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Automated voice pathology discrimination from audio recordings benefits 
from phonetic analysis of continuous speech 
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A B S T R A C T   

In this paper we evaluate the hypothesis that automated methods for diagnosis of voice disorders from speech 
recordings would benefit from contextual information found in continuous speech. Rather than basing a diag
nosis on how disorders affect the average acoustic properties of the speech signal, the idea is to exploit the 
possibility that different disorders will cause different acoustic changes within different phonetic contexts. Any 
differences in the pattern of effects across contexts would then provide additional information for discrimination 
of pathologies. We evaluate this approach using two complementary studies: the first uses a short phrase which is 
automatically annotated using a phonetic transcription, the second uses a long reading passage which is auto
matically annotated from text. The first study uses a single sentence recorded from 597 speakers in the Saar
brucken Voice Database to discriminate structural from neurogenic disorders. The results show that 
discrimination performance for these broad pathology classes improves from 59% to 67% unweighted average 
recall when classifiers are trained for each phone-label and the results fused. Although the phonetic contexts 
improved discrimination, the overall sensitivity and specificity of the method seems insufficient for clinical 
application. We hypothesise that this is because of the limited contexts in the speech audio and the heteroge
neous nature of the disorders. In the second study we address these issues by processing recordings of a long 
reading passage obtained from clinical recordings of 60 speakers with either Spasmodic Dysphonia or Vocal fold 
Paralysis. We show that discrimination performance increases from 80% to 87% unweighted average recall if 
classifiers are trained for each phone-labelled region and predictions fused. We also show that the sensitivity and 
specificity of a diagnostic test with this performance is similar to other diagnostic procedures in clinical use. In 
conclusion, the studies confirm that the exploitation of contextual differences in the way disorders affect speech 
improves automated diagnostic performance, and that automated methods for phonetic annotation of reading 
passages are robust enough to extract useful diagnostic information.   

1. Introduction 

The human voice production system can become impaired in mul
tiple ways involving structural, neurogenic, inflammatory, or muscle 
tension disorders [1]. A challenge for the clinician is discriminating 
between disorders, since they may have very different consequences for 
therapy. In particular, cancers of the throat and larynx require urgent 
detection and treatment. Instrumental methods for endoscopic exami
nation of the larynx and objective assessments involving acoustic and 
Electroglottographic (EGG) analysis are available, but only in special
ized centres, and typically only after screening by non-instrumental 
means. Differentiation between types of disorders by subjective 

auditory assessments alone is difficult because of similarities in the 
auditory effect of different pathologies, and diagnostic reliability is 
highly influenced by clinician training, background, and experience [2]. 
Recently, machine learning approaches for objective assessment of voice 
pathology have become popular, since they hold the promise of accurate 
pathology detection and discrimination from simple audio recordings, 
while making screening for pathology more accessible [3,4,5]. Although 
there are many such studies focusing on contrasting pathological from 
non-pathological voices (see [6] for a survey), only a few studies in the 
past decade have investigated differential diagnosis of voice pathologies 
[7,8,9]. This paper is concerned with the assessment and improvement 
of the best current machine learning methods for voice pathology 
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discrimination. 
The most common approach to automated voice disorder assessment 

has been to analyse sustained vowel productions of the speaker (e.g., /ɑ/ 
, /e/, and /i/) instead of continuously spoken speech. Although sus
tained vowels have long been used by clinicians to assess voice, they are 
clearly unrepresentative of everyday speech [10] and do not fully ex
ercise the voice production mechanism. Since continuous speech re
quires the exercise of more laryngeal functions, it seems likely that this 
style would better expose voice disorders. There has also been some 
recent evidence that continuous speech recordings can allow for better 
automated pathology detection than sustained vowel recordings 
[11,12,13]. However, automated assessment of continuous speech can 
be challenging for machine learning methods because of the increase in 
acoustic variability caused by the verbal content of the speech. While an 
isolated vowel can be said to have relatively stationary spectral prop
erties and thus can be characterized by averages made over a whole 
recording, the same cannot be said of a read passage. It seems likely that 
different phonetic elements in speech will put different stresses on a 
disordered voice, since the production of different phones is associated 
with different vocal tract and laryngeal configurations. The consequence 
is that an average of signal properties computed over all phones in a 
recording could dilute variation that is useful for identification or 
discrimination of pathologies. 

Examples of interactions between pathology and phonetic context 
include the starting and stopping of voicing in plosives, which might be 
affected by disorders of adduction and abduction, or the aerodynamic 
interactions between vocal tract constriction and voicing in voiced 
fricatives, which might expose disorders affected by reduced glottal air 
flow. A previous study has shown how in dysphonic voice with vocal 
fold thickening, unstressed syllables are more likely to be produced with 
insufficient subglottal pressure realizing aphonia [14]. Even in normal 
voices, variation of voice quality with phonetic context has been found 
in studies such as [15,16] and predicted by phoneticians [17]. A few 
studies have also looked at variation in voice quality with phonetic 
context for the assessment of Parkinson’s [18] and on the assessment of 
severity of voice disorder [19]. These studies have exploited contexts 
such as manner of articulation (e.g., plosives, fricatives, and affricates), 
voicing (e.g., voiced and voiceless onsets), and the height of the tongue 
(e.g., high vowels and low vowels) to improve assessments. 

Not only might voice disorders have greater consequences in certain 
phonetic contexts, but there might be an interaction between the type of 
disorder and the size and nature of its effects in those contexts. Where 
one disorder might have one acoustic consequence in a particular 
context, another disorder might have a different effect. Thus, an analysis 
of changes in voice quality with phonetic context might provide useful 
information for the discrimination of voice pathologies. The goal of this 
paper is to test the utility of the information arising from this interaction 
of pathology and context using automated voice pathology discrimina
tion from phonetically annotated continuous speech recordings. 

This paper describes two complementary studies into the use of 
automated methods for the diagnosis of voice disorder from audio re
cordings that test the phonetic context interaction hypothesis. In the first 
study, we explore the use of a state-of-the-art method for voice pathol
ogy classification using a standard database of normal and pathological 
speech. The goal is to test whether discrimination of two broad pa
thology classes from an audio recording of continuous speech is better 
when the speech is treated as a collection of different phones rather than 
as a whole. Using automated phonetic transcription alignment, we show 
that phonetic context information is useful, but that performance of the 
method may be constrained by limitations of the database which com
prises numerous distinct pathologies and only a single, short instance of 
continuous speech for each speaker. Therefore, in the second study, we 
extend the method by applying it to a longer read passage and to two 
narrowly specified disorders. Again, we explicitly compare discrimina
tion performance using the passage as a whole with performance when 
the method is applied independently to different phone-labelled regions 

in the passage and the predictions fused. To establish the phonetic 
contexts in the reading passage we introduce a method based on auto
mated alignment from text rather than from phonetic transcription and 
evaluate its performance. The outcome of the second study not only 
confirms that interactions between pathology and phonetic context 
provide useful information for diagnosis, but that the automated 
methods are robust enough to deliver diagnostic performance similar to 
tests currently used in clinical practice. In a final section we reflect on 
limitations of the current study and make proposals for future work. 

2. Study 1. Evaluation of automated voice pathology 
discrimination using a common database and a short phrase 

There have been many published studies that use machine learning 
approaches for the automated detection of voice disorders from audio 
recordings using isolated vowels (see [6] for review), but fewer studies 
have investigated discrimination between disorders, and few of those 
have analysed continuous speech. The goal of this study is to evaluate a 
method for exploiting the phonetic contexts in continuous speech for 
discriminating between voice pathologies. We implement a state-of-the- 
art system using short phrase recordings from the Saarbrücken Voice 
Database (SVD) [20] to differentiate between two broad classes of dis
orders. We compare the classification performance of the system when 
the phrases are analysed as a whole with performance when the phrases 
are treated as a collection of different phonetic contexts. 

2.1. Background to the corpus 

The Saarbrücken Voice Database contains material from a total of 
2225 recording sessions from both sufferers of various voice disorders 
(454 male and 548 female speakers) and healthy control speakers (423 
male and 428 female). The age of speakers varies from 6–94 years 
(pathological) and 9–84 years (control), and there are an average of 1.2 
recording sessions per speaker (max = 24). Each recording session 
represents a set of audio and electroglottographic recordings for both a 
short phrase (i.e. “Guten Morgen,wie geht es Ihnen?” (“Good morning, 
how are you?”) and sustained vowels on various pitches (i.e. /i/, /a/ and 
/u/, in isolation and together, on typical, higher, lower, rising and 
falling pitch). Both the audio and EGG recordings are available sampled 
at 16-bit precision at 50 k samples/sec. 

The database uses 71 different pathology labels for its recordings, 
though 263 sessions are assigned more than one label [21]. Some pa
thologies are much better represented than others – the top three most 
frequently occurring pathologies (i.e. vocal fold paralysis, hyperfunc
tional dysphonia, laryngitis) each have more than 80 associated re
cordings, while there are 19 pathologies which only occur once. 

While the SVD is an extremely useful resource, it is not an easy 
database to partition for use in machine learning. The imbalance in the 
frequency of pathologies, the assignment of multiple pathologies to re
cordings, and the presence of multiple recordings per speaker could 
easily bias classification performance. Also, any cross-validation process 
that did not take speaker into account could allow the same speaker to 
be present in both training and testing partitions, artificially boosting 
performance. Our evaluation will use a standardized way of working 
with the multiple recordings and multiple diagnoses per speaker found 
in the SVD as described in [5]. 

2.2. Database subset selection 

We explore two major classes of pathologies available in the SVD: 
those that arise from structural disorder in the larynx itself (‘structural’), 
and those that arise from disorder of the nervous control of the larynx 
(‘neurogenic’). Structural disorders include laryngitis, nodules and 
polyps; neurogenic disorders include vocal fold paresis and spasmodic 
dysphonia. Table 1 provides the diagnostic labels used in the SVD to 
define the two groups. 

M. Huckvale et al.                                                                                                                                                                                                                              



Biomedical Signal Processing and Control 86 (2023) 105201

3

As defined, there are 325 recordings with structural disorders and 
272 recordings with neurogenic disorders in the SVD. 

2.3. Audio selection and pre-processing 

For these experiments, we used the recording of the spoken phrase 
which we have transcribed as / g u t ə n m ɔ g ə n v i g e t e s i n ə n /. 
Alignment of the transcription to the audio was performed using the 
‘analign’ tool in SFS [22]. This uses a pre-trained set of HMM phone 
models based on MFCC spectral analyses of the signal. Audio materials 
were downsampled to 16 kHz for the feature extraction used for 
classification. 

2.4. Feature extraction and normalisation 

The OpenSMILE toolkit [23] was used to extract features using the 
ComParE feature set [24] as used in the 2013 Interspeech Computa
tional Paralinguistics challenge. This feature extraction system first 
computes 126 low-level descriptors (LLDs) from the signal at 100 feature 
frames per second. These features describe short-term spectral and 
temporal characteristics of the signal and other extracted measures 
relating to voice quality. These features may then be summarised over 
the recording using a set of functionals which provide averages and 
dispersion measures of various kinds. In this study we either use the full 
set of functionals found in the ComParE13 configuration, which delivers 
6373 features, or we simply compute a median and an inter-quartile 
range for each LLD over each region of interest, delivering 252 fea
tures. Individual features were normalized by brute force Gaussianisa
tion using the bestNormalize package [25] in ‘R’, which maps the rank 
of each value into a sample from a cumulative Gaussian pdf. Normali
zation was performed as part of cross-validation, such that only the 
training data in each fold were used to define the normalizing transform. 

2.5. Classifier construction 

The SVM classifier was implemented in R using the e1071 package 
[26]. A radial basis function kernel was used, and a simple grid-search 
established to find optimum values for the cost parameter, which was 
then fixed for all classifiers. The gamma parameter was set to the 
reciprocal of the number of features. The SVM classifier was run in a 
mode that delivers the classification probability rather than the best 
class. This allows the post-hoc calculation of a Receiver Operating 
Characteristic curve (ROC) and the determination of the Area-Under- 
Curve (AUC) metric of performance for each test condition. Using the 
optimal threshold from the ROC, we are able to report the best Un
weighted Average Recall (UAR) for each condition. The UAR is an es
timate of the accuracy of the system if the test data had equal numbers of 
each pathological class. 

The SVM was trained and evaluated using five-fold cross-validation. 

Assignment of recordings to the cross-validation fold was done on the 
basis of speaker number, to ensure that the same speaker did not appear 
in more than one fold. 

2.6. Experimental conditions 

Three experimental conditions were evaluated to test the hypothesis. 
The first baseline condition mirrors evaluations performed in our pre
vious study [5] on pathology detection using the SVD, but now using the 
two pathology subsets. For this baseline, all the 6373 SMILE features 
were used, computed over each whole recording. A second baseline used 
only the 252 features computed from the LLDs for the whole phrase. The 
test condition trains a separate SVM for each of the 11 phone types found 
in the annotated phrase. This takes as input the mean and IQR of the 
LLDs for frames labelled with that phone. The eleven phone SVMs then 
deliver a classification probability per recording, and these are fused 
using linear discriminant analysis (LDA) to generate one overall 
discriminant between the two classes. The discriminants were computed 
using cross-validation such that the phone probabilities for the sample 
under test were not used in the calculation of the LDA weights. The 
discriminant was then used to create an ROC curve to compare with the 
whole-phrase classifiers. 

2.7. Experimental results and discussion 

Classification performance in terms of AUC and UAR for the three 
conditions are shown in Table 2. 

In discussing the outcomes, it should be noted that an AUC of 0.5 and 
a UAR of 50% represent random classification. Results show that the full 
OpenSMILE feature set computed from a large number of functionals 
applied to the LLDs does not provide any advantage over a simpler 
feature set using median and IQR. This is probably because the shortness 
of the phrase makes the complex functional averages unreliable, effec
tively adding noise to their estimates. The analysis by individual phone 
types in the phrase followed by score fusion with LDA is superior to both 
baseline conditions which compute an average over the whole phrase. 
This is probably because some elements of the phrase are more sensitive 
to differences in pathology than others, and the LDA process can 
emphasise the more important elements and downplay others. A post- 
hoc analysis of independently trained phone classifiers shows that the 
best classification accuracy arises from phones /g, ə, e/, while poorer 
accuracy is obtained from regions labelled with /t, i, v/. Of course, the 
specific lexical, syllabic and prosodic context for these phones will also 
play a part in their utility for classification. 

To understand the possibility of using such a method in a clinical 
application for diagnosing voice pathologies, it is instructive to plot the 
value of the discriminant based on the true pathological class of the 
speakers, and a Receiver Operating Characteristic (ROC) showing the 
trade-off between sensitivity and specificity, see Fig. 1. To achieve a 
diagnostic test with a sensitivity of 0.9 for structural disorders, the 
method would deliver a specificity of only 0.4, that is, to detect 90% of 
all structural disorders, the cost would be the misidentification of 60% of 
neurogenic disorders. 

In summary, the contextualised phonetic analysis of the short phrase 
in the SVD does lead to a small increase in the ability to discriminate 
structural from neurogenic disorders. This supports the hypothesis that 
different disorders will have different effects in different phonetic 

Table 1 
Summary of pathology labels used in the SVD to define the two pathology 
subsets.  

Structural Neurogenic 

Kontaktpachydermie 
(Pachydermia) 

Rekurrensparese 
(Recurrent laryngeal nerve paresis/ Vocal fold 
paresis) 

Laryngitis Spasmodische Dysphonie 
(Spasmodic dysphonia) 

Leukoplakie 
(Leukoplakia)  

Reinke Ödem 
(Reinke’s Edema)  

Stimmlippenkarzinom 
(Vocal fold carcinoma)  

Stimmlippenpolyp 
(Vocal fold polyps)   

Table 2 
Classification performance of three test conditions for pathology discrimination 
from the short phrase.  

Condition # Features AUC UAR% 

SMILE full, whole phrase 6373  0.584  59.41 
LLD, whole phrase 252  0.661  63.21 
LLD, per phone, LDA fusion 252  0.721  67.30  
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contexts, and that sensitivity to context improves discrimination. 
However, the overall performance is still rather low, and perhaps too 
low to be useful in a clinical application. If the phonetic context hy
pothesis is correct, greater discrimination should come from longer 
spoken passages which will have more phonetic contexts and more 
speech over which to compute averages. The use of the broad classes 
‘structural’ and ‘neurogenic’ may also be a hindrance in that these 
classes may hide a heterogeneous collection of acoustic effects in each 

context. Thus, a good direction for other studies would be to narrow 
down to specific disorders, which might have a more consistent set of 
acoustic effects. We consider both of these improvements in the next 
study. 

3. Study 2 voice pathology discrimination from analysis of a 
read passage 

This study advances the method described in the study above in two 
ways: it is based on recordings of a long reading passage rather than a 
short phrase, and it evaluates a classifier that discriminates between two 
specific voice pathologies. The goal is to investigate whether con
textualised phonetic analysis can also provide performance improve
ments when used with a greater length of speech material and more 
narrowly-defined disorders. An innovative aspect of the work is the 
use of an automated phonetic annotation technique to segment a long 
recording using only a text transcription. A further outcome of the study 
is a post-hoc analysis of which phonetic contexts are more useful in 
detecting specific pathologies, which might lead to the design of specific 
speech materials for diagnosis. An earlier version of this study was 
previously published as [31]. 

3.1. Source of data 

The study used previously collected ‘Arthur the Rat’ passage reading 
and sustained vowel production recordings made from individuals 
(British English speakers) presenting at a specialist multidisciplinary 
voice clinic. There are 38 participants subsequently diagnosed with 
Spasmodic Dysphonia (SD) (6 Abductor, 32 Adductor) and 22 partici
pants diagnosed with Vocal fold Palsy (VP, otherwise known as vocal 
fold paralysis). The mean age for SD speakers (10 male, 28 female) was 
62 ± 15 years. The mean age for VP speakers (20 male, 2 female) was 53 
± 22 years. The choice of these two pathologies was due to data avail
ability, but they do reflect two disorders with different aetiologies and 
therapies. 

SD and VP are two distinct types of neurogenic voice disorder. SD is a 
form of focal dystonia. There are two main phenotypes, both charac
terized by abrupt spasms of intrinsic laryngeal muscles. The commoner 
form, Adductor SD (90%), is associated with spasmodic closure of the 
vocal folds (i.e., glottal stopping) particularly following voiced onsets. 
This results in involuntary phonatory breaks during propositional 
speech and in addition the voice has a strained/ strangled quality. The 
less common form, Abductor SD (10%), is associated with involuntary 
spasmodic opening of the vocal folds (i.e., glottal widening). It is also 
associated with unnatural breathy or aphonic interludes during phona
tion, and is worsened by the use of voiceless consonants, prolonging 
word or sentence duration. In both forms, speech becomes slower, more 
effortful, and more dysfluent with increasing severity, but less affected 
during whispering and non-speech vocalizations, such as laughter and 
crying. VP occurs when there is neural damage to the intrinsic muscles of 
the larynx due to viral neuropathy, neck or thoracic surgery, cancer, 
neck trauma or other neurologic conditions. People with VP may have a 
hoarse, weak, breathy, or diplophonic voice, with loss of volume and 
elevation in pitch [27]. 

Speech and EGG recordings were made with Laryngograph hard
ware, which used an electret microphone placed on the EGG neckband, 
in a quiet clinic room. Most recordings were made at 44,100 samples/sec 
16-bit, while some were at 22,050 samples/sec. Only the recorded 
speech signals were used in this study, and the EGG recordings will be 
analysed in a later study. 

3.2. Audio pre-processing 

Each speaker produced some isolated words and a reading passage. 
The passage was a recording of the ‘Arthur the Rat’ story, which was on 
average 149 s of audio for the SD speakers and 141 s for the VP speakers. 

Fig. 1. Distribution of the phone LDA discriminant for the true pathology 
classes and an ROC showing tradeoff between sensitivity and specificity for 
different thresholds of the discriminant. 
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For the baselines, two types of vowel-sound extracts were segmented 
from recordings of the production of sustained vowels collected in 
another assessment:  

• IY: instance of an /i/ vowel spoken on a low pitch.  
• AE: instance of an /æ/ vowel in the isolated word “sat”. 

For the passage reading, manual editing of the audio was required to 
eliminate any speech from the clinician prompting the speaker before or 
after each extract. However, to maintain consistency, any clinician’s 
speech that overlapped with the participant’s speech was retained. All 
signals were then resampled to 16,000 samples/sec. 

3.3. Alignment and annotation 

An edited transcript of the reading passage was created separately for 
each speaker to make transcriptions that matched the actual production. 
There were 3 out of 60 transcripts that needed major edits due to the 
deletion of whole sentences. For the rest of the recordings, only a few 
manual corrections were required when the participants repeated or 
changed occasional words. The orthographic transcript was then aligned 
with the speech audio using the Montreal forced aligner [28]. This 
forced alignment approach produced a segmentation of the signal at 
both word and phone levels. The phonetic annotation was based on an 
American English pronunciation dictionary with 41 phone types. The 
alignment and phonetic labelling permitted the analysis of phonetic 
context within the pathological speech recording, as the individual 
acoustic segments corresponding to individual phones could be grouped 
together for voice disorder assessment. Fig. 2 shows the examples of the 
automatic alignment and annotation of the word ‘Arthur’. 

To estimate the accuracy of the automated alignment, a random 
sample of 20 recordings was chosen, and then a random section of 3 s of 
each was selected for manual checking. Of 493 annotations checked, 
only 9 (2%) were found to be in significant error (greater than 10 ms 
from a satisfactory ideal position). On average, those in error were 
shifted by 30 ms from their preferred location. Based on these results, no 
corrections to the automatic phonetic annotations were made for the 

experiment. While the alignment seems good, it is possible that align
ment might have been improved had a British English dictionary been 
used. 

3.4. Feature extraction and normalisation 

The OpenSMILE analysis system was used to extract features for 
processing as in Study 1. Two strategies for summarizing features across 
recordings, as before. In the Functional strategy, we used the large set of 
summary functionals found in the COMPARE13 configuration of 
OpenSMILE [29], which delivered 6373 features per recording. In the 
Summary strategy, we used the COMPARE13 low-level descriptors 
(LLD) configuration delivering 126 features per 10 ms frame and then 
computed the median and inter-quartile range of each LLD to give 252 
features for each specified region of a recording. This latter approach 
allowed us to generate a feature vector that summarised the features 
found in specified phonetic contexts identified by the phone labels on 
each frame. All features were normalised using z-scores. For the Func
tional strategy, feature selection was performed on the basis of an F-ratio 
statistic to select the 1000 most active features for discrimination. For 
the Summary strategy, feature selection was not conducted. 

3.5. Classifier construction 

An SVM classifier was used as before, using a radial basis function 
kernel and a cost parameter C = 2 and gamma set to the reciprocal of the 
number of features. For classification, a leave-one-out cross-validation 
strategy was employed in which all normalization, feature selection and 
classification were performed on all but one training sample to classify 
the left-out sample. The SVM was trained using a method to generate 
classification probabilities which then allowed the post-hoc creation of 
an ROC and the calculation of the AUC measure, as in Study 1. The UAR 
measure was calculated using the best classification threshold. 

3.6. Phonetic analysis 

In order to evaluate the prediction that different voice pathologies 
would have different effects in different phonetic contexts, we took a 
simple approach and built classifiers for each phone-context separately. 
There were only 36 phone regions chosen in total, because some phones 
used by the forced aligner did not occur in all instances of the read 
passage. In the phonetic evaluation, for each phone type, Summary 
strategy feature vectors were collated over all segments within the 
reading passage that were labelled with that phone, and then an SVM 
classifier was built and validated from the collated data. 

3.7. Phonetic fusion 

The phone evaluation examined how well regions labelled with the 
different phones led to pathology classifications. In this regard, each 
phone context was treated as an independent source of information on 
the pathology. To fuse the SVM predictions across all phone types, the 36 
classification probabilities were fused into a single discriminant using 
LDA, again with leave-one-out cross validation. In combination with the 
cross-validation used during training this procedure ensured that both 
the phone scores and the fusion weights were calculated without 
reference to the sample under test. 

3.8. Baseline results 

The main objective of this study was to investigate the benefits of 
phonetic context in voice disorder discrimination evaluation from a long 
reading passage, especially as applied to individual diagnoses within the 
same aetiological type. We compared our proposed system with classi
fication approaches based on vowel productions, as well as continuous 
speech without phonetic analysis. Baseline results for SD vs VP 

Fig. 2. Examples of automatic alignment and annotation. Voice recordings are 
from a speaker with SD (above) and a speaker with VP (below) producing the 
word ‘Arthur’. 
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pathology discrimination are shown in Table 3. For the Functional 
strategy, UAR performance was around 79% regardless of the speech 
material used, while performance was a little worse for the Summary 
strategy. The AUC measure was greatest for the isolated IY vowel, 
showing slightly better robustness to choice of classification threshold. 

3.9. Phonetic analysis 

To investigate the relative contribution of different phonetic contexts 
to discrimination of the two pathology classes, we can study the per
formance of classifiers trained using the Summary strategy for each 
phone context independently. Table 4 lists some performance figures for 
SD/VP pathology discrimination for the best and worst single phones. As 
might have been predicted, all of the best phones are voiced sounds, 
whilst most of the worst phones are voiceless sounds. Note that the 
vowels here are found in syllables and are not isolated forms. One 
possible explanation is that VP imparts a hoarse and breathy quality to 
voice, which is reflected in more glottal noise during phonation of vowel 
compared with SD. This difference is visible in Fig. 2. While the best 
phone models have a greater UAR than the baseline models, the AUC 
measures for the best phones are similar to those found in the baselines. 
There is no clear pattern to suggest that better performance comes from 
phones with a larger number of labelled frames. Exploring why 
discrimination performance varies across phones for these disorders will 
be an interesting area of focus in further work. 

3.10. Phonetic fusion 

The classification probabilities were then combined into a single 
discriminant using LDA. Fig. 3 plots the distribution of the discriminant 
for the true pathology classes, together with an ROC curve that shows 
how different choices of threshold for the discriminant leads to changes 
in Sensitivity and Specificity of the classification. Table 5 provides a 
confusion matrix for the classification result, using a discriminant 
threshold of 1.67. The proposed system based on phonetic analysis 
significantly outperformed the baseline models, obtaining a classifica
tion accuracy of 92.1% for SD, 81.8% for VP, and a UAR of 86.96%. This 
compares to the best baseline UAR of 79.93%. The AUC for the fused 
system was 0.927 compared to the best baseline of 0.849. 

The LDA fusion of phone scores leads to weights for each phone 
classifier in terms of how much each contribute to a discriminant that 
separates the SD and VP classes. The phones with the largest and 
smallest contribution to the discriminant are listed in Table 6, where a 
positive weight increases the likelihood of a VP classification, and a 
negative weight increases the likelihood of a SD classification. Inter
estingly, it is not the phones with best individual classification perfor
mance (see Table 4) which have the largest weights. The phones /æ/ and 
/i/ provide good classification on their own, but contribute little to the 
discriminant. On the other hand the consonants /z/ and /θ/ provide 
poor classification on their own but contribute heavily to the discrimi
nant. This suggests that differences between class predictions also 
contain useful discriminative information, emphasising again that 
different pathologies have different effects in different phonetic 

contexts. 

3.11. Discussion 

In this second study, we have presented an automated voice pa
thology discrimination system based on continuous speech, employing 
contextualised phonetic analysis of a long reading passage. This system 
outperforms the baseline models that used the whole recording, whether 
based on vowels or a read passage, with a 35% reduction in recall error. 
Moreover, our findings reinforce the hypothesis that voice pathologies 
influence phonetic contexts in different ways, as phones show different 
sensitivities for distinct disorder types in the classification. The SD and 
VP pathologies were selected because of availability, but there are no 
particular aspects of the method that are specific to these disorders, 
suggesting that a similar approach might be useful for other pathologies. 

In terms of clinical application, post-hoc analysis of the classifier’s 
discriminant shows that the method could lead to a diagnostic test for 
discriminating between these pathologies that had a sensitivity of about 
0.9 for a specificity of about 0.8. These values are similar to many 
clinical screening tests currently in use [30]. 

Several limitations regarding the findings are worth noting. First, the 
relatively small size and the gender imbalance of the pathology samples 
might have caused problems for classification. A larger, gender- 
balanced sample would be preferred for future studies. The automated 
phonetic labelling of the reading passage seemed to work well but relied 
upon the manual correction of an orthographic transcript to what was 
actually said. Automation of the generation of the transcript could be a 
subject for further study, together with an evaluation of the effect of 
automation on classification accuracy. In addition, phonetic contexts 
could be considerably expanded, to include, for example, syllable types 
or prosodic units. 

4. CONCLUSIONS 

In this paper we have presented two complementary studies that 
tested the hypothesis that voice pathologies can be better discriminated 
by considering their effects on separate phonetic contexts in continuous 
speech rather than their average effects on a whole recording. The 
studies used established machine learning tools and procedures for the 
extraction of acoustic features (openSMILE), probabilistic classification 
(SVM), and analysis (LDA). The studies compared contextualised anal
ysis to a baseline and employed careful cross-validation. In study 1 we 
looked at a large corpus which included a short phrase, while in study 2 
we looked at a small corpus that included a long reading passage. The 
short phrase in study 1 was short enough that it could be annotated using 
a simple phonetic transcription alignment tool, while the long reading 
passage in study 2 required the use of a more sophisticated alignment 
tool that worked from a text transcription. Study 1 looked at two broad 
pathology classes, while study 2 looked at two narrowly define pathol
ogies. In both studies we have shown improvements in discrimination 
once phonetic contexts have been taken into account. We suggest that 
this improvement comes from a sensitivity to the different ways in which 
voice disorders affect speech production in different articulatory 

Table 3 
Baseline results for SD/VP pathology discrimination in terms of AUC and UAR on 
the recording of a vowel or the whole reading passage. Functional strategy: 
feature selection of 1000 best features. Summary strategy: median and IQR of 
LLD features.  

Data set  1000 features  252 features  

AUC UAR% AUC UAR% 

IY  0.849  79.39  0.784  73.90 
AE  0.818  78.99  0.822  78.20 
Passage  0.808  79.93  0.748  75.72  

Table 4 
Results for best and worst phones in SD/VP pathology discrimination. AUC: area 
under ROC curve, UAR: unweighted average recall at optimal threshold, Frames: 
number of 10 ms frames available for that phone label across all recordings.  

Best phones Worst phones 

Phone Frames AUC UAR % Phone Frames AUC UAR % 

L /l/ 20,259  0.84  86.2 Z /z/ 10,985  0.57  63.0 
AE /æ/ 24,417  0.81  83.3 S /s/ 34,623  0.60  64.0 
DH /ð/ 14,506  0.82  82.3 K /k/ 19,304  0.61  66.9 
OW /əʊ/ 16,397  0.81  82.3 F /f/ 17,343  0.66  68.2 
IY /i/ 17,750  0.84  82.1 T /θ/ 40,876  0.66  69.3  

M. Huckvale et al.                                                                                                                                                                                                                              



Biomedical Signal Processing and Control 86 (2023) 105201

7

contexts as brought out in a continuous speech recording. Importantly, 
these studies suggest that more sensitive pathology diagnosis might 
come from designing recording materials to maximise the differences 
between these contextual effects. While we have not done this yet for our 
studies, post-hoc analyses of studies like these might reveal which 
phonetic contexts are most useful for diagnosis and in turn shed light on 
the interactions between voice disorder, articulation and speech 
production. 

Overall, the performance of our automated method for voice pa
thology discrimination from audio recordings of continuous speech look 
promising for a clinical use, achieving sensitivities of 0.9 for levels of 
specificity which are typical for screening tests. Further work is required 
to see how robust these methods are to variations in language, accent, 
recording equipment, reverberation and background noise that will be 
found in clinical settings. Further research would benefit enormously 
from a corpus of long continuous speech recordings from a large number 
of disordered speakers with well-defined pathology labels. 
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