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Using a special form ofthe nonre1ativistic first order perturbation wave function reported very 
recent1y for the van der Waals interaction between two ground-stat怠 hydrogenatoms， we show 
that an accurate leading term (proportional to α2 R -4) of the re1ativistic dispersion force of this 
system can be obtained.in an extremely simple manner. 

1. INTRODUCTION 

In a recent paper， 1 perturbation equations for the H( lsト
H( Is) van der Waals interaction have been shown to be exact-
ly solvable in theirSch凶dingerforms by using the momen-
tum space method with the Fock transformation. Thefirst 
order equation (with respect to the perturbation potential) 
hasbeen actually solved and the leading term of the first 
order perturbation function proportional to R -3 has been 
reported in a rigorous way， where R is the intemuclear dis-
tance. The function has been then used to evaluate the dis-
persion energy Crfl. -6 and a very accurate value of C6 has 
been determined in a simple manner. 1 The same function has 
also been employed for the calculation of an a∞urate∞effi-
cient of the Axilrod-Teller triple-dipole term for three 
ground-state hydrogeh atoms， which is an important leading 
term ofthe nonadditive three-body long-range force.2 

In the present paper， we show that the above first order 
perturbation wave function can also be applied successfully 
to the eva1uation of the leading term of the re1ativistic disper-
sion force resulting from the Breit-Pauli correction3 to the 
nonrelativistic Hamiltonian. The re1ativistic effect on the 
long-range force was systematically studied by Meath and 
Hirschfelder4 and the leading term was found to be. in pro-
portion to α2R -4where αis the fine structure constant (see 
also Refs. 5 and 6 for review). In the next section， the proper-

ty ofthe (nonre1ativistic) first order function is summarized. 
In Sec. III， the coefficient ofthe leading term ofthe re1ativis-
tic dispersion force is shown to be just half of b22， the first and 
predominant expansion coefficient ofthe nonre1ativistic first 
order perturbation function， and its accurate value is ob-
tained.AJomicunits amused出ro噸lOut出ispaper 

11. NONRELATIVISTIC FIRST ORDER PERTURBATION 
WAVE FUNCTION 

In Ref. 1， the leading term of the first order perturbation 
wave function has been obtained to be 。3(1，2)= R -3X(I，2)， (la) 

X(I，2) = L bnn， [np+d1)np_l(2) + np_l(l)n'p+l(2) 

+ 2[npo(l)n'po(2)]}， (lb) 

where npm denotes the normalized hydrogenic orbital with 
the quantum numbers (n，l，m) and the common exponent 
unity. Thez-axis is taken along the intemuclear vector R and 、

R = IRI. Equation (lb) can be rewrittenin the Cartesian rep-
resentation as2 

X(I，2) =L  b"n' [ -nPx(l)n'px(2) -npy(l)nみ(2)

+ 2[npz(1)n'pz(2)]}. (lc) 

Theexpansion coefficients (bnn， )， which differby factor 32 from those obtained in Ref. 1， are exact1y determined by a set ofin-
homogeneous linear equations1 

(1 -n-1)[ a_(n' + 1，I)bnn， + r + bnn， 

=δn2dn'2 + (1/長)(δn2δ同 +δn3dn'2)+ (1/6)δJω n， n' = 2，3ん..， (2a) 

whereδij represents Kronecker's de1ta and C6 = -6 [b22 + (2/長)b32+ (1/6)b33]， (3a) 

a_(n，I)=(1/2)[(n+l)(n-l-l)/n(n-1W/2， (2b) andthelatterby2 

a+(n，l)= (1/2)[(n -l)(n + 1 + 1)/n(n + lW/2. (2c) 

Practically， Eq. (2a) is solved after the truncation at some 
principal quantum number nmax which is determined by the 
required accuracy of X(I，2). Once the coe侃cients[bnn， } are 
known， the dispersion coefficient C6 for two hydrogen atoms 
and the Axi1rod-Teller triple-dipole coefficient v for three 
hydrogen atoms are obtained straightforwardly. The former 
is given byl 

v = 18 L L bnn，bmm.JnJmJnm; (3b) 

where 

ι=δ2n + (1/掃除n' (3c) 

Jnm = a_(n，l)dn，m+ 1 +δnm +α+(n，l)δn，m-l・ (3d)

For nmax = 20， the numerical values of Eqs. (3a) and (3b) 
are1，2 
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C6 = -6.499 026 705 40583， 

v = 21.642 464 510 635 979， 

(4a) TABLE 11. Comparison of即位alW4 valu低

(4b) Authors W4 

which are trustworthy to within one unit in the last decimal 

place. Chang-Karplus (Ref. 7) 
jく0.4731 
>0.4575 

111. LEADING TERM OF RELATIVISTIC DISPERSION 

FORCE 

The Breit-Pauli correction， accurate through 0 (α2) 
[where α =e2/売C~1/137 is the fine structure constant]， 
∞nsists of six terms.3，4 When these terms are expanded in 
powers of R -1 for large values of R， the leading term of 
a2 R -1 H LL，l appears from the correction a2 H LL which cor刷

responds to the classical electromagnetic coupling of the 

electrons through the interaction of the magnetic fields 
created by their motion.4 For the present system， the leading 
term HLL.1 is given by4 

HLL.l =一(1/2)(Pl・P2+ Plz P2z) 

=一 (1/2)(PlxP2X+ PlyP2y + 2PlzP2z)' (5) 

where Pi = (Pix'Pか，Piz)is the momentum vector of electron 
i， and H LL， 1 repr目白白 the(orbital-current)一(orbital-cur-
rent) interaction. 

The leading term in the relativistic corrections to the 

usual dispersion force is then given by 

2(仇(1，2)1α2R-IHLL，1Itt(0)(1，2)) = W4α2R -4， (6a) 

where the coefficient W4 is 

W4 = 2(r(I，2)IHLL，1 Itt(0)(1，2))， (6b) 

and ザ0)(1，2)= Is(I)ls(2)is the unperturbed wave function in 
the nonrelativistic treatment. Equation (6a) has a physical 

inte中retationas (orbital-current)一(electrostatic-dipole)in-

teraction.4 

T ABLE 1. Coefficient W4 of the relativisitic dispersion force between two 
ground司statehydrogen atoms. 

nmax W4 

2 0.5∞o∞αmαlOO 
3 0.464 285 714 2857 
4 0.462 886 122 6372 
5 0.4628129528243 
6 0.4628073167197 
7 0.462 806669 5544 
8 0.4628065668168 
9 0.462 806 546 0303 
10 0.462 806 540 9735 
11 0.4628065395517 
12 0.462 806 539 1023 

、13 0.462 806 538 9458 
14 0.462 806 538 8867 
15 0.462 806 538 8628 
16 0.462 806 538 8525 
17 0.462 806 538 8478 
18 0.462 806 538 8456 
19 0.462 806 538 8445 
20 0.4628065388440 
21 0.462 806 538 8437 
22 0.462 806 538 8435 
23 0.462 806 538 8434 
24 0.462 806 538 8434 
25 0.462 806 538 8433 

Alexander (Ref. 8) 
jく0.462制 8
>0.4628052 

0.4628065 Johnson-Epstein-Meath (Ref. 9) 
Deal (Ref. 10) 
Present 

0.462 806 538 842 
0.462806538 8433 

Now inserting Eqs. (lc) and (5) into Eq. (6b)， we have 

W4 = 2: bnn， [(npx(l)回lx11s(I)) (n'px (2) [P2x 11s(2)) 

+ (npy(I)[plY 11s(I)) (n'py (2) [P2y 11s(2)) 

-4(npz(1)lplz 11s(I)) (n'pz (2) [P2z I1s(2))] 

= -2 2: bnn，KnKn" 

in which 

(7a) 

Kn = (npx Ipx 11s) = (npy回'yI1s) = (npz IPz 11s). (8a) 

The integral Kn is easily evaluated in momentum space 

based on the orthonormal property of the four-dimensional 
spherical harmonics [ Yn1m }. 1 Since 

Is = 4(p2 + 1)-2Y1∞(0)， 

npz = npo = 4(p2 + 1)-2ynlO(0)， 

(pz)(ls) = [(1!2)(p2十 l)sinαcose ](ls) 
=i(p2十 1)-1Y21O(0)， 

we find from the last equality ofEq， (8a) that 

ζト=附 j 九九川川ωJ山0J*吋(剛附Q向)九九川1O(仰H=阿=叶(仰

Therefore we finally obtain the desired result in a surprising-

I匂ysimple form: 

W4 = (1/2 )b22・ (7b)

Using Eq. (7b)， we have calculated W4 for a different 
choice of nmax (<25). The results are summarized in Table 1. 
The convergence with increasing nmax is rapid as it was for 
C.. and v. and the WA for n_.~ = 25 is reliable to within one 。， 一番 max 

unit in the last figure given. In order to emphasize the simpli-

city and accuracy ofthe present method， we have compared 
in Table II several values of W4 reported previously. The 

pr田 entvalue compares well with that obtained by Deal10 

who employed an extensive numerical integration tech-

mque. 

The present result， Eq. (7b)， together with the previous 
results of Eqs. (3a) and (3b) denionstrate that the method 

developed in Ref. 1 and the resultant perturbation function 
in the form ofEq. (1) are very useful and accurate. 
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