	5.2.3 Selecting the Best Pose Estimates
	5.2.4 Experimental Results
	5.2.5 Conclusion
	5.2.6 Further Qualitative Results

	6 Prediciting the Probability Distribution on SO(3) Using Implicit Neural Representations
	6.1 Hypernetworks
	6.2 Introduction
	6.3 Method
	6.3.1 Fourier Transform on the Rotation Manifold
	6.3.2 Fourier Embedding

	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Evaluation Metrics
	6.4.3 Experiments on the SYMSOL I Dataset
	6.4.4 Experiments on the SYMSOL II Dataset
	6.4.5 Experiments on the Pascal3D+ Dataset

	6.5 Conclusion

	7 Overall Conclusion
	Abbreviations
	Bibliography

