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ABSTRACT
We study phase equilibria in a minimal model of charge-regulated polymer solutions. Our model consists of a single polymer species whose
charge state arises from protonation-deprotonation processes in the presence of a dissolved acid, whose anions serve as screening counteri-
ons. We explicitly account for variability in the polymers’ charge states. Homogeneous equilibria in this model system are characterised by
the total concentration of polymers, the concentration of counter-ions and the charge distributions of polymers which can be computed with
the help of analytical approximations. We use these analytical results to characterise how parameter values and solution acidity influence
equilibrium charge distributions and identify for which regimes uni-modal and multi-modal charge distributions arise. We then study the
interplay between charge regulation, solution acidity and phase separation. We find that charge regulation has a significant impact on poly-
mer solubility and allows for non-linear responses to the solution acidity: Re-entrant phase behaviour is possible in response to increasing
solution acidity. Moreover, we show that phase separation can yield to the coexistence of local environments characterised by different charge
distributions.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169610

I. INTRODUCTION

Solutions with charged polymers can demix into polymer-rich
phases, also known as condensates. When the condensed phase
remains liquid, the process yielding to demixing is known as liquid-
liquid phase separation or coacervation. In recent years, the under-
standing of liquid-liquid phase separation (LLPS) has gained enor-
mous interest because of its putative role in the assembly of macro-
molecules (mostly proteins and nucleic acids) into membrane-less
organelles (also known as biomolecular condensates) in cells.1,2

While polymer physics theories have elucidated several aspects of
phase separation in solution, it is not yet fully understood how
different molecular mechanisms affect the formation, regulation
and properties of biomolecular condensates in cells.2 Challenges
relate to the complexity of proteins, that are large heteropolymeric

polyelectrolytes, and of the cellular environment which is main-
tained out of equilibrium and can itself modulate proteins’ proper-
ties and coacervation.2,3

Grounded in the seminal work by Flory and Huggins, the bal-
ance between enthalpic and entropic interactions is considered to be
the driving force of LLPS. Based on the simplifying assumption of
polymers consisting of chemically identical units, Flory and Huggins
derived a mean-field model for phase separation in two-component
mixtures. Such a model has proven a useful phenomenological
model also to study phase-separation in protein solutions. However,
it has limited predictive power, as it misses details on the nature of
the intermolecular interactions that contribute to the enthalpic part
of the free energy.2,4,5

A feature common to proteins is the presence of ionizable
groups, that contribute to the electrostatic interactions between
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proteins.6 Models of polyelectrolyte coacervation are commonly
employed to study the role of electrostatic interactions as well as
salt in LLPS. The early key paper in the field of polyelectrolyte
complexation (also called complex coacervation) remains the work
by Overbeck and Voorn from 1957.7 Extensions of these classical
theories that capture the sequence-dependence of LLPS driven by
proteins with intrinsically disordered domains, as first demonstrated
in Ref. 8, have employed mean-field theories of polyampholytes as
underlying models of proteins. They include the Random Phase
Approximation,9,10 as well as Field Theoretic Simulations11 for
the residue specific electrostatic interactions; recent reviews in the
modern context are Refs. 12–15.

In cell biology, the relation between the phase diagram on the
one hand and the charge states of the macromolecules on the other16

is of particular interest. A limitation of all earlier approaches is
that they assume the charge state on the polymers, such as poly-
electrolytes or polyampholytes, to be fixed; in contrast, as shown
earlier on by the work of Linderstrøm-Lang,17 the charge state
of proteins is in fact regulated by the local environment, such as
pH conditions, as well as by interactions between ionizable groups
themselves.18,19 A key process in this context is charge regulation of
the polymers or, more generally, chargeable macromolecules in the
cellular context.20,21 The charge regulation process is best explained
in its most elementary variant which consists in the binding and
unbinding of protons, H+, from the water solvent. It is immediately
clear that this protonation-deprotonation process goes in hand-
in-hand with the change of solution pH.22 More involved charge
regulation processes are obviously present, e.g., in the binding of
dissolved salts in solutions. The effect of charge regulation processes
on phase equilibria has been addressed in several recent papers.23–29

However, even in simple model systems, the complexity of the inter-
actions yields phase behaviours in multi-parameter spaces which
are non-trivial to analyse. This is particularly true due to the highly
non-linear free energy terms associated with electrostatic correlation
effects, a key feature of liquid-liquid phase separating systems and of
fundamental relevance in cell biology.30–36

In this paper, we address these issues on the basis of a
“minimal” model which has essentially two ingredients: a basic for-
mulation of the Voorn–Overbeek theory and the charge regulation
mechanism, for which we keep track of the charge state on the
polymers following the charge distribution approach developed in
Ref. 21. Another novelty that distinguishes our work from previous
studies on phase separation and charge regulation processes23,28 is
that we consider the protonation-deprotonation equilibria in solu-
tion in the presence of a dissociated acid. Considering a simplified
and idealised scenario allows us to gain theoretical insights into the
coupling between charge regulation, acidity and phase separation,
by linking the topological changes in the coexistence curves as well
as the related changes in the charge distributions on the polymers.
To this end, our work is to be understood as a first step in achieving
an understanding of phase separation conditions in the presence of
charge regulation.

Our paper is organised as follows. In Sec. II we introduce our
model for the polymer-solvent mixture. Section III covers the results
we have obtained from its analysis. Section III A describes its homo-
geneous equilibrium states, with a focus on how the composition
of the mixture affects the polymer charge. Section III B then dis-
cusses phase equilibria in our system. Finally, in Sec. III C we show
how the phase separation process itself regulates the charge state
of the polymers by controlling the local environmental conditions
– here acidity. Section IV concludes and provides an outlook to
further studies; in particular, we discuss how our findings change
the standard theoretical understanding of LLPS and possible ways
forward to extend our framework to LLPS in biological systems.
The technical results employed in the paper are derived in the
Appendixes A–D.

II. A MODEL FOR A POLYMER-SOLVENT MIXTURE
A. Components of the mixture

The building blocks of our model and the charge regulation
mechanism it entails are illustrated in Figs. 1(a)–1(c), respectively.

FIG. 1. Mixture components. (a) Schematic representation of the mixture components: water (H2O), positive ions (H+), counterions and polymers chains which consists of
N monomers. Of the N monomers polymers are made of, Z have a binding site for H+ ions. The binding sites can either exist in a charged or uncharged state; as a result,
polymers in the mixture can be in any charge state z ∈ {0, . . . , Z}. Schematic illustrating charge regulation mechanisms: (b) for an individual monomer; (c) for an entire
polymer chain.
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We consider chargeable polymers solvated in water, H2O, and a
strong acid, which fully-dissociates in water. Therefore, in solution,
we encounter the dissociated ionic species: counterions and hydro-
nium ions H3O+. The polymers are considered as monodisperse
with N ≫ 1 monomers, of which only a subset of Z ∈ {0, . . . , N}
monomers carries a protonation site, which can either be positively-
charged (bound state) or neutral (unbound state). We assume that
H3O+, counterions and the monomers making up the polymer have
the same molecular volume as water, ν, so that the polymers have
the molecular volume νM = Nν≫ ν. For applications in which this
is not the case, this assumption can be relaxed by considering N to be
a real number. As in Ref. 21, we assume that polymers with different
charge states, z ∈ {0, . . . , Z}, coexist in the mixture; as a result, we
have effectively Z + 1 different polymer species in solution. Together
with water, counter-ions and hydronium ions this gives a total of
Z + 4 species that we take into account in our mixture. For each
species, we denote by ϕω the volume fraction, with ω = (s,+,−, z) =
(solvent, hydronium ions, counter ions, charged polymer). The vol-
ume fractions must satisfy a no-void condition, which guarantees
that at any location space is fully occupied by the mixture:

ϕs + ϕ+ + ϕ− + ϕM = 1, (1)

where

ϕM =
Z

∑
z=0

ϕz. (2)

Furthermore, we assume that our solution is electroneutral so that
the net charge density of the mixture has to be zero,

ϕ+ − ϕ− +
Z

∑
z=1

z
N
ϕz = 0. (3)

B. The free energy density of a homogeneous mixture
We assume that the mixture is incompressible and kept at a

constant temperature T, and describe it by a Helmholtz free energy
density f which consists of three contributions, similar to,28

f = f1 + f2 + f3. (4)

The chemical potentials of the different species in the mixture are
then expressed in terms of derivatives of the Helmholtz free energy
density f with respect to ϕω; these conditions are given in detail
in Appendix A. The first contribution f1 in (4) is the standard
Flory–Huggins free energy capturing the entropic contributions and
an interaction term of water and the solvated polymer

f1ν
kBT
= ∑

k∈{+,−,s}
ϕk ln (ϕk) +

Z

∑
z=0

ϕz

N
ln (ϕz) + χ

Z

∑
z=0

ϕsϕz. (5)

For simplicity, we assume the interaction parameter χ to be indepen-
dent of the charge on the polymers. The second contribution, f2, in
(4) is due to charge regulation and given by

f2
kBT
=

1
νM

Z

∑
z=0

uzϕz. (6)

where uz is the difference in the internal free energy (non-
dimensionalised by kBT) of a polymer with charge z and a neutral
one. By neglecting chain connectivity of the polymers, we can see
the charged polymer as a mixture of an uncharged polymer and z
positive fixed charges. Following,21 we specify uz as

uz = αz +
ηz2

2Z
− ln [(

Z
z
)]. (7)

In (7), the first contribution represents the energy gain (again non-
dimensionalised by kBT) from occupying an additional site on the
polymer by an H+ ion, see Fig. 1(b). The second term represents
an additional contribution from short-range interactions between
occupied binding sites whose strength is controlled by the parameter
η; this term can be thought of as arising from accompanying struc-
tural effects on the polymer from ion binding. Finally, we have to
include the internal entropy to account for the different ways to
arrange fixed charges on the binding sites.

The last term f3 is the Debye–Hückel (DH) term, similar to Ref.
28, which like our reasoning for f2 assumes that the charges on the
monomers of the polymers can be treated as free ions,

f3

kBT
= −

1
4πν
(ln (1 + κ) − κ +

κ2

2
), (8)

where

κ2
= λ(ϕ+ + ϕ− +

ν
νM

Z

∑
z=1

zϕz) = 2λϕ−.

Note that the term κ2 depends on the sum of all charged molecules
multiplied by their valency [as in Eq. (6) in Ref. 28]. The simpli-
fied expression Eq. (9) is obtained by applying (3). In Eq. (9) the
parameter λ = 4πℓB/aw , where ℓB is the Bjerrum length in water and
aw = ν1/3 is the size of the species in the solution. More realistic mod-
els that include polymer connectivity have, e.g., been discussed in
Ref. 31. However, these include information on the specific location
of the charges along the polymer chains. While we have kept the
full double heterostructure (DH)-term in order to allow for a future
extension of our model to salt, we consider the addition of polymeric
degrees of freedom a yet further step in rendering the model more
realistic.

C. The charge regulation process
As mentioned in the introduction, models of polymer coac-

ervation commonly assume the charge state on the polymer phase
to be fixed. In our framework, this corresponds to assuming that
all protonation sites on the polymer are occupied, i.e., imposing in
Eqs. (5)–(9) ϕz = 0 for all z = {0, . . . , Z − 1}. We instead assume that
charges can reversibly bind to protonation sites according to the
reaction

Mz +H3O+ÐÐ⇀↽ÐÐMz+1 +H2O, 0 ≤ z ≤ Z − 1,

where Mz represents the polymer with z charges. Then, the charge
states of polymers in solution is determined by imposing chemical
equilibrium, instead of being prescribed a priori.
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Making use of the definition of the Helmholtz free energy (see
Appendix A) we have that the change in the free energy for each
chemical reaction (Mz−1 +H3O+ÐÐ⇀↽ÐÐMz +H2O) occurring in the
mixture is given by

F(T, V , Ns + 1, N+ − 1, . . . , Nz−1 − 1, Nz + 1, . . .)
−F(T, V , Ns, N+, . . . , Nz−1, Nz , . . .)
= μs + μz − μ+ − μz−1, 0 < z ≤ Z. (9)

At chemical equilibrium, chemical reactions do not lead to a
net change in the free energy. Based on Eq. (9), it follows that the
difference in chemical potential of products and reactant of each
chemical reaction must be zero. Manipulating Eq. (9) we can express
μz in terms of the chemical potential of the counterions, solvent and
uncharged polymers:

μz = μz−1 + μ+ − μs, z = 1, . . . , Z. (10)

Equation (10) can be viewed as an iterative discrete map that,
given μ0, defines the chemical potential of all charged polymers in
terms of μ+ and μs,

μz = μ0 + z(μ+ − μs), z = 1, . . . , Z. (11)

Using the explicit form of the chemical potential (A4) in (11)
we arrive at

uz + ln (ϕz) = −zχϕM + ln ϕ0 + z ln(
ϕ+
ϕs
),

z = 0, . . . , Z, (12)

where uz and ϕM are defined respectively by Eqs. (2) and (7), and

ϕ0 = ϕM −
Z

∑
z=1

ϕz. (13)

Taking the exponential of both sides of (12), we obtain a system
of Z + 1 linear algebraic equations for the volume fractions ϕz ; this
can be solved explicitly to obtain an expression for ϕz , z = 0, . . . , Z,

ϕz = ϕMπz (14)

with

πz = Ae−uz+(ln ϕ+−ln ϕs−χϕM)z (15)

where

A−1
=

Z

∑
z=0

e−uz+(ln ϕ+−ln ϕs−χϕM)z. (16)

The terms πz indicate the fraction of the total number of polymers
in the charged state z as a function of the mixture composition. The
normalisation constant A is introduced to ensure that πz sum up
to unity, ∑Z

z=0 πz = 1; here, A−1 can be viewed as a canonical parti-
tion function in charge-space. Inspecting (15), we find that πz can be
rewritten in terms of an effective charge regulation free energy,

πz = A exp (−ueff
z ), (17)

where

ueff
z = αeffz +

ηz2

2Z
− ln [(

Z
z
)], (18)

with αeff = α + ln (ϕs) − ln (ϕ+) + χϕM. (19)

The comparison of Eq. (18) to the definition of uz [see Eq. (7)],
shows that, in our system, the local composition of the mixture
affects the charge regulation process by controlling the energy asso-
ciated with the protonation/deprotonation of a single binding site.
Note the introduction of an effective parameter αeff that includes a
composition-dependent correction to the “bare” linear term in uz .
As in Ref. 21, we find that the ion concentration in solution, ϕ+/ϕs,
affects the effective binding energy. Furthermore, by introducing the
Flory–Huggins term in the free-energy, we have that the polymer
concentration, ϕM , itself affects the binding of ions in solution [see
the last term in Eq. (19)].

Using (15) to eliminate ϕz (z = 0, . . . , Z) from the definition of
free energy density [see (4)–(8)] we obtain the expression for the free
energy for an ionic solution with charge-regulating polymers

ν fCR

kBT
= ϕ+ ln [ϕ+] + ϕ− ln [ϕ−] + ϕs ln [ϕs]

+ χϕMϕs +
ϕMν
νM
(ln ϕM + ln [A])

+
QϕMν
νM

(ln ϕ+ − ln ϕs − χϕM)

−
1

4π
(ln (1 + κ) +

κ(κ − 2)
2

) (20)

where κ =
√

2λϕ− and we have introduced the variable Q that rep-
resents the mean charge of the polymer phase Q = ∑Z

z=0 zπz while
we have defined the free energy in terms of the variables ϕs, ϕ+,
ϕM and ϕ−, the degrees of freedom of the model can be reduced
to only two by observing the two constraints (no-void and electro-
neutrality) formulated in (1) and (3), that is ϕs = 1 − ϕM − ϕ− − ϕ+,
and ϕ+ = − ϕM

N Q + ϕ−.
These determine ϕs and ϕ+ in terms of ϕM and ϕ−, albeit, in the

case of ϕ+, only implicitly.

III. RESULTS
In the current work, we focus on the interplay between charge

regulation processes and phase separation. Our analysis highlights
the key role of parameter η in the equilibrium properties of the sys-
tem. We, therefore, consider it as a free parameter while fixing the
others. As mentioned above η is an effective parameter that captures
interactions between binding sites; its value will therefore depend
on the chain-specific features, e.g., distribution of the binding site
along the chain and their specific chemistry. Based on previous
works, we set λ = 26.6828 and ν ≈ 3.1 × 10−23 ml.28 The number of
monomers in the protein is set to N = 100; of these, we assume that
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Z = 20 have a H+ binding site. We set α = −6.5 so that it is ener-
getically favourable for an individual binding site to be occupied
[see Fig. 1(b)]. The temperature is fixed to T = 298 K and the Flory
parameter to χ = 0.95; the latter value is chosen so that phase sepa-
ration is observed – even when considering a neutral polymer (see
Sec. III B 2).

A. Analysis of homogeneous equilibrium states
We first study the properties of homogeneous equilibrium

states that arise in our model. We are specifically interested in how
the charge distribution of the polymers, πz , depends on the mixture
composition, ϕM and ϕ−. This is obtained by solving the non-linear
system of algebraic equations given by Eqs. (1), (3), and (14). Gen-
erally, this can not be done analytically and requires numerical
approaches. However, we make the following observations.

1. In the case η = 0 (i.e., independent ion adsorption), the charge
distributions πz is binomial, which can be approximated by a
Gaussian distribution in z when taking the maximum charge,
Z ≫ 1;

2. For z taken as a continuous variable, we can approximate the
effective charge regulation free energy ueff as

ũeff(z) = zαeff +
z2η
2Z
+ z ln

z
Z
+ (Z − z) ln(1 −

z
Z
) (21)

in the limit Z ≫ 1 and z ∈ (0, Z) (for the details, see
Appendix B). In Fig. 2, we summarise how the number and
location of the local minima of ũeff is controlled by the mix-
ture composition – i.e., the value of the parameter αeff. When
ũeff has a single minimum, then we can estimate πz within a
saddle-point approximation that we detail in Appendix B. We
find that for η > −4, we can approximate the charge distribu-
tion by a Gaussian distribution whose mean is determined by
the minimum of ũeff.

3. The saddle-point approximation is not always valid for η < −4.
The breakdown of the saddle-point approximation is due to
the appearance of multiple extrema for the function ũeff (see
green area in Fig. 2) that is reflected in the charge distribution

πz having multiple peaks. In this case of failure of the saddle-
point approximation, we need to resort to numerical methods
of computation.

This general feature of unimodality vs multimodality of the
charge distribution is summarised in Fig. 2 which displays the
(η,αeff) diagram. As shown, we can identify two characteristic
regimes depending on the value of η: when η > −4, αeff (i.e., the
mixture composition), controls the location of the minimizer of ũeff

which is always unique; similarly of ueff
z . When η < −4, αeff (i.e., the

mixture composition), controls both the location and the number
of minimizers of ũeff, and likewise of ueff

z . We note that transitions
between unimodality to multimodality in charge regulating systems
had earlier been seen in Ref. 21.

We now discuss the three different cases of interest separately
in more detail.
1. The case η = 0: Independent ion adsorption

By setting η = 0, πz can be computed exactly. Indeed, we have
that A can be evaluated explicitly: A = (1 + e−αeff)

−Z . We obtain

πz = (
Z
z
)pz
(1 − p)Z−z , (22)

where

p =
e−αeff

1 + e−αeff
. (23)

Thus the distribution of polymer states, normalised by the total
polymer concentration ϕM , has the form of a binomial distribution
B(Z, p). We can explain the appearance binomial distribution of the
charge state of polymers intuitively. When η = 0 there is no corre-
lation of different binding sites; thus the state of each of the Z sites
can be treated as an independent Bernoulli random variable with
probability of success (i.e., binding) equal to p [see Eq. (23)].

2. η > −4: The general unimodal case
When the value of αeff is such that we lie outside the green

region in Fig. 2, the charge distribution πz is unimodal with most
polymers having a charge state similar to z ≈ Q, defined as the

FIG. 2. Composition-dependent charged states. Parameter diagram for the charge distribution of homogeneous states as a function of αeff and η, obtained by computing the
extrema of ũeff [see (21)]. The insets show ũeff for specific values of αeff and η. In the green region ũeff has two minima; outside this region a unique minimum exists and its
position is indicated by the colorbar above the diagram. The change of the effective binding energy parameter αeff [red path in the (ϕM ,ϕ

−
)-plane on the left corresponds to

moving along a horizontal line in the (αeff, η)-plane].
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unique minimizer of (21). As shown in Appendix B, πz can be
approximated by a Gaussian whose mean charge Q and standard
deviation S, can be written as

Q = Zp, S2
=

Zp(1 − p)
ηp(1 − p) + 1

, (24)

where p ∈ (0, 1) is implicitly defined by

p =
e−αeff−pη

1 + e−αeff−pη . (25)

In the case η > −4, S2 is guaranteed to be positive independently of
the value of p ∈ (0, 1). When comparing the approximated form for
η ≠ 0 [see Eq. (24)] with the moments of the binomial distribution
obtained in the case η = 0 [see Eq. (22)], we find clear parallelisms.
When considering η ≠ 0, the model captures the extra energy con-
tributions due to the interaction of the charges on the polymers.
Unlike from the case η = 0, this introduces correlation amongst the
state of binding sites (occupied or unoccupied) on the same poly-
mer. Nonetheless, we may still interpret p in Eq. (25) as the binding
probability for an H+ ion to a free binding site. We note that the
analogy with the binomial distribution is not exact and difference
emerges when comparing the second moments – here the variance
S2 – which explicitly depends on η. When considering states with
the same mean charge Q, we have that η > 0 (short-range repul-
sion) results in a reduction of the variance of the distribution. In
contrast, negative values of η yield to wider distributions, i.e., larger

values of S. So far, we have considered αeff as a prescribed parameter.
However, as illustrated in Eq. (25), αeff is determined by the mixture
composition – i.e., the values of ϕM and ϕ−. The computation of the
corresponding concentration diagrams requires solving highly non-
linear equations, for which existence and uniqueness of the solution
may not be guaranteed. Due to the physical constraints in the system
(no-void and electro-neutrality), homogeneous equilibrium states
only exists when ϕM and ϕ− satisfy:

1 − ϕM − ϕ− > 0, (26)

1 + ϕM(
Z
N
− 1) − 2ϕ− > 0, (27)

We can prove that such homogeneous states are unique (see
Appendix C for details). We obtain the solutions numerically via
Newton’s method and use the approximation to estimate how Q and
S vary as a function of the mixture composition. Results for different
values of η > −4 are shown in Fig. 3.

When η is negative [as in Fig. 3(a)], the fully-charged state is the
most energetically favourable for the polymers – recall α is also taken
to be negative. As a result, whenever the concentration of H+–ions
in the mixture exceeds the concentration of the binding sites [i.e.,
ϕ− > (Z/N)ϕM – above the dotted light-blue curve in Fig. 3], the
polymers will be in a fully-charged state– as Q attains its maximum
value [see panel (a)] while S its minimum [see panel (b)]. In con-
trast, when the concentration of H+–ions in the mixture is lower
than the concentration of the binding sites [i.e., ϕ− < (Z/N)ϕM],

FIG. 3. Composition dependence of mean charge and standard deviation. (a)–(d) Series of surface plots illustrating how the mean charge, Q, depends on the local
composition of the mixture (ϕM ,ϕ

−
), for different values of the parameter η – from left to right: η = −2; η = 0; η = 2 and η = 5 (short-range repulsion between bounded

charges). (e)–(h) Same as panels (a)–(d) but illustrating the computed standard deviation, S. The dotted light blue lines indicate the salt concentration at which the
concentration of H+ ions in solution equilibrates the concentration of binding sites, i.e., ϕ

−
= ZϕM/N. We highlight in grey the area of the (ϕM ,ϕ

−
)-plane for which no

physical solution exists [i.e., Eqs. (26) and (27) are not satisfied]. Other parameters are set to default values given at the start of Sec. III.

J. Chem. Phys. 159, 184902 (2023); doi: 10.1063/5.0169610 159, 184902-6

© Author(s) 2023

 21 N
ovem

ber 2023 10:44:30

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

the charges are on average distributed homogeneously between
the polymers, Q ≈ Nϕ−/(ZϕM). This can be shown systematically,
by considering the limit α→ −∞ when estimating p (results not
shown). As η increases it becomes less energetically favourable for
H+–ions to bind to the polymers that tend to remain in a less
charged state even when ϕ− > (Z/N)ϕM . As expected, we find that
the largest value of S decreases with η. However, when considering
the impact of η on S for a specific mixture composition, there is no
general trend. For ion-saturated mixture compositions, S increases
with η, while for ion-limiting mixture compositions, S decreases
with η.

3. Multi-modal charge distributions: Charge demixing
We now investigate the equilibrium charge distribution for val-

ues of η < −4. As discussed at the beginning of this section, in this
regime, the saddle-point approximation breaks down and bimodal
charge distributions are expected.

We compute the full charge distribution, {πz}, solving the non-
linear algebraic system given by Eqs. (1), (3), and (14)–(16) using

Newton’s method with arc-length continuation (used to find good
initial guesses for the Newton’s step). We conjecture that {πz} is
still uniquely defined even when we are in regimes for which the
charge distribution has multiple peaks (i.e., when we enter the green
area in Fig. 2); this is strongly supported by our numerical investiga-
tion but an analytical proof of the result is beyond the scope of this
work.

The results are shown in Fig. 4 in which we compare the homo-
geneous equilibrium states for η = −7 (left column), η = −5 (middle
column) and η = −2 (right column). Interestingly, we find that Q
is almost insensitive to changes in η (recall that here α = −6.5≪ 0);
both below and above the H+-saturation curve the mean charge is
not affected by increasing of the short-range attractions between
bounded charges (i.e., moving from right to left in Fig. 4). In con-
trast, the behaviour of the standard deviation S changes significantly
with η; particularly for mixture compositions below the saturation
curve. Overall, we find that the more negative η, the larger the max-
imum value of S. When η < −4 (see first and middle column in
Fig. 4), large values of the variance S are attained by allowing charges

FIG. 4. Composition dependence of the mean charge and standard deviation for η < 0. Series of surface plots illustrating how (a)–(c) Q and (d)–(f), depends on the local
composition of the mixture (ϕM ,ϕ

−
), for different values of the parameter η: (left column) η = −7; (middle column) η = −5; and (right column) η = −2 [same as Fig. 3(a)].

The dotted light blue lines indicate the salt concentration at which the concentration of H+ ions in solution equilibrates the concentration of binding sites, i.e., ϕ
−
= ZϕM/N.

We highlight in grey the area of the (ϕM ,ϕ
−
)-plane for which no physical solution exists [i.e., Eqs. (26) and (27) are not satisfied]. (g)–(i) Plots of the charge distribution,

πz see Eq. (14) for specific values of (ϕM ,ϕ
−
) [see white dots in panels (a)–(f)]; the red vertical lines indicate the mean of the distribution, Q. Other parameters are set to

default values given at the start of Sec. III.
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to be distributed unevenly between polymers – i.e., πz has a bimodal
profile [see panels (g) and (h) in Fig. 4]. For values of η near the
critical threshold η = −5 [see panel (h)], we find broad distributions,
with polymers in all charge states present in the solution. In this case,
the peaks in the distributions occur away from Q (see vertical red
line) suggesting that most polymers have a charge state that devi-
ates from the mean. As we take η≪ −4 [see panel (g)], πz becomes
more skewed towards the extreme states, z = 0 and z = 1, and the
large values of S are due to the differential partitioning of the charges
rather than πz having a broader support. This is because the inter-
mediate charge states, z ≈ Z/2, become energetically unfavourable
and most polymers exist either in a poorly-charged (z ≈ 0) or in
a highly-charged state (z ≈ 1). In this regime, changes in the mix-
ture composition only impact the relative fraction of the polymers
in poorly-charged and in highly-charged states thus allowing Q to
attain all values in the interval [0, Z]. From this point of view, the
model could be approximated by a two-population model: either
neutral or fully charged polymers that coexist under proper condi-
tions, i.e., when the mixture composition is such that ũeff has two
minima. This is similar to the approach adopted in Ref. 22.

B. Demixing in solutions of charged polymers
In Sec. III A, we have discussed how charge regulation affects

the homogeneous equilibrium states of the mixture. In particular, we
find that the mixture composition modulates the equilibrium charge
distribution. Due to the physical constraints on the volume fractions
– i.e., no-void and electro-neutrality – at equilibrium the mixture
composition is well-defined by the volume fraction of two species.
Here we have chosen: the total volume fractions of polymers, ϕM
and counterions, ϕ−.

We now investigate how charge regulation impacts the solu-
bility of charged polymers. The calculation of the phase diagrams
follows standard procedures – details are given in Appendix D. We
denote by {ϕI

ω} and {ϕII
ω} the volume fraction of species in the dilute

(i.e., polymer depleted) and condensed (i.e., polymer rich) phases,
respectively. Importantly, in constructing the phase diagrams we
allow the ions to be distributed asymmetrically between the dilute
and condensed phases. As a result, the tie-lines (i.e., the curve con-
necting coexisting states) can have non-zero gradients. This leads
to the mean electrostatic potential being different in the dilute (ψI

)

and condensed (ψII
) phases. The difference Δψ = ψII

− ψI is known

as the Galvani potential.35 For any value of the model parameters
the phase diagrams are practically computed in Julia using the
BifurcationKit package37 for numerical continuation.

As mentioned in Sec. II, most models of phase separation
assume that the charges on the polymers are fixed. In order to
highlight the role of charge regulation in phase separation, we first
investigate demixing for a solution of polymers with a fixed charge,
Z. While in the charge regulation (CR) model the charge distribu-
tion, πz is obtained by minizing the free energy f [see Eqs. (4)–(9)],
in a fixed charge (FC) model, πz is prescribed via a delta function
πz = δ(z − Z). Substituting ϕz = ϕMδ(z − Z) into Eqs. (4)–(9), we
obtain the free energy for the FC model, fFC, as

fFCν
kBT

= ϕ+ ln [ϕ+] + ϕ− ln [ϕ−] + ϕs ln [ϕs] +
ϕM

N
ln ϕM

+
uZϕM

N
+ χϕMϕs −

1
4π
(ln (1 + κ) +

κ(κ − 2)
2

) (28)

where κ =
√

2λϕ− (as before) and uZ is defined as in (7). As
before, the system must also satisfy the electro-neutral and no-void
constraints [see Eqs. (1) and (3)].

1. Phase diagrams for macromolecules
with a fixed charge

In Fig. 5, we present the phase diagram for increasing values
of the fixed charge on the macromolecules, Z. In these diagrams,
regions of mixing and demixing are separated by the binodal (or
coexistence) curves. Along the binodal, we highlight the gradient
of the tie-lines: positive gradients (in red) indicate the counterions
concentration is higher in the condensed phase (II); in contrast, neg-
ative gradients (in blue) imply counterions accumulate in the dilute
phase (I). We note that, besides the constraints Eqs. (26) and (27), in
the fixed charge model, the electroneutrality condition also requires
ϕ− > Z/NϕM .

Starting from the case of neutral polymers [see Fig. 5(a)], we
recover a coexistence curve analogous to the one obtained in pre-
vious works on coacervates.13,35 Here the region of demixing is
enclosed by a single open curve (the bimodal) and a unique criti-
cal point (highlighted in red) exists. Furthermore, the tie-lines have
a negative gradient, suggesting that more counterions accumulate
in the dilute instead of the condensed phase. The gradient steepens

FIG. 5. Phase diagram topologies for polymers with fixed charges. In the different panels, the following fixed charge values Z have been chosen: (a) Z = 0, (b) Z = 5, (c)
Z = 10, (d) Z = 15 and (e) Z = 20. The colour scale indicates the gradient of the tie-lines while tie-lines connecting coexisting states are indicated in light grey. The area of
the (ϕM ,ϕ

−
) space that are unphysical for our model (i.e., electroneutrality is not satisfied) are shadowed in grey. Critical points at which the two coexisting phases become

indistinguishable are denoted by the red circles. Other parameters are set to default values given at the start of Sec. III.
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near the critical point, while tie-lines are almost horizontal when the
counterions are dilute (ϕ(I)− ≪ 1). As we increase Z the fixed charge
on the polymers [see Figs. 5(b) and 5(c)], the demixing region is
affected only for small values of ϕ−; this is primarily due to inter-
section of the bimodal curve with the boundary of the feasibility
region (ϕ− = Z/NϕM). Since the latter curve has a positive gradi-
ent, this enforces the tie-lines to change their orientation as they
approach the boundary of the feasibility region. If we increase the
charge on the polymers even further [see Figs. 5(d) and 5(e)], we find
the demixing region shrinks and its topology changes into a closed-
loop with the emergence of a second critical point. We find also a
complete inversion in the slope of the tie-lines compared to the neu-
tral case. If we were to increase Z even further, the miscibility gap
will disappear (results not shown).

2. Phase diagrams for charge-regulating polymers
In Fig. 6, we illustrate the characteristic topologies of the phase

diagram for charge-regulating polymers for different values of η. In
these diagrams, regions of mixing and demixing are separated by
the binodal curves. In Figs. 6(a)–6(d), we depict along the bimodal
the mean charge on the polymers, Q. In Figs. 6(e)–6(h), we illus-
trate the same phase diagrams but highlight along the binodal the
gradient of the tie-lines (see grey curves). Interestingly, we find that
the phase diagrams can be significantly different from each other
depending on the value of the charge regulation parameter η. In
particular, we find that, for strong short-range attraction between
occupied binding sites, i.e., η large and negative (first and second col-
umn in Fig. 6), the phase diagram presents two disconnected regions
of demixing – namely A and B in Fig. 6(a)– which are enclosed in
the demixing region obtained for neutral polymers [see shaded area
in Fig. 6(a)]. The demixing region A in Fig. 6(a) lies above the H+

saturation curve [see Fig. 3(a) and related discussion] and the poly-
mers effectively behave as having a fixed charge of Z = 20. When

comparing region A in Fig. 6(a) [or Fig. 6(b)] and the demixing
region in Fig. 5(e), the two overlap exactly. In contrast, the demix-
ing region B lies fully or partially below the saturation curve. The
boundary of this region is delimited by coexisting phases that dif-
fer both in the local amount of polymers as well as in their charge
state – as highlighted by the variation in the mean charge Q. The
implication of these results will be investigated in Sec. III C. As the
value of η increases (i.e., it is less favourable for polymers to be in a
fully charged state), the two disconnected regions merge and a single
demixing region persists [see Fig. 6(c)]. Eventually, for η sufficiently
positive, the phase diagram converges to the one of neutral polymers
[see Fig. 6(d)].

Interestingly, when comparing phase diagrams with two
demixing regions, we find that the tie lines have always a positive
gradient – i.e., the concentration of counterions is lower in the dilute
(I) instead of condensed phase (II). In contrast, for the phase dia-
grams with a single demixing region, we observe different trends in
the tie-lines: (e)–(g) always a positive gradient; (h) a mix of tie-lines
with positive and negative gradients in the proximity of the critical
point.

Overall, we find that, similarly to fixed charges, the presence
of charge-regulating binding sites lowers the demixing tendency of
polymers (compared to the neutral case – see shaded area in Fig. 6).
Nonetheless, we find that charge regulation mechanisms, unlike
fixed charges, yield more complex topologies of the phase diagrams.
As investigated in Sec. III B 3, this gives rise to non-linear depen-
dencies between the polymer solubility as a function of the solution
acidity.

3. The impact of counterions on polymer solubility
Recent studies have focused on studying how chemical prop-

erties of salt ions (such as the counterion radii) affect the solubility
of charged polymers with fixed charges.38 Their theoretical results,

FIG. 6. Phase diagram topologies for different values of the charge regulation parameter η. The following values were chosen: η = −7.0 (first column); η = −2 (second
column); η = 0 (third column) and η = 2 (fourth column). In panels (a)–(d) the colour map indicates the mean charge Q along the binodal curve; the grey area indicates the
demixing region for the neutral polymer solution [same as in Fig. 5(a)]. In panels (e)–(h), the colour map indicates the gradient of the tie-lines (indicated in light grey). Critical
points at which the two coexisting phases become indistinguishable are denoted by red circles. Other parameters are set to default values given at the start of Sec. III.
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for a system of polyelectrolytes in a solvent with salt (i.e., positive
and negative mobile ions), show non-monotonic salt concentration
dependence where salting-out at low salt concentrations is due to
ionic screening. In the high salt concentration regime, the macro-
molecules remain in the salting-out regime for small ions but change
to a salting-in regime for larger ions. They conclude that the solu-
bility at high salt concentrations is determined by the competition
between the solvation energy and the (translational) entropy of ions,
addressing the intensely discussed problem of salt effects in LLPS
of protein solutions, such as re-entrant phase transitions shown
experimentally in Refs. 39 and 40.

Here, we are interested analogously in studying the impact of
counterions (or solution acidity) on the solubility of charged poly-
mers. We define the solubility, ω = ω(ϕ−), of a charged polymer for
a given counterion concentration ϕ−, as the minimum value of the
equilibrium volume fraction on the binodal curves [see schematic
drawing in Fig. 7(a)]. Our definition is analogous to the one used
in Ref. 38, but corrected for the fact that, in our model, multiple
coexistence curves may exist.

As shown in Fig. 7(b), we find that for neutral molecules the sol-
ubility increases with counterion concentration (see purple curve).
In contrast, when considering polymers with fixed charge, ω has
a non-monotonic profile which agrees with the results obtained in
Ref. 38 (for relatively large salt ions), despite our simpler approxima-
tion of electrostatic fluctuations. At low counterion concentrations,
the solubility of the polymers decreases with ϕ−. This trend – which
we referred to as counterion-out behaviour – is considered to be
universal for all ions at low ionic concentrations and is explained
by the fact that the counterions are able to screen the charge on
the polymers and hence reduce the Coulomb repulsion between the
polymers. In contrast, at higher counterion concentrations, the sol-
ubility increases with ϕ− – the counterion-in effect. This can be
explained by the dominant contribution of the entropy of mixing
associated with the ions over charge-screening effects, which favours
the miscibility of the solution, very similar to the properties of the
system studied in Ref. 38.

As shown in Fig. 7(c), solubility curves of charge-regulating
polymers present more complex trends. When η ≤ 0, we find that the
solubility curve can be split into three regimes: acid-in at extremely
low counterion concentrations; acid-out for intermediate-to-low
counterion concentrations; counterion-in at high counterion con-
centrations. Note that in the transition between the counterion-in

at extremely low ϕ− to counterion-out behaviour for low ϕ−, the
solubility curve is not smooth. Jumps in ω and ω′ is a signature of
the presence and merging of the two disconnected demixing regions
[see the curves with η ≤ 0 in Fig. 7(c)]. For larger values of η [see
red curve in Fig. 7(c)], corresponding to the scenario where binding
of the ions to the monomers is unfavourable, we recover a mono-
tonic solubility curve as for neutral macro-molecules: consistent
counterion-in behaviour (independently of ϕ−).

The transition in the sign of the first derivative from ω′ > 0
to ω′ < 0 in the saturation curves in Fig. 7(c) is a signature of
another important feature of the phase diagrams in Figs. 6(a)–6(c):
counterion-driven re-entrant phase separation. Specifically, when
η is not too large and positive [as in Figs. 6(a)–6(c)], the system
exhibits re-entrant behaviour when varying the concentration of
counterions, ϕ−. In other words, there are values of ϕM that lie in
the demixing region at very low and high values of ϕ− but not for
intermediate (or very high) concentrations of counterions.

C. Regulation of the charge distribution
via phase separation

In Sec. III B 2, we have shown how charge regulation affects
phase separation in solutions of charged polymers. Conversely, in
this section, we are interested in how phase separation itself regulates
polymer charge in solution. In order to investigate this aspect, we
consider a standard quenching experiment where we drive the sys-
tem to phase separate by controlling the acidity of the solution (i.e.,
decreasing ϕ−). Specifically, we start from a homogeneous mixture
(O)with composition ϕO

M = 0.2 and ϕO
− = 0.04; this is then perturbed

by decreasing the acid volume fraction to ϕ− = 0.023. When consid-
ering spatially homogeneous equilibria, at any location in space the
charge distribution of the polymer phase is the same. However, this
is not guaranteed when considering a demixed solution consisting
of a dilute (I) and condensed (II) phase. In this case, we denote by
πI

z and πII
z the charge of polymers in each of the two phases. When

considering the solution as a whole, the charge distribution on the
polymers can be expressed as the weighted average of πI

z and πII
z :

πO′
z =

γπI
zϕI

M + (1 − γ)πIP
z ϕII

M

γϕI
M + (1 − γ)ϕII

M
(29)

where γ is the fraction of the total volume of the solution occupied
by the dilute phase (I) in the quenched state (O′). The value of γ is

FIG. 7. Counterion effect on polymer solubility. (a) Schematic showing how the solubility, ω, is computed starting from the phase diagrams in Sec. III B (details in the main
text). (b) Solubility ω as a function of the counterion concentration for polymers with different fixed charges (same parameters as in Fig. 5). (c) Solubility ω as a function of
the counterion concentrations for charge regulating polymers (same parameters as in Fig. 6).
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constrained by the conservation of the total concentration of any
of the species in the solution; without loss of generality we here
consider the conservation of the polymer molecules to obtain:

γ =
ϕO

M − ϕII
M

ϕI
M − ϕII

M
. (30)

As a reference case, we test the protocol on a solution of non-
hydrophobic polymers that do not phase separate – see Fig. 8(a).
In this case, decreasing the acid concentration in the solution (i.e.,
equivalent to decreasing ϕ−) does not lead to phase separation.
Yet, it significantly affects the polymer charge distribution [compare
Figs. 8(b) and 8(c)], leading to discharging of the polymer bind-
ing sites. In Fig. 8(b), we consider the same ideal protocol applied
to a solution with hydrophobic polymers that phase separates in
solution when decreasing the acid volume fraction [see Fig. 8(d)].
As shown in Fig. 8(e), the initial charge distribution on the poly-
mers is similar to the one observed on non-hydrophobic polymers
[compare with Fig. 8(b)]. Upon quenching, the solution phase sep-
arates – state (O′) in Fig. 8(b). Polymers in the dilute phase remain
highly charged [see Fig. 8(g)] as in the initial state (O), whereas
polymers in the condensed phase partially discharge [see Fig. 8(f)]
as in the case of non-hydrophobic polymers [see Fig. 8(c)]. When
considering the overall solution, the different charge distribution
in the two phases is reflected in the charge distribution πO′ having
multiple peaks – see Fig. 8(h). By controlling the mixture proper-
ties locally – here solution acidity – phase separation creates two
environments: the condensed phase where the charge distribution
on polymers is highly sensitive to changes in the solution acidity,
and the dilute phase where the charge distribution is robust to the
changes in acidity. As a result, phase separation allows spatial con-
finement of polymers with a specific charge state. Note that, after

quenching, in Fig. 8(a), polymers with intermediate charge appear
homogeneously in the solution, while these are only localised in the
condensed phase in Fig. 8(b). The possible functional implication
of these findings in the context of biomolecular condensates will be
discussed in Sec. IV.

IV. CONCLUSIONS AND DISCUSSION
In this work, we considered a minimal model to investigate

the interplay of phase separation and charge regulation. For this,
we introduced in Sec. II a system of chargeable polymers, whose
charge state is regulated by protonation/deprotonation processes, in
a water-acid solution.

In Sec. III A, we established the homogeneous equilibria states
of the system focusing on how the mixture composition – i.e., the
concentration of the polymers, ϕM , and the counterions, ϕ− – affects
the polymer charge distribution. In doing so, we obtained analytical
results which highlight the key role of bound-charge interactions,
quantified by the parameter η, in determining the properties of
equilibrium charge distribution.

Our key findings are: For η = 0, the charge distributions in
homogeneous states of the system simplified considerably and it can
be found to follow a binomial distribution. For η ≠ 0 we showed that
by approximating the charge interaction as a continuous function,
we can approximate the charge distribution by a Gaussian distri-
bution for a continuous variable in the limit of a large number
of charges, as we derive within a saddle-point approximation. Our
analysis yielded that for η < −4, this approximation ceases to be gen-
erally valid, as multi-modal distributions can arise depending on the
mixture composition.

In Sec. III B, we unfolded how charge regulation processes
affect phase diagrams of polymer solutions. To do so, we first charac-
terised phase diagrams assuming a fixed charge on the polymers; we

FIG. 8. Phase separation as a charge regulation mechanism. Effect of quenching the solution by decreasing the concentration of counterions. We consider two cases: (a) a
solution with non-hydrophobic polymers (χ = 0); (b) a solution of hydrophobic polymers that phase separates upon quenching (χ = 0.95). (a) Phase diagram for the case
χ = 0 (no demixing). (b) Charge distribution in the initial mixed state (O). (c) Charge distribution, πz , after the quenching – i.e., homogeneous mixed state (O′). (d) Phase
diagram for the case χ = 0.95 [same as in Fig. 6(c)]. Decreasing the concentration of counterions drives demixing of the solution into a dilute (I) and condensed (II) phase
which are determined by the tie lines. The final state (O′) is a demixed solution where 67% of the volume is occupied by the dilute phase while 33% by the condensed
phase. (e) Charge distribution in the initial mixed state (O). (f) Local charge distribution for polymer in the condensed phase (II). (g) Local charge distribution for polymer in
the condensed phase (I). (h) Overall charge distribution for the demixed mixture (O′). Parameter values are set to default values and η = −2.
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then investigated how the topology changes by introducing charge
regulation mechanisms. We found that charge regulation processes
can affect the phase diagram topology in a nontrivial manner: upon
decreasing η, we observed that the usual demixing region undergoes
a change of its topology, in which a closed-loop region branches
off from the original demixing region – which persists. This con-
trasts with the phase diagrams of polymers with fixed charges, where
at most one demixing region exists. The complex topology of the
phase diagram is reflected in the relation between counterions con-
centration and polymer solubility (in short solubility curves) in an
acid-water solution. We find that charge regulation mechanisms
have a prominent signature: depending on the charge-interaction
parameter η, due to the re-entrant phase behaviour induced by
charge regulation, the solubility curve can exhibit a pronounced
jump. This might be a relevant experimental signature for the
charge-regulation induced transition in the topology of coexistence
curves.

In addition, our results show that charge regulation has an
important impact on the partitioning of counter-ions and thus the
gradients of the corresponding tie-lines, which is further compli-
cated by the existence of multi-modal equilibrium states. Different
theoretical frameworks – e.g., random phase approximation (RPA)
which takes account of connectivity of the polyelectrolyte chains,
or Liquid-State theories– have been proposed to explain salt parti-
tioning and in particular, tie-lines gradients. Identifying the physical
reasons for salt partitioning amongst the increasing number of can-
didate theories remains an open problem and an active area of
research.14 Our results show that allowing for charge regulation can
also affect tie-lines gradient thus suggesting this mechanism may
be relevant to the discussion on salt-partitioning in the complex
coacervation of polyelectrolyte.14

In the last section, Sec. III C, we investigated the effect phase
separation has on the charge distribution. By discussing the sys-
tem response to changes in the concentration of counterions, we
demonstrated that phase separation can create local environments
with very different charge distributions in the dilute and con-
densed phases, which in addition are either very similar or quite
different from the initial state. Our findings highlight how charge
regulation mechanisms can have a significant role in the response
of polymer solutions to changes in the physical environment, by
introducing a complex coupling between processes occurring at
the micro-scale (protonation/deprotonation) and meso-scale (phase
separation). Interestingly, similar non-linear effects – like e.g., re-
entrant phase behaviour– have been recently discussed by Li et al.
in a seemingly unrelated system, in which a different molecular pro-
cess - polymer self-assembly - is discussed in conjunction with phase
separation.41 This suggests re-entrant behaviour might be a general
feature of systems where phase separation is coupled to a molecular
mechanism (such as charge regulation or self-assembly). Molecular
dynamics simulations have demonstrated that charge regulation and
self-assembly of charged macromolecules are interconnected.42 This
naturally yields to the speculation that novel features could emerge
when coupling phase separation to multiple molecular mechanisms
that mutually influence one another.

On the one hand, charge regulation controls the sensitivity of
polymer solutions to environmental changes by allowing for so-
called re-entrant demixing behaviour. We expect this non-linear
dependence of phase separation on environmental cues to be fun-

damental in a range of applications to soft matter science, such as
in the design of responsive materials, as well as in LLPS of pro-
teins. Salt-induced re-entrant phase separation has been observed
for proteins that undergo LLPS in the high-salt regime,39,43 including
the intensively investigated RNA-binding protein fused in sarcoma
(FUS). These observations, together with our and previous theo-
retical works22 show the impact of the environment as a driving
force of LLPS and add a further important mechanism to the widely
discussed sequence-dependence LLPS of intrinsically disordered
proteins.

Conversely, we also find that by affecting the local environ-
ment of the polymers, phase separation itself regulates the polymer
charge state by allowing to spatially confine polymers in a specific
charged state – hence increasing their local volume fraction. This can
have important consequences when considering polymers interact-
ing with additional chemical agents, whereby their interactions may
be mediated by the polymer charge state. This is the case in the cell
cytoplasm. From this point of view, our findings suggest that phase
separation in cells might function as a regulator of cellular responses
to the environment by controlling both the location, as well as the
charge state of proteins.

Our model yields a rich and interesting range of behaviours
that hint at the importance of charge regulation mechanisms in
the mediating phase separation of charged polymers. Importantly,
our framework is based on several assumptions, e.g., a mean-
field approximation, whose validity warrants further analysis, for
example, via comparison with molecular simulations.44 Nonetheless,
our findings motivate extending our framework to develop more
sophisticated models to investigate whether our findings have rel-
evance to LLPS of biomolecules. This requires extending our model
substantially to account for their complexity and, for more real-
istic physiological conditions. For example, in this work, we have
neglected polymeric degrees of freedom (e.g., chain connectivity),
whose inclusion we see as a further step in our systematic model-
building approach. Furthermore, we have considered binding sites
on the polymer to be identical; however, biological macromolecules
are heterogeneous being formed by amino acids that form biological
macromolecules differ both in their binding affinity and/or charge.
Another interesting extension to this work is to analyse the sce-
nario in which the interaction parameter χ is considered a function
of the charge state z. This would result in the mixture composition
influencing not only the association–dissociation energy parameter,
α, but also higher-order interactions between binding sites. Con-
sidering only counterions instead of salt constitutes another strong
simplification that we aim to relax in the future. Understanding the
conditions of LLPS in the presence of charge regulation and counte-
rions will serve as a guide to understanding this problem when salt
is added.

Overall, our results reveal that, even in the simplest system
consisting of one polymer species whose charge states undergo
a protonation/deprotonation process, the interplay between phase
separation and charge regulation mechanisms governs the response
of polymer mixtures to environmental changes.
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APPENDIX A: DERIVATION OF THE CHEMICAL
POTENTIAL CONDITION

We consider an incompressible mixture in the (T, V , N)-
ensemble with temperature T, volume V and particle numbers
Nω– where ω ∈ Ω. At equilibrium, such a system minimises
the Helmholtz free energy, F = F(T, V ,{Nω}ω ∈Ω). From Euler’s
relation, it follows that

F(T, V ,{Nω}ω∈Ω) =∑
ω∈Ω

μωNω − pV , (A1)

where p is the pressure and μω are the chemical potentials of the
different components of the mixture. Incompressibility of the mix-
ture implies that the molecular volume νω of each component of the
mixture is constant; as a result, the volume of the mixture can not
be taken as an independent variable but rather as a function of the
particles numbers: V = ∑ω∈Ω Nωνω. Differentiation of F with respect
to particle number leads to the chemical potential condition

μω =
∂F
∂Nω

+ pνω. (A2)

Transforming now to the Helmholtz free energy density f (T,
{ϕω}ω ∈Ω) = F/V with the volume fractions ϕω = Nωνω/V we obtain,
performing the necessary differentiations,

μω = νω f + νω
∂ f
∂ϕω
+ Vνω∑

σ

∂ f
∂ϕσ
(−νσNσ)

V2 + νωp

= νω[p + ( f −∑
σ

∂ f
∂ϕσ

ϕσ)] + νω
∂ f
∂ϕω

. (A3)

Applying this general relation to our mixture we find that
the chemical potential of the free ions (μ+, μ−), solvent (μs) and
z-charged polymers (μz) are given by

μ+ = (p − Σ)ν + kBT[ln (ϕ+) + 1 −
λ

8π
κ

1 + κ
], (A4)

μ− = (p − Σ)ν + kBT[ln (ϕ−) + 1 −
λ

8π
κ

1 + κ
], (A5)

μs = (p − Σ)ν + kBT[ln (ϕs) + 1 + χϕM], (A6)

μz = (p − Σ)Nν + kBT[uz + ln (ϕz) + 1 + χNϕs −
zλ
8π

κ
1 + κ

]. (A7)

The expression for Σ arises from those terms in the round brackets in
(A3) that do not cancel out which is only the case for contributions
from f2 and f3. Making use of the no-void condition for f2 and the
electroneutrality condition for f3 one finds

νΣ
kBT
= (1 − ϕM +

ϕM

N
) + χϕMϕs +

1
4π
(ln (1 + κ) −

κ
2

2 + κ
1 + κ

). (A8)

APPENDIX B: SADDLE-POINT APPROXIMATION

When considering η = 0, the charge distribution, {πz}
Z
z=0, is

binomial. It is well known that a general binomial distribution,
B(Z, p), is well-approximated by a Gaussian distribution with the
same mean and standard deviation, in the limit Z ≫ 1 – provided p
is bounded away from its extreme values 0 and 1. Here we show that
a saddle-point approximation to the charge distribution is possible
provided that η > −4, guaranteeing that the charge distribution has
a unique maximum.

Substituting the definition of uz [see (7)] into (14), we obtain
that πz reads

πz =
exp (−αeffz − ηz2

2Z + ln [( Z
z )])

Z
∑
k=0

exp (−αeffk − ηk2

2Z + ln [( Z
k )])

, z = 0, . . . , Z. (B1)

where the αeff is as defined in (19). In what follows, we want to
approximate the distribution (B1) by a Gaussian distribution centred
at its mean value Q = ∑Z

z=0 zπz under the assumption that Z ≫ 1.
For our approximation to be valid, the mean charge needs to be suffi-
ciently far from its extreme values, i.e., Q≫ 0 and Z − Q≫ 0. Since
Z ≫ 1, we rewrite the discrete charge distribution (B1), as a contin-
uous probability distribution for the continuous variable z ∈ [0, Z].
First, we approximate the binomial coefficient by using Stirling’s
series:

ln (n!) ≈ n ln n − n +
1
2

ln (2πn) +O(
1
n
). (B2)

Using (B2), we find
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1
Z

ln [(
Z
z
)] = −

z
Z

ln
z
Z
− (1 −

z
Z
) ln(1 −

z
Z
)

−
1

2Z
ln(2πz(1 −

z
Z
))

+O(
1

Zz
) +O(

1
Z(Z − z)

), (B3)

Following the continuous approximation, we can write (B1) but
considering z ∈ (0, Z) as a continuous distribution:

πz =
exp (−Zũeff(

z
Z ))

Z∫
1

0 exp (−Zũeff(ω))dω
, z ∈ (0, Z), (B4)

where

ũeff(ω) = ωαeff +
ω2η

2
+ ω ln ω + (1 − ω) ln (1 − ω) + h.o.t. (B5)

By computing the second derivative of ũeff, it is apparent that for
η > −4 the function ũeff is convex for ω ∈ (0, 1). This guarantees that
there exists a unique minimum, p ∈ (0, 1). As discussed in Sec. III A,
we can interpret p as an effective binding probability of ions to the
polymer that we have defined in the main text. An implicit definition
for p can be obtained by solving ũ′eff(p) = 0:

p =
e−αeff−pη

1 + e−αeff−pη . (B6)

When Z ≫ 1, the mass of the normalisation integral [see first fac-
tor in Eq. (B4)] will be localised around the stationary point, p, and
standard techniques, such as Laplace’s method can be applied:

∫

1

0
e−Zũ eff(ω)dω ≈

√
2π

Zũ′′eff(p)
e−Zũ eff(p), (B7)

where

ũeff(p) = −
ηp2

2
− ln(1 +

ϕ+
ϕs

e−α−χϕM−pη
), (B8)

ũ′′eff(p) =
ηp(1 − p) + 1

p(1 − p)
. (B9)

Substituting the above into Eq. (B4) and expanding around the
stationary point (Zp), we obtain a Gaussian distribution:

πz ≈
1

√
2πZũ′′eff(p)

exp(−
(z − Zp)2

2Zũ′′eff(p)
). (B10)

In Fig. 9, we compare the approximated distribution (B10)
with the real distribution (B1) for different values of αeff. We
find good agreement between the two. Nonetheless, discrepancies
emerge when considering ∣αeff∣≫ 1 when the maximum of the dis-
tribution shifts towards the boundary of the domain: for αeff large
and negative, the maximum ≈Z while for αeff large and positive ≈0.
This discrepancy is to be expected since for the approximation to
hold we must assume p is bounded away the extreme values 0 and 1.

FIG. 9. Saddle-point approximation. Plots comparing the exact discrete dis-
tribution (B1) (histogram) and its approximation obtained via the saddle-point
approach (B10) (red curve). Different panels corresponds to different choices of
the parameter αeff.

APPENDIX C: UNIMODAL DISTRIBUTION: DOMAIN
OF PHYSICALITY

In this section, we outline results on the existence and unique-
ness of the effective binding probability p [see (25)] assuming η > −4
for any values of ϕM ∈ (0, 1) and ϕ− ∈ (0, 1) which are physically
allowed.

By substituting Eqs. (24) and (25) into (1)–(3), we find that p
is implicitly defined by the non-linear algebraic equation Πη(p) = 0,
where

Πη(x) = exηx(1 − ϕM − ϕ−) + (
Zx
N
ϕM − ϕ−)

× [xeηx
+ e−α−χϕM(1 − x)]. (C1)

The form of Πη is obtained starting from (19) and (B6) by first elim-
inating ϕ+ via (3) in the form ϕ+ = ϕ− − Zp/NϕM , and by finally
using (1) in the form ϕs = 1 + (Zp/N − 1)ϕM − 2ϕ− to eliminate
the remaining dependence on ϕs. Note that when setting η = 0, Π0
reduces to a quadratic equation for p0 that can be solved explicitly:

p0 =
−b(ϕM ,ϕ−) +

√

b2
(ϕM ,ϕ−) + 4c(ϕM ,ϕ−)

2
, (C2)

where

b(ϕM ,ϕ−) =
N
Z

1 − ϕM − 2ϕ− + e−α−χϕM(Z/NϕM + ϕ−)
(1 − e−α−χϕM)ϕM

, (C3)

c(ϕM ,ϕ−) =
N
Z

ϕ−e−α−χϕM

(1 − e−α−χϕM)ϕM
. (C4)

Nonetheless, we consider the more general case η > −4, and
prove that there exists at most one root p for the function Πη in the
interval (0, 1]; conditions for existence are then discussed. We here
exclude 0 since p = 0 refers to the critical case where no counter-ions
are present in the solution: Πη(0) = −e−α−χϕMϕ− = 0 only if ϕ− = 0.
First, we note that, for x ∈ (0, 1], the first term on the right hand
side in (C1) is always non-negative (since from the no-void condi-
tion ϕs + ϕ+ = 1 − ϕ− − ϕM ≥ 0). The sign of the second term instead
depends on the value of (Zx/N)ϕM − ϕ−. Given that p is a root ofΠη,
if that exists, we must have that Zp/NϕM − ϕ− < 0 (which guarantees
that ϕ+ > 0).

We now consider the value of the first derivative of Πη and
evaluate it at one of its possible roots:
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Π′η(p) =
Z
N
ϕM(pepη

+ e−α−χϕM(1 − p))

+ (ϕ− −
Zp
N
ϕM)e−α−χϕM 1 + ηp(1 − p)

p
, (C5)

where we have used the fact that Πη(p) = 0. It is apparent that the
first term in (C5) is positive and so is the second term, since, as dis-
cussed above, we must have that ϕ− − Z/NpϕM > 0. This implies that
for any root of Πη, p ∈ (0, 1], the derivative Π′η(p) > 0.

1. Uniqueness
Since the function Πη is analytic and Π′η(p) > 0, we conclude

that if p exists this must be unique. Otherwise, there would exists a
root p̃ ∈ (0, 1) such that Π′η(p̃) ≤ 0.

2. Existence
Generally, the existence of p is not guaranteed. SinceΠη(0) < 0,

the only conditions for the existence of p is that Πη(1) ≥ 0:

1 − ϕM − 2ϕ− +
Z
N
ϕM > 0. (C6)

3. Domain of physicality
Summarising the results above, we find two inequality con-

straints that homogeneous equilibria exist (i.e., p is well-defined)
provided that:

1 − ϕM − ϕ− > 0, (C7)

1 + ϕM(
Z
N
− 1) − 2ϕ− > 0. (C8)

However, for the equilibria to be physical meaning, we must have
that the corresponding volume fractions ϕ+ and ϕs are positive and
less than one. Conditions(C7) and (C8) are sufficient to guarantee
this is the case.

APPENDIX D: TWO-PHASE COEXISTENCE
CONDITIONS

In this section, we derive the coexistence conditions used to
compute the phase diagrams presented in Sec. III B. We start by con-
sidering an initially homogeneous mixture of the Z + 4 species that
has been quenched into the unstable regime, just before separates
into two phases. Each of the emerging phases are homogeneous with
a unique composition, characterised by the composition vectors ϕI

ω
and ϕII

ω . In the demixed state, the conditions for the coexistence of
two phases are

μ({ϕI
ω}ω∈Ω) = μ({ϕ

II
ω}ω∈Ω). (D1)

These are Z + 4 conditions for 2(Z + 4) variables, leaving Z + 4
degrees of freedom. For the charge regulation (CR) model, we
assume each phase is in chemical equilibrium, which imposes the
chemical potentials in each of the two phases to satisfy Eq. (10),
or Z restrictions each. When considering the fixed charge (FC)

model, the system is constrained by imposing the charge distribu-
tion πz = δ(z − Z) in both phases; also in the latter case, this leads to
2Z restrictions. However, due to the equality of chemical potentials
between phases, we only need to impose these Z conditions on one
phase (for the other they are then implied). So we have 4 degrees of
freedom left. We also have to satisfy electroneutrality and no-void in
each phase, which removes all four remaining degrees of freedom.
As a result, we lack one degree of freedom required to match those
of the initial homogeneous mixture prior to demixing.

This problem is frequently addressed by adding an additional
contribution to the chemical potential μω in (A4) for each of the
charged species, giving rise to the electrochemical potential,

μ̌ω = μω + zωeψ, (D2)

where ψ is the Galvani potential. These electrochemical potentials
are then equated instead of the chemical potentials. In a homoge-
neous system, the Galvani potential ψ is constant and hence can
be eliminated by setting it to zero, but in a non-homogeneous e.g.,
demixed system it is usually not. We then have two different values
for ψ and the difference between the two remains as the previously
missing additional degree of freedom.

Here, we proceed differently to motivate the introduction of a
Galvani potential and describe the phase separation as a minimi-
sation problem. We again consider a system with two coexisting
phases and a total volume V = 1 (without loss of generality), split
into two sub-systems I and II of volume γ and 1 − γ, respectively,
with 0 < γ < 1. Each subsystem is occupied by a single, in itself
homogeneous phase described by the variables ϕ⃗ I

= (ϕI
ω)ω ∈Ω and

ϕ⃗ II
= (ϕII

ω)ω ∈Ω, respectively. The total free energy of the demixed
system is then given by

F2 = γ f (ϕ⃗ I
) + (1 − γ) f (ϕ⃗ II

). (D3)

In a system without chemical reactions, each species is individually
subject to mass conservation and we would minimise F under these
Z + 4 constraints to find the equilibrium of the system. With chem-
ical reactions, a smaller number of quantities are conserved, and
these quantities need to be determined in an additional step prior
to the formulation of the minimisation problem. For this purpose,
note that the total number of molecules of species ω present is given
by

Nω = (γϕI
ω + (1 − γ)ϕ

II
ω)/νω (D4)

For

K =∑
ω∈Ω

aωNω (D5)

to be conserved, the vector a⃗ = (aω)ω ∈Ω has to satisfy

ST a⃗ = 0, (D6)

where S is the stoichiometric matrix (with Z + 4 rows and Z
columns), that is, the rows of its transpose are the stoichiometric
coefficients of the chemical reactions. To write out this matrix, we
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assume that the indices ω are ordered as z = 0, 1, . . . , Z followed by
s,+,−. Then we get

ST
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 ⋅ ⋅ ⋅ 1 −1 0

0 −1 1 0 ⋅ ⋅ ⋅ 1 −1 0

⋮
. . .

. . .
. . .

. . . ⋮ ⋮ ⋮

0 0 ⋅ ⋅ ⋅ −1 1 1 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (D7)

Four linearly independent solutions a⃗ of (D6) can be easily read off
and give the conserved quantities

K1 = νN− = γϕI
− + (1 − γ)ϕ

II
− , (D8)

K2 = ν(Ns +N+) = γ(ϕI
s + ϕ

I
+) + (1 − γ)(ϕ

II
s + ϕ

II
+), (D9)

K3 = νM

Z

∑
z=0

Nz = γ
Z

∑
z=0

ϕI
z + (1 − γ)

Z

∑
z=0

ϕII
z , (D10)

K4 = ν(
Z

∑
z=0

zNz +N+)

= γ(
ν
νM
(

Z

∑
z=0

zϕI
z) + ϕ

I
+)

+ (1 − γ)(
ν
νM
(

Z

∑
z=0

zϕII
z ) + ϕ

II
+) (D11)

In the minimisation problem for F2 in (D3), we enforce that the
Ki ≡ Ki(ϕ⃗ I , ϕ⃗ II , γ) are equal to a constant parameter K0

i , the value
of which is set for example by the composition of the mixture prior
to separation into two phases. We impose the resulting conditions
as constraints, alongside the no-void (1) and electroneutrality (3)
conditions enforced separately for each of the two phases. However,
it turns out that (D10) is implied by (D8) and (D9) and the no-
void condition (1), and therefore can be dropped. Similarly, (D11)
is implied by (D8) and electroneutrality (3), so this constraint can be
dropped, too.

Including the constraints via Lagrange multipliers λ1, λ2, ρI , ρII

and ψI , ψII , we seek the stationary points of

L2 = F2 + λ1(K1 − K0
1) + λ2(K2 − K0

2)

+ ρI
(∑
ω∈Ω

ϕI
ω − 1) + ρII

(∑
ω∈Ω

ϕII
ω − 1)

+ ψIeγ(ϕI
+ − ϕ

I
− +

ν
νM

Z

∑
z=1

zϕI
z)

+ ψIIe(1 − γ)(ϕII
+ − ϕ

II
− +

ν
νM

Z

∑
z=1

zϕII
z ) (D12)

Notice that we have weighted the electroneutrality conditions with
the elementary charge e and with the relative volume γ and 1 − γ
occupied by phase I and II, respectively.

By differentiating L2 with respect to ϕI
+ and ϕI

l , we get

∂ f
∂ϕI
+
+ λ2 −

∂ f
∂ϕI
−
− λ1 + 2ψI

= 0, (D13)

and similarly for phase II. Subtracting the expressions for the two
phases and using (4) –(8) to evaluate the derivatives of f , we obtain

e
ψII
− ψI

kBT
=

1
2

ln [
ϕI
+
ϕI
−

ϕII
−
ϕII
+
], (D14)

The difference ψII
− ψI can be identified with the net potential jump

due to the electric field between the two phases, also known as
Galvani potential.35

Returning to L2 and setting its first derivatives with respect to
the components of ϕ⃗ I to zero, we obtain, after some algebra, the
condition

νM(
∂ f
∂ϕI

z
−

∂ f
∂ϕI

z−1
) = ν(

∂ f
∂ϕI
+
−

∂ f
∂ϕI

s
), z = 1 . . .Z + 1; (D15)

similarly for I replaced by II. This is exactly the condition (10),
applied to each phase; see also (A3). We therefore can use (14),
together with (2), to eliminate the ϕI

z and ϕII
z variables, to get the

minimisation problem

γ f (ϕI
s ,ϕ

I
+,ϕI

−,ϕI
M) + (1 − γ) f (ϕII

s ,ϕII
+ ,ϕII

− ,ϕII
M) = min!, (D16)

subject to the constraints

γϕI
− + (1 − γ)ϕ

II
− = K0

1 , (D17)

γϕI
M + (1 − γ)ϕ

II
M = K0

5 , (D18)

ϕR
s + ϕ

R
+ + ϕ

R
− + ϕ

R
M = 1, R = I, II, (D19)

ϕR
+ − ϕ

R
− +

ν
νM

ϕR
M QR

= 0, R = I, II, (D20)

with constants K0
1 and K0

5 . Notice that (D18) replaces (D9) by a linear
combination of the other constraints.

We treat this minimisation problem by using (D19) and (D20)
to eliminate the ϕR

s and ϕR
+ variables (for R = I, II) from f (and

denote it by f ∗) but including (D17) and (D18) via Lagrange mul-
tipliers. Differentiating with respect to ϕR

l , ϕR
M and γ gives the

conditions

μ∗M(ϕ
I
M ,ϕI

−) = μ
∗
M(ϕ

II
M ,ϕII

−), (D21)

μ∗−(ϕ
I
M ,ϕI

−) = μ
∗
−(ϕ

II
M ,ϕII

−), (D22)

μ∗M(ϕ
I
M − ϕ

II
M) + μ

∗
−(ϕ

I
− − ϕ

II
−) = f ∗(ϕI

M ,ϕI
−) − f ∗(ϕII

M ,ϕII
−), (D23)
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where

μ∗M = ∂ f ∗/∂ϕM (D24)

and

μ∗− = ∂ f ∗/∂ϕ−, (D25)

These are the equations we solve using bifurcation packages as
described in the main text; f ∗ is substituted by either fCR [see
Eq. (20)] or fFC [see Eq. (28)] depending on the formulation of the
model of interest.
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