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Using a special form of the nonrelativistic first order perturbation wave function reported very
recently for the van der Waals interaction between two ground-state hydrogen atoms, we show
that an accurate leading term (proportional to @R ~*) of the relativistic dispersion force of this

system can be obtained.in an extremely simple manner.

I. INTRODUCTION

In arecent paper,' perturbation equations for the H(1s)-
H(1s) van der Waals interaction have been shown to be exact-
ly solvable in their Schrodinger forms by using the momen-
tum space method with the Fock transformation. The first
order equation (with respect to the perturbation potential)

"has been actually solved and the leading term of the first
order perturbation function proportional to R ~> has been
reported in a rigorous way, where R is the internuclear dis-
tance. The function has been then used to evaluate the dis-
persion energy CcR ~° and a very accurate value of C, has
been determined in a simple manner.! The same function has
also been employed for the calculation of an accurate coeffi-
cient of the Axilrod-Teller triple-dipole term for three
ground-state hydrogen atoms, which is an important leading
term of the nonadditive three-body long-range force.?

In the present paper, we show that the above first order
perturbation wave function can also be applied successfully
to the evaluation of the leading term of the relativistic disper-
sion force resulting from the Breit—Pauli correction® to the
nonrelativistic Hamiltonian. The relativistic effect on the
long-range force was systematically studied by Meath and
Hirschfelder* and the leading term was found to be in pro-
portion to @R ~* where  is the fine structure constant (see
also Refs. 5 and 6 for review). In the next section, the proper-

The expansion coefficients {b,,
homogeneous linear equations’

_ ty of the (nonrelativistic) first order function is summarized.

In Sec. II1, the coefficient of the leading term of the relativis-
tic dispersion force is shown to be just half of b,,, the first and
predominant expansion coefficient of the nonrelativistic first
order perturbation function, and its accurate value is ob-
tained. A/tomic units are used throughout this paper.

Il. NONRELATIVISTIC FIRST ORDER PERTURBATION

WAVE FUNCTION

In Ref. 1, the leading term of the first order perturbation
wave function has been obtained to be

¥5(1,2) = R —x(1,2), (1a)
x(1,2) = Z . b, nP+1(1)np 12) +mp_\(V)n'p 4 (2)
+ 2[npo(1)n'po(2)]}, (1b)

where np,, denotes the normalized Aydrogenic orbital with
the quantum numbers (n,1,m) and the common exponent
unity The z-axis is taken along the internuclear vector Rand .

= |R|. Equatlon (lb) can be rewritten in the Cartesian rep-

. resentatlon as

WA= 3 byl — 1 2)— (5, 2)
+2[np. (P, (2)]}. (1¢)

.}, which differ by factor 32 from those obtained in Ref. 1, are exactly determined by a set of in-

(I—=n=Y[a_(n"+ L,)b,y 1 + by +a,(n' — R 1+ =n"Y[a_(n+1L,1b, 1y +bpw +ay(n—11)b,_ 1]

= 6n25n’2 + (1/\/6)(6n28n'3 + 6n3 5n’2) + (1/6) 5n3 6}1’3 ’ n, n’ = 2’3’49"" ‘ . (2a)

where 8,; represents Kronecker’s delta and
a_(ml)=(172)(n +1)n —1—1)/n(n — 11" (2b)
- aynl)=(172)[(n — I)n+ 14 1)/nn + 1)]V2 (2¢)
Practically, Eq. (2a) is solved after the truncation at some
principal quantum number #,,, which is determined by the
required accuracy of y(1,2). Once the coefficients {b,,, } are

known, the dispersion coefficient C, for two hydrogen atoms
and the Axilrod-Teller triple-dipole coefficient v for three

hydrogen atoms are obtained straightforwardly. The former

is given by’
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! — 60+ 2AGbe + 1/, O
and the latter by?

v=18Y E’b,,,,b IIJ,,,,,, (3b)
where o

I, = 8,, + (1/{6)55,, (3¢)

Jnm =a—(n!1)5n,m+l +6nm +a+(n’l)6n,m—l‘ (3d)

For n_,, = 20, the numerical values of Egs. (3a) and (3b)
are™? .
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Cs= — 6.499 026 705 405 83, (4a)
v = 21.642 464 510 635 979, (4b)

which are trustworthy to within one unit in the last decimal
place.

1ll. LEADING TERM OF RELATIVISTIC DISPERSION
FORCE

The Breit-Pauli correction, accurate through O (a?)
[where a = e?/%ic~1/137 is the fine structure constant],
consists of six terms.>* When these terms are expanded in
powers of R ~? for large values of R, the leading term of
a’R ~'H,, , appears from the correction a*H,; which cor-
responds to the classical electromagnetic coupling of the
electrons through the interaction of the magnetic fields
created by their motion.* For the present system, the leading
term H,, , is given by*

Hp = —(172)py - P2 + P1. P22)

= _(1/2)(p1xp2x +p1yp2y +2plzp22)’ (5)
where p; = ( p,,.,p,,.P:.) is the momentum vector of electron
i, and H;; , represents the (orbital-current)(orbital-cur-
rent) interaction.

. The leading term in the relativistic corrections to the
usual dispersion force is then given by

2(¢5(1,2)|@’R " Hyp, [99(1,2)) = Wea®R 7%, (6a)
where the coefficient W, is

Wa=2(x(1,2)|Hp, [¥°(1,2)), (6b)
and ¢'%(1,2) = 1s(1)1s(2) is the unperturbed wave function in
the nonrelativistic treatment. Equation (6a) has a physical

interpretation as (orbital-current)—(electrostatic—dipole) in-
teraction.*

TABLE I. Coefficient W, of the relativisitic dispersion force between two
ground-state hydrogen atoms.

Nmax W4
2 0.500 000 000 0000
3 0.464 285 714 2857
4 0.462 886 122 6372
5 0.462 812 952 8243
6 0.462 807 316 7197
7 0.462 806 669 5544
8 0.462 806 566 8168
9 0.462 806 546 0303
10 0.462 806 540 9735
11 0.462 806 539 5517
12 0.462 806 539 1023
‘13 0.462 806 538 9458
14 ‘ 0.462 806 538 8867
15 0.462 806 538 8628
16 0.462 806 538 8525
17 0.462 806 538 8478
18 : 0.462 806 538 8456
19 0.462 806 538 8445
20 0.462 806 538 8440
21 0.462 806 538 8437
22 0.462 806 538 8435
23 0.462 806 538 8434
24 0.462 806 538 8434
25 0.462 806 538 8433

TABLE II. Comparison of several W, values.

Authors W,
3 <0473 1
Chang—Karplus (Ref. 7) >04575
3 <0.462 806 8
Alexander (Ref. 8) >0.462 805 2
Johnson-Epstein—Meath (Ref. 9) 0.462 806 5

0.462 806 538 842
0.462 806 538 8433

Deal (Ref. 10)
Present

Now inserting Eqgs. (1c) and (5) into Eq. (6b), we have

Wom S b [00u(Vlpae | 15(1)) 00, (2P | 15(2)

nn =2

+ {np, (1) py, | 15(1)) {n'p, (2) |P,y | 15(2))
— Hnp. (1. |1s(1) {n'p, (2)|p. [15(2)) ]

= -2 ¥ b.KK,, | (7a)

nn =2
in which
K, = (np|p.|1s) = (np, |p,|1s) = (np.|p.|1s). (8a)
The integral K, is easily evaluated in momentum space

based on the orthonormal property of the four-dimensional
spherical harmonics {Y,,, }.! Since

nilm
Is = 4(p* + 1)72Y50(Q),

np, = npo=4(p> + 1)72Y,,0(Q),
(p.)(1s) = [(1/2)( p*> + 1)sin & cos € ](1s)

=i(p* 4+ 1)7'Y5,0(90),
we find from the last equality of Eq. (8a) that

K, =i/ Z)J Y10 *( ) Y210()dQ = (i/2)5,,. (8b)

Therefore we finally obtain the desired result in a surprising-
ly simple form:

W, = (1/2)bsy. ()

Using Eq. (7b), we have calculated W, for a different
choice of n,,, (<25). The results are summarized in Table I.
The convergence with increasing 7, ,, is rapid as it was for
C, and v, and the W, for n_,, = 25 is reliable to within one
unit in the last figure given. In order to emphasize the simpli-
city and accuracy of the present method, we have compared
in Table II several values of W, reported previously. The
present value compares well with that obtained by Deal”
who employed an extensive numerical integration tech-
nique.

The present result, Eq. (7b), together with the previous
results of Egs. (3a) and (3b) demonstrate that the method
developed in Ref. 1 and the resultant perturbation function
in the form of Eq. (1) are very useful and accurate.
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